rtc.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433
  1. /*
  2. * Real Time Clock interface for Linux
  3. *
  4. * Copyright (C) 1996 Paul Gortmaker
  5. *
  6. * This driver allows use of the real time clock (built into
  7. * nearly all computers) from user space. It exports the /dev/rtc
  8. * interface supporting various ioctl() and also the
  9. * /proc/driver/rtc pseudo-file for status information.
  10. *
  11. * The ioctls can be used to set the interrupt behaviour and
  12. * generation rate from the RTC via IRQ 8. Then the /dev/rtc
  13. * interface can be used to make use of these timer interrupts,
  14. * be they interval or alarm based.
  15. *
  16. * The /dev/rtc interface will block on reads until an interrupt
  17. * has been received. If a RTC interrupt has already happened,
  18. * it will output an unsigned long and then block. The output value
  19. * contains the interrupt status in the low byte and the number of
  20. * interrupts since the last read in the remaining high bytes. The
  21. * /dev/rtc interface can also be used with the select(2) call.
  22. *
  23. * This program is free software; you can redistribute it and/or
  24. * modify it under the terms of the GNU General Public License
  25. * as published by the Free Software Foundation; either version
  26. * 2 of the License, or (at your option) any later version.
  27. *
  28. * Based on other minimal char device drivers, like Alan's
  29. * watchdog, Ted's random, etc. etc.
  30. *
  31. * 1.07 Paul Gortmaker.
  32. * 1.08 Miquel van Smoorenburg: disallow certain things on the
  33. * DEC Alpha as the CMOS clock is also used for other things.
  34. * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
  35. * 1.09a Pete Zaitcev: Sun SPARC
  36. * 1.09b Jeff Garzik: Modularize, init cleanup
  37. * 1.09c Jeff Garzik: SMP cleanup
  38. * 1.10 Paul Barton-Davis: add support for async I/O
  39. * 1.10a Andrea Arcangeli: Alpha updates
  40. * 1.10b Andrew Morton: SMP lock fix
  41. * 1.10c Cesar Barros: SMP locking fixes and cleanup
  42. * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
  43. * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
  44. * 1.11 Takashi Iwai: Kernel access functions
  45. * rtc_register/rtc_unregister/rtc_control
  46. * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
  47. * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
  48. * CONFIG_HPET_EMULATE_RTC
  49. * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
  50. * 1.12ac Alan Cox: Allow read access to the day of week register
  51. */
  52. #define RTC_VERSION "1.12ac"
  53. /*
  54. * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
  55. * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
  56. * design of the RTC, we don't want two different things trying to
  57. * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
  58. * this driver.)
  59. */
  60. #include <linux/interrupt.h>
  61. #include <linux/module.h>
  62. #include <linux/kernel.h>
  63. #include <linux/types.h>
  64. #include <linux/miscdevice.h>
  65. #include <linux/ioport.h>
  66. #include <linux/fcntl.h>
  67. #include <linux/mc146818rtc.h>
  68. #include <linux/init.h>
  69. #include <linux/poll.h>
  70. #include <linux/proc_fs.h>
  71. #include <linux/seq_file.h>
  72. #include <linux/spinlock.h>
  73. #include <linux/sysctl.h>
  74. #include <linux/wait.h>
  75. #include <linux/bcd.h>
  76. #include <linux/delay.h>
  77. #include <asm/current.h>
  78. #include <asm/uaccess.h>
  79. #include <asm/system.h>
  80. #ifdef CONFIG_X86
  81. #include <asm/hpet.h>
  82. #endif
  83. #ifdef CONFIG_SPARC32
  84. #include <linux/pci.h>
  85. #include <asm/ebus.h>
  86. static unsigned long rtc_port;
  87. static int rtc_irq = PCI_IRQ_NONE;
  88. #endif
  89. #ifdef CONFIG_HPET_RTC_IRQ
  90. #undef RTC_IRQ
  91. #endif
  92. #ifdef RTC_IRQ
  93. static int rtc_has_irq = 1;
  94. #endif
  95. #ifndef CONFIG_HPET_EMULATE_RTC
  96. #define is_hpet_enabled() 0
  97. #define hpet_set_alarm_time(hrs, min, sec) 0
  98. #define hpet_set_periodic_freq(arg) 0
  99. #define hpet_mask_rtc_irq_bit(arg) 0
  100. #define hpet_set_rtc_irq_bit(arg) 0
  101. #define hpet_rtc_timer_init() do { } while (0)
  102. #define hpet_rtc_dropped_irq() 0
  103. #define hpet_register_irq_handler(h) ({ 0; })
  104. #define hpet_unregister_irq_handler(h) ({ 0; })
  105. #ifdef RTC_IRQ
  106. static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
  107. {
  108. return 0;
  109. }
  110. #endif
  111. #else
  112. extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id);
  113. #endif
  114. /*
  115. * We sponge a minor off of the misc major. No need slurping
  116. * up another valuable major dev number for this. If you add
  117. * an ioctl, make sure you don't conflict with SPARC's RTC
  118. * ioctls.
  119. */
  120. static struct fasync_struct *rtc_async_queue;
  121. static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
  122. #ifdef RTC_IRQ
  123. static void rtc_dropped_irq(unsigned long data);
  124. static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
  125. #endif
  126. static ssize_t rtc_read(struct file *file, char __user *buf,
  127. size_t count, loff_t *ppos);
  128. static int rtc_ioctl(struct inode *inode, struct file *file,
  129. unsigned int cmd, unsigned long arg);
  130. #ifdef RTC_IRQ
  131. static unsigned int rtc_poll(struct file *file, poll_table *wait);
  132. #endif
  133. static void get_rtc_alm_time(struct rtc_time *alm_tm);
  134. #ifdef RTC_IRQ
  135. static void set_rtc_irq_bit_locked(unsigned char bit);
  136. static void mask_rtc_irq_bit_locked(unsigned char bit);
  137. static inline void set_rtc_irq_bit(unsigned char bit)
  138. {
  139. spin_lock_irq(&rtc_lock);
  140. set_rtc_irq_bit_locked(bit);
  141. spin_unlock_irq(&rtc_lock);
  142. }
  143. static void mask_rtc_irq_bit(unsigned char bit)
  144. {
  145. spin_lock_irq(&rtc_lock);
  146. mask_rtc_irq_bit_locked(bit);
  147. spin_unlock_irq(&rtc_lock);
  148. }
  149. #endif
  150. #ifdef CONFIG_PROC_FS
  151. static int rtc_proc_open(struct inode *inode, struct file *file);
  152. #endif
  153. /*
  154. * Bits in rtc_status. (6 bits of room for future expansion)
  155. */
  156. #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
  157. #define RTC_TIMER_ON 0x02 /* missed irq timer active */
  158. /*
  159. * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
  160. * protected by the big kernel lock. However, ioctl can still disable the timer
  161. * in rtc_status and then with del_timer after the interrupt has read
  162. * rtc_status but before mod_timer is called, which would then reenable the
  163. * timer (but you would need to have an awful timing before you'd trip on it)
  164. */
  165. static unsigned long rtc_status; /* bitmapped status byte. */
  166. static unsigned long rtc_freq; /* Current periodic IRQ rate */
  167. static unsigned long rtc_irq_data; /* our output to the world */
  168. static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
  169. #ifdef RTC_IRQ
  170. /*
  171. * rtc_task_lock nests inside rtc_lock.
  172. */
  173. static DEFINE_SPINLOCK(rtc_task_lock);
  174. static rtc_task_t *rtc_callback;
  175. #endif
  176. /*
  177. * If this driver ever becomes modularised, it will be really nice
  178. * to make the epoch retain its value across module reload...
  179. */
  180. static unsigned long epoch = 1900; /* year corresponding to 0x00 */
  181. static const unsigned char days_in_mo[] =
  182. {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
  183. /*
  184. * Returns true if a clock update is in progress
  185. */
  186. static inline unsigned char rtc_is_updating(void)
  187. {
  188. unsigned long flags;
  189. unsigned char uip;
  190. spin_lock_irqsave(&rtc_lock, flags);
  191. uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
  192. spin_unlock_irqrestore(&rtc_lock, flags);
  193. return uip;
  194. }
  195. #ifdef RTC_IRQ
  196. /*
  197. * A very tiny interrupt handler. It runs with IRQF_DISABLED set,
  198. * but there is possibility of conflicting with the set_rtc_mmss()
  199. * call (the rtc irq and the timer irq can easily run at the same
  200. * time in two different CPUs). So we need to serialize
  201. * accesses to the chip with the rtc_lock spinlock that each
  202. * architecture should implement in the timer code.
  203. * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
  204. */
  205. irqreturn_t rtc_interrupt(int irq, void *dev_id)
  206. {
  207. /*
  208. * Can be an alarm interrupt, update complete interrupt,
  209. * or a periodic interrupt. We store the status in the
  210. * low byte and the number of interrupts received since
  211. * the last read in the remainder of rtc_irq_data.
  212. */
  213. spin_lock(&rtc_lock);
  214. rtc_irq_data += 0x100;
  215. rtc_irq_data &= ~0xff;
  216. if (is_hpet_enabled()) {
  217. /*
  218. * In this case it is HPET RTC interrupt handler
  219. * calling us, with the interrupt information
  220. * passed as arg1, instead of irq.
  221. */
  222. rtc_irq_data |= (unsigned long)irq & 0xF0;
  223. } else {
  224. rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
  225. }
  226. if (rtc_status & RTC_TIMER_ON)
  227. mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
  228. spin_unlock(&rtc_lock);
  229. /* Now do the rest of the actions */
  230. spin_lock(&rtc_task_lock);
  231. if (rtc_callback)
  232. rtc_callback->func(rtc_callback->private_data);
  233. spin_unlock(&rtc_task_lock);
  234. wake_up_interruptible(&rtc_wait);
  235. kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
  236. return IRQ_HANDLED;
  237. }
  238. #endif
  239. /*
  240. * sysctl-tuning infrastructure.
  241. */
  242. static ctl_table rtc_table[] = {
  243. {
  244. .ctl_name = CTL_UNNUMBERED,
  245. .procname = "max-user-freq",
  246. .data = &rtc_max_user_freq,
  247. .maxlen = sizeof(int),
  248. .mode = 0644,
  249. .proc_handler = &proc_dointvec,
  250. },
  251. { .ctl_name = 0 }
  252. };
  253. static ctl_table rtc_root[] = {
  254. {
  255. .ctl_name = CTL_UNNUMBERED,
  256. .procname = "rtc",
  257. .mode = 0555,
  258. .child = rtc_table,
  259. },
  260. { .ctl_name = 0 }
  261. };
  262. static ctl_table dev_root[] = {
  263. {
  264. .ctl_name = CTL_DEV,
  265. .procname = "dev",
  266. .mode = 0555,
  267. .child = rtc_root,
  268. },
  269. { .ctl_name = 0 }
  270. };
  271. static struct ctl_table_header *sysctl_header;
  272. static int __init init_sysctl(void)
  273. {
  274. sysctl_header = register_sysctl_table(dev_root);
  275. return 0;
  276. }
  277. static void __exit cleanup_sysctl(void)
  278. {
  279. unregister_sysctl_table(sysctl_header);
  280. }
  281. /*
  282. * Now all the various file operations that we export.
  283. */
  284. static ssize_t rtc_read(struct file *file, char __user *buf,
  285. size_t count, loff_t *ppos)
  286. {
  287. #ifndef RTC_IRQ
  288. return -EIO;
  289. #else
  290. DECLARE_WAITQUEUE(wait, current);
  291. unsigned long data;
  292. ssize_t retval;
  293. if (rtc_has_irq == 0)
  294. return -EIO;
  295. /*
  296. * Historically this function used to assume that sizeof(unsigned long)
  297. * is the same in userspace and kernelspace. This lead to problems
  298. * for configurations with multiple ABIs such a the MIPS o32 and 64
  299. * ABIs supported on the same kernel. So now we support read of both
  300. * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
  301. * userspace ABI.
  302. */
  303. if (count != sizeof(unsigned int) && count != sizeof(unsigned long))
  304. return -EINVAL;
  305. add_wait_queue(&rtc_wait, &wait);
  306. do {
  307. /* First make it right. Then make it fast. Putting this whole
  308. * block within the parentheses of a while would be too
  309. * confusing. And no, xchg() is not the answer. */
  310. __set_current_state(TASK_INTERRUPTIBLE);
  311. spin_lock_irq(&rtc_lock);
  312. data = rtc_irq_data;
  313. rtc_irq_data = 0;
  314. spin_unlock_irq(&rtc_lock);
  315. if (data != 0)
  316. break;
  317. if (file->f_flags & O_NONBLOCK) {
  318. retval = -EAGAIN;
  319. goto out;
  320. }
  321. if (signal_pending(current)) {
  322. retval = -ERESTARTSYS;
  323. goto out;
  324. }
  325. schedule();
  326. } while (1);
  327. if (count == sizeof(unsigned int)) {
  328. retval = put_user(data,
  329. (unsigned int __user *)buf) ?: sizeof(int);
  330. } else {
  331. retval = put_user(data,
  332. (unsigned long __user *)buf) ?: sizeof(long);
  333. }
  334. if (!retval)
  335. retval = count;
  336. out:
  337. __set_current_state(TASK_RUNNING);
  338. remove_wait_queue(&rtc_wait, &wait);
  339. return retval;
  340. #endif
  341. }
  342. static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
  343. {
  344. struct rtc_time wtime;
  345. #ifdef RTC_IRQ
  346. if (rtc_has_irq == 0) {
  347. switch (cmd) {
  348. case RTC_AIE_OFF:
  349. case RTC_AIE_ON:
  350. case RTC_PIE_OFF:
  351. case RTC_PIE_ON:
  352. case RTC_UIE_OFF:
  353. case RTC_UIE_ON:
  354. case RTC_IRQP_READ:
  355. case RTC_IRQP_SET:
  356. return -EINVAL;
  357. };
  358. }
  359. #endif
  360. switch (cmd) {
  361. #ifdef RTC_IRQ
  362. case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
  363. {
  364. mask_rtc_irq_bit(RTC_AIE);
  365. return 0;
  366. }
  367. case RTC_AIE_ON: /* Allow alarm interrupts. */
  368. {
  369. set_rtc_irq_bit(RTC_AIE);
  370. return 0;
  371. }
  372. case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
  373. {
  374. /* can be called from isr via rtc_control() */
  375. unsigned long flags;
  376. spin_lock_irqsave(&rtc_lock, flags);
  377. mask_rtc_irq_bit_locked(RTC_PIE);
  378. if (rtc_status & RTC_TIMER_ON) {
  379. rtc_status &= ~RTC_TIMER_ON;
  380. del_timer(&rtc_irq_timer);
  381. }
  382. spin_unlock_irqrestore(&rtc_lock, flags);
  383. return 0;
  384. }
  385. case RTC_PIE_ON: /* Allow periodic ints */
  386. {
  387. /* can be called from isr via rtc_control() */
  388. unsigned long flags;
  389. /*
  390. * We don't really want Joe User enabling more
  391. * than 64Hz of interrupts on a multi-user machine.
  392. */
  393. if (!kernel && (rtc_freq > rtc_max_user_freq) &&
  394. (!capable(CAP_SYS_RESOURCE)))
  395. return -EACCES;
  396. spin_lock_irqsave(&rtc_lock, flags);
  397. if (!(rtc_status & RTC_TIMER_ON)) {
  398. mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
  399. 2*HZ/100);
  400. rtc_status |= RTC_TIMER_ON;
  401. }
  402. set_rtc_irq_bit_locked(RTC_PIE);
  403. spin_unlock_irqrestore(&rtc_lock, flags);
  404. return 0;
  405. }
  406. case RTC_UIE_OFF: /* Mask ints from RTC updates. */
  407. {
  408. mask_rtc_irq_bit(RTC_UIE);
  409. return 0;
  410. }
  411. case RTC_UIE_ON: /* Allow ints for RTC updates. */
  412. {
  413. set_rtc_irq_bit(RTC_UIE);
  414. return 0;
  415. }
  416. #endif
  417. case RTC_ALM_READ: /* Read the present alarm time */
  418. {
  419. /*
  420. * This returns a struct rtc_time. Reading >= 0xc0
  421. * means "don't care" or "match all". Only the tm_hour,
  422. * tm_min, and tm_sec values are filled in.
  423. */
  424. memset(&wtime, 0, sizeof(struct rtc_time));
  425. get_rtc_alm_time(&wtime);
  426. break;
  427. }
  428. case RTC_ALM_SET: /* Store a time into the alarm */
  429. {
  430. /*
  431. * This expects a struct rtc_time. Writing 0xff means
  432. * "don't care" or "match all". Only the tm_hour,
  433. * tm_min and tm_sec are used.
  434. */
  435. unsigned char hrs, min, sec;
  436. struct rtc_time alm_tm;
  437. if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
  438. sizeof(struct rtc_time)))
  439. return -EFAULT;
  440. hrs = alm_tm.tm_hour;
  441. min = alm_tm.tm_min;
  442. sec = alm_tm.tm_sec;
  443. spin_lock_irq(&rtc_lock);
  444. if (hpet_set_alarm_time(hrs, min, sec)) {
  445. /*
  446. * Fallthru and set alarm time in CMOS too,
  447. * so that we will get proper value in RTC_ALM_READ
  448. */
  449. }
  450. if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
  451. RTC_ALWAYS_BCD) {
  452. if (sec < 60)
  453. BIN_TO_BCD(sec);
  454. else
  455. sec = 0xff;
  456. if (min < 60)
  457. BIN_TO_BCD(min);
  458. else
  459. min = 0xff;
  460. if (hrs < 24)
  461. BIN_TO_BCD(hrs);
  462. else
  463. hrs = 0xff;
  464. }
  465. CMOS_WRITE(hrs, RTC_HOURS_ALARM);
  466. CMOS_WRITE(min, RTC_MINUTES_ALARM);
  467. CMOS_WRITE(sec, RTC_SECONDS_ALARM);
  468. spin_unlock_irq(&rtc_lock);
  469. return 0;
  470. }
  471. case RTC_RD_TIME: /* Read the time/date from RTC */
  472. {
  473. memset(&wtime, 0, sizeof(struct rtc_time));
  474. rtc_get_rtc_time(&wtime);
  475. break;
  476. }
  477. case RTC_SET_TIME: /* Set the RTC */
  478. {
  479. struct rtc_time rtc_tm;
  480. unsigned char mon, day, hrs, min, sec, leap_yr;
  481. unsigned char save_control, save_freq_select;
  482. unsigned int yrs;
  483. #ifdef CONFIG_MACH_DECSTATION
  484. unsigned int real_yrs;
  485. #endif
  486. if (!capable(CAP_SYS_TIME))
  487. return -EACCES;
  488. if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
  489. sizeof(struct rtc_time)))
  490. return -EFAULT;
  491. yrs = rtc_tm.tm_year + 1900;
  492. mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
  493. day = rtc_tm.tm_mday;
  494. hrs = rtc_tm.tm_hour;
  495. min = rtc_tm.tm_min;
  496. sec = rtc_tm.tm_sec;
  497. if (yrs < 1970)
  498. return -EINVAL;
  499. leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
  500. if ((mon > 12) || (day == 0))
  501. return -EINVAL;
  502. if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
  503. return -EINVAL;
  504. if ((hrs >= 24) || (min >= 60) || (sec >= 60))
  505. return -EINVAL;
  506. yrs -= epoch;
  507. if (yrs > 255) /* They are unsigned */
  508. return -EINVAL;
  509. spin_lock_irq(&rtc_lock);
  510. #ifdef CONFIG_MACH_DECSTATION
  511. real_yrs = yrs;
  512. yrs = 72;
  513. /*
  514. * We want to keep the year set to 73 until March
  515. * for non-leap years, so that Feb, 29th is handled
  516. * correctly.
  517. */
  518. if (!leap_yr && mon < 3) {
  519. real_yrs--;
  520. yrs = 73;
  521. }
  522. #endif
  523. /* These limits and adjustments are independent of
  524. * whether the chip is in binary mode or not.
  525. */
  526. if (yrs > 169) {
  527. spin_unlock_irq(&rtc_lock);
  528. return -EINVAL;
  529. }
  530. if (yrs >= 100)
  531. yrs -= 100;
  532. if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
  533. || RTC_ALWAYS_BCD) {
  534. BIN_TO_BCD(sec);
  535. BIN_TO_BCD(min);
  536. BIN_TO_BCD(hrs);
  537. BIN_TO_BCD(day);
  538. BIN_TO_BCD(mon);
  539. BIN_TO_BCD(yrs);
  540. }
  541. save_control = CMOS_READ(RTC_CONTROL);
  542. CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
  543. save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
  544. CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
  545. #ifdef CONFIG_MACH_DECSTATION
  546. CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
  547. #endif
  548. CMOS_WRITE(yrs, RTC_YEAR);
  549. CMOS_WRITE(mon, RTC_MONTH);
  550. CMOS_WRITE(day, RTC_DAY_OF_MONTH);
  551. CMOS_WRITE(hrs, RTC_HOURS);
  552. CMOS_WRITE(min, RTC_MINUTES);
  553. CMOS_WRITE(sec, RTC_SECONDS);
  554. CMOS_WRITE(save_control, RTC_CONTROL);
  555. CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
  556. spin_unlock_irq(&rtc_lock);
  557. return 0;
  558. }
  559. #ifdef RTC_IRQ
  560. case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
  561. {
  562. return put_user(rtc_freq, (unsigned long __user *)arg);
  563. }
  564. case RTC_IRQP_SET: /* Set periodic IRQ rate. */
  565. {
  566. int tmp = 0;
  567. unsigned char val;
  568. /* can be called from isr via rtc_control() */
  569. unsigned long flags;
  570. /*
  571. * The max we can do is 8192Hz.
  572. */
  573. if ((arg < 2) || (arg > 8192))
  574. return -EINVAL;
  575. /*
  576. * We don't really want Joe User generating more
  577. * than 64Hz of interrupts on a multi-user machine.
  578. */
  579. if (!kernel && (arg > rtc_max_user_freq) &&
  580. !capable(CAP_SYS_RESOURCE))
  581. return -EACCES;
  582. while (arg > (1<<tmp))
  583. tmp++;
  584. /*
  585. * Check that the input was really a power of 2.
  586. */
  587. if (arg != (1<<tmp))
  588. return -EINVAL;
  589. spin_lock_irqsave(&rtc_lock, flags);
  590. if (hpet_set_periodic_freq(arg)) {
  591. spin_unlock_irqrestore(&rtc_lock, flags);
  592. return 0;
  593. }
  594. rtc_freq = arg;
  595. val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
  596. val |= (16 - tmp);
  597. CMOS_WRITE(val, RTC_FREQ_SELECT);
  598. spin_unlock_irqrestore(&rtc_lock, flags);
  599. return 0;
  600. }
  601. #endif
  602. case RTC_EPOCH_READ: /* Read the epoch. */
  603. {
  604. return put_user(epoch, (unsigned long __user *)arg);
  605. }
  606. case RTC_EPOCH_SET: /* Set the epoch. */
  607. {
  608. /*
  609. * There were no RTC clocks before 1900.
  610. */
  611. if (arg < 1900)
  612. return -EINVAL;
  613. if (!capable(CAP_SYS_TIME))
  614. return -EACCES;
  615. epoch = arg;
  616. return 0;
  617. }
  618. default:
  619. return -ENOTTY;
  620. }
  621. return copy_to_user((void __user *)arg,
  622. &wtime, sizeof wtime) ? -EFAULT : 0;
  623. }
  624. static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
  625. unsigned long arg)
  626. {
  627. return rtc_do_ioctl(cmd, arg, 0);
  628. }
  629. /*
  630. * We enforce only one user at a time here with the open/close.
  631. * Also clear the previous interrupt data on an open, and clean
  632. * up things on a close.
  633. */
  634. /* We use rtc_lock to protect against concurrent opens. So the BKL is not
  635. * needed here. Or anywhere else in this driver. */
  636. static int rtc_open(struct inode *inode, struct file *file)
  637. {
  638. spin_lock_irq(&rtc_lock);
  639. if (rtc_status & RTC_IS_OPEN)
  640. goto out_busy;
  641. rtc_status |= RTC_IS_OPEN;
  642. rtc_irq_data = 0;
  643. spin_unlock_irq(&rtc_lock);
  644. return 0;
  645. out_busy:
  646. spin_unlock_irq(&rtc_lock);
  647. return -EBUSY;
  648. }
  649. static int rtc_fasync(int fd, struct file *filp, int on)
  650. {
  651. return fasync_helper(fd, filp, on, &rtc_async_queue);
  652. }
  653. static int rtc_release(struct inode *inode, struct file *file)
  654. {
  655. #ifdef RTC_IRQ
  656. unsigned char tmp;
  657. if (rtc_has_irq == 0)
  658. goto no_irq;
  659. /*
  660. * Turn off all interrupts once the device is no longer
  661. * in use, and clear the data.
  662. */
  663. spin_lock_irq(&rtc_lock);
  664. if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
  665. tmp = CMOS_READ(RTC_CONTROL);
  666. tmp &= ~RTC_PIE;
  667. tmp &= ~RTC_AIE;
  668. tmp &= ~RTC_UIE;
  669. CMOS_WRITE(tmp, RTC_CONTROL);
  670. CMOS_READ(RTC_INTR_FLAGS);
  671. }
  672. if (rtc_status & RTC_TIMER_ON) {
  673. rtc_status &= ~RTC_TIMER_ON;
  674. del_timer(&rtc_irq_timer);
  675. }
  676. spin_unlock_irq(&rtc_lock);
  677. if (file->f_flags & FASYNC)
  678. rtc_fasync(-1, file, 0);
  679. no_irq:
  680. #endif
  681. spin_lock_irq(&rtc_lock);
  682. rtc_irq_data = 0;
  683. rtc_status &= ~RTC_IS_OPEN;
  684. spin_unlock_irq(&rtc_lock);
  685. return 0;
  686. }
  687. #ifdef RTC_IRQ
  688. /* Called without the kernel lock - fine */
  689. static unsigned int rtc_poll(struct file *file, poll_table *wait)
  690. {
  691. unsigned long l;
  692. if (rtc_has_irq == 0)
  693. return 0;
  694. poll_wait(file, &rtc_wait, wait);
  695. spin_lock_irq(&rtc_lock);
  696. l = rtc_irq_data;
  697. spin_unlock_irq(&rtc_lock);
  698. if (l != 0)
  699. return POLLIN | POLLRDNORM;
  700. return 0;
  701. }
  702. #endif
  703. int rtc_register(rtc_task_t *task)
  704. {
  705. #ifndef RTC_IRQ
  706. return -EIO;
  707. #else
  708. if (task == NULL || task->func == NULL)
  709. return -EINVAL;
  710. spin_lock_irq(&rtc_lock);
  711. if (rtc_status & RTC_IS_OPEN) {
  712. spin_unlock_irq(&rtc_lock);
  713. return -EBUSY;
  714. }
  715. spin_lock(&rtc_task_lock);
  716. if (rtc_callback) {
  717. spin_unlock(&rtc_task_lock);
  718. spin_unlock_irq(&rtc_lock);
  719. return -EBUSY;
  720. }
  721. rtc_status |= RTC_IS_OPEN;
  722. rtc_callback = task;
  723. spin_unlock(&rtc_task_lock);
  724. spin_unlock_irq(&rtc_lock);
  725. return 0;
  726. #endif
  727. }
  728. EXPORT_SYMBOL(rtc_register);
  729. int rtc_unregister(rtc_task_t *task)
  730. {
  731. #ifndef RTC_IRQ
  732. return -EIO;
  733. #else
  734. unsigned char tmp;
  735. spin_lock_irq(&rtc_lock);
  736. spin_lock(&rtc_task_lock);
  737. if (rtc_callback != task) {
  738. spin_unlock(&rtc_task_lock);
  739. spin_unlock_irq(&rtc_lock);
  740. return -ENXIO;
  741. }
  742. rtc_callback = NULL;
  743. /* disable controls */
  744. if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
  745. tmp = CMOS_READ(RTC_CONTROL);
  746. tmp &= ~RTC_PIE;
  747. tmp &= ~RTC_AIE;
  748. tmp &= ~RTC_UIE;
  749. CMOS_WRITE(tmp, RTC_CONTROL);
  750. CMOS_READ(RTC_INTR_FLAGS);
  751. }
  752. if (rtc_status & RTC_TIMER_ON) {
  753. rtc_status &= ~RTC_TIMER_ON;
  754. del_timer(&rtc_irq_timer);
  755. }
  756. rtc_status &= ~RTC_IS_OPEN;
  757. spin_unlock(&rtc_task_lock);
  758. spin_unlock_irq(&rtc_lock);
  759. return 0;
  760. #endif
  761. }
  762. EXPORT_SYMBOL(rtc_unregister);
  763. int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
  764. {
  765. #ifndef RTC_IRQ
  766. return -EIO;
  767. #else
  768. unsigned long flags;
  769. if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
  770. return -EINVAL;
  771. spin_lock_irqsave(&rtc_task_lock, flags);
  772. if (rtc_callback != task) {
  773. spin_unlock_irqrestore(&rtc_task_lock, flags);
  774. return -ENXIO;
  775. }
  776. spin_unlock_irqrestore(&rtc_task_lock, flags);
  777. return rtc_do_ioctl(cmd, arg, 1);
  778. #endif
  779. }
  780. EXPORT_SYMBOL(rtc_control);
  781. /*
  782. * The various file operations we support.
  783. */
  784. static const struct file_operations rtc_fops = {
  785. .owner = THIS_MODULE,
  786. .llseek = no_llseek,
  787. .read = rtc_read,
  788. #ifdef RTC_IRQ
  789. .poll = rtc_poll,
  790. #endif
  791. .ioctl = rtc_ioctl,
  792. .open = rtc_open,
  793. .release = rtc_release,
  794. .fasync = rtc_fasync,
  795. };
  796. static struct miscdevice rtc_dev = {
  797. .minor = RTC_MINOR,
  798. .name = "rtc",
  799. .fops = &rtc_fops,
  800. };
  801. #ifdef CONFIG_PROC_FS
  802. static const struct file_operations rtc_proc_fops = {
  803. .owner = THIS_MODULE,
  804. .open = rtc_proc_open,
  805. .read = seq_read,
  806. .llseek = seq_lseek,
  807. .release = single_release,
  808. };
  809. #endif
  810. static resource_size_t rtc_size;
  811. static struct resource * __init rtc_request_region(resource_size_t size)
  812. {
  813. struct resource *r;
  814. if (RTC_IOMAPPED)
  815. r = request_region(RTC_PORT(0), size, "rtc");
  816. else
  817. r = request_mem_region(RTC_PORT(0), size, "rtc");
  818. if (r)
  819. rtc_size = size;
  820. return r;
  821. }
  822. static void rtc_release_region(void)
  823. {
  824. if (RTC_IOMAPPED)
  825. release_region(RTC_PORT(0), rtc_size);
  826. else
  827. release_mem_region(RTC_PORT(0), rtc_size);
  828. }
  829. static int __init rtc_init(void)
  830. {
  831. #ifdef CONFIG_PROC_FS
  832. struct proc_dir_entry *ent;
  833. #endif
  834. #if defined(__alpha__) || defined(__mips__)
  835. unsigned int year, ctrl;
  836. char *guess = NULL;
  837. #endif
  838. #ifdef CONFIG_SPARC32
  839. struct linux_ebus *ebus;
  840. struct linux_ebus_device *edev;
  841. #else
  842. void *r;
  843. #ifdef RTC_IRQ
  844. irq_handler_t rtc_int_handler_ptr;
  845. #endif
  846. #endif
  847. #ifdef CONFIG_SPARC32
  848. for_each_ebus(ebus) {
  849. for_each_ebusdev(edev, ebus) {
  850. if (strcmp(edev->prom_node->name, "rtc") == 0) {
  851. rtc_port = edev->resource[0].start;
  852. rtc_irq = edev->irqs[0];
  853. goto found;
  854. }
  855. }
  856. }
  857. rtc_has_irq = 0;
  858. printk(KERN_ERR "rtc_init: no PC rtc found\n");
  859. return -EIO;
  860. found:
  861. if (rtc_irq == PCI_IRQ_NONE) {
  862. rtc_has_irq = 0;
  863. goto no_irq;
  864. }
  865. /*
  866. * XXX Interrupt pin #7 in Espresso is shared between RTC and
  867. * PCI Slot 2 INTA# (and some INTx# in Slot 1).
  868. */
  869. if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
  870. (void *)&rtc_port)) {
  871. rtc_has_irq = 0;
  872. printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
  873. return -EIO;
  874. }
  875. no_irq:
  876. #else
  877. r = rtc_request_region(RTC_IO_EXTENT);
  878. /*
  879. * If we've already requested a smaller range (for example, because
  880. * PNPBIOS or ACPI told us how the device is configured), the request
  881. * above might fail because it's too big.
  882. *
  883. * If so, request just the range we actually use.
  884. */
  885. if (!r)
  886. r = rtc_request_region(RTC_IO_EXTENT_USED);
  887. if (!r) {
  888. #ifdef RTC_IRQ
  889. rtc_has_irq = 0;
  890. #endif
  891. printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
  892. (long)(RTC_PORT(0)));
  893. return -EIO;
  894. }
  895. #ifdef RTC_IRQ
  896. if (is_hpet_enabled()) {
  897. int err;
  898. rtc_int_handler_ptr = hpet_rtc_interrupt;
  899. err = hpet_register_irq_handler(rtc_interrupt);
  900. if (err != 0) {
  901. printk(KERN_WARNING "hpet_register_irq_handler failed "
  902. "in rtc_init().");
  903. return err;
  904. }
  905. } else {
  906. rtc_int_handler_ptr = rtc_interrupt;
  907. }
  908. if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
  909. "rtc", NULL)) {
  910. /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
  911. rtc_has_irq = 0;
  912. printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
  913. rtc_release_region();
  914. return -EIO;
  915. }
  916. hpet_rtc_timer_init();
  917. #endif
  918. #endif /* CONFIG_SPARC32 vs. others */
  919. if (misc_register(&rtc_dev)) {
  920. #ifdef RTC_IRQ
  921. free_irq(RTC_IRQ, NULL);
  922. hpet_unregister_irq_handler(rtc_interrupt);
  923. rtc_has_irq = 0;
  924. #endif
  925. rtc_release_region();
  926. return -ENODEV;
  927. }
  928. #ifdef CONFIG_PROC_FS
  929. ent = create_proc_entry("driver/rtc", 0, NULL);
  930. if (ent)
  931. ent->proc_fops = &rtc_proc_fops;
  932. else
  933. printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
  934. #endif
  935. #if defined(__alpha__) || defined(__mips__)
  936. rtc_freq = HZ;
  937. /* Each operating system on an Alpha uses its own epoch.
  938. Let's try to guess which one we are using now. */
  939. if (rtc_is_updating() != 0)
  940. msleep(20);
  941. spin_lock_irq(&rtc_lock);
  942. year = CMOS_READ(RTC_YEAR);
  943. ctrl = CMOS_READ(RTC_CONTROL);
  944. spin_unlock_irq(&rtc_lock);
  945. if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
  946. BCD_TO_BIN(year); /* This should never happen... */
  947. if (year < 20) {
  948. epoch = 2000;
  949. guess = "SRM (post-2000)";
  950. } else if (year >= 20 && year < 48) {
  951. epoch = 1980;
  952. guess = "ARC console";
  953. } else if (year >= 48 && year < 72) {
  954. epoch = 1952;
  955. guess = "Digital UNIX";
  956. #if defined(__mips__)
  957. } else if (year >= 72 && year < 74) {
  958. epoch = 2000;
  959. guess = "Digital DECstation";
  960. #else
  961. } else if (year >= 70) {
  962. epoch = 1900;
  963. guess = "Standard PC (1900)";
  964. #endif
  965. }
  966. if (guess)
  967. printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
  968. guess, epoch);
  969. #endif
  970. #ifdef RTC_IRQ
  971. if (rtc_has_irq == 0)
  972. goto no_irq2;
  973. spin_lock_irq(&rtc_lock);
  974. rtc_freq = 1024;
  975. if (!hpet_set_periodic_freq(rtc_freq)) {
  976. /*
  977. * Initialize periodic frequency to CMOS reset default,
  978. * which is 1024Hz
  979. */
  980. CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
  981. RTC_FREQ_SELECT);
  982. }
  983. spin_unlock_irq(&rtc_lock);
  984. no_irq2:
  985. #endif
  986. (void) init_sysctl();
  987. printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
  988. return 0;
  989. }
  990. static void __exit rtc_exit(void)
  991. {
  992. cleanup_sysctl();
  993. remove_proc_entry("driver/rtc", NULL);
  994. misc_deregister(&rtc_dev);
  995. #ifdef CONFIG_SPARC32
  996. if (rtc_has_irq)
  997. free_irq(rtc_irq, &rtc_port);
  998. #else
  999. rtc_release_region();
  1000. #ifdef RTC_IRQ
  1001. if (rtc_has_irq) {
  1002. free_irq(RTC_IRQ, NULL);
  1003. hpet_unregister_irq_handler(hpet_rtc_interrupt);
  1004. }
  1005. #endif
  1006. #endif /* CONFIG_SPARC32 */
  1007. }
  1008. module_init(rtc_init);
  1009. module_exit(rtc_exit);
  1010. #ifdef RTC_IRQ
  1011. /*
  1012. * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
  1013. * (usually during an IDE disk interrupt, with IRQ unmasking off)
  1014. * Since the interrupt handler doesn't get called, the IRQ status
  1015. * byte doesn't get read, and the RTC stops generating interrupts.
  1016. * A timer is set, and will call this function if/when that happens.
  1017. * To get it out of this stalled state, we just read the status.
  1018. * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
  1019. * (You *really* shouldn't be trying to use a non-realtime system
  1020. * for something that requires a steady > 1KHz signal anyways.)
  1021. */
  1022. static void rtc_dropped_irq(unsigned long data)
  1023. {
  1024. unsigned long freq;
  1025. spin_lock_irq(&rtc_lock);
  1026. if (hpet_rtc_dropped_irq()) {
  1027. spin_unlock_irq(&rtc_lock);
  1028. return;
  1029. }
  1030. /* Just in case someone disabled the timer from behind our back... */
  1031. if (rtc_status & RTC_TIMER_ON)
  1032. mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
  1033. rtc_irq_data += ((rtc_freq/HZ)<<8);
  1034. rtc_irq_data &= ~0xff;
  1035. rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
  1036. freq = rtc_freq;
  1037. spin_unlock_irq(&rtc_lock);
  1038. if (printk_ratelimit()) {
  1039. printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
  1040. freq);
  1041. }
  1042. /* Now we have new data */
  1043. wake_up_interruptible(&rtc_wait);
  1044. kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
  1045. }
  1046. #endif
  1047. #ifdef CONFIG_PROC_FS
  1048. /*
  1049. * Info exported via "/proc/driver/rtc".
  1050. */
  1051. static int rtc_proc_show(struct seq_file *seq, void *v)
  1052. {
  1053. #define YN(bit) ((ctrl & bit) ? "yes" : "no")
  1054. #define NY(bit) ((ctrl & bit) ? "no" : "yes")
  1055. struct rtc_time tm;
  1056. unsigned char batt, ctrl;
  1057. unsigned long freq;
  1058. spin_lock_irq(&rtc_lock);
  1059. batt = CMOS_READ(RTC_VALID) & RTC_VRT;
  1060. ctrl = CMOS_READ(RTC_CONTROL);
  1061. freq = rtc_freq;
  1062. spin_unlock_irq(&rtc_lock);
  1063. rtc_get_rtc_time(&tm);
  1064. /*
  1065. * There is no way to tell if the luser has the RTC set for local
  1066. * time or for Universal Standard Time (GMT). Probably local though.
  1067. */
  1068. seq_printf(seq,
  1069. "rtc_time\t: %02d:%02d:%02d\n"
  1070. "rtc_date\t: %04d-%02d-%02d\n"
  1071. "rtc_epoch\t: %04lu\n",
  1072. tm.tm_hour, tm.tm_min, tm.tm_sec,
  1073. tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
  1074. get_rtc_alm_time(&tm);
  1075. /*
  1076. * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
  1077. * match any value for that particular field. Values that are
  1078. * greater than a valid time, but less than 0xc0 shouldn't appear.
  1079. */
  1080. seq_puts(seq, "alarm\t\t: ");
  1081. if (tm.tm_hour <= 24)
  1082. seq_printf(seq, "%02d:", tm.tm_hour);
  1083. else
  1084. seq_puts(seq, "**:");
  1085. if (tm.tm_min <= 59)
  1086. seq_printf(seq, "%02d:", tm.tm_min);
  1087. else
  1088. seq_puts(seq, "**:");
  1089. if (tm.tm_sec <= 59)
  1090. seq_printf(seq, "%02d\n", tm.tm_sec);
  1091. else
  1092. seq_puts(seq, "**\n");
  1093. seq_printf(seq,
  1094. "DST_enable\t: %s\n"
  1095. "BCD\t\t: %s\n"
  1096. "24hr\t\t: %s\n"
  1097. "square_wave\t: %s\n"
  1098. "alarm_IRQ\t: %s\n"
  1099. "update_IRQ\t: %s\n"
  1100. "periodic_IRQ\t: %s\n"
  1101. "periodic_freq\t: %ld\n"
  1102. "batt_status\t: %s\n",
  1103. YN(RTC_DST_EN),
  1104. NY(RTC_DM_BINARY),
  1105. YN(RTC_24H),
  1106. YN(RTC_SQWE),
  1107. YN(RTC_AIE),
  1108. YN(RTC_UIE),
  1109. YN(RTC_PIE),
  1110. freq,
  1111. batt ? "okay" : "dead");
  1112. return 0;
  1113. #undef YN
  1114. #undef NY
  1115. }
  1116. static int rtc_proc_open(struct inode *inode, struct file *file)
  1117. {
  1118. return single_open(file, rtc_proc_show, NULL);
  1119. }
  1120. #endif
  1121. void rtc_get_rtc_time(struct rtc_time *rtc_tm)
  1122. {
  1123. unsigned long uip_watchdog = jiffies, flags;
  1124. unsigned char ctrl;
  1125. #ifdef CONFIG_MACH_DECSTATION
  1126. unsigned int real_year;
  1127. #endif
  1128. /*
  1129. * read RTC once any update in progress is done. The update
  1130. * can take just over 2ms. We wait 20ms. There is no need to
  1131. * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
  1132. * If you need to know *exactly* when a second has started, enable
  1133. * periodic update complete interrupts, (via ioctl) and then
  1134. * immediately read /dev/rtc which will block until you get the IRQ.
  1135. * Once the read clears, read the RTC time (again via ioctl). Easy.
  1136. */
  1137. while (rtc_is_updating() != 0 && jiffies - uip_watchdog < 2*HZ/100)
  1138. cpu_relax();
  1139. /*
  1140. * Only the values that we read from the RTC are set. We leave
  1141. * tm_wday, tm_yday and tm_isdst untouched. Note that while the
  1142. * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
  1143. * only updated by the RTC when initially set to a non-zero value.
  1144. */
  1145. spin_lock_irqsave(&rtc_lock, flags);
  1146. rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
  1147. rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
  1148. rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
  1149. rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
  1150. rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
  1151. rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
  1152. /* Only set from 2.6.16 onwards */
  1153. rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
  1154. #ifdef CONFIG_MACH_DECSTATION
  1155. real_year = CMOS_READ(RTC_DEC_YEAR);
  1156. #endif
  1157. ctrl = CMOS_READ(RTC_CONTROL);
  1158. spin_unlock_irqrestore(&rtc_lock, flags);
  1159. if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
  1160. BCD_TO_BIN(rtc_tm->tm_sec);
  1161. BCD_TO_BIN(rtc_tm->tm_min);
  1162. BCD_TO_BIN(rtc_tm->tm_hour);
  1163. BCD_TO_BIN(rtc_tm->tm_mday);
  1164. BCD_TO_BIN(rtc_tm->tm_mon);
  1165. BCD_TO_BIN(rtc_tm->tm_year);
  1166. BCD_TO_BIN(rtc_tm->tm_wday);
  1167. }
  1168. #ifdef CONFIG_MACH_DECSTATION
  1169. rtc_tm->tm_year += real_year - 72;
  1170. #endif
  1171. /*
  1172. * Account for differences between how the RTC uses the values
  1173. * and how they are defined in a struct rtc_time;
  1174. */
  1175. rtc_tm->tm_year += epoch - 1900;
  1176. if (rtc_tm->tm_year <= 69)
  1177. rtc_tm->tm_year += 100;
  1178. rtc_tm->tm_mon--;
  1179. }
  1180. static void get_rtc_alm_time(struct rtc_time *alm_tm)
  1181. {
  1182. unsigned char ctrl;
  1183. /*
  1184. * Only the values that we read from the RTC are set. That
  1185. * means only tm_hour, tm_min, and tm_sec.
  1186. */
  1187. spin_lock_irq(&rtc_lock);
  1188. alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
  1189. alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
  1190. alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
  1191. ctrl = CMOS_READ(RTC_CONTROL);
  1192. spin_unlock_irq(&rtc_lock);
  1193. if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
  1194. BCD_TO_BIN(alm_tm->tm_sec);
  1195. BCD_TO_BIN(alm_tm->tm_min);
  1196. BCD_TO_BIN(alm_tm->tm_hour);
  1197. }
  1198. }
  1199. #ifdef RTC_IRQ
  1200. /*
  1201. * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
  1202. * Rumour has it that if you frob the interrupt enable/disable
  1203. * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
  1204. * ensure you actually start getting interrupts. Probably for
  1205. * compatibility with older/broken chipset RTC implementations.
  1206. * We also clear out any old irq data after an ioctl() that
  1207. * meddles with the interrupt enable/disable bits.
  1208. */
  1209. static void mask_rtc_irq_bit_locked(unsigned char bit)
  1210. {
  1211. unsigned char val;
  1212. if (hpet_mask_rtc_irq_bit(bit))
  1213. return;
  1214. val = CMOS_READ(RTC_CONTROL);
  1215. val &= ~bit;
  1216. CMOS_WRITE(val, RTC_CONTROL);
  1217. CMOS_READ(RTC_INTR_FLAGS);
  1218. rtc_irq_data = 0;
  1219. }
  1220. static void set_rtc_irq_bit_locked(unsigned char bit)
  1221. {
  1222. unsigned char val;
  1223. if (hpet_set_rtc_irq_bit(bit))
  1224. return;
  1225. val = CMOS_READ(RTC_CONTROL);
  1226. val |= bit;
  1227. CMOS_WRITE(val, RTC_CONTROL);
  1228. CMOS_READ(RTC_INTR_FLAGS);
  1229. rtc_irq_data = 0;
  1230. }
  1231. #endif
  1232. MODULE_AUTHOR("Paul Gortmaker");
  1233. MODULE_LICENSE("GPL");
  1234. MODULE_ALIAS_MISCDEV(RTC_MINOR);