keyboard.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429
  1. /*
  2. * linux/drivers/char/keyboard.c
  3. *
  4. * Written for linux by Johan Myreen as a translation from
  5. * the assembly version by Linus (with diacriticals added)
  6. *
  7. * Some additional features added by Christoph Niemann (ChN), March 1993
  8. *
  9. * Loadable keymaps by Risto Kankkunen, May 1993
  10. *
  11. * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  12. * Added decr/incr_console, dynamic keymaps, Unicode support,
  13. * dynamic function/string keys, led setting, Sept 1994
  14. * `Sticky' modifier keys, 951006.
  15. *
  16. * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  17. *
  18. * Modified to provide 'generic' keyboard support by Hamish Macdonald
  19. * Merge with the m68k keyboard driver and split-off of the PC low-level
  20. * parts by Geert Uytterhoeven, May 1997
  21. *
  22. * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  23. * 30-07-98: Dead keys redone, aeb@cwi.nl.
  24. * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  25. */
  26. #include <linux/consolemap.h>
  27. #include <linux/module.h>
  28. #include <linux/sched.h>
  29. #include <linux/tty.h>
  30. #include <linux/tty_flip.h>
  31. #include <linux/mm.h>
  32. #include <linux/string.h>
  33. #include <linux/init.h>
  34. #include <linux/slab.h>
  35. #include <linux/irq.h>
  36. #include <linux/kbd_kern.h>
  37. #include <linux/kbd_diacr.h>
  38. #include <linux/vt_kern.h>
  39. #include <linux/sysrq.h>
  40. #include <linux/input.h>
  41. #include <linux/reboot.h>
  42. #include <linux/notifier.h>
  43. #include <linux/jiffies.h>
  44. extern void ctrl_alt_del(void);
  45. /*
  46. * Exported functions/variables
  47. */
  48. #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  49. /*
  50. * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
  51. * This seems a good reason to start with NumLock off. On HIL keyboards
  52. * of PARISC machines however there is no NumLock key and everyone expects the keypad
  53. * to be used for numbers.
  54. */
  55. #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
  56. #define KBD_DEFLEDS (1 << VC_NUMLOCK)
  57. #else
  58. #define KBD_DEFLEDS 0
  59. #endif
  60. #define KBD_DEFLOCK 0
  61. void compute_shiftstate(void);
  62. /*
  63. * Handler Tables.
  64. */
  65. #define K_HANDLERS\
  66. k_self, k_fn, k_spec, k_pad,\
  67. k_dead, k_cons, k_cur, k_shift,\
  68. k_meta, k_ascii, k_lock, k_lowercase,\
  69. k_slock, k_dead2, k_brl, k_ignore
  70. typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  71. char up_flag);
  72. static k_handler_fn K_HANDLERS;
  73. k_handler_fn *k_handler[16] = { K_HANDLERS };
  74. EXPORT_SYMBOL_GPL(k_handler);
  75. #define FN_HANDLERS\
  76. fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
  77. fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
  78. fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
  79. fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
  80. fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
  81. typedef void (fn_handler_fn)(struct vc_data *vc);
  82. static fn_handler_fn FN_HANDLERS;
  83. static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  84. /*
  85. * Variables exported for vt_ioctl.c
  86. */
  87. /* maximum values each key_handler can handle */
  88. const int max_vals[] = {
  89. 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
  90. NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
  91. 255, NR_LOCK - 1, 255, NR_BRL - 1
  92. };
  93. const int NR_TYPES = ARRAY_SIZE(max_vals);
  94. struct kbd_struct kbd_table[MAX_NR_CONSOLES];
  95. static struct kbd_struct *kbd = kbd_table;
  96. struct vt_spawn_console vt_spawn_con = {
  97. .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
  98. .pid = NULL,
  99. .sig = 0,
  100. };
  101. /*
  102. * Variables exported for vt.c
  103. */
  104. int shift_state = 0;
  105. /*
  106. * Internal Data.
  107. */
  108. static struct input_handler kbd_handler;
  109. static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
  110. static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
  111. static int dead_key_next;
  112. static int npadch = -1; /* -1 or number assembled on pad */
  113. static unsigned int diacr;
  114. static char rep; /* flag telling character repeat */
  115. static unsigned char ledstate = 0xff; /* undefined */
  116. static unsigned char ledioctl;
  117. static struct ledptr {
  118. unsigned int *addr;
  119. unsigned int mask;
  120. unsigned char valid:1;
  121. } ledptrs[3];
  122. /* Simple translation table for the SysRq keys */
  123. #ifdef CONFIG_MAGIC_SYSRQ
  124. unsigned char kbd_sysrq_xlate[KEY_MAX + 1] =
  125. "\000\0331234567890-=\177\t" /* 0x00 - 0x0f */
  126. "qwertyuiop[]\r\000as" /* 0x10 - 0x1f */
  127. "dfghjkl;'`\000\\zxcv" /* 0x20 - 0x2f */
  128. "bnm,./\000*\000 \000\201\202\203\204\205" /* 0x30 - 0x3f */
  129. "\206\207\210\211\212\000\000789-456+1" /* 0x40 - 0x4f */
  130. "230\177\000\000\213\214\000\000\000\000\000\000\000\000\000\000" /* 0x50 - 0x5f */
  131. "\r\000/"; /* 0x60 - 0x6f */
  132. static int sysrq_down;
  133. static int sysrq_alt_use;
  134. #endif
  135. static int sysrq_alt;
  136. /*
  137. * Notifier list for console keyboard events
  138. */
  139. static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
  140. int register_keyboard_notifier(struct notifier_block *nb)
  141. {
  142. return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
  143. }
  144. EXPORT_SYMBOL_GPL(register_keyboard_notifier);
  145. int unregister_keyboard_notifier(struct notifier_block *nb)
  146. {
  147. return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
  148. }
  149. EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
  150. /*
  151. * Translation of scancodes to keycodes. We set them on only the first
  152. * keyboard in the list that accepts the scancode and keycode.
  153. * Explanation for not choosing the first attached keyboard anymore:
  154. * USB keyboards for example have two event devices: one for all "normal"
  155. * keys and one for extra function keys (like "volume up", "make coffee",
  156. * etc.). So this means that scancodes for the extra function keys won't
  157. * be valid for the first event device, but will be for the second.
  158. */
  159. int getkeycode(unsigned int scancode)
  160. {
  161. struct input_handle *handle;
  162. int keycode;
  163. int error = -ENODEV;
  164. list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
  165. error = input_get_keycode(handle->dev, scancode, &keycode);
  166. if (!error)
  167. return keycode;
  168. }
  169. return error;
  170. }
  171. int setkeycode(unsigned int scancode, unsigned int keycode)
  172. {
  173. struct input_handle *handle;
  174. int error = -ENODEV;
  175. list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
  176. error = input_set_keycode(handle->dev, scancode, keycode);
  177. if (!error)
  178. break;
  179. }
  180. return error;
  181. }
  182. /*
  183. * Making beeps and bells.
  184. */
  185. static void kd_nosound(unsigned long ignored)
  186. {
  187. struct input_handle *handle;
  188. list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
  189. if (test_bit(EV_SND, handle->dev->evbit)) {
  190. if (test_bit(SND_TONE, handle->dev->sndbit))
  191. input_inject_event(handle, EV_SND, SND_TONE, 0);
  192. if (test_bit(SND_BELL, handle->dev->sndbit))
  193. input_inject_event(handle, EV_SND, SND_BELL, 0);
  194. }
  195. }
  196. }
  197. static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
  198. void kd_mksound(unsigned int hz, unsigned int ticks)
  199. {
  200. struct list_head *node;
  201. del_timer(&kd_mksound_timer);
  202. if (hz) {
  203. list_for_each_prev(node, &kbd_handler.h_list) {
  204. struct input_handle *handle = to_handle_h(node);
  205. if (test_bit(EV_SND, handle->dev->evbit)) {
  206. if (test_bit(SND_TONE, handle->dev->sndbit)) {
  207. input_inject_event(handle, EV_SND, SND_TONE, hz);
  208. break;
  209. }
  210. if (test_bit(SND_BELL, handle->dev->sndbit)) {
  211. input_inject_event(handle, EV_SND, SND_BELL, 1);
  212. break;
  213. }
  214. }
  215. }
  216. if (ticks)
  217. mod_timer(&kd_mksound_timer, jiffies + ticks);
  218. } else
  219. kd_nosound(0);
  220. }
  221. /*
  222. * Setting the keyboard rate.
  223. */
  224. int kbd_rate(struct kbd_repeat *rep)
  225. {
  226. struct list_head *node;
  227. unsigned int d = 0;
  228. unsigned int p = 0;
  229. list_for_each(node, &kbd_handler.h_list) {
  230. struct input_handle *handle = to_handle_h(node);
  231. struct input_dev *dev = handle->dev;
  232. if (test_bit(EV_REP, dev->evbit)) {
  233. if (rep->delay > 0)
  234. input_inject_event(handle, EV_REP, REP_DELAY, rep->delay);
  235. if (rep->period > 0)
  236. input_inject_event(handle, EV_REP, REP_PERIOD, rep->period);
  237. d = dev->rep[REP_DELAY];
  238. p = dev->rep[REP_PERIOD];
  239. }
  240. }
  241. rep->delay = d;
  242. rep->period = p;
  243. return 0;
  244. }
  245. /*
  246. * Helper Functions.
  247. */
  248. static void put_queue(struct vc_data *vc, int ch)
  249. {
  250. struct tty_struct *tty = vc->vc_tty;
  251. if (tty) {
  252. tty_insert_flip_char(tty, ch, 0);
  253. con_schedule_flip(tty);
  254. }
  255. }
  256. static void puts_queue(struct vc_data *vc, char *cp)
  257. {
  258. struct tty_struct *tty = vc->vc_tty;
  259. if (!tty)
  260. return;
  261. while (*cp) {
  262. tty_insert_flip_char(tty, *cp, 0);
  263. cp++;
  264. }
  265. con_schedule_flip(tty);
  266. }
  267. static void applkey(struct vc_data *vc, int key, char mode)
  268. {
  269. static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
  270. buf[1] = (mode ? 'O' : '[');
  271. buf[2] = key;
  272. puts_queue(vc, buf);
  273. }
  274. /*
  275. * Many other routines do put_queue, but I think either
  276. * they produce ASCII, or they produce some user-assigned
  277. * string, and in both cases we might assume that it is
  278. * in utf-8 already.
  279. */
  280. static void to_utf8(struct vc_data *vc, uint c)
  281. {
  282. if (c < 0x80)
  283. /* 0******* */
  284. put_queue(vc, c);
  285. else if (c < 0x800) {
  286. /* 110***** 10****** */
  287. put_queue(vc, 0xc0 | (c >> 6));
  288. put_queue(vc, 0x80 | (c & 0x3f));
  289. } else if (c < 0x10000) {
  290. if (c >= 0xD800 && c < 0xE000)
  291. return;
  292. if (c == 0xFFFF)
  293. return;
  294. /* 1110**** 10****** 10****** */
  295. put_queue(vc, 0xe0 | (c >> 12));
  296. put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
  297. put_queue(vc, 0x80 | (c & 0x3f));
  298. } else if (c < 0x110000) {
  299. /* 11110*** 10****** 10****** 10****** */
  300. put_queue(vc, 0xf0 | (c >> 18));
  301. put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
  302. put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
  303. put_queue(vc, 0x80 | (c & 0x3f));
  304. }
  305. }
  306. /*
  307. * Called after returning from RAW mode or when changing consoles - recompute
  308. * shift_down[] and shift_state from key_down[] maybe called when keymap is
  309. * undefined, so that shiftkey release is seen
  310. */
  311. void compute_shiftstate(void)
  312. {
  313. unsigned int i, j, k, sym, val;
  314. shift_state = 0;
  315. memset(shift_down, 0, sizeof(shift_down));
  316. for (i = 0; i < ARRAY_SIZE(key_down); i++) {
  317. if (!key_down[i])
  318. continue;
  319. k = i * BITS_PER_LONG;
  320. for (j = 0; j < BITS_PER_LONG; j++, k++) {
  321. if (!test_bit(k, key_down))
  322. continue;
  323. sym = U(key_maps[0][k]);
  324. if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
  325. continue;
  326. val = KVAL(sym);
  327. if (val == KVAL(K_CAPSSHIFT))
  328. val = KVAL(K_SHIFT);
  329. shift_down[val]++;
  330. shift_state |= (1 << val);
  331. }
  332. }
  333. }
  334. /*
  335. * We have a combining character DIACR here, followed by the character CH.
  336. * If the combination occurs in the table, return the corresponding value.
  337. * Otherwise, if CH is a space or equals DIACR, return DIACR.
  338. * Otherwise, conclude that DIACR was not combining after all,
  339. * queue it and return CH.
  340. */
  341. static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
  342. {
  343. unsigned int d = diacr;
  344. unsigned int i;
  345. diacr = 0;
  346. if ((d & ~0xff) == BRL_UC_ROW) {
  347. if ((ch & ~0xff) == BRL_UC_ROW)
  348. return d | ch;
  349. } else {
  350. for (i = 0; i < accent_table_size; i++)
  351. if (accent_table[i].diacr == d && accent_table[i].base == ch)
  352. return accent_table[i].result;
  353. }
  354. if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
  355. return d;
  356. if (kbd->kbdmode == VC_UNICODE)
  357. to_utf8(vc, d);
  358. else {
  359. int c = conv_uni_to_8bit(d);
  360. if (c != -1)
  361. put_queue(vc, c);
  362. }
  363. return ch;
  364. }
  365. /*
  366. * Special function handlers
  367. */
  368. static void fn_enter(struct vc_data *vc)
  369. {
  370. if (diacr) {
  371. if (kbd->kbdmode == VC_UNICODE)
  372. to_utf8(vc, diacr);
  373. else {
  374. int c = conv_uni_to_8bit(diacr);
  375. if (c != -1)
  376. put_queue(vc, c);
  377. }
  378. diacr = 0;
  379. }
  380. put_queue(vc, 13);
  381. if (vc_kbd_mode(kbd, VC_CRLF))
  382. put_queue(vc, 10);
  383. }
  384. static void fn_caps_toggle(struct vc_data *vc)
  385. {
  386. if (rep)
  387. return;
  388. chg_vc_kbd_led(kbd, VC_CAPSLOCK);
  389. }
  390. static void fn_caps_on(struct vc_data *vc)
  391. {
  392. if (rep)
  393. return;
  394. set_vc_kbd_led(kbd, VC_CAPSLOCK);
  395. }
  396. static void fn_show_ptregs(struct vc_data *vc)
  397. {
  398. struct pt_regs *regs = get_irq_regs();
  399. if (regs)
  400. show_regs(regs);
  401. }
  402. static void fn_hold(struct vc_data *vc)
  403. {
  404. struct tty_struct *tty = vc->vc_tty;
  405. if (rep || !tty)
  406. return;
  407. /*
  408. * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
  409. * these routines are also activated by ^S/^Q.
  410. * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
  411. */
  412. if (tty->stopped)
  413. start_tty(tty);
  414. else
  415. stop_tty(tty);
  416. }
  417. static void fn_num(struct vc_data *vc)
  418. {
  419. if (vc_kbd_mode(kbd,VC_APPLIC))
  420. applkey(vc, 'P', 1);
  421. else
  422. fn_bare_num(vc);
  423. }
  424. /*
  425. * Bind this to Shift-NumLock if you work in application keypad mode
  426. * but want to be able to change the NumLock flag.
  427. * Bind this to NumLock if you prefer that the NumLock key always
  428. * changes the NumLock flag.
  429. */
  430. static void fn_bare_num(struct vc_data *vc)
  431. {
  432. if (!rep)
  433. chg_vc_kbd_led(kbd, VC_NUMLOCK);
  434. }
  435. static void fn_lastcons(struct vc_data *vc)
  436. {
  437. /* switch to the last used console, ChN */
  438. set_console(last_console);
  439. }
  440. static void fn_dec_console(struct vc_data *vc)
  441. {
  442. int i, cur = fg_console;
  443. /* Currently switching? Queue this next switch relative to that. */
  444. if (want_console != -1)
  445. cur = want_console;
  446. for (i = cur - 1; i != cur; i--) {
  447. if (i == -1)
  448. i = MAX_NR_CONSOLES - 1;
  449. if (vc_cons_allocated(i))
  450. break;
  451. }
  452. set_console(i);
  453. }
  454. static void fn_inc_console(struct vc_data *vc)
  455. {
  456. int i, cur = fg_console;
  457. /* Currently switching? Queue this next switch relative to that. */
  458. if (want_console != -1)
  459. cur = want_console;
  460. for (i = cur+1; i != cur; i++) {
  461. if (i == MAX_NR_CONSOLES)
  462. i = 0;
  463. if (vc_cons_allocated(i))
  464. break;
  465. }
  466. set_console(i);
  467. }
  468. static void fn_send_intr(struct vc_data *vc)
  469. {
  470. struct tty_struct *tty = vc->vc_tty;
  471. if (!tty)
  472. return;
  473. tty_insert_flip_char(tty, 0, TTY_BREAK);
  474. con_schedule_flip(tty);
  475. }
  476. static void fn_scroll_forw(struct vc_data *vc)
  477. {
  478. scrollfront(vc, 0);
  479. }
  480. static void fn_scroll_back(struct vc_data *vc)
  481. {
  482. scrollback(vc, 0);
  483. }
  484. static void fn_show_mem(struct vc_data *vc)
  485. {
  486. show_mem();
  487. }
  488. static void fn_show_state(struct vc_data *vc)
  489. {
  490. show_state();
  491. }
  492. static void fn_boot_it(struct vc_data *vc)
  493. {
  494. ctrl_alt_del();
  495. }
  496. static void fn_compose(struct vc_data *vc)
  497. {
  498. dead_key_next = 1;
  499. }
  500. static void fn_spawn_con(struct vc_data *vc)
  501. {
  502. spin_lock(&vt_spawn_con.lock);
  503. if (vt_spawn_con.pid)
  504. if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
  505. put_pid(vt_spawn_con.pid);
  506. vt_spawn_con.pid = NULL;
  507. }
  508. spin_unlock(&vt_spawn_con.lock);
  509. }
  510. static void fn_SAK(struct vc_data *vc)
  511. {
  512. struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
  513. schedule_work(SAK_work);
  514. }
  515. static void fn_null(struct vc_data *vc)
  516. {
  517. compute_shiftstate();
  518. }
  519. /*
  520. * Special key handlers
  521. */
  522. static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
  523. {
  524. }
  525. static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
  526. {
  527. if (up_flag)
  528. return;
  529. if (value >= ARRAY_SIZE(fn_handler))
  530. return;
  531. if ((kbd->kbdmode == VC_RAW ||
  532. kbd->kbdmode == VC_MEDIUMRAW) &&
  533. value != KVAL(K_SAK))
  534. return; /* SAK is allowed even in raw mode */
  535. fn_handler[value](vc);
  536. }
  537. static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
  538. {
  539. printk(KERN_ERR "keyboard.c: k_lowercase was called - impossible\n");
  540. }
  541. static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
  542. {
  543. if (up_flag)
  544. return; /* no action, if this is a key release */
  545. if (diacr)
  546. value = handle_diacr(vc, value);
  547. if (dead_key_next) {
  548. dead_key_next = 0;
  549. diacr = value;
  550. return;
  551. }
  552. if (kbd->kbdmode == VC_UNICODE)
  553. to_utf8(vc, value);
  554. else {
  555. int c = conv_uni_to_8bit(value);
  556. if (c != -1)
  557. put_queue(vc, c);
  558. }
  559. }
  560. /*
  561. * Handle dead key. Note that we now may have several
  562. * dead keys modifying the same character. Very useful
  563. * for Vietnamese.
  564. */
  565. static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
  566. {
  567. if (up_flag)
  568. return;
  569. diacr = (diacr ? handle_diacr(vc, value) : value);
  570. }
  571. static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
  572. {
  573. unsigned int uni;
  574. if (kbd->kbdmode == VC_UNICODE)
  575. uni = value;
  576. else
  577. uni = conv_8bit_to_uni(value);
  578. k_unicode(vc, uni, up_flag);
  579. }
  580. static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
  581. {
  582. k_deadunicode(vc, value, up_flag);
  583. }
  584. /*
  585. * Obsolete - for backwards compatibility only
  586. */
  587. static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
  588. {
  589. static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
  590. value = ret_diacr[value];
  591. k_deadunicode(vc, value, up_flag);
  592. }
  593. static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
  594. {
  595. if (up_flag)
  596. return;
  597. set_console(value);
  598. }
  599. static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
  600. {
  601. unsigned v;
  602. if (up_flag)
  603. return;
  604. v = value;
  605. if (v < ARRAY_SIZE(func_table)) {
  606. if (func_table[value])
  607. puts_queue(vc, func_table[value]);
  608. } else
  609. printk(KERN_ERR "k_fn called with value=%d\n", value);
  610. }
  611. static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
  612. {
  613. static const char cur_chars[] = "BDCA";
  614. if (up_flag)
  615. return;
  616. applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
  617. }
  618. static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
  619. {
  620. static const char pad_chars[] = "0123456789+-*/\015,.?()#";
  621. static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
  622. if (up_flag)
  623. return; /* no action, if this is a key release */
  624. /* kludge... shift forces cursor/number keys */
  625. if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
  626. applkey(vc, app_map[value], 1);
  627. return;
  628. }
  629. if (!vc_kbd_led(kbd, VC_NUMLOCK))
  630. switch (value) {
  631. case KVAL(K_PCOMMA):
  632. case KVAL(K_PDOT):
  633. k_fn(vc, KVAL(K_REMOVE), 0);
  634. return;
  635. case KVAL(K_P0):
  636. k_fn(vc, KVAL(K_INSERT), 0);
  637. return;
  638. case KVAL(K_P1):
  639. k_fn(vc, KVAL(K_SELECT), 0);
  640. return;
  641. case KVAL(K_P2):
  642. k_cur(vc, KVAL(K_DOWN), 0);
  643. return;
  644. case KVAL(K_P3):
  645. k_fn(vc, KVAL(K_PGDN), 0);
  646. return;
  647. case KVAL(K_P4):
  648. k_cur(vc, KVAL(K_LEFT), 0);
  649. return;
  650. case KVAL(K_P6):
  651. k_cur(vc, KVAL(K_RIGHT), 0);
  652. return;
  653. case KVAL(K_P7):
  654. k_fn(vc, KVAL(K_FIND), 0);
  655. return;
  656. case KVAL(K_P8):
  657. k_cur(vc, KVAL(K_UP), 0);
  658. return;
  659. case KVAL(K_P9):
  660. k_fn(vc, KVAL(K_PGUP), 0);
  661. return;
  662. case KVAL(K_P5):
  663. applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
  664. return;
  665. }
  666. put_queue(vc, pad_chars[value]);
  667. if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
  668. put_queue(vc, 10);
  669. }
  670. static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
  671. {
  672. int old_state = shift_state;
  673. if (rep)
  674. return;
  675. /*
  676. * Mimic typewriter:
  677. * a CapsShift key acts like Shift but undoes CapsLock
  678. */
  679. if (value == KVAL(K_CAPSSHIFT)) {
  680. value = KVAL(K_SHIFT);
  681. if (!up_flag)
  682. clr_vc_kbd_led(kbd, VC_CAPSLOCK);
  683. }
  684. if (up_flag) {
  685. /*
  686. * handle the case that two shift or control
  687. * keys are depressed simultaneously
  688. */
  689. if (shift_down[value])
  690. shift_down[value]--;
  691. } else
  692. shift_down[value]++;
  693. if (shift_down[value])
  694. shift_state |= (1 << value);
  695. else
  696. shift_state &= ~(1 << value);
  697. /* kludge */
  698. if (up_flag && shift_state != old_state && npadch != -1) {
  699. if (kbd->kbdmode == VC_UNICODE)
  700. to_utf8(vc, npadch);
  701. else
  702. put_queue(vc, npadch & 0xff);
  703. npadch = -1;
  704. }
  705. }
  706. static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
  707. {
  708. if (up_flag)
  709. return;
  710. if (vc_kbd_mode(kbd, VC_META)) {
  711. put_queue(vc, '\033');
  712. put_queue(vc, value);
  713. } else
  714. put_queue(vc, value | 0x80);
  715. }
  716. static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
  717. {
  718. int base;
  719. if (up_flag)
  720. return;
  721. if (value < 10) {
  722. /* decimal input of code, while Alt depressed */
  723. base = 10;
  724. } else {
  725. /* hexadecimal input of code, while AltGr depressed */
  726. value -= 10;
  727. base = 16;
  728. }
  729. if (npadch == -1)
  730. npadch = value;
  731. else
  732. npadch = npadch * base + value;
  733. }
  734. static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
  735. {
  736. if (up_flag || rep)
  737. return;
  738. chg_vc_kbd_lock(kbd, value);
  739. }
  740. static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
  741. {
  742. k_shift(vc, value, up_flag);
  743. if (up_flag || rep)
  744. return;
  745. chg_vc_kbd_slock(kbd, value);
  746. /* try to make Alt, oops, AltGr and such work */
  747. if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
  748. kbd->slockstate = 0;
  749. chg_vc_kbd_slock(kbd, value);
  750. }
  751. }
  752. /* by default, 300ms interval for combination release */
  753. static unsigned brl_timeout = 300;
  754. MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
  755. module_param(brl_timeout, uint, 0644);
  756. static unsigned brl_nbchords = 1;
  757. MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
  758. module_param(brl_nbchords, uint, 0644);
  759. static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
  760. {
  761. static unsigned long chords;
  762. static unsigned committed;
  763. if (!brl_nbchords)
  764. k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
  765. else {
  766. committed |= pattern;
  767. chords++;
  768. if (chords == brl_nbchords) {
  769. k_unicode(vc, BRL_UC_ROW | committed, up_flag);
  770. chords = 0;
  771. committed = 0;
  772. }
  773. }
  774. }
  775. static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
  776. {
  777. static unsigned pressed,committing;
  778. static unsigned long releasestart;
  779. if (kbd->kbdmode != VC_UNICODE) {
  780. if (!up_flag)
  781. printk("keyboard mode must be unicode for braille patterns\n");
  782. return;
  783. }
  784. if (!value) {
  785. k_unicode(vc, BRL_UC_ROW, up_flag);
  786. return;
  787. }
  788. if (value > 8)
  789. return;
  790. if (up_flag) {
  791. if (brl_timeout) {
  792. if (!committing ||
  793. time_after(jiffies,
  794. releasestart + msecs_to_jiffies(brl_timeout))) {
  795. committing = pressed;
  796. releasestart = jiffies;
  797. }
  798. pressed &= ~(1 << (value - 1));
  799. if (!pressed) {
  800. if (committing) {
  801. k_brlcommit(vc, committing, 0);
  802. committing = 0;
  803. }
  804. }
  805. } else {
  806. if (committing) {
  807. k_brlcommit(vc, committing, 0);
  808. committing = 0;
  809. }
  810. pressed &= ~(1 << (value - 1));
  811. }
  812. } else {
  813. pressed |= 1 << (value - 1);
  814. if (!brl_timeout)
  815. committing = pressed;
  816. }
  817. }
  818. /*
  819. * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
  820. * or (ii) whatever pattern of lights people want to show using KDSETLED,
  821. * or (iii) specified bits of specified words in kernel memory.
  822. */
  823. unsigned char getledstate(void)
  824. {
  825. return ledstate;
  826. }
  827. void setledstate(struct kbd_struct *kbd, unsigned int led)
  828. {
  829. if (!(led & ~7)) {
  830. ledioctl = led;
  831. kbd->ledmode = LED_SHOW_IOCTL;
  832. } else
  833. kbd->ledmode = LED_SHOW_FLAGS;
  834. set_leds();
  835. }
  836. static inline unsigned char getleds(void)
  837. {
  838. struct kbd_struct *kbd = kbd_table + fg_console;
  839. unsigned char leds;
  840. int i;
  841. if (kbd->ledmode == LED_SHOW_IOCTL)
  842. return ledioctl;
  843. leds = kbd->ledflagstate;
  844. if (kbd->ledmode == LED_SHOW_MEM) {
  845. for (i = 0; i < 3; i++)
  846. if (ledptrs[i].valid) {
  847. if (*ledptrs[i].addr & ledptrs[i].mask)
  848. leds |= (1 << i);
  849. else
  850. leds &= ~(1 << i);
  851. }
  852. }
  853. return leds;
  854. }
  855. /*
  856. * This routine is the bottom half of the keyboard interrupt
  857. * routine, and runs with all interrupts enabled. It does
  858. * console changing, led setting and copy_to_cooked, which can
  859. * take a reasonably long time.
  860. *
  861. * Aside from timing (which isn't really that important for
  862. * keyboard interrupts as they happen often), using the software
  863. * interrupt routines for this thing allows us to easily mask
  864. * this when we don't want any of the above to happen.
  865. * This allows for easy and efficient race-condition prevention
  866. * for kbd_start => input_inject_event(dev, EV_LED, ...) => ...
  867. */
  868. static void kbd_bh(unsigned long dummy)
  869. {
  870. struct list_head *node;
  871. unsigned char leds = getleds();
  872. if (leds != ledstate) {
  873. list_for_each(node, &kbd_handler.h_list) {
  874. struct input_handle *handle = to_handle_h(node);
  875. input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
  876. input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
  877. input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
  878. input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
  879. }
  880. }
  881. ledstate = leds;
  882. }
  883. DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
  884. #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
  885. defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
  886. defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
  887. (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
  888. defined(CONFIG_AVR32)
  889. #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
  890. ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
  891. static const unsigned short x86_keycodes[256] =
  892. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  893. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  894. 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
  895. 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
  896. 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  897. 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
  898. 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
  899. 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
  900. 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
  901. 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
  902. 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
  903. 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
  904. 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
  905. 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
  906. 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
  907. #ifdef CONFIG_SPARC
  908. static int sparc_l1_a_state = 0;
  909. extern void sun_do_break(void);
  910. #endif
  911. static int emulate_raw(struct vc_data *vc, unsigned int keycode,
  912. unsigned char up_flag)
  913. {
  914. int code;
  915. switch (keycode) {
  916. case KEY_PAUSE:
  917. put_queue(vc, 0xe1);
  918. put_queue(vc, 0x1d | up_flag);
  919. put_queue(vc, 0x45 | up_flag);
  920. break;
  921. case KEY_HANGEUL:
  922. if (!up_flag)
  923. put_queue(vc, 0xf2);
  924. break;
  925. case KEY_HANJA:
  926. if (!up_flag)
  927. put_queue(vc, 0xf1);
  928. break;
  929. case KEY_SYSRQ:
  930. /*
  931. * Real AT keyboards (that's what we're trying
  932. * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
  933. * pressing PrtSc/SysRq alone, but simply 0x54
  934. * when pressing Alt+PrtSc/SysRq.
  935. */
  936. if (sysrq_alt) {
  937. put_queue(vc, 0x54 | up_flag);
  938. } else {
  939. put_queue(vc, 0xe0);
  940. put_queue(vc, 0x2a | up_flag);
  941. put_queue(vc, 0xe0);
  942. put_queue(vc, 0x37 | up_flag);
  943. }
  944. break;
  945. default:
  946. if (keycode > 255)
  947. return -1;
  948. code = x86_keycodes[keycode];
  949. if (!code)
  950. return -1;
  951. if (code & 0x100)
  952. put_queue(vc, 0xe0);
  953. put_queue(vc, (code & 0x7f) | up_flag);
  954. break;
  955. }
  956. return 0;
  957. }
  958. #else
  959. #define HW_RAW(dev) 0
  960. #warning "Cannot generate rawmode keyboard for your architecture yet."
  961. static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
  962. {
  963. if (keycode > 127)
  964. return -1;
  965. put_queue(vc, keycode | up_flag);
  966. return 0;
  967. }
  968. #endif
  969. static void kbd_rawcode(unsigned char data)
  970. {
  971. struct vc_data *vc = vc_cons[fg_console].d;
  972. kbd = kbd_table + fg_console;
  973. if (kbd->kbdmode == VC_RAW)
  974. put_queue(vc, data);
  975. }
  976. static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
  977. {
  978. struct vc_data *vc = vc_cons[fg_console].d;
  979. unsigned short keysym, *key_map;
  980. unsigned char type, raw_mode;
  981. struct tty_struct *tty;
  982. int shift_final;
  983. struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
  984. tty = vc->vc_tty;
  985. if (tty && (!tty->driver_data)) {
  986. /* No driver data? Strange. Okay we fix it then. */
  987. tty->driver_data = vc;
  988. }
  989. kbd = kbd_table + fg_console;
  990. if (keycode == KEY_LEFTALT || keycode == KEY_RIGHTALT)
  991. sysrq_alt = down ? keycode : 0;
  992. #ifdef CONFIG_SPARC
  993. if (keycode == KEY_STOP)
  994. sparc_l1_a_state = down;
  995. #endif
  996. rep = (down == 2);
  997. #ifdef CONFIG_MAC_EMUMOUSEBTN
  998. if (mac_hid_mouse_emulate_buttons(1, keycode, down))
  999. return;
  1000. #endif /* CONFIG_MAC_EMUMOUSEBTN */
  1001. if ((raw_mode = (kbd->kbdmode == VC_RAW)) && !hw_raw)
  1002. if (emulate_raw(vc, keycode, !down << 7))
  1003. if (keycode < BTN_MISC && printk_ratelimit())
  1004. printk(KERN_WARNING "keyboard.c: can't emulate rawmode for keycode %d\n", keycode);
  1005. #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
  1006. if (keycode == KEY_SYSRQ && (sysrq_down || (down == 1 && sysrq_alt))) {
  1007. if (!sysrq_down) {
  1008. sysrq_down = down;
  1009. sysrq_alt_use = sysrq_alt;
  1010. }
  1011. return;
  1012. }
  1013. if (sysrq_down && !down && keycode == sysrq_alt_use)
  1014. sysrq_down = 0;
  1015. if (sysrq_down && down && !rep) {
  1016. handle_sysrq(kbd_sysrq_xlate[keycode], tty);
  1017. return;
  1018. }
  1019. #endif
  1020. #ifdef CONFIG_SPARC
  1021. if (keycode == KEY_A && sparc_l1_a_state) {
  1022. sparc_l1_a_state = 0;
  1023. sun_do_break();
  1024. }
  1025. #endif
  1026. if (kbd->kbdmode == VC_MEDIUMRAW) {
  1027. /*
  1028. * This is extended medium raw mode, with keys above 127
  1029. * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
  1030. * the 'up' flag if needed. 0 is reserved, so this shouldn't
  1031. * interfere with anything else. The two bytes after 0 will
  1032. * always have the up flag set not to interfere with older
  1033. * applications. This allows for 16384 different keycodes,
  1034. * which should be enough.
  1035. */
  1036. if (keycode < 128) {
  1037. put_queue(vc, keycode | (!down << 7));
  1038. } else {
  1039. put_queue(vc, !down << 7);
  1040. put_queue(vc, (keycode >> 7) | 0x80);
  1041. put_queue(vc, keycode | 0x80);
  1042. }
  1043. raw_mode = 1;
  1044. }
  1045. if (down)
  1046. set_bit(keycode, key_down);
  1047. else
  1048. clear_bit(keycode, key_down);
  1049. if (rep &&
  1050. (!vc_kbd_mode(kbd, VC_REPEAT) ||
  1051. (tty && !L_ECHO(tty) && tty->driver->chars_in_buffer(tty)))) {
  1052. /*
  1053. * Don't repeat a key if the input buffers are not empty and the
  1054. * characters get aren't echoed locally. This makes key repeat
  1055. * usable with slow applications and under heavy loads.
  1056. */
  1057. return;
  1058. }
  1059. param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
  1060. param.ledstate = kbd->ledflagstate;
  1061. key_map = key_maps[shift_final];
  1062. if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYCODE, &param) == NOTIFY_STOP || !key_map) {
  1063. atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNBOUND_KEYCODE, &param);
  1064. compute_shiftstate();
  1065. kbd->slockstate = 0;
  1066. return;
  1067. }
  1068. if (keycode > NR_KEYS)
  1069. if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
  1070. keysym = K(KT_BRL, keycode - KEY_BRL_DOT1 + 1);
  1071. else
  1072. return;
  1073. else
  1074. keysym = key_map[keycode];
  1075. type = KTYP(keysym);
  1076. if (type < 0xf0) {
  1077. param.value = keysym;
  1078. if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNICODE, &param) == NOTIFY_STOP)
  1079. return;
  1080. if (down && !raw_mode)
  1081. to_utf8(vc, keysym);
  1082. return;
  1083. }
  1084. type -= 0xf0;
  1085. if (type == KT_LETTER) {
  1086. type = KT_LATIN;
  1087. if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
  1088. key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
  1089. if (key_map)
  1090. keysym = key_map[keycode];
  1091. }
  1092. }
  1093. param.value = keysym;
  1094. if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYSYM, &param) == NOTIFY_STOP)
  1095. return;
  1096. if (raw_mode && type != KT_SPEC && type != KT_SHIFT)
  1097. return;
  1098. (*k_handler[type])(vc, keysym & 0xff, !down);
  1099. param.ledstate = kbd->ledflagstate;
  1100. atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
  1101. if (type != KT_SLOCK)
  1102. kbd->slockstate = 0;
  1103. }
  1104. static void kbd_event(struct input_handle *handle, unsigned int event_type,
  1105. unsigned int event_code, int value)
  1106. {
  1107. if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
  1108. kbd_rawcode(value);
  1109. if (event_type == EV_KEY)
  1110. kbd_keycode(event_code, value, HW_RAW(handle->dev));
  1111. tasklet_schedule(&keyboard_tasklet);
  1112. do_poke_blanked_console = 1;
  1113. schedule_console_callback();
  1114. }
  1115. /*
  1116. * When a keyboard (or other input device) is found, the kbd_connect
  1117. * function is called. The function then looks at the device, and if it
  1118. * likes it, it can open it and get events from it. In this (kbd_connect)
  1119. * function, we should decide which VT to bind that keyboard to initially.
  1120. */
  1121. static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
  1122. const struct input_device_id *id)
  1123. {
  1124. struct input_handle *handle;
  1125. int error;
  1126. int i;
  1127. for (i = KEY_RESERVED; i < BTN_MISC; i++)
  1128. if (test_bit(i, dev->keybit))
  1129. break;
  1130. if (i == BTN_MISC && !test_bit(EV_SND, dev->evbit))
  1131. return -ENODEV;
  1132. handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
  1133. if (!handle)
  1134. return -ENOMEM;
  1135. handle->dev = dev;
  1136. handle->handler = handler;
  1137. handle->name = "kbd";
  1138. error = input_register_handle(handle);
  1139. if (error)
  1140. goto err_free_handle;
  1141. error = input_open_device(handle);
  1142. if (error)
  1143. goto err_unregister_handle;
  1144. return 0;
  1145. err_unregister_handle:
  1146. input_unregister_handle(handle);
  1147. err_free_handle:
  1148. kfree(handle);
  1149. return error;
  1150. }
  1151. static void kbd_disconnect(struct input_handle *handle)
  1152. {
  1153. input_close_device(handle);
  1154. input_unregister_handle(handle);
  1155. kfree(handle);
  1156. }
  1157. /*
  1158. * Start keyboard handler on the new keyboard by refreshing LED state to
  1159. * match the rest of the system.
  1160. */
  1161. static void kbd_start(struct input_handle *handle)
  1162. {
  1163. unsigned char leds = ledstate;
  1164. tasklet_disable(&keyboard_tasklet);
  1165. if (leds != 0xff) {
  1166. input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
  1167. input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
  1168. input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
  1169. input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
  1170. }
  1171. tasklet_enable(&keyboard_tasklet);
  1172. }
  1173. static const struct input_device_id kbd_ids[] = {
  1174. {
  1175. .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
  1176. .evbit = { BIT_MASK(EV_KEY) },
  1177. },
  1178. {
  1179. .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
  1180. .evbit = { BIT_MASK(EV_SND) },
  1181. },
  1182. { }, /* Terminating entry */
  1183. };
  1184. MODULE_DEVICE_TABLE(input, kbd_ids);
  1185. static struct input_handler kbd_handler = {
  1186. .event = kbd_event,
  1187. .connect = kbd_connect,
  1188. .disconnect = kbd_disconnect,
  1189. .start = kbd_start,
  1190. .name = "kbd",
  1191. .id_table = kbd_ids,
  1192. };
  1193. int __init kbd_init(void)
  1194. {
  1195. int i;
  1196. int error;
  1197. for (i = 0; i < MAX_NR_CONSOLES; i++) {
  1198. kbd_table[i].ledflagstate = KBD_DEFLEDS;
  1199. kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
  1200. kbd_table[i].ledmode = LED_SHOW_FLAGS;
  1201. kbd_table[i].lockstate = KBD_DEFLOCK;
  1202. kbd_table[i].slockstate = 0;
  1203. kbd_table[i].modeflags = KBD_DEFMODE;
  1204. kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
  1205. }
  1206. error = input_register_handler(&kbd_handler);
  1207. if (error)
  1208. return error;
  1209. tasklet_enable(&keyboard_tasklet);
  1210. tasklet_schedule(&keyboard_tasklet);
  1211. return 0;
  1212. }