pgtable_32.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181
  1. #include <linux/sched.h>
  2. #include <linux/kernel.h>
  3. #include <linux/errno.h>
  4. #include <linux/mm.h>
  5. #include <linux/nmi.h>
  6. #include <linux/swap.h>
  7. #include <linux/smp.h>
  8. #include <linux/highmem.h>
  9. #include <linux/slab.h>
  10. #include <linux/pagemap.h>
  11. #include <linux/spinlock.h>
  12. #include <linux/module.h>
  13. #include <linux/quicklist.h>
  14. #include <asm/system.h>
  15. #include <asm/pgtable.h>
  16. #include <asm/pgalloc.h>
  17. #include <asm/fixmap.h>
  18. #include <asm/e820.h>
  19. #include <asm/tlb.h>
  20. #include <asm/tlbflush.h>
  21. void show_mem(void)
  22. {
  23. int total = 0, reserved = 0;
  24. int shared = 0, cached = 0;
  25. int highmem = 0;
  26. struct page *page;
  27. pg_data_t *pgdat;
  28. unsigned long i;
  29. unsigned long flags;
  30. printk(KERN_INFO "Mem-info:\n");
  31. show_free_areas();
  32. for_each_online_pgdat(pgdat) {
  33. pgdat_resize_lock(pgdat, &flags);
  34. for (i = 0; i < pgdat->node_spanned_pages; ++i) {
  35. if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  36. touch_nmi_watchdog();
  37. page = pgdat_page_nr(pgdat, i);
  38. total++;
  39. if (PageHighMem(page))
  40. highmem++;
  41. if (PageReserved(page))
  42. reserved++;
  43. else if (PageSwapCache(page))
  44. cached++;
  45. else if (page_count(page))
  46. shared += page_count(page) - 1;
  47. }
  48. pgdat_resize_unlock(pgdat, &flags);
  49. }
  50. printk(KERN_INFO "%d pages of RAM\n", total);
  51. printk(KERN_INFO "%d pages of HIGHMEM\n", highmem);
  52. printk(KERN_INFO "%d reserved pages\n", reserved);
  53. printk(KERN_INFO "%d pages shared\n", shared);
  54. printk(KERN_INFO "%d pages swap cached\n", cached);
  55. printk(KERN_INFO "%lu pages dirty\n", global_page_state(NR_FILE_DIRTY));
  56. printk(KERN_INFO "%lu pages writeback\n",
  57. global_page_state(NR_WRITEBACK));
  58. printk(KERN_INFO "%lu pages mapped\n", global_page_state(NR_FILE_MAPPED));
  59. printk(KERN_INFO "%lu pages slab\n",
  60. global_page_state(NR_SLAB_RECLAIMABLE) +
  61. global_page_state(NR_SLAB_UNRECLAIMABLE));
  62. printk(KERN_INFO "%lu pages pagetables\n",
  63. global_page_state(NR_PAGETABLE));
  64. }
  65. /*
  66. * Associate a virtual page frame with a given physical page frame
  67. * and protection flags for that frame.
  68. */
  69. static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
  70. {
  71. pgd_t *pgd;
  72. pud_t *pud;
  73. pmd_t *pmd;
  74. pte_t *pte;
  75. pgd = swapper_pg_dir + pgd_index(vaddr);
  76. if (pgd_none(*pgd)) {
  77. BUG();
  78. return;
  79. }
  80. pud = pud_offset(pgd, vaddr);
  81. if (pud_none(*pud)) {
  82. BUG();
  83. return;
  84. }
  85. pmd = pmd_offset(pud, vaddr);
  86. if (pmd_none(*pmd)) {
  87. BUG();
  88. return;
  89. }
  90. pte = pte_offset_kernel(pmd, vaddr);
  91. if (pgprot_val(flags))
  92. set_pte_present(&init_mm, vaddr, pte, pfn_pte(pfn, flags));
  93. else
  94. pte_clear(&init_mm, vaddr, pte);
  95. /*
  96. * It's enough to flush this one mapping.
  97. * (PGE mappings get flushed as well)
  98. */
  99. __flush_tlb_one(vaddr);
  100. }
  101. /*
  102. * Associate a large virtual page frame with a given physical page frame
  103. * and protection flags for that frame. pfn is for the base of the page,
  104. * vaddr is what the page gets mapped to - both must be properly aligned.
  105. * The pmd must already be instantiated. Assumes PAE mode.
  106. */
  107. void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
  108. {
  109. pgd_t *pgd;
  110. pud_t *pud;
  111. pmd_t *pmd;
  112. if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */
  113. printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n");
  114. return; /* BUG(); */
  115. }
  116. if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */
  117. printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n");
  118. return; /* BUG(); */
  119. }
  120. pgd = swapper_pg_dir + pgd_index(vaddr);
  121. if (pgd_none(*pgd)) {
  122. printk(KERN_WARNING "set_pmd_pfn: pgd_none\n");
  123. return; /* BUG(); */
  124. }
  125. pud = pud_offset(pgd, vaddr);
  126. pmd = pmd_offset(pud, vaddr);
  127. set_pmd(pmd, pfn_pmd(pfn, flags));
  128. /*
  129. * It's enough to flush this one mapping.
  130. * (PGE mappings get flushed as well)
  131. */
  132. __flush_tlb_one(vaddr);
  133. }
  134. static int fixmaps;
  135. unsigned long __FIXADDR_TOP = 0xfffff000;
  136. EXPORT_SYMBOL(__FIXADDR_TOP);
  137. void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
  138. {
  139. unsigned long address = __fix_to_virt(idx);
  140. if (idx >= __end_of_fixed_addresses) {
  141. BUG();
  142. return;
  143. }
  144. set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
  145. fixmaps++;
  146. }
  147. /**
  148. * reserve_top_address - reserves a hole in the top of kernel address space
  149. * @reserve - size of hole to reserve
  150. *
  151. * Can be used to relocate the fixmap area and poke a hole in the top
  152. * of kernel address space to make room for a hypervisor.
  153. */
  154. void reserve_top_address(unsigned long reserve)
  155. {
  156. BUG_ON(fixmaps > 0);
  157. printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
  158. (int)-reserve);
  159. __FIXADDR_TOP = -reserve - PAGE_SIZE;
  160. __VMALLOC_RESERVE += reserve;
  161. }
  162. int pmd_bad(pmd_t pmd)
  163. {
  164. WARN_ON_ONCE(pmd_bad_v1(pmd) != pmd_bad_v2(pmd));
  165. return pmd_bad_v1(pmd);
  166. }