pgtable.c 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. #include <linux/mm.h>
  2. #include <asm/pgalloc.h>
  3. #include <asm/pgtable.h>
  4. #include <asm/tlb.h>
  5. pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  6. {
  7. return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
  8. }
  9. pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
  10. {
  11. struct page *pte;
  12. #ifdef CONFIG_HIGHPTE
  13. pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
  14. #else
  15. pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
  16. #endif
  17. if (pte)
  18. pgtable_page_ctor(pte);
  19. return pte;
  20. }
  21. void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
  22. {
  23. pgtable_page_dtor(pte);
  24. paravirt_release_pte(page_to_pfn(pte));
  25. tlb_remove_page(tlb, pte);
  26. }
  27. #if PAGETABLE_LEVELS > 2
  28. void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
  29. {
  30. paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
  31. tlb_remove_page(tlb, virt_to_page(pmd));
  32. }
  33. #if PAGETABLE_LEVELS > 3
  34. void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
  35. {
  36. paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
  37. tlb_remove_page(tlb, virt_to_page(pud));
  38. }
  39. #endif /* PAGETABLE_LEVELS > 3 */
  40. #endif /* PAGETABLE_LEVELS > 2 */
  41. static inline void pgd_list_add(pgd_t *pgd)
  42. {
  43. struct page *page = virt_to_page(pgd);
  44. list_add(&page->lru, &pgd_list);
  45. }
  46. static inline void pgd_list_del(pgd_t *pgd)
  47. {
  48. struct page *page = virt_to_page(pgd);
  49. list_del(&page->lru);
  50. }
  51. #define UNSHARED_PTRS_PER_PGD \
  52. (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
  53. static void pgd_ctor(void *p)
  54. {
  55. pgd_t *pgd = p;
  56. unsigned long flags;
  57. /* Clear usermode parts of PGD */
  58. memset(pgd, 0, KERNEL_PGD_BOUNDARY*sizeof(pgd_t));
  59. spin_lock_irqsave(&pgd_lock, flags);
  60. /* If the pgd points to a shared pagetable level (either the
  61. ptes in non-PAE, or shared PMD in PAE), then just copy the
  62. references from swapper_pg_dir. */
  63. if (PAGETABLE_LEVELS == 2 ||
  64. (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
  65. PAGETABLE_LEVELS == 4) {
  66. clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
  67. swapper_pg_dir + KERNEL_PGD_BOUNDARY,
  68. KERNEL_PGD_PTRS);
  69. paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
  70. __pa(swapper_pg_dir) >> PAGE_SHIFT,
  71. KERNEL_PGD_BOUNDARY,
  72. KERNEL_PGD_PTRS);
  73. }
  74. /* list required to sync kernel mapping updates */
  75. if (!SHARED_KERNEL_PMD)
  76. pgd_list_add(pgd);
  77. spin_unlock_irqrestore(&pgd_lock, flags);
  78. }
  79. static void pgd_dtor(void *pgd)
  80. {
  81. unsigned long flags; /* can be called from interrupt context */
  82. if (SHARED_KERNEL_PMD)
  83. return;
  84. spin_lock_irqsave(&pgd_lock, flags);
  85. pgd_list_del(pgd);
  86. spin_unlock_irqrestore(&pgd_lock, flags);
  87. }
  88. /*
  89. * List of all pgd's needed for non-PAE so it can invalidate entries
  90. * in both cached and uncached pgd's; not needed for PAE since the
  91. * kernel pmd is shared. If PAE were not to share the pmd a similar
  92. * tactic would be needed. This is essentially codepath-based locking
  93. * against pageattr.c; it is the unique case in which a valid change
  94. * of kernel pagetables can't be lazily synchronized by vmalloc faults.
  95. * vmalloc faults work because attached pagetables are never freed.
  96. * -- wli
  97. */
  98. #ifdef CONFIG_X86_PAE
  99. /*
  100. * Mop up any pmd pages which may still be attached to the pgd.
  101. * Normally they will be freed by munmap/exit_mmap, but any pmd we
  102. * preallocate which never got a corresponding vma will need to be
  103. * freed manually.
  104. */
  105. static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
  106. {
  107. int i;
  108. for(i = 0; i < UNSHARED_PTRS_PER_PGD; i++) {
  109. pgd_t pgd = pgdp[i];
  110. if (pgd_val(pgd) != 0) {
  111. pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
  112. pgdp[i] = native_make_pgd(0);
  113. paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
  114. pmd_free(mm, pmd);
  115. }
  116. }
  117. }
  118. /*
  119. * In PAE mode, we need to do a cr3 reload (=tlb flush) when
  120. * updating the top-level pagetable entries to guarantee the
  121. * processor notices the update. Since this is expensive, and
  122. * all 4 top-level entries are used almost immediately in a
  123. * new process's life, we just pre-populate them here.
  124. *
  125. * Also, if we're in a paravirt environment where the kernel pmd is
  126. * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
  127. * and initialize the kernel pmds here.
  128. */
  129. static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
  130. {
  131. pud_t *pud;
  132. unsigned long addr;
  133. int i;
  134. pud = pud_offset(pgd, 0);
  135. for (addr = i = 0; i < UNSHARED_PTRS_PER_PGD;
  136. i++, pud++, addr += PUD_SIZE) {
  137. pmd_t *pmd = pmd_alloc_one(mm, addr);
  138. if (!pmd) {
  139. pgd_mop_up_pmds(mm, pgd);
  140. return 0;
  141. }
  142. if (i >= KERNEL_PGD_BOUNDARY)
  143. memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
  144. sizeof(pmd_t) * PTRS_PER_PMD);
  145. pud_populate(mm, pud, pmd);
  146. }
  147. return 1;
  148. }
  149. void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
  150. {
  151. paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
  152. /* Note: almost everything apart from _PAGE_PRESENT is
  153. reserved at the pmd (PDPT) level. */
  154. set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
  155. /*
  156. * According to Intel App note "TLBs, Paging-Structure Caches,
  157. * and Their Invalidation", April 2007, document 317080-001,
  158. * section 8.1: in PAE mode we explicitly have to flush the
  159. * TLB via cr3 if the top-level pgd is changed...
  160. */
  161. if (mm == current->active_mm)
  162. write_cr3(read_cr3());
  163. }
  164. #else /* !CONFIG_X86_PAE */
  165. /* No need to prepopulate any pagetable entries in non-PAE modes. */
  166. static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
  167. {
  168. return 1;
  169. }
  170. static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgd)
  171. {
  172. }
  173. #endif /* CONFIG_X86_PAE */
  174. pgd_t *pgd_alloc(struct mm_struct *mm)
  175. {
  176. pgd_t *pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
  177. /* so that alloc_pmd can use it */
  178. mm->pgd = pgd;
  179. if (pgd)
  180. pgd_ctor(pgd);
  181. if (pgd && !pgd_prepopulate_pmd(mm, pgd)) {
  182. pgd_dtor(pgd);
  183. free_page((unsigned long)pgd);
  184. pgd = NULL;
  185. }
  186. return pgd;
  187. }
  188. void pgd_free(struct mm_struct *mm, pgd_t *pgd)
  189. {
  190. pgd_mop_up_pmds(mm, pgd);
  191. pgd_dtor(pgd);
  192. free_page((unsigned long)pgd);
  193. }
  194. int ptep_set_access_flags(struct vm_area_struct *vma,
  195. unsigned long address, pte_t *ptep,
  196. pte_t entry, int dirty)
  197. {
  198. int changed = !pte_same(*ptep, entry);
  199. if (changed && dirty) {
  200. *ptep = entry;
  201. pte_update_defer(vma->vm_mm, address, ptep);
  202. flush_tlb_page(vma, address);
  203. }
  204. return changed;
  205. }
  206. int ptep_test_and_clear_young(struct vm_area_struct *vma,
  207. unsigned long addr, pte_t *ptep)
  208. {
  209. int ret = 0;
  210. if (pte_young(*ptep))
  211. ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
  212. &ptep->pte);
  213. if (ret)
  214. pte_update(vma->vm_mm, addr, ptep);
  215. return ret;
  216. }
  217. int ptep_clear_flush_young(struct vm_area_struct *vma,
  218. unsigned long address, pte_t *ptep)
  219. {
  220. int young;
  221. young = ptep_test_and_clear_young(vma, address, ptep);
  222. if (young)
  223. flush_tlb_page(vma, address);
  224. return young;
  225. }