discontig_32.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504
  1. /*
  2. * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
  3. * August 2002: added remote node KVA remap - Martin J. Bligh
  4. *
  5. * Copyright (C) 2002, IBM Corp.
  6. *
  7. * All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  17. * NON INFRINGEMENT. See the GNU General Public License for more
  18. * details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/mm.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/mmzone.h>
  27. #include <linux/highmem.h>
  28. #include <linux/initrd.h>
  29. #include <linux/nodemask.h>
  30. #include <linux/module.h>
  31. #include <linux/kexec.h>
  32. #include <linux/pfn.h>
  33. #include <linux/swap.h>
  34. #include <linux/acpi.h>
  35. #include <asm/e820.h>
  36. #include <asm/setup.h>
  37. #include <asm/mmzone.h>
  38. #include <asm/bios_ebda.h>
  39. struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  40. EXPORT_SYMBOL(node_data);
  41. static bootmem_data_t node0_bdata;
  42. /*
  43. * numa interface - we expect the numa architecture specific code to have
  44. * populated the following initialisation.
  45. *
  46. * 1) node_online_map - the map of all nodes configured (online) in the system
  47. * 2) node_start_pfn - the starting page frame number for a node
  48. * 3) node_end_pfn - the ending page fram number for a node
  49. */
  50. unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
  51. unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
  52. #ifdef CONFIG_DISCONTIGMEM
  53. /*
  54. * 4) physnode_map - the mapping between a pfn and owning node
  55. * physnode_map keeps track of the physical memory layout of a generic
  56. * numa node on a 256Mb break (each element of the array will
  57. * represent 256Mb of memory and will be marked by the node id. so,
  58. * if the first gig is on node 0, and the second gig is on node 1
  59. * physnode_map will contain:
  60. *
  61. * physnode_map[0-3] = 0;
  62. * physnode_map[4-7] = 1;
  63. * physnode_map[8- ] = -1;
  64. */
  65. s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
  66. EXPORT_SYMBOL(physnode_map);
  67. void memory_present(int nid, unsigned long start, unsigned long end)
  68. {
  69. unsigned long pfn;
  70. printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",
  71. nid, start, end);
  72. printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
  73. printk(KERN_DEBUG " ");
  74. for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
  75. physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
  76. printk("%ld ", pfn);
  77. }
  78. printk("\n");
  79. }
  80. unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
  81. unsigned long end_pfn)
  82. {
  83. unsigned long nr_pages = end_pfn - start_pfn;
  84. if (!nr_pages)
  85. return 0;
  86. return (nr_pages + 1) * sizeof(struct page);
  87. }
  88. #endif
  89. extern unsigned long find_max_low_pfn(void);
  90. extern void add_one_highpage_init(struct page *, int, int);
  91. extern unsigned long highend_pfn, highstart_pfn;
  92. #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
  93. unsigned long node_remap_size[MAX_NUMNODES];
  94. static void *node_remap_start_vaddr[MAX_NUMNODES];
  95. void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
  96. static unsigned long kva_start_pfn;
  97. static unsigned long kva_pages;
  98. /*
  99. * FLAT - support for basic PC memory model with discontig enabled, essentially
  100. * a single node with all available processors in it with a flat
  101. * memory map.
  102. */
  103. int __init get_memcfg_numa_flat(void)
  104. {
  105. printk("NUMA - single node, flat memory mode\n");
  106. /* Run the memory configuration and find the top of memory. */
  107. propagate_e820_map();
  108. node_start_pfn[0] = 0;
  109. node_end_pfn[0] = max_pfn;
  110. memory_present(0, 0, max_pfn);
  111. /* Indicate there is one node available. */
  112. nodes_clear(node_online_map);
  113. node_set_online(0);
  114. return 1;
  115. }
  116. /*
  117. * Find the highest page frame number we have available for the node
  118. */
  119. static void __init propagate_e820_map_node(int nid)
  120. {
  121. if (node_end_pfn[nid] > max_pfn)
  122. node_end_pfn[nid] = max_pfn;
  123. /*
  124. * if a user has given mem=XXXX, then we need to make sure
  125. * that the node _starts_ before that, too, not just ends
  126. */
  127. if (node_start_pfn[nid] > max_pfn)
  128. node_start_pfn[nid] = max_pfn;
  129. BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
  130. }
  131. /*
  132. * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
  133. * method. For node zero take this from the bottom of memory, for
  134. * subsequent nodes place them at node_remap_start_vaddr which contains
  135. * node local data in physically node local memory. See setup_memory()
  136. * for details.
  137. */
  138. static void __init allocate_pgdat(int nid)
  139. {
  140. if (nid && node_has_online_mem(nid))
  141. NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
  142. else {
  143. NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(min_low_pfn));
  144. min_low_pfn += PFN_UP(sizeof(pg_data_t));
  145. }
  146. }
  147. #ifdef CONFIG_DISCONTIGMEM
  148. /*
  149. * In the discontig memory model, a portion of the kernel virtual area (KVA)
  150. * is reserved and portions of nodes are mapped using it. This is to allow
  151. * node-local memory to be allocated for structures that would normally require
  152. * ZONE_NORMAL. The memory is allocated with alloc_remap() and callers
  153. * should be prepared to allocate from the bootmem allocator instead. This KVA
  154. * mechanism is incompatible with SPARSEMEM as it makes assumptions about the
  155. * layout of memory that are broken if alloc_remap() succeeds for some of the
  156. * map and fails for others
  157. */
  158. static unsigned long node_remap_start_pfn[MAX_NUMNODES];
  159. static void *node_remap_end_vaddr[MAX_NUMNODES];
  160. static void *node_remap_alloc_vaddr[MAX_NUMNODES];
  161. static unsigned long node_remap_offset[MAX_NUMNODES];
  162. void *alloc_remap(int nid, unsigned long size)
  163. {
  164. void *allocation = node_remap_alloc_vaddr[nid];
  165. size = ALIGN(size, L1_CACHE_BYTES);
  166. if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
  167. return 0;
  168. node_remap_alloc_vaddr[nid] += size;
  169. memset(allocation, 0, size);
  170. return allocation;
  171. }
  172. void __init remap_numa_kva(void)
  173. {
  174. void *vaddr;
  175. unsigned long pfn;
  176. int node;
  177. for_each_online_node(node) {
  178. for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
  179. vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
  180. set_pmd_pfn((ulong) vaddr,
  181. node_remap_start_pfn[node] + pfn,
  182. PAGE_KERNEL_LARGE);
  183. }
  184. }
  185. }
  186. static unsigned long calculate_numa_remap_pages(void)
  187. {
  188. int nid;
  189. unsigned long size, reserve_pages = 0;
  190. unsigned long pfn;
  191. for_each_online_node(nid) {
  192. unsigned old_end_pfn = node_end_pfn[nid];
  193. /*
  194. * The acpi/srat node info can show hot-add memroy zones
  195. * where memory could be added but not currently present.
  196. */
  197. if (node_start_pfn[nid] > max_pfn)
  198. continue;
  199. if (node_end_pfn[nid] > max_pfn)
  200. node_end_pfn[nid] = max_pfn;
  201. /* ensure the remap includes space for the pgdat. */
  202. size = node_remap_size[nid] + sizeof(pg_data_t);
  203. /* convert size to large (pmd size) pages, rounding up */
  204. size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
  205. /* now the roundup is correct, convert to PAGE_SIZE pages */
  206. size = size * PTRS_PER_PTE;
  207. /*
  208. * Validate the region we are allocating only contains valid
  209. * pages.
  210. */
  211. for (pfn = node_end_pfn[nid] - size;
  212. pfn < node_end_pfn[nid]; pfn++)
  213. if (!page_is_ram(pfn))
  214. break;
  215. if (pfn != node_end_pfn[nid])
  216. size = 0;
  217. printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
  218. size, nid);
  219. node_remap_size[nid] = size;
  220. node_remap_offset[nid] = reserve_pages;
  221. reserve_pages += size;
  222. printk("Shrinking node %d from %ld pages to %ld pages\n",
  223. nid, node_end_pfn[nid], node_end_pfn[nid] - size);
  224. if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) {
  225. /*
  226. * Align node_end_pfn[] and node_remap_start_pfn[] to
  227. * pmd boundary. remap_numa_kva will barf otherwise.
  228. */
  229. printk("Shrinking node %d further by %ld pages for proper alignment\n",
  230. nid, node_end_pfn[nid] & (PTRS_PER_PTE-1));
  231. size += node_end_pfn[nid] & (PTRS_PER_PTE-1);
  232. }
  233. node_end_pfn[nid] -= size;
  234. node_remap_start_pfn[nid] = node_end_pfn[nid];
  235. shrink_active_range(nid, old_end_pfn, node_end_pfn[nid]);
  236. }
  237. printk("Reserving total of %ld pages for numa KVA remap\n",
  238. reserve_pages);
  239. return reserve_pages;
  240. }
  241. static void init_remap_allocator(int nid)
  242. {
  243. node_remap_start_vaddr[nid] = pfn_to_kaddr(
  244. kva_start_pfn + node_remap_offset[nid]);
  245. node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
  246. (node_remap_size[nid] * PAGE_SIZE);
  247. node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
  248. ALIGN(sizeof(pg_data_t), PAGE_SIZE);
  249. printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,
  250. (ulong) node_remap_start_vaddr[nid],
  251. (ulong) pfn_to_kaddr(highstart_pfn
  252. + node_remap_offset[nid] + node_remap_size[nid]));
  253. }
  254. #else
  255. void *alloc_remap(int nid, unsigned long size)
  256. {
  257. return NULL;
  258. }
  259. static unsigned long calculate_numa_remap_pages(void)
  260. {
  261. return 0;
  262. }
  263. static void init_remap_allocator(int nid)
  264. {
  265. }
  266. void __init remap_numa_kva(void)
  267. {
  268. }
  269. #endif /* CONFIG_DISCONTIGMEM */
  270. extern void setup_bootmem_allocator(void);
  271. unsigned long __init setup_memory(void)
  272. {
  273. int nid;
  274. unsigned long system_start_pfn, system_max_low_pfn;
  275. unsigned long wasted_pages;
  276. /*
  277. * When mapping a NUMA machine we allocate the node_mem_map arrays
  278. * from node local memory. They are then mapped directly into KVA
  279. * between zone normal and vmalloc space. Calculate the size of
  280. * this space and use it to adjust the boundary between ZONE_NORMAL
  281. * and ZONE_HIGHMEM.
  282. */
  283. get_memcfg_numa();
  284. kva_pages = calculate_numa_remap_pages();
  285. /* partially used pages are not usable - thus round upwards */
  286. system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);
  287. kva_start_pfn = find_max_low_pfn() - kva_pages;
  288. #ifdef CONFIG_BLK_DEV_INITRD
  289. /* Numa kva area is below the initrd */
  290. if (initrd_start)
  291. kva_start_pfn = PFN_DOWN(initrd_start - PAGE_OFFSET)
  292. - kva_pages;
  293. #endif
  294. /*
  295. * We waste pages past at the end of the KVA for no good reason other
  296. * than how it is located. This is bad.
  297. */
  298. wasted_pages = kva_start_pfn & (PTRS_PER_PTE-1);
  299. kva_start_pfn -= wasted_pages;
  300. kva_pages += wasted_pages;
  301. system_max_low_pfn = max_low_pfn = find_max_low_pfn();
  302. printk("kva_start_pfn ~ %ld find_max_low_pfn() ~ %ld\n",
  303. kva_start_pfn, max_low_pfn);
  304. printk("max_pfn = %ld\n", max_pfn);
  305. #ifdef CONFIG_HIGHMEM
  306. highstart_pfn = highend_pfn = max_pfn;
  307. if (max_pfn > system_max_low_pfn)
  308. highstart_pfn = system_max_low_pfn;
  309. printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
  310. pages_to_mb(highend_pfn - highstart_pfn));
  311. num_physpages = highend_pfn;
  312. high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
  313. #else
  314. num_physpages = system_max_low_pfn;
  315. high_memory = (void *) __va(system_max_low_pfn * PAGE_SIZE - 1) + 1;
  316. #endif
  317. printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
  318. pages_to_mb(system_max_low_pfn));
  319. printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n",
  320. min_low_pfn, max_low_pfn, highstart_pfn);
  321. printk("Low memory ends at vaddr %08lx\n",
  322. (ulong) pfn_to_kaddr(max_low_pfn));
  323. for_each_online_node(nid) {
  324. init_remap_allocator(nid);
  325. allocate_pgdat(nid);
  326. }
  327. printk("High memory starts at vaddr %08lx\n",
  328. (ulong) pfn_to_kaddr(highstart_pfn));
  329. for_each_online_node(nid)
  330. propagate_e820_map_node(nid);
  331. memset(NODE_DATA(0), 0, sizeof(struct pglist_data));
  332. NODE_DATA(0)->bdata = &node0_bdata;
  333. setup_bootmem_allocator();
  334. return max_low_pfn;
  335. }
  336. void __init numa_kva_reserve(void)
  337. {
  338. if (kva_pages)
  339. reserve_bootmem(PFN_PHYS(kva_start_pfn), PFN_PHYS(kva_pages),
  340. BOOTMEM_DEFAULT);
  341. }
  342. void __init zone_sizes_init(void)
  343. {
  344. int nid;
  345. unsigned long max_zone_pfns[MAX_NR_ZONES];
  346. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  347. max_zone_pfns[ZONE_DMA] =
  348. virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  349. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  350. #ifdef CONFIG_HIGHMEM
  351. max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
  352. #endif
  353. /* If SRAT has not registered memory, register it now */
  354. if (find_max_pfn_with_active_regions() == 0) {
  355. for_each_online_node(nid) {
  356. if (node_has_online_mem(nid))
  357. add_active_range(nid, node_start_pfn[nid],
  358. node_end_pfn[nid]);
  359. }
  360. }
  361. free_area_init_nodes(max_zone_pfns);
  362. return;
  363. }
  364. void __init set_highmem_pages_init(int bad_ppro)
  365. {
  366. #ifdef CONFIG_HIGHMEM
  367. struct zone *zone;
  368. struct page *page;
  369. for_each_zone(zone) {
  370. unsigned long node_pfn, zone_start_pfn, zone_end_pfn;
  371. if (!is_highmem(zone))
  372. continue;
  373. zone_start_pfn = zone->zone_start_pfn;
  374. zone_end_pfn = zone_start_pfn + zone->spanned_pages;
  375. printk("Initializing %s for node %d (%08lx:%08lx)\n",
  376. zone->name, zone_to_nid(zone),
  377. zone_start_pfn, zone_end_pfn);
  378. for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) {
  379. if (!pfn_valid(node_pfn))
  380. continue;
  381. page = pfn_to_page(node_pfn);
  382. add_one_highpage_init(page, node_pfn, bad_ppro);
  383. }
  384. }
  385. totalram_pages += totalhigh_pages;
  386. #endif
  387. }
  388. #ifdef CONFIG_MEMORY_HOTPLUG
  389. static int paddr_to_nid(u64 addr)
  390. {
  391. int nid;
  392. unsigned long pfn = PFN_DOWN(addr);
  393. for_each_node(nid)
  394. if (node_start_pfn[nid] <= pfn &&
  395. pfn < node_end_pfn[nid])
  396. return nid;
  397. return -1;
  398. }
  399. /*
  400. * This function is used to ask node id BEFORE memmap and mem_section's
  401. * initialization (pfn_to_nid() can't be used yet).
  402. * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
  403. */
  404. int memory_add_physaddr_to_nid(u64 addr)
  405. {
  406. int nid = paddr_to_nid(addr);
  407. return (nid >= 0) ? nid : 0;
  408. }
  409. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  410. #endif
  411. #ifndef CONFIG_HAVE_ARCH_PARSE_SRAT
  412. /*
  413. * XXX FIXME: Make SLIT table parsing available to 32-bit NUMA
  414. *
  415. * These stub functions are needed to compile 32-bit NUMA when SRAT is
  416. * not set. There are functions in srat_64.c for parsing this table
  417. * and it may be possible to make them common functions.
  418. */
  419. void acpi_numa_slit_init (struct acpi_table_slit *slit)
  420. {
  421. printk(KERN_INFO "ACPI: No support for parsing SLIT table\n");
  422. }
  423. void acpi_numa_processor_affinity_init (struct acpi_srat_cpu_affinity *pa)
  424. {
  425. }
  426. void acpi_numa_memory_affinity_init (struct acpi_srat_mem_affinity *ma)
  427. {
  428. }
  429. void acpi_numa_arch_fixup(void)
  430. {
  431. }
  432. #endif /* CONFIG_HAVE_ARCH_PARSE_SRAT */