vmx.c 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "segment_descriptor.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. MODULE_AUTHOR("Qumranet");
  31. MODULE_LICENSE("GPL");
  32. static int bypass_guest_pf = 1;
  33. module_param(bypass_guest_pf, bool, 0);
  34. struct vmcs {
  35. u32 revision_id;
  36. u32 abort;
  37. char data[0];
  38. };
  39. struct vcpu_vmx {
  40. struct kvm_vcpu vcpu;
  41. int launched;
  42. u8 fail;
  43. u32 idt_vectoring_info;
  44. struct kvm_msr_entry *guest_msrs;
  45. struct kvm_msr_entry *host_msrs;
  46. int nmsrs;
  47. int save_nmsrs;
  48. int msr_offset_efer;
  49. #ifdef CONFIG_X86_64
  50. int msr_offset_kernel_gs_base;
  51. #endif
  52. struct vmcs *vmcs;
  53. struct {
  54. int loaded;
  55. u16 fs_sel, gs_sel, ldt_sel;
  56. int gs_ldt_reload_needed;
  57. int fs_reload_needed;
  58. int guest_efer_loaded;
  59. } host_state;
  60. struct {
  61. struct {
  62. bool pending;
  63. u8 vector;
  64. unsigned rip;
  65. } irq;
  66. } rmode;
  67. };
  68. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  69. {
  70. return container_of(vcpu, struct vcpu_vmx, vcpu);
  71. }
  72. static int init_rmode_tss(struct kvm *kvm);
  73. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  74. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  75. static struct page *vmx_io_bitmap_a;
  76. static struct page *vmx_io_bitmap_b;
  77. static struct vmcs_config {
  78. int size;
  79. int order;
  80. u32 revision_id;
  81. u32 pin_based_exec_ctrl;
  82. u32 cpu_based_exec_ctrl;
  83. u32 cpu_based_2nd_exec_ctrl;
  84. u32 vmexit_ctrl;
  85. u32 vmentry_ctrl;
  86. } vmcs_config;
  87. #define VMX_SEGMENT_FIELD(seg) \
  88. [VCPU_SREG_##seg] = { \
  89. .selector = GUEST_##seg##_SELECTOR, \
  90. .base = GUEST_##seg##_BASE, \
  91. .limit = GUEST_##seg##_LIMIT, \
  92. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  93. }
  94. static struct kvm_vmx_segment_field {
  95. unsigned selector;
  96. unsigned base;
  97. unsigned limit;
  98. unsigned ar_bytes;
  99. } kvm_vmx_segment_fields[] = {
  100. VMX_SEGMENT_FIELD(CS),
  101. VMX_SEGMENT_FIELD(DS),
  102. VMX_SEGMENT_FIELD(ES),
  103. VMX_SEGMENT_FIELD(FS),
  104. VMX_SEGMENT_FIELD(GS),
  105. VMX_SEGMENT_FIELD(SS),
  106. VMX_SEGMENT_FIELD(TR),
  107. VMX_SEGMENT_FIELD(LDTR),
  108. };
  109. /*
  110. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  111. * away by decrementing the array size.
  112. */
  113. static const u32 vmx_msr_index[] = {
  114. #ifdef CONFIG_X86_64
  115. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  116. #endif
  117. MSR_EFER, MSR_K6_STAR,
  118. };
  119. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  120. static void load_msrs(struct kvm_msr_entry *e, int n)
  121. {
  122. int i;
  123. for (i = 0; i < n; ++i)
  124. wrmsrl(e[i].index, e[i].data);
  125. }
  126. static void save_msrs(struct kvm_msr_entry *e, int n)
  127. {
  128. int i;
  129. for (i = 0; i < n; ++i)
  130. rdmsrl(e[i].index, e[i].data);
  131. }
  132. static inline int is_page_fault(u32 intr_info)
  133. {
  134. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  135. INTR_INFO_VALID_MASK)) ==
  136. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  137. }
  138. static inline int is_no_device(u32 intr_info)
  139. {
  140. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  141. INTR_INFO_VALID_MASK)) ==
  142. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  143. }
  144. static inline int is_invalid_opcode(u32 intr_info)
  145. {
  146. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  147. INTR_INFO_VALID_MASK)) ==
  148. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  149. }
  150. static inline int is_external_interrupt(u32 intr_info)
  151. {
  152. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  153. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  154. }
  155. static inline int cpu_has_vmx_tpr_shadow(void)
  156. {
  157. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  158. }
  159. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  160. {
  161. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  162. }
  163. static inline int cpu_has_secondary_exec_ctrls(void)
  164. {
  165. return (vmcs_config.cpu_based_exec_ctrl &
  166. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  167. }
  168. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  169. {
  170. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  171. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  172. }
  173. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  174. {
  175. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  176. (irqchip_in_kernel(kvm)));
  177. }
  178. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  179. {
  180. int i;
  181. for (i = 0; i < vmx->nmsrs; ++i)
  182. if (vmx->guest_msrs[i].index == msr)
  183. return i;
  184. return -1;
  185. }
  186. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  187. {
  188. int i;
  189. i = __find_msr_index(vmx, msr);
  190. if (i >= 0)
  191. return &vmx->guest_msrs[i];
  192. return NULL;
  193. }
  194. static void vmcs_clear(struct vmcs *vmcs)
  195. {
  196. u64 phys_addr = __pa(vmcs);
  197. u8 error;
  198. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  199. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  200. : "cc", "memory");
  201. if (error)
  202. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  203. vmcs, phys_addr);
  204. }
  205. static void __vcpu_clear(void *arg)
  206. {
  207. struct vcpu_vmx *vmx = arg;
  208. int cpu = raw_smp_processor_id();
  209. if (vmx->vcpu.cpu == cpu)
  210. vmcs_clear(vmx->vmcs);
  211. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  212. per_cpu(current_vmcs, cpu) = NULL;
  213. rdtscll(vmx->vcpu.arch.host_tsc);
  214. }
  215. static void vcpu_clear(struct vcpu_vmx *vmx)
  216. {
  217. if (vmx->vcpu.cpu == -1)
  218. return;
  219. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
  220. vmx->launched = 0;
  221. }
  222. static unsigned long vmcs_readl(unsigned long field)
  223. {
  224. unsigned long value;
  225. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  226. : "=a"(value) : "d"(field) : "cc");
  227. return value;
  228. }
  229. static u16 vmcs_read16(unsigned long field)
  230. {
  231. return vmcs_readl(field);
  232. }
  233. static u32 vmcs_read32(unsigned long field)
  234. {
  235. return vmcs_readl(field);
  236. }
  237. static u64 vmcs_read64(unsigned long field)
  238. {
  239. #ifdef CONFIG_X86_64
  240. return vmcs_readl(field);
  241. #else
  242. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  243. #endif
  244. }
  245. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  246. {
  247. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  248. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  249. dump_stack();
  250. }
  251. static void vmcs_writel(unsigned long field, unsigned long value)
  252. {
  253. u8 error;
  254. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  255. : "=q"(error) : "a"(value), "d"(field) : "cc");
  256. if (unlikely(error))
  257. vmwrite_error(field, value);
  258. }
  259. static void vmcs_write16(unsigned long field, u16 value)
  260. {
  261. vmcs_writel(field, value);
  262. }
  263. static void vmcs_write32(unsigned long field, u32 value)
  264. {
  265. vmcs_writel(field, value);
  266. }
  267. static void vmcs_write64(unsigned long field, u64 value)
  268. {
  269. #ifdef CONFIG_X86_64
  270. vmcs_writel(field, value);
  271. #else
  272. vmcs_writel(field, value);
  273. asm volatile ("");
  274. vmcs_writel(field+1, value >> 32);
  275. #endif
  276. }
  277. static void vmcs_clear_bits(unsigned long field, u32 mask)
  278. {
  279. vmcs_writel(field, vmcs_readl(field) & ~mask);
  280. }
  281. static void vmcs_set_bits(unsigned long field, u32 mask)
  282. {
  283. vmcs_writel(field, vmcs_readl(field) | mask);
  284. }
  285. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  286. {
  287. u32 eb;
  288. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  289. if (!vcpu->fpu_active)
  290. eb |= 1u << NM_VECTOR;
  291. if (vcpu->guest_debug.enabled)
  292. eb |= 1u << 1;
  293. if (vcpu->arch.rmode.active)
  294. eb = ~0;
  295. vmcs_write32(EXCEPTION_BITMAP, eb);
  296. }
  297. static void reload_tss(void)
  298. {
  299. /*
  300. * VT restores TR but not its size. Useless.
  301. */
  302. struct descriptor_table gdt;
  303. struct segment_descriptor *descs;
  304. get_gdt(&gdt);
  305. descs = (void *)gdt.base;
  306. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  307. load_TR_desc();
  308. }
  309. static void load_transition_efer(struct vcpu_vmx *vmx)
  310. {
  311. int efer_offset = vmx->msr_offset_efer;
  312. u64 host_efer = vmx->host_msrs[efer_offset].data;
  313. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  314. u64 ignore_bits;
  315. if (efer_offset < 0)
  316. return;
  317. /*
  318. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  319. * outside long mode
  320. */
  321. ignore_bits = EFER_NX | EFER_SCE;
  322. #ifdef CONFIG_X86_64
  323. ignore_bits |= EFER_LMA | EFER_LME;
  324. /* SCE is meaningful only in long mode on Intel */
  325. if (guest_efer & EFER_LMA)
  326. ignore_bits &= ~(u64)EFER_SCE;
  327. #endif
  328. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  329. return;
  330. vmx->host_state.guest_efer_loaded = 1;
  331. guest_efer &= ~ignore_bits;
  332. guest_efer |= host_efer & ignore_bits;
  333. wrmsrl(MSR_EFER, guest_efer);
  334. vmx->vcpu.stat.efer_reload++;
  335. }
  336. static void reload_host_efer(struct vcpu_vmx *vmx)
  337. {
  338. if (vmx->host_state.guest_efer_loaded) {
  339. vmx->host_state.guest_efer_loaded = 0;
  340. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  341. }
  342. }
  343. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  344. {
  345. struct vcpu_vmx *vmx = to_vmx(vcpu);
  346. if (vmx->host_state.loaded)
  347. return;
  348. vmx->host_state.loaded = 1;
  349. /*
  350. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  351. * allow segment selectors with cpl > 0 or ti == 1.
  352. */
  353. vmx->host_state.ldt_sel = read_ldt();
  354. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  355. vmx->host_state.fs_sel = read_fs();
  356. if (!(vmx->host_state.fs_sel & 7)) {
  357. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  358. vmx->host_state.fs_reload_needed = 0;
  359. } else {
  360. vmcs_write16(HOST_FS_SELECTOR, 0);
  361. vmx->host_state.fs_reload_needed = 1;
  362. }
  363. vmx->host_state.gs_sel = read_gs();
  364. if (!(vmx->host_state.gs_sel & 7))
  365. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  366. else {
  367. vmcs_write16(HOST_GS_SELECTOR, 0);
  368. vmx->host_state.gs_ldt_reload_needed = 1;
  369. }
  370. #ifdef CONFIG_X86_64
  371. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  372. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  373. #else
  374. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  375. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  376. #endif
  377. #ifdef CONFIG_X86_64
  378. if (is_long_mode(&vmx->vcpu))
  379. save_msrs(vmx->host_msrs +
  380. vmx->msr_offset_kernel_gs_base, 1);
  381. #endif
  382. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  383. load_transition_efer(vmx);
  384. }
  385. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  386. {
  387. unsigned long flags;
  388. if (!vmx->host_state.loaded)
  389. return;
  390. ++vmx->vcpu.stat.host_state_reload;
  391. vmx->host_state.loaded = 0;
  392. if (vmx->host_state.fs_reload_needed)
  393. load_fs(vmx->host_state.fs_sel);
  394. if (vmx->host_state.gs_ldt_reload_needed) {
  395. load_ldt(vmx->host_state.ldt_sel);
  396. /*
  397. * If we have to reload gs, we must take care to
  398. * preserve our gs base.
  399. */
  400. local_irq_save(flags);
  401. load_gs(vmx->host_state.gs_sel);
  402. #ifdef CONFIG_X86_64
  403. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  404. #endif
  405. local_irq_restore(flags);
  406. }
  407. reload_tss();
  408. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  409. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  410. reload_host_efer(vmx);
  411. }
  412. /*
  413. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  414. * vcpu mutex is already taken.
  415. */
  416. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  417. {
  418. struct vcpu_vmx *vmx = to_vmx(vcpu);
  419. u64 phys_addr = __pa(vmx->vmcs);
  420. u64 tsc_this, delta;
  421. if (vcpu->cpu != cpu) {
  422. vcpu_clear(vmx);
  423. kvm_migrate_apic_timer(vcpu);
  424. }
  425. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  426. u8 error;
  427. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  428. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  429. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  430. : "cc");
  431. if (error)
  432. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  433. vmx->vmcs, phys_addr);
  434. }
  435. if (vcpu->cpu != cpu) {
  436. struct descriptor_table dt;
  437. unsigned long sysenter_esp;
  438. vcpu->cpu = cpu;
  439. /*
  440. * Linux uses per-cpu TSS and GDT, so set these when switching
  441. * processors.
  442. */
  443. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  444. get_gdt(&dt);
  445. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  446. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  447. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  448. /*
  449. * Make sure the time stamp counter is monotonous.
  450. */
  451. rdtscll(tsc_this);
  452. delta = vcpu->arch.host_tsc - tsc_this;
  453. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  454. }
  455. }
  456. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  457. {
  458. vmx_load_host_state(to_vmx(vcpu));
  459. }
  460. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  461. {
  462. if (vcpu->fpu_active)
  463. return;
  464. vcpu->fpu_active = 1;
  465. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  466. if (vcpu->arch.cr0 & X86_CR0_TS)
  467. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  468. update_exception_bitmap(vcpu);
  469. }
  470. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  471. {
  472. if (!vcpu->fpu_active)
  473. return;
  474. vcpu->fpu_active = 0;
  475. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  476. update_exception_bitmap(vcpu);
  477. }
  478. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  479. {
  480. vcpu_clear(to_vmx(vcpu));
  481. }
  482. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  483. {
  484. return vmcs_readl(GUEST_RFLAGS);
  485. }
  486. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  487. {
  488. if (vcpu->arch.rmode.active)
  489. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  490. vmcs_writel(GUEST_RFLAGS, rflags);
  491. }
  492. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  493. {
  494. unsigned long rip;
  495. u32 interruptibility;
  496. rip = vmcs_readl(GUEST_RIP);
  497. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  498. vmcs_writel(GUEST_RIP, rip);
  499. /*
  500. * We emulated an instruction, so temporary interrupt blocking
  501. * should be removed, if set.
  502. */
  503. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  504. if (interruptibility & 3)
  505. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  506. interruptibility & ~3);
  507. vcpu->arch.interrupt_window_open = 1;
  508. }
  509. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  510. bool has_error_code, u32 error_code)
  511. {
  512. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  513. nr | INTR_TYPE_EXCEPTION
  514. | (has_error_code ? INTR_INFO_DELIEVER_CODE_MASK : 0)
  515. | INTR_INFO_VALID_MASK);
  516. if (has_error_code)
  517. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  518. }
  519. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  520. {
  521. struct vcpu_vmx *vmx = to_vmx(vcpu);
  522. return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  523. }
  524. /*
  525. * Swap MSR entry in host/guest MSR entry array.
  526. */
  527. #ifdef CONFIG_X86_64
  528. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  529. {
  530. struct kvm_msr_entry tmp;
  531. tmp = vmx->guest_msrs[to];
  532. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  533. vmx->guest_msrs[from] = tmp;
  534. tmp = vmx->host_msrs[to];
  535. vmx->host_msrs[to] = vmx->host_msrs[from];
  536. vmx->host_msrs[from] = tmp;
  537. }
  538. #endif
  539. /*
  540. * Set up the vmcs to automatically save and restore system
  541. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  542. * mode, as fiddling with msrs is very expensive.
  543. */
  544. static void setup_msrs(struct vcpu_vmx *vmx)
  545. {
  546. int save_nmsrs;
  547. vmx_load_host_state(vmx);
  548. save_nmsrs = 0;
  549. #ifdef CONFIG_X86_64
  550. if (is_long_mode(&vmx->vcpu)) {
  551. int index;
  552. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  553. if (index >= 0)
  554. move_msr_up(vmx, index, save_nmsrs++);
  555. index = __find_msr_index(vmx, MSR_LSTAR);
  556. if (index >= 0)
  557. move_msr_up(vmx, index, save_nmsrs++);
  558. index = __find_msr_index(vmx, MSR_CSTAR);
  559. if (index >= 0)
  560. move_msr_up(vmx, index, save_nmsrs++);
  561. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  562. if (index >= 0)
  563. move_msr_up(vmx, index, save_nmsrs++);
  564. /*
  565. * MSR_K6_STAR is only needed on long mode guests, and only
  566. * if efer.sce is enabled.
  567. */
  568. index = __find_msr_index(vmx, MSR_K6_STAR);
  569. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  570. move_msr_up(vmx, index, save_nmsrs++);
  571. }
  572. #endif
  573. vmx->save_nmsrs = save_nmsrs;
  574. #ifdef CONFIG_X86_64
  575. vmx->msr_offset_kernel_gs_base =
  576. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  577. #endif
  578. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  579. }
  580. /*
  581. * reads and returns guest's timestamp counter "register"
  582. * guest_tsc = host_tsc + tsc_offset -- 21.3
  583. */
  584. static u64 guest_read_tsc(void)
  585. {
  586. u64 host_tsc, tsc_offset;
  587. rdtscll(host_tsc);
  588. tsc_offset = vmcs_read64(TSC_OFFSET);
  589. return host_tsc + tsc_offset;
  590. }
  591. /*
  592. * writes 'guest_tsc' into guest's timestamp counter "register"
  593. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  594. */
  595. static void guest_write_tsc(u64 guest_tsc)
  596. {
  597. u64 host_tsc;
  598. rdtscll(host_tsc);
  599. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  600. }
  601. /*
  602. * Reads an msr value (of 'msr_index') into 'pdata'.
  603. * Returns 0 on success, non-0 otherwise.
  604. * Assumes vcpu_load() was already called.
  605. */
  606. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  607. {
  608. u64 data;
  609. struct kvm_msr_entry *msr;
  610. if (!pdata) {
  611. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  612. return -EINVAL;
  613. }
  614. switch (msr_index) {
  615. #ifdef CONFIG_X86_64
  616. case MSR_FS_BASE:
  617. data = vmcs_readl(GUEST_FS_BASE);
  618. break;
  619. case MSR_GS_BASE:
  620. data = vmcs_readl(GUEST_GS_BASE);
  621. break;
  622. case MSR_EFER:
  623. return kvm_get_msr_common(vcpu, msr_index, pdata);
  624. #endif
  625. case MSR_IA32_TIME_STAMP_COUNTER:
  626. data = guest_read_tsc();
  627. break;
  628. case MSR_IA32_SYSENTER_CS:
  629. data = vmcs_read32(GUEST_SYSENTER_CS);
  630. break;
  631. case MSR_IA32_SYSENTER_EIP:
  632. data = vmcs_readl(GUEST_SYSENTER_EIP);
  633. break;
  634. case MSR_IA32_SYSENTER_ESP:
  635. data = vmcs_readl(GUEST_SYSENTER_ESP);
  636. break;
  637. default:
  638. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  639. if (msr) {
  640. data = msr->data;
  641. break;
  642. }
  643. return kvm_get_msr_common(vcpu, msr_index, pdata);
  644. }
  645. *pdata = data;
  646. return 0;
  647. }
  648. /*
  649. * Writes msr value into into the appropriate "register".
  650. * Returns 0 on success, non-0 otherwise.
  651. * Assumes vcpu_load() was already called.
  652. */
  653. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  654. {
  655. struct vcpu_vmx *vmx = to_vmx(vcpu);
  656. struct kvm_msr_entry *msr;
  657. int ret = 0;
  658. switch (msr_index) {
  659. #ifdef CONFIG_X86_64
  660. case MSR_EFER:
  661. ret = kvm_set_msr_common(vcpu, msr_index, data);
  662. if (vmx->host_state.loaded) {
  663. reload_host_efer(vmx);
  664. load_transition_efer(vmx);
  665. }
  666. break;
  667. case MSR_FS_BASE:
  668. vmcs_writel(GUEST_FS_BASE, data);
  669. break;
  670. case MSR_GS_BASE:
  671. vmcs_writel(GUEST_GS_BASE, data);
  672. break;
  673. #endif
  674. case MSR_IA32_SYSENTER_CS:
  675. vmcs_write32(GUEST_SYSENTER_CS, data);
  676. break;
  677. case MSR_IA32_SYSENTER_EIP:
  678. vmcs_writel(GUEST_SYSENTER_EIP, data);
  679. break;
  680. case MSR_IA32_SYSENTER_ESP:
  681. vmcs_writel(GUEST_SYSENTER_ESP, data);
  682. break;
  683. case MSR_IA32_TIME_STAMP_COUNTER:
  684. guest_write_tsc(data);
  685. break;
  686. default:
  687. msr = find_msr_entry(vmx, msr_index);
  688. if (msr) {
  689. msr->data = data;
  690. if (vmx->host_state.loaded)
  691. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  692. break;
  693. }
  694. ret = kvm_set_msr_common(vcpu, msr_index, data);
  695. }
  696. return ret;
  697. }
  698. /*
  699. * Sync the rsp and rip registers into the vcpu structure. This allows
  700. * registers to be accessed by indexing vcpu->arch.regs.
  701. */
  702. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  703. {
  704. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  705. vcpu->arch.rip = vmcs_readl(GUEST_RIP);
  706. }
  707. /*
  708. * Syncs rsp and rip back into the vmcs. Should be called after possible
  709. * modification.
  710. */
  711. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  712. {
  713. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  714. vmcs_writel(GUEST_RIP, vcpu->arch.rip);
  715. }
  716. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  717. {
  718. unsigned long dr7 = 0x400;
  719. int old_singlestep;
  720. old_singlestep = vcpu->guest_debug.singlestep;
  721. vcpu->guest_debug.enabled = dbg->enabled;
  722. if (vcpu->guest_debug.enabled) {
  723. int i;
  724. dr7 |= 0x200; /* exact */
  725. for (i = 0; i < 4; ++i) {
  726. if (!dbg->breakpoints[i].enabled)
  727. continue;
  728. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  729. dr7 |= 2 << (i*2); /* global enable */
  730. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  731. }
  732. vcpu->guest_debug.singlestep = dbg->singlestep;
  733. } else
  734. vcpu->guest_debug.singlestep = 0;
  735. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  736. unsigned long flags;
  737. flags = vmcs_readl(GUEST_RFLAGS);
  738. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  739. vmcs_writel(GUEST_RFLAGS, flags);
  740. }
  741. update_exception_bitmap(vcpu);
  742. vmcs_writel(GUEST_DR7, dr7);
  743. return 0;
  744. }
  745. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  746. {
  747. struct vcpu_vmx *vmx = to_vmx(vcpu);
  748. u32 idtv_info_field;
  749. idtv_info_field = vmx->idt_vectoring_info;
  750. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  751. if (is_external_interrupt(idtv_info_field))
  752. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  753. else
  754. printk(KERN_DEBUG "pending exception: not handled yet\n");
  755. }
  756. return -1;
  757. }
  758. static __init int cpu_has_kvm_support(void)
  759. {
  760. unsigned long ecx = cpuid_ecx(1);
  761. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  762. }
  763. static __init int vmx_disabled_by_bios(void)
  764. {
  765. u64 msr;
  766. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  767. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  768. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  769. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  770. /* locked but not enabled */
  771. }
  772. static void hardware_enable(void *garbage)
  773. {
  774. int cpu = raw_smp_processor_id();
  775. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  776. u64 old;
  777. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  778. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  779. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  780. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  781. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  782. /* enable and lock */
  783. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  784. MSR_IA32_FEATURE_CONTROL_LOCKED |
  785. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  786. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  787. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  788. : "memory", "cc");
  789. }
  790. static void hardware_disable(void *garbage)
  791. {
  792. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  793. }
  794. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  795. u32 msr, u32 *result)
  796. {
  797. u32 vmx_msr_low, vmx_msr_high;
  798. u32 ctl = ctl_min | ctl_opt;
  799. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  800. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  801. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  802. /* Ensure minimum (required) set of control bits are supported. */
  803. if (ctl_min & ~ctl)
  804. return -EIO;
  805. *result = ctl;
  806. return 0;
  807. }
  808. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  809. {
  810. u32 vmx_msr_low, vmx_msr_high;
  811. u32 min, opt;
  812. u32 _pin_based_exec_control = 0;
  813. u32 _cpu_based_exec_control = 0;
  814. u32 _cpu_based_2nd_exec_control = 0;
  815. u32 _vmexit_control = 0;
  816. u32 _vmentry_control = 0;
  817. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  818. opt = 0;
  819. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  820. &_pin_based_exec_control) < 0)
  821. return -EIO;
  822. min = CPU_BASED_HLT_EXITING |
  823. #ifdef CONFIG_X86_64
  824. CPU_BASED_CR8_LOAD_EXITING |
  825. CPU_BASED_CR8_STORE_EXITING |
  826. #endif
  827. CPU_BASED_USE_IO_BITMAPS |
  828. CPU_BASED_MOV_DR_EXITING |
  829. CPU_BASED_USE_TSC_OFFSETING;
  830. opt = CPU_BASED_TPR_SHADOW |
  831. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  832. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  833. &_cpu_based_exec_control) < 0)
  834. return -EIO;
  835. #ifdef CONFIG_X86_64
  836. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  837. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  838. ~CPU_BASED_CR8_STORE_EXITING;
  839. #endif
  840. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  841. min = 0;
  842. opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  843. SECONDARY_EXEC_WBINVD_EXITING;
  844. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
  845. &_cpu_based_2nd_exec_control) < 0)
  846. return -EIO;
  847. }
  848. #ifndef CONFIG_X86_64
  849. if (!(_cpu_based_2nd_exec_control &
  850. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  851. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  852. #endif
  853. min = 0;
  854. #ifdef CONFIG_X86_64
  855. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  856. #endif
  857. opt = 0;
  858. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  859. &_vmexit_control) < 0)
  860. return -EIO;
  861. min = opt = 0;
  862. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  863. &_vmentry_control) < 0)
  864. return -EIO;
  865. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  866. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  867. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  868. return -EIO;
  869. #ifdef CONFIG_X86_64
  870. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  871. if (vmx_msr_high & (1u<<16))
  872. return -EIO;
  873. #endif
  874. /* Require Write-Back (WB) memory type for VMCS accesses. */
  875. if (((vmx_msr_high >> 18) & 15) != 6)
  876. return -EIO;
  877. vmcs_conf->size = vmx_msr_high & 0x1fff;
  878. vmcs_conf->order = get_order(vmcs_config.size);
  879. vmcs_conf->revision_id = vmx_msr_low;
  880. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  881. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  882. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  883. vmcs_conf->vmexit_ctrl = _vmexit_control;
  884. vmcs_conf->vmentry_ctrl = _vmentry_control;
  885. return 0;
  886. }
  887. static struct vmcs *alloc_vmcs_cpu(int cpu)
  888. {
  889. int node = cpu_to_node(cpu);
  890. struct page *pages;
  891. struct vmcs *vmcs;
  892. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  893. if (!pages)
  894. return NULL;
  895. vmcs = page_address(pages);
  896. memset(vmcs, 0, vmcs_config.size);
  897. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  898. return vmcs;
  899. }
  900. static struct vmcs *alloc_vmcs(void)
  901. {
  902. return alloc_vmcs_cpu(raw_smp_processor_id());
  903. }
  904. static void free_vmcs(struct vmcs *vmcs)
  905. {
  906. free_pages((unsigned long)vmcs, vmcs_config.order);
  907. }
  908. static void free_kvm_area(void)
  909. {
  910. int cpu;
  911. for_each_online_cpu(cpu)
  912. free_vmcs(per_cpu(vmxarea, cpu));
  913. }
  914. static __init int alloc_kvm_area(void)
  915. {
  916. int cpu;
  917. for_each_online_cpu(cpu) {
  918. struct vmcs *vmcs;
  919. vmcs = alloc_vmcs_cpu(cpu);
  920. if (!vmcs) {
  921. free_kvm_area();
  922. return -ENOMEM;
  923. }
  924. per_cpu(vmxarea, cpu) = vmcs;
  925. }
  926. return 0;
  927. }
  928. static __init int hardware_setup(void)
  929. {
  930. if (setup_vmcs_config(&vmcs_config) < 0)
  931. return -EIO;
  932. return alloc_kvm_area();
  933. }
  934. static __exit void hardware_unsetup(void)
  935. {
  936. free_kvm_area();
  937. }
  938. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  939. {
  940. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  941. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  942. vmcs_write16(sf->selector, save->selector);
  943. vmcs_writel(sf->base, save->base);
  944. vmcs_write32(sf->limit, save->limit);
  945. vmcs_write32(sf->ar_bytes, save->ar);
  946. } else {
  947. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  948. << AR_DPL_SHIFT;
  949. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  950. }
  951. }
  952. static void enter_pmode(struct kvm_vcpu *vcpu)
  953. {
  954. unsigned long flags;
  955. vcpu->arch.rmode.active = 0;
  956. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  957. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  958. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  959. flags = vmcs_readl(GUEST_RFLAGS);
  960. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  961. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  962. vmcs_writel(GUEST_RFLAGS, flags);
  963. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  964. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  965. update_exception_bitmap(vcpu);
  966. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  967. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  968. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  969. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  970. vmcs_write16(GUEST_SS_SELECTOR, 0);
  971. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  972. vmcs_write16(GUEST_CS_SELECTOR,
  973. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  974. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  975. }
  976. static gva_t rmode_tss_base(struct kvm *kvm)
  977. {
  978. if (!kvm->arch.tss_addr) {
  979. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  980. kvm->memslots[0].npages - 3;
  981. return base_gfn << PAGE_SHIFT;
  982. }
  983. return kvm->arch.tss_addr;
  984. }
  985. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  986. {
  987. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  988. save->selector = vmcs_read16(sf->selector);
  989. save->base = vmcs_readl(sf->base);
  990. save->limit = vmcs_read32(sf->limit);
  991. save->ar = vmcs_read32(sf->ar_bytes);
  992. vmcs_write16(sf->selector, save->base >> 4);
  993. vmcs_write32(sf->base, save->base & 0xfffff);
  994. vmcs_write32(sf->limit, 0xffff);
  995. vmcs_write32(sf->ar_bytes, 0xf3);
  996. }
  997. static void enter_rmode(struct kvm_vcpu *vcpu)
  998. {
  999. unsigned long flags;
  1000. vcpu->arch.rmode.active = 1;
  1001. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1002. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1003. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1004. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1005. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1006. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1007. flags = vmcs_readl(GUEST_RFLAGS);
  1008. vcpu->arch.rmode.save_iopl
  1009. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1010. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1011. vmcs_writel(GUEST_RFLAGS, flags);
  1012. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1013. update_exception_bitmap(vcpu);
  1014. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1015. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1016. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1017. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1018. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1019. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1020. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1021. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1022. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1023. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1024. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1025. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1026. kvm_mmu_reset_context(vcpu);
  1027. init_rmode_tss(vcpu->kvm);
  1028. }
  1029. #ifdef CONFIG_X86_64
  1030. static void enter_lmode(struct kvm_vcpu *vcpu)
  1031. {
  1032. u32 guest_tr_ar;
  1033. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1034. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1035. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1036. __FUNCTION__);
  1037. vmcs_write32(GUEST_TR_AR_BYTES,
  1038. (guest_tr_ar & ~AR_TYPE_MASK)
  1039. | AR_TYPE_BUSY_64_TSS);
  1040. }
  1041. vcpu->arch.shadow_efer |= EFER_LMA;
  1042. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1043. vmcs_write32(VM_ENTRY_CONTROLS,
  1044. vmcs_read32(VM_ENTRY_CONTROLS)
  1045. | VM_ENTRY_IA32E_MODE);
  1046. }
  1047. static void exit_lmode(struct kvm_vcpu *vcpu)
  1048. {
  1049. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1050. vmcs_write32(VM_ENTRY_CONTROLS,
  1051. vmcs_read32(VM_ENTRY_CONTROLS)
  1052. & ~VM_ENTRY_IA32E_MODE);
  1053. }
  1054. #endif
  1055. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1056. {
  1057. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1058. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1059. }
  1060. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1061. {
  1062. vmx_fpu_deactivate(vcpu);
  1063. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1064. enter_pmode(vcpu);
  1065. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1066. enter_rmode(vcpu);
  1067. #ifdef CONFIG_X86_64
  1068. if (vcpu->arch.shadow_efer & EFER_LME) {
  1069. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1070. enter_lmode(vcpu);
  1071. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1072. exit_lmode(vcpu);
  1073. }
  1074. #endif
  1075. vmcs_writel(CR0_READ_SHADOW, cr0);
  1076. vmcs_writel(GUEST_CR0,
  1077. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  1078. vcpu->arch.cr0 = cr0;
  1079. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1080. vmx_fpu_activate(vcpu);
  1081. }
  1082. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1083. {
  1084. vmcs_writel(GUEST_CR3, cr3);
  1085. if (vcpu->arch.cr0 & X86_CR0_PE)
  1086. vmx_fpu_deactivate(vcpu);
  1087. }
  1088. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1089. {
  1090. vmcs_writel(CR4_READ_SHADOW, cr4);
  1091. vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
  1092. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  1093. vcpu->arch.cr4 = cr4;
  1094. }
  1095. #ifdef CONFIG_X86_64
  1096. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1097. {
  1098. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1099. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1100. vcpu->arch.shadow_efer = efer;
  1101. if (efer & EFER_LMA) {
  1102. vmcs_write32(VM_ENTRY_CONTROLS,
  1103. vmcs_read32(VM_ENTRY_CONTROLS) |
  1104. VM_ENTRY_IA32E_MODE);
  1105. msr->data = efer;
  1106. } else {
  1107. vmcs_write32(VM_ENTRY_CONTROLS,
  1108. vmcs_read32(VM_ENTRY_CONTROLS) &
  1109. ~VM_ENTRY_IA32E_MODE);
  1110. msr->data = efer & ~EFER_LME;
  1111. }
  1112. setup_msrs(vmx);
  1113. }
  1114. #endif
  1115. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1116. {
  1117. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1118. return vmcs_readl(sf->base);
  1119. }
  1120. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1121. struct kvm_segment *var, int seg)
  1122. {
  1123. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1124. u32 ar;
  1125. var->base = vmcs_readl(sf->base);
  1126. var->limit = vmcs_read32(sf->limit);
  1127. var->selector = vmcs_read16(sf->selector);
  1128. ar = vmcs_read32(sf->ar_bytes);
  1129. if (ar & AR_UNUSABLE_MASK)
  1130. ar = 0;
  1131. var->type = ar & 15;
  1132. var->s = (ar >> 4) & 1;
  1133. var->dpl = (ar >> 5) & 3;
  1134. var->present = (ar >> 7) & 1;
  1135. var->avl = (ar >> 12) & 1;
  1136. var->l = (ar >> 13) & 1;
  1137. var->db = (ar >> 14) & 1;
  1138. var->g = (ar >> 15) & 1;
  1139. var->unusable = (ar >> 16) & 1;
  1140. }
  1141. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1142. {
  1143. u32 ar;
  1144. if (var->unusable)
  1145. ar = 1 << 16;
  1146. else {
  1147. ar = var->type & 15;
  1148. ar |= (var->s & 1) << 4;
  1149. ar |= (var->dpl & 3) << 5;
  1150. ar |= (var->present & 1) << 7;
  1151. ar |= (var->avl & 1) << 12;
  1152. ar |= (var->l & 1) << 13;
  1153. ar |= (var->db & 1) << 14;
  1154. ar |= (var->g & 1) << 15;
  1155. }
  1156. if (ar == 0) /* a 0 value means unusable */
  1157. ar = AR_UNUSABLE_MASK;
  1158. return ar;
  1159. }
  1160. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1161. struct kvm_segment *var, int seg)
  1162. {
  1163. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1164. u32 ar;
  1165. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1166. vcpu->arch.rmode.tr.selector = var->selector;
  1167. vcpu->arch.rmode.tr.base = var->base;
  1168. vcpu->arch.rmode.tr.limit = var->limit;
  1169. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1170. return;
  1171. }
  1172. vmcs_writel(sf->base, var->base);
  1173. vmcs_write32(sf->limit, var->limit);
  1174. vmcs_write16(sf->selector, var->selector);
  1175. if (vcpu->arch.rmode.active && var->s) {
  1176. /*
  1177. * Hack real-mode segments into vm86 compatibility.
  1178. */
  1179. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1180. vmcs_writel(sf->base, 0xf0000);
  1181. ar = 0xf3;
  1182. } else
  1183. ar = vmx_segment_access_rights(var);
  1184. vmcs_write32(sf->ar_bytes, ar);
  1185. }
  1186. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1187. {
  1188. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1189. *db = (ar >> 14) & 1;
  1190. *l = (ar >> 13) & 1;
  1191. }
  1192. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1193. {
  1194. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1195. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1196. }
  1197. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1198. {
  1199. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1200. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1201. }
  1202. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1203. {
  1204. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1205. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1206. }
  1207. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1208. {
  1209. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1210. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1211. }
  1212. static int init_rmode_tss(struct kvm *kvm)
  1213. {
  1214. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1215. u16 data = 0;
  1216. int ret = 0;
  1217. int r;
  1218. down_read(&kvm->slots_lock);
  1219. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1220. if (r < 0)
  1221. goto out;
  1222. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1223. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1224. if (r < 0)
  1225. goto out;
  1226. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1227. if (r < 0)
  1228. goto out;
  1229. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1230. if (r < 0)
  1231. goto out;
  1232. data = ~0;
  1233. r = kvm_write_guest_page(kvm, fn, &data,
  1234. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1235. sizeof(u8));
  1236. if (r < 0)
  1237. goto out;
  1238. ret = 1;
  1239. out:
  1240. up_read(&kvm->slots_lock);
  1241. return ret;
  1242. }
  1243. static void seg_setup(int seg)
  1244. {
  1245. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1246. vmcs_write16(sf->selector, 0);
  1247. vmcs_writel(sf->base, 0);
  1248. vmcs_write32(sf->limit, 0xffff);
  1249. vmcs_write32(sf->ar_bytes, 0x93);
  1250. }
  1251. static int alloc_apic_access_page(struct kvm *kvm)
  1252. {
  1253. struct kvm_userspace_memory_region kvm_userspace_mem;
  1254. int r = 0;
  1255. down_write(&kvm->slots_lock);
  1256. if (kvm->arch.apic_access_page)
  1257. goto out;
  1258. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1259. kvm_userspace_mem.flags = 0;
  1260. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1261. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1262. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1263. if (r)
  1264. goto out;
  1265. down_read(&current->mm->mmap_sem);
  1266. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1267. up_read(&current->mm->mmap_sem);
  1268. out:
  1269. up_write(&kvm->slots_lock);
  1270. return r;
  1271. }
  1272. /*
  1273. * Sets up the vmcs for emulated real mode.
  1274. */
  1275. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1276. {
  1277. u32 host_sysenter_cs;
  1278. u32 junk;
  1279. unsigned long a;
  1280. struct descriptor_table dt;
  1281. int i;
  1282. unsigned long kvm_vmx_return;
  1283. u32 exec_control;
  1284. /* I/O */
  1285. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1286. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1287. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1288. /* Control */
  1289. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1290. vmcs_config.pin_based_exec_ctrl);
  1291. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1292. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1293. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1294. #ifdef CONFIG_X86_64
  1295. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1296. CPU_BASED_CR8_LOAD_EXITING;
  1297. #endif
  1298. }
  1299. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1300. if (cpu_has_secondary_exec_ctrls()) {
  1301. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1302. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1303. exec_control &=
  1304. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1305. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1306. }
  1307. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1308. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1309. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1310. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1311. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1312. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1313. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1314. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1315. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1316. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1317. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1318. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1319. #ifdef CONFIG_X86_64
  1320. rdmsrl(MSR_FS_BASE, a);
  1321. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1322. rdmsrl(MSR_GS_BASE, a);
  1323. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1324. #else
  1325. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1326. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1327. #endif
  1328. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1329. get_idt(&dt);
  1330. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1331. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1332. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1333. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1334. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1335. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1336. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1337. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1338. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1339. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1340. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1341. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1342. for (i = 0; i < NR_VMX_MSR; ++i) {
  1343. u32 index = vmx_msr_index[i];
  1344. u32 data_low, data_high;
  1345. u64 data;
  1346. int j = vmx->nmsrs;
  1347. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1348. continue;
  1349. if (wrmsr_safe(index, data_low, data_high) < 0)
  1350. continue;
  1351. data = data_low | ((u64)data_high << 32);
  1352. vmx->host_msrs[j].index = index;
  1353. vmx->host_msrs[j].reserved = 0;
  1354. vmx->host_msrs[j].data = data;
  1355. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1356. ++vmx->nmsrs;
  1357. }
  1358. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1359. /* 22.2.1, 20.8.1 */
  1360. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1361. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1362. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1363. return 0;
  1364. }
  1365. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1366. {
  1367. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1368. u64 msr;
  1369. int ret;
  1370. if (!init_rmode_tss(vmx->vcpu.kvm)) {
  1371. ret = -ENOMEM;
  1372. goto out;
  1373. }
  1374. vmx->vcpu.arch.rmode.active = 0;
  1375. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1376. set_cr8(&vmx->vcpu, 0);
  1377. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1378. if (vmx->vcpu.vcpu_id == 0)
  1379. msr |= MSR_IA32_APICBASE_BSP;
  1380. kvm_set_apic_base(&vmx->vcpu, msr);
  1381. fx_init(&vmx->vcpu);
  1382. /*
  1383. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1384. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1385. */
  1386. if (vmx->vcpu.vcpu_id == 0) {
  1387. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1388. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1389. } else {
  1390. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1391. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1392. }
  1393. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1394. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1395. seg_setup(VCPU_SREG_DS);
  1396. seg_setup(VCPU_SREG_ES);
  1397. seg_setup(VCPU_SREG_FS);
  1398. seg_setup(VCPU_SREG_GS);
  1399. seg_setup(VCPU_SREG_SS);
  1400. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1401. vmcs_writel(GUEST_TR_BASE, 0);
  1402. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1403. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1404. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1405. vmcs_writel(GUEST_LDTR_BASE, 0);
  1406. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1407. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1408. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1409. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1410. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1411. vmcs_writel(GUEST_RFLAGS, 0x02);
  1412. if (vmx->vcpu.vcpu_id == 0)
  1413. vmcs_writel(GUEST_RIP, 0xfff0);
  1414. else
  1415. vmcs_writel(GUEST_RIP, 0);
  1416. vmcs_writel(GUEST_RSP, 0);
  1417. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1418. vmcs_writel(GUEST_DR7, 0x400);
  1419. vmcs_writel(GUEST_GDTR_BASE, 0);
  1420. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1421. vmcs_writel(GUEST_IDTR_BASE, 0);
  1422. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1423. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1424. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1425. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1426. guest_write_tsc(0);
  1427. /* Special registers */
  1428. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1429. setup_msrs(vmx);
  1430. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1431. if (cpu_has_vmx_tpr_shadow()) {
  1432. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1433. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1434. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1435. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1436. vmcs_write32(TPR_THRESHOLD, 0);
  1437. }
  1438. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1439. vmcs_write64(APIC_ACCESS_ADDR,
  1440. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1441. vmx->vcpu.arch.cr0 = 0x60000010;
  1442. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1443. vmx_set_cr4(&vmx->vcpu, 0);
  1444. #ifdef CONFIG_X86_64
  1445. vmx_set_efer(&vmx->vcpu, 0);
  1446. #endif
  1447. vmx_fpu_activate(&vmx->vcpu);
  1448. update_exception_bitmap(&vmx->vcpu);
  1449. return 0;
  1450. out:
  1451. return ret;
  1452. }
  1453. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1454. {
  1455. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1456. if (vcpu->arch.rmode.active) {
  1457. vmx->rmode.irq.pending = true;
  1458. vmx->rmode.irq.vector = irq;
  1459. vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
  1460. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1461. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1462. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1463. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
  1464. return;
  1465. }
  1466. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1467. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1468. }
  1469. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1470. {
  1471. int word_index = __ffs(vcpu->arch.irq_summary);
  1472. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1473. int irq = word_index * BITS_PER_LONG + bit_index;
  1474. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1475. if (!vcpu->arch.irq_pending[word_index])
  1476. clear_bit(word_index, &vcpu->arch.irq_summary);
  1477. vmx_inject_irq(vcpu, irq);
  1478. }
  1479. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1480. struct kvm_run *kvm_run)
  1481. {
  1482. u32 cpu_based_vm_exec_control;
  1483. vcpu->arch.interrupt_window_open =
  1484. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1485. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1486. if (vcpu->arch.interrupt_window_open &&
  1487. vcpu->arch.irq_summary &&
  1488. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1489. /*
  1490. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1491. */
  1492. kvm_do_inject_irq(vcpu);
  1493. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1494. if (!vcpu->arch.interrupt_window_open &&
  1495. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  1496. /*
  1497. * Interrupts blocked. Wait for unblock.
  1498. */
  1499. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1500. else
  1501. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1502. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1503. }
  1504. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1505. {
  1506. int ret;
  1507. struct kvm_userspace_memory_region tss_mem = {
  1508. .slot = 8,
  1509. .guest_phys_addr = addr,
  1510. .memory_size = PAGE_SIZE * 3,
  1511. .flags = 0,
  1512. };
  1513. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1514. if (ret)
  1515. return ret;
  1516. kvm->arch.tss_addr = addr;
  1517. return 0;
  1518. }
  1519. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1520. {
  1521. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1522. set_debugreg(dbg->bp[0], 0);
  1523. set_debugreg(dbg->bp[1], 1);
  1524. set_debugreg(dbg->bp[2], 2);
  1525. set_debugreg(dbg->bp[3], 3);
  1526. if (dbg->singlestep) {
  1527. unsigned long flags;
  1528. flags = vmcs_readl(GUEST_RFLAGS);
  1529. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1530. vmcs_writel(GUEST_RFLAGS, flags);
  1531. }
  1532. }
  1533. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1534. int vec, u32 err_code)
  1535. {
  1536. if (!vcpu->arch.rmode.active)
  1537. return 0;
  1538. /*
  1539. * Instruction with address size override prefix opcode 0x67
  1540. * Cause the #SS fault with 0 error code in VM86 mode.
  1541. */
  1542. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1543. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1544. return 1;
  1545. return 0;
  1546. }
  1547. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1548. {
  1549. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1550. u32 intr_info, error_code;
  1551. unsigned long cr2, rip;
  1552. u32 vect_info;
  1553. enum emulation_result er;
  1554. vect_info = vmx->idt_vectoring_info;
  1555. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1556. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1557. !is_page_fault(intr_info))
  1558. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1559. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1560. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1561. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1562. set_bit(irq, vcpu->arch.irq_pending);
  1563. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1564. }
  1565. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1566. return 1; /* already handled by vmx_vcpu_run() */
  1567. if (is_no_device(intr_info)) {
  1568. vmx_fpu_activate(vcpu);
  1569. return 1;
  1570. }
  1571. if (is_invalid_opcode(intr_info)) {
  1572. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  1573. if (er != EMULATE_DONE)
  1574. kvm_queue_exception(vcpu, UD_VECTOR);
  1575. return 1;
  1576. }
  1577. error_code = 0;
  1578. rip = vmcs_readl(GUEST_RIP);
  1579. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1580. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1581. if (is_page_fault(intr_info)) {
  1582. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1583. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1584. }
  1585. if (vcpu->arch.rmode.active &&
  1586. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1587. error_code)) {
  1588. if (vcpu->arch.halt_request) {
  1589. vcpu->arch.halt_request = 0;
  1590. return kvm_emulate_halt(vcpu);
  1591. }
  1592. return 1;
  1593. }
  1594. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1595. (INTR_TYPE_EXCEPTION | 1)) {
  1596. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1597. return 0;
  1598. }
  1599. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1600. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1601. kvm_run->ex.error_code = error_code;
  1602. return 0;
  1603. }
  1604. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1605. struct kvm_run *kvm_run)
  1606. {
  1607. ++vcpu->stat.irq_exits;
  1608. return 1;
  1609. }
  1610. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1611. {
  1612. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1613. return 0;
  1614. }
  1615. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1616. {
  1617. unsigned long exit_qualification;
  1618. int size, down, in, string, rep;
  1619. unsigned port;
  1620. ++vcpu->stat.io_exits;
  1621. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1622. string = (exit_qualification & 16) != 0;
  1623. if (string) {
  1624. if (emulate_instruction(vcpu,
  1625. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1626. return 0;
  1627. return 1;
  1628. }
  1629. size = (exit_qualification & 7) + 1;
  1630. in = (exit_qualification & 8) != 0;
  1631. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1632. rep = (exit_qualification & 32) != 0;
  1633. port = exit_qualification >> 16;
  1634. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1635. }
  1636. static void
  1637. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1638. {
  1639. /*
  1640. * Patch in the VMCALL instruction:
  1641. */
  1642. hypercall[0] = 0x0f;
  1643. hypercall[1] = 0x01;
  1644. hypercall[2] = 0xc1;
  1645. }
  1646. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1647. {
  1648. unsigned long exit_qualification;
  1649. int cr;
  1650. int reg;
  1651. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1652. cr = exit_qualification & 15;
  1653. reg = (exit_qualification >> 8) & 15;
  1654. switch ((exit_qualification >> 4) & 3) {
  1655. case 0: /* mov to cr */
  1656. switch (cr) {
  1657. case 0:
  1658. vcpu_load_rsp_rip(vcpu);
  1659. set_cr0(vcpu, vcpu->arch.regs[reg]);
  1660. skip_emulated_instruction(vcpu);
  1661. return 1;
  1662. case 3:
  1663. vcpu_load_rsp_rip(vcpu);
  1664. set_cr3(vcpu, vcpu->arch.regs[reg]);
  1665. skip_emulated_instruction(vcpu);
  1666. return 1;
  1667. case 4:
  1668. vcpu_load_rsp_rip(vcpu);
  1669. set_cr4(vcpu, vcpu->arch.regs[reg]);
  1670. skip_emulated_instruction(vcpu);
  1671. return 1;
  1672. case 8:
  1673. vcpu_load_rsp_rip(vcpu);
  1674. set_cr8(vcpu, vcpu->arch.regs[reg]);
  1675. skip_emulated_instruction(vcpu);
  1676. if (irqchip_in_kernel(vcpu->kvm))
  1677. return 1;
  1678. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1679. return 0;
  1680. };
  1681. break;
  1682. case 2: /* clts */
  1683. vcpu_load_rsp_rip(vcpu);
  1684. vmx_fpu_deactivate(vcpu);
  1685. vcpu->arch.cr0 &= ~X86_CR0_TS;
  1686. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1687. vmx_fpu_activate(vcpu);
  1688. skip_emulated_instruction(vcpu);
  1689. return 1;
  1690. case 1: /*mov from cr*/
  1691. switch (cr) {
  1692. case 3:
  1693. vcpu_load_rsp_rip(vcpu);
  1694. vcpu->arch.regs[reg] = vcpu->arch.cr3;
  1695. vcpu_put_rsp_rip(vcpu);
  1696. skip_emulated_instruction(vcpu);
  1697. return 1;
  1698. case 8:
  1699. vcpu_load_rsp_rip(vcpu);
  1700. vcpu->arch.regs[reg] = get_cr8(vcpu);
  1701. vcpu_put_rsp_rip(vcpu);
  1702. skip_emulated_instruction(vcpu);
  1703. return 1;
  1704. }
  1705. break;
  1706. case 3: /* lmsw */
  1707. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1708. skip_emulated_instruction(vcpu);
  1709. return 1;
  1710. default:
  1711. break;
  1712. }
  1713. kvm_run->exit_reason = 0;
  1714. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  1715. (int)(exit_qualification >> 4) & 3, cr);
  1716. return 0;
  1717. }
  1718. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1719. {
  1720. unsigned long exit_qualification;
  1721. unsigned long val;
  1722. int dr, reg;
  1723. /*
  1724. * FIXME: this code assumes the host is debugging the guest.
  1725. * need to deal with guest debugging itself too.
  1726. */
  1727. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1728. dr = exit_qualification & 7;
  1729. reg = (exit_qualification >> 8) & 15;
  1730. vcpu_load_rsp_rip(vcpu);
  1731. if (exit_qualification & 16) {
  1732. /* mov from dr */
  1733. switch (dr) {
  1734. case 6:
  1735. val = 0xffff0ff0;
  1736. break;
  1737. case 7:
  1738. val = 0x400;
  1739. break;
  1740. default:
  1741. val = 0;
  1742. }
  1743. vcpu->arch.regs[reg] = val;
  1744. } else {
  1745. /* mov to dr */
  1746. }
  1747. vcpu_put_rsp_rip(vcpu);
  1748. skip_emulated_instruction(vcpu);
  1749. return 1;
  1750. }
  1751. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1752. {
  1753. kvm_emulate_cpuid(vcpu);
  1754. return 1;
  1755. }
  1756. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1757. {
  1758. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  1759. u64 data;
  1760. if (vmx_get_msr(vcpu, ecx, &data)) {
  1761. kvm_inject_gp(vcpu, 0);
  1762. return 1;
  1763. }
  1764. /* FIXME: handling of bits 32:63 of rax, rdx */
  1765. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  1766. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1767. skip_emulated_instruction(vcpu);
  1768. return 1;
  1769. }
  1770. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1771. {
  1772. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  1773. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  1774. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  1775. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1776. kvm_inject_gp(vcpu, 0);
  1777. return 1;
  1778. }
  1779. skip_emulated_instruction(vcpu);
  1780. return 1;
  1781. }
  1782. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  1783. struct kvm_run *kvm_run)
  1784. {
  1785. return 1;
  1786. }
  1787. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1788. struct kvm_run *kvm_run)
  1789. {
  1790. u32 cpu_based_vm_exec_control;
  1791. /* clear pending irq */
  1792. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1793. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1794. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1795. /*
  1796. * If the user space waits to inject interrupts, exit as soon as
  1797. * possible
  1798. */
  1799. if (kvm_run->request_interrupt_window &&
  1800. !vcpu->arch.irq_summary) {
  1801. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1802. ++vcpu->stat.irq_window_exits;
  1803. return 0;
  1804. }
  1805. return 1;
  1806. }
  1807. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1808. {
  1809. skip_emulated_instruction(vcpu);
  1810. return kvm_emulate_halt(vcpu);
  1811. }
  1812. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1813. {
  1814. skip_emulated_instruction(vcpu);
  1815. kvm_emulate_hypercall(vcpu);
  1816. return 1;
  1817. }
  1818. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1819. {
  1820. skip_emulated_instruction(vcpu);
  1821. /* TODO: Add support for VT-d/pass-through device */
  1822. return 1;
  1823. }
  1824. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1825. {
  1826. u64 exit_qualification;
  1827. enum emulation_result er;
  1828. unsigned long offset;
  1829. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1830. offset = exit_qualification & 0xffful;
  1831. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  1832. if (er != EMULATE_DONE) {
  1833. printk(KERN_ERR
  1834. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  1835. offset);
  1836. return -ENOTSUPP;
  1837. }
  1838. return 1;
  1839. }
  1840. /*
  1841. * The exit handlers return 1 if the exit was handled fully and guest execution
  1842. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1843. * to be done to userspace and return 0.
  1844. */
  1845. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1846. struct kvm_run *kvm_run) = {
  1847. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1848. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1849. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1850. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1851. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1852. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1853. [EXIT_REASON_CPUID] = handle_cpuid,
  1854. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1855. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1856. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1857. [EXIT_REASON_HLT] = handle_halt,
  1858. [EXIT_REASON_VMCALL] = handle_vmcall,
  1859. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  1860. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  1861. [EXIT_REASON_WBINVD] = handle_wbinvd,
  1862. };
  1863. static const int kvm_vmx_max_exit_handlers =
  1864. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1865. /*
  1866. * The guest has exited. See if we can fix it or if we need userspace
  1867. * assistance.
  1868. */
  1869. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1870. {
  1871. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1872. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1873. u32 vectoring_info = vmx->idt_vectoring_info;
  1874. if (unlikely(vmx->fail)) {
  1875. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1876. kvm_run->fail_entry.hardware_entry_failure_reason
  1877. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1878. return 0;
  1879. }
  1880. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1881. exit_reason != EXIT_REASON_EXCEPTION_NMI)
  1882. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1883. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1884. if (exit_reason < kvm_vmx_max_exit_handlers
  1885. && kvm_vmx_exit_handlers[exit_reason])
  1886. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1887. else {
  1888. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1889. kvm_run->hw.hardware_exit_reason = exit_reason;
  1890. }
  1891. return 0;
  1892. }
  1893. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1894. {
  1895. }
  1896. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  1897. {
  1898. int max_irr, tpr;
  1899. if (!vm_need_tpr_shadow(vcpu->kvm))
  1900. return;
  1901. if (!kvm_lapic_enabled(vcpu) ||
  1902. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  1903. vmcs_write32(TPR_THRESHOLD, 0);
  1904. return;
  1905. }
  1906. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  1907. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  1908. }
  1909. static void enable_irq_window(struct kvm_vcpu *vcpu)
  1910. {
  1911. u32 cpu_based_vm_exec_control;
  1912. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1913. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1914. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1915. }
  1916. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  1917. {
  1918. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1919. u32 idtv_info_field, intr_info_field;
  1920. int has_ext_irq, interrupt_window_open;
  1921. int vector;
  1922. update_tpr_threshold(vcpu);
  1923. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  1924. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  1925. idtv_info_field = vmx->idt_vectoring_info;
  1926. if (intr_info_field & INTR_INFO_VALID_MASK) {
  1927. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  1928. /* TODO: fault when IDT_Vectoring */
  1929. if (printk_ratelimit())
  1930. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  1931. }
  1932. if (has_ext_irq)
  1933. enable_irq_window(vcpu);
  1934. return;
  1935. }
  1936. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  1937. if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
  1938. == INTR_TYPE_EXT_INTR
  1939. && vcpu->arch.rmode.active) {
  1940. u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  1941. vmx_inject_irq(vcpu, vect);
  1942. if (unlikely(has_ext_irq))
  1943. enable_irq_window(vcpu);
  1944. return;
  1945. }
  1946. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  1947. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1948. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  1949. if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
  1950. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  1951. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  1952. if (unlikely(has_ext_irq))
  1953. enable_irq_window(vcpu);
  1954. return;
  1955. }
  1956. if (!has_ext_irq)
  1957. return;
  1958. interrupt_window_open =
  1959. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1960. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1961. if (interrupt_window_open) {
  1962. vector = kvm_cpu_get_interrupt(vcpu);
  1963. vmx_inject_irq(vcpu, vector);
  1964. kvm_timer_intr_post(vcpu, vector);
  1965. } else
  1966. enable_irq_window(vcpu);
  1967. }
  1968. /*
  1969. * Failure to inject an interrupt should give us the information
  1970. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  1971. * when fetching the interrupt redirection bitmap in the real-mode
  1972. * tss, this doesn't happen. So we do it ourselves.
  1973. */
  1974. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  1975. {
  1976. vmx->rmode.irq.pending = 0;
  1977. if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
  1978. return;
  1979. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
  1980. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  1981. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  1982. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  1983. return;
  1984. }
  1985. vmx->idt_vectoring_info =
  1986. VECTORING_INFO_VALID_MASK
  1987. | INTR_TYPE_EXT_INTR
  1988. | vmx->rmode.irq.vector;
  1989. }
  1990. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1991. {
  1992. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1993. u32 intr_info;
  1994. /*
  1995. * Loading guest fpu may have cleared host cr0.ts
  1996. */
  1997. vmcs_writel(HOST_CR0, read_cr0());
  1998. asm(
  1999. /* Store host registers */
  2000. #ifdef CONFIG_X86_64
  2001. "push %%rdx; push %%rbp;"
  2002. "push %%rcx \n\t"
  2003. #else
  2004. "push %%edx; push %%ebp;"
  2005. "push %%ecx \n\t"
  2006. #endif
  2007. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  2008. /* Check if vmlaunch of vmresume is needed */
  2009. "cmpl $0, %c[launched](%0) \n\t"
  2010. /* Load guest registers. Don't clobber flags. */
  2011. #ifdef CONFIG_X86_64
  2012. "mov %c[cr2](%0), %%rax \n\t"
  2013. "mov %%rax, %%cr2 \n\t"
  2014. "mov %c[rax](%0), %%rax \n\t"
  2015. "mov %c[rbx](%0), %%rbx \n\t"
  2016. "mov %c[rdx](%0), %%rdx \n\t"
  2017. "mov %c[rsi](%0), %%rsi \n\t"
  2018. "mov %c[rdi](%0), %%rdi \n\t"
  2019. "mov %c[rbp](%0), %%rbp \n\t"
  2020. "mov %c[r8](%0), %%r8 \n\t"
  2021. "mov %c[r9](%0), %%r9 \n\t"
  2022. "mov %c[r10](%0), %%r10 \n\t"
  2023. "mov %c[r11](%0), %%r11 \n\t"
  2024. "mov %c[r12](%0), %%r12 \n\t"
  2025. "mov %c[r13](%0), %%r13 \n\t"
  2026. "mov %c[r14](%0), %%r14 \n\t"
  2027. "mov %c[r15](%0), %%r15 \n\t"
  2028. "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
  2029. #else
  2030. "mov %c[cr2](%0), %%eax \n\t"
  2031. "mov %%eax, %%cr2 \n\t"
  2032. "mov %c[rax](%0), %%eax \n\t"
  2033. "mov %c[rbx](%0), %%ebx \n\t"
  2034. "mov %c[rdx](%0), %%edx \n\t"
  2035. "mov %c[rsi](%0), %%esi \n\t"
  2036. "mov %c[rdi](%0), %%edi \n\t"
  2037. "mov %c[rbp](%0), %%ebp \n\t"
  2038. "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
  2039. #endif
  2040. /* Enter guest mode */
  2041. "jne .Llaunched \n\t"
  2042. ASM_VMX_VMLAUNCH "\n\t"
  2043. "jmp .Lkvm_vmx_return \n\t"
  2044. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  2045. ".Lkvm_vmx_return: "
  2046. /* Save guest registers, load host registers, keep flags */
  2047. #ifdef CONFIG_X86_64
  2048. "xchg %0, (%%rsp) \n\t"
  2049. "mov %%rax, %c[rax](%0) \n\t"
  2050. "mov %%rbx, %c[rbx](%0) \n\t"
  2051. "pushq (%%rsp); popq %c[rcx](%0) \n\t"
  2052. "mov %%rdx, %c[rdx](%0) \n\t"
  2053. "mov %%rsi, %c[rsi](%0) \n\t"
  2054. "mov %%rdi, %c[rdi](%0) \n\t"
  2055. "mov %%rbp, %c[rbp](%0) \n\t"
  2056. "mov %%r8, %c[r8](%0) \n\t"
  2057. "mov %%r9, %c[r9](%0) \n\t"
  2058. "mov %%r10, %c[r10](%0) \n\t"
  2059. "mov %%r11, %c[r11](%0) \n\t"
  2060. "mov %%r12, %c[r12](%0) \n\t"
  2061. "mov %%r13, %c[r13](%0) \n\t"
  2062. "mov %%r14, %c[r14](%0) \n\t"
  2063. "mov %%r15, %c[r15](%0) \n\t"
  2064. "mov %%cr2, %%rax \n\t"
  2065. "mov %%rax, %c[cr2](%0) \n\t"
  2066. "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
  2067. #else
  2068. "xchg %0, (%%esp) \n\t"
  2069. "mov %%eax, %c[rax](%0) \n\t"
  2070. "mov %%ebx, %c[rbx](%0) \n\t"
  2071. "pushl (%%esp); popl %c[rcx](%0) \n\t"
  2072. "mov %%edx, %c[rdx](%0) \n\t"
  2073. "mov %%esi, %c[rsi](%0) \n\t"
  2074. "mov %%edi, %c[rdi](%0) \n\t"
  2075. "mov %%ebp, %c[rbp](%0) \n\t"
  2076. "mov %%cr2, %%eax \n\t"
  2077. "mov %%eax, %c[cr2](%0) \n\t"
  2078. "pop %%ebp; pop %%ebp; pop %%edx \n\t"
  2079. #endif
  2080. "setbe %c[fail](%0) \n\t"
  2081. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2082. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2083. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2084. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2085. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2086. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2087. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2088. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2089. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2090. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2091. #ifdef CONFIG_X86_64
  2092. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2093. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2094. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2095. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2096. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2097. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2098. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2099. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2100. #endif
  2101. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2102. : "cc", "memory"
  2103. #ifdef CONFIG_X86_64
  2104. , "rbx", "rdi", "rsi"
  2105. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2106. #else
  2107. , "ebx", "edi", "rsi"
  2108. #endif
  2109. );
  2110. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2111. if (vmx->rmode.irq.pending)
  2112. fixup_rmode_irq(vmx);
  2113. vcpu->arch.interrupt_window_open =
  2114. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2115. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2116. vmx->launched = 1;
  2117. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2118. /* We need to handle NMIs before interrupts are enabled */
  2119. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  2120. asm("int $2");
  2121. }
  2122. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2123. {
  2124. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2125. if (vmx->vmcs) {
  2126. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2127. free_vmcs(vmx->vmcs);
  2128. vmx->vmcs = NULL;
  2129. }
  2130. }
  2131. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2132. {
  2133. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2134. vmx_free_vmcs(vcpu);
  2135. kfree(vmx->host_msrs);
  2136. kfree(vmx->guest_msrs);
  2137. kvm_vcpu_uninit(vcpu);
  2138. kmem_cache_free(kvm_vcpu_cache, vmx);
  2139. }
  2140. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2141. {
  2142. int err;
  2143. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2144. int cpu;
  2145. if (!vmx)
  2146. return ERR_PTR(-ENOMEM);
  2147. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2148. if (err)
  2149. goto free_vcpu;
  2150. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2151. if (!vmx->guest_msrs) {
  2152. err = -ENOMEM;
  2153. goto uninit_vcpu;
  2154. }
  2155. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2156. if (!vmx->host_msrs)
  2157. goto free_guest_msrs;
  2158. vmx->vmcs = alloc_vmcs();
  2159. if (!vmx->vmcs)
  2160. goto free_msrs;
  2161. vmcs_clear(vmx->vmcs);
  2162. cpu = get_cpu();
  2163. vmx_vcpu_load(&vmx->vcpu, cpu);
  2164. err = vmx_vcpu_setup(vmx);
  2165. vmx_vcpu_put(&vmx->vcpu);
  2166. put_cpu();
  2167. if (err)
  2168. goto free_vmcs;
  2169. if (vm_need_virtualize_apic_accesses(kvm))
  2170. if (alloc_apic_access_page(kvm) != 0)
  2171. goto free_vmcs;
  2172. return &vmx->vcpu;
  2173. free_vmcs:
  2174. free_vmcs(vmx->vmcs);
  2175. free_msrs:
  2176. kfree(vmx->host_msrs);
  2177. free_guest_msrs:
  2178. kfree(vmx->guest_msrs);
  2179. uninit_vcpu:
  2180. kvm_vcpu_uninit(&vmx->vcpu);
  2181. free_vcpu:
  2182. kmem_cache_free(kvm_vcpu_cache, vmx);
  2183. return ERR_PTR(err);
  2184. }
  2185. static void __init vmx_check_processor_compat(void *rtn)
  2186. {
  2187. struct vmcs_config vmcs_conf;
  2188. *(int *)rtn = 0;
  2189. if (setup_vmcs_config(&vmcs_conf) < 0)
  2190. *(int *)rtn = -EIO;
  2191. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2192. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2193. smp_processor_id());
  2194. *(int *)rtn = -EIO;
  2195. }
  2196. }
  2197. static struct kvm_x86_ops vmx_x86_ops = {
  2198. .cpu_has_kvm_support = cpu_has_kvm_support,
  2199. .disabled_by_bios = vmx_disabled_by_bios,
  2200. .hardware_setup = hardware_setup,
  2201. .hardware_unsetup = hardware_unsetup,
  2202. .check_processor_compatibility = vmx_check_processor_compat,
  2203. .hardware_enable = hardware_enable,
  2204. .hardware_disable = hardware_disable,
  2205. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2206. .vcpu_create = vmx_create_vcpu,
  2207. .vcpu_free = vmx_free_vcpu,
  2208. .vcpu_reset = vmx_vcpu_reset,
  2209. .prepare_guest_switch = vmx_save_host_state,
  2210. .vcpu_load = vmx_vcpu_load,
  2211. .vcpu_put = vmx_vcpu_put,
  2212. .vcpu_decache = vmx_vcpu_decache,
  2213. .set_guest_debug = set_guest_debug,
  2214. .guest_debug_pre = kvm_guest_debug_pre,
  2215. .get_msr = vmx_get_msr,
  2216. .set_msr = vmx_set_msr,
  2217. .get_segment_base = vmx_get_segment_base,
  2218. .get_segment = vmx_get_segment,
  2219. .set_segment = vmx_set_segment,
  2220. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2221. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2222. .set_cr0 = vmx_set_cr0,
  2223. .set_cr3 = vmx_set_cr3,
  2224. .set_cr4 = vmx_set_cr4,
  2225. #ifdef CONFIG_X86_64
  2226. .set_efer = vmx_set_efer,
  2227. #endif
  2228. .get_idt = vmx_get_idt,
  2229. .set_idt = vmx_set_idt,
  2230. .get_gdt = vmx_get_gdt,
  2231. .set_gdt = vmx_set_gdt,
  2232. .cache_regs = vcpu_load_rsp_rip,
  2233. .decache_regs = vcpu_put_rsp_rip,
  2234. .get_rflags = vmx_get_rflags,
  2235. .set_rflags = vmx_set_rflags,
  2236. .tlb_flush = vmx_flush_tlb,
  2237. .run = vmx_vcpu_run,
  2238. .handle_exit = kvm_handle_exit,
  2239. .skip_emulated_instruction = skip_emulated_instruction,
  2240. .patch_hypercall = vmx_patch_hypercall,
  2241. .get_irq = vmx_get_irq,
  2242. .set_irq = vmx_inject_irq,
  2243. .queue_exception = vmx_queue_exception,
  2244. .exception_injected = vmx_exception_injected,
  2245. .inject_pending_irq = vmx_intr_assist,
  2246. .inject_pending_vectors = do_interrupt_requests,
  2247. .set_tss_addr = vmx_set_tss_addr,
  2248. };
  2249. static int __init vmx_init(void)
  2250. {
  2251. void *iova;
  2252. int r;
  2253. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2254. if (!vmx_io_bitmap_a)
  2255. return -ENOMEM;
  2256. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2257. if (!vmx_io_bitmap_b) {
  2258. r = -ENOMEM;
  2259. goto out;
  2260. }
  2261. /*
  2262. * Allow direct access to the PC debug port (it is often used for I/O
  2263. * delays, but the vmexits simply slow things down).
  2264. */
  2265. iova = kmap(vmx_io_bitmap_a);
  2266. memset(iova, 0xff, PAGE_SIZE);
  2267. clear_bit(0x80, iova);
  2268. kunmap(vmx_io_bitmap_a);
  2269. iova = kmap(vmx_io_bitmap_b);
  2270. memset(iova, 0xff, PAGE_SIZE);
  2271. kunmap(vmx_io_bitmap_b);
  2272. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2273. if (r)
  2274. goto out1;
  2275. if (bypass_guest_pf)
  2276. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2277. return 0;
  2278. out1:
  2279. __free_page(vmx_io_bitmap_b);
  2280. out:
  2281. __free_page(vmx_io_bitmap_a);
  2282. return r;
  2283. }
  2284. static void __exit vmx_exit(void)
  2285. {
  2286. __free_page(vmx_io_bitmap_b);
  2287. __free_page(vmx_io_bitmap_a);
  2288. kvm_exit();
  2289. }
  2290. module_init(vmx_init)
  2291. module_exit(vmx_exit)