vm86_32.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837
  1. /*
  2. * Copyright (C) 1994 Linus Torvalds
  3. *
  4. * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
  5. * stack - Manfred Spraul <manfred@colorfullife.com>
  6. *
  7. * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
  8. * them correctly. Now the emulation will be in a
  9. * consistent state after stackfaults - Kasper Dupont
  10. * <kasperd@daimi.au.dk>
  11. *
  12. * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
  13. * <kasperd@daimi.au.dk>
  14. *
  15. * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
  16. * caused by Kasper Dupont's changes - Stas Sergeev
  17. *
  18. * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
  19. * Kasper Dupont <kasperd@daimi.au.dk>
  20. *
  21. * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
  22. * Kasper Dupont <kasperd@daimi.au.dk>
  23. *
  24. * 9 apr 2002 - Changed stack access macros to jump to a label
  25. * instead of returning to userspace. This simplifies
  26. * do_int, and is needed by handle_vm6_fault. Kasper
  27. * Dupont <kasperd@daimi.au.dk>
  28. *
  29. */
  30. #include <linux/capability.h>
  31. #include <linux/errno.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/sched.h>
  34. #include <linux/kernel.h>
  35. #include <linux/signal.h>
  36. #include <linux/string.h>
  37. #include <linux/mm.h>
  38. #include <linux/smp.h>
  39. #include <linux/highmem.h>
  40. #include <linux/ptrace.h>
  41. #include <linux/audit.h>
  42. #include <linux/stddef.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/io.h>
  45. #include <asm/tlbflush.h>
  46. #include <asm/irq.h>
  47. /*
  48. * Known problems:
  49. *
  50. * Interrupt handling is not guaranteed:
  51. * - a real x86 will disable all interrupts for one instruction
  52. * after a "mov ss,xx" to make stack handling atomic even without
  53. * the 'lss' instruction. We can't guarantee this in v86 mode,
  54. * as the next instruction might result in a page fault or similar.
  55. * - a real x86 will have interrupts disabled for one instruction
  56. * past the 'sti' that enables them. We don't bother with all the
  57. * details yet.
  58. *
  59. * Let's hope these problems do not actually matter for anything.
  60. */
  61. #define KVM86 ((struct kernel_vm86_struct *)regs)
  62. #define VMPI KVM86->vm86plus
  63. /*
  64. * 8- and 16-bit register defines..
  65. */
  66. #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
  67. #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
  68. #define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
  69. #define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
  70. /*
  71. * virtual flags (16 and 32-bit versions)
  72. */
  73. #define VFLAGS (*(unsigned short *)&(current->thread.v86flags))
  74. #define VEFLAGS (current->thread.v86flags)
  75. #define set_flags(X, new, mask) \
  76. ((X) = ((X) & ~(mask)) | ((new) & (mask)))
  77. #define SAFE_MASK (0xDD5)
  78. #define RETURN_MASK (0xDFF)
  79. /* convert kernel_vm86_regs to vm86_regs */
  80. static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
  81. const struct kernel_vm86_regs *regs)
  82. {
  83. int ret = 0;
  84. /*
  85. * kernel_vm86_regs is missing gs, so copy everything up to
  86. * (but not including) orig_eax, and then rest including orig_eax.
  87. */
  88. ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
  89. ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
  90. sizeof(struct kernel_vm86_regs) -
  91. offsetof(struct kernel_vm86_regs, pt.orig_ax));
  92. return ret;
  93. }
  94. /* convert vm86_regs to kernel_vm86_regs */
  95. static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
  96. const struct vm86_regs __user *user,
  97. unsigned extra)
  98. {
  99. int ret = 0;
  100. /* copy ax-fs inclusive */
  101. ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
  102. /* copy orig_ax-__gsh+extra */
  103. ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
  104. sizeof(struct kernel_vm86_regs) -
  105. offsetof(struct kernel_vm86_regs, pt.orig_ax) +
  106. extra);
  107. return ret;
  108. }
  109. struct pt_regs *save_v86_state(struct kernel_vm86_regs *regs)
  110. {
  111. struct tss_struct *tss;
  112. struct pt_regs *ret;
  113. unsigned long tmp;
  114. /*
  115. * This gets called from entry.S with interrupts disabled, but
  116. * from process context. Enable interrupts here, before trying
  117. * to access user space.
  118. */
  119. local_irq_enable();
  120. if (!current->thread.vm86_info) {
  121. printk("no vm86_info: BAD\n");
  122. do_exit(SIGSEGV);
  123. }
  124. set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | current->thread.v86mask);
  125. tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs, regs);
  126. tmp += put_user(current->thread.screen_bitmap, &current->thread.vm86_info->screen_bitmap);
  127. if (tmp) {
  128. printk("vm86: could not access userspace vm86_info\n");
  129. do_exit(SIGSEGV);
  130. }
  131. tss = &per_cpu(init_tss, get_cpu());
  132. current->thread.sp0 = current->thread.saved_sp0;
  133. current->thread.sysenter_cs = __KERNEL_CS;
  134. load_sp0(tss, &current->thread);
  135. current->thread.saved_sp0 = 0;
  136. put_cpu();
  137. ret = KVM86->regs32;
  138. ret->fs = current->thread.saved_fs;
  139. loadsegment(gs, current->thread.saved_gs);
  140. return ret;
  141. }
  142. static void mark_screen_rdonly(struct mm_struct *mm)
  143. {
  144. pgd_t *pgd;
  145. pud_t *pud;
  146. pmd_t *pmd;
  147. pte_t *pte;
  148. spinlock_t *ptl;
  149. int i;
  150. pgd = pgd_offset(mm, 0xA0000);
  151. if (pgd_none_or_clear_bad(pgd))
  152. goto out;
  153. pud = pud_offset(pgd, 0xA0000);
  154. if (pud_none_or_clear_bad(pud))
  155. goto out;
  156. pmd = pmd_offset(pud, 0xA0000);
  157. if (pmd_none_or_clear_bad(pmd))
  158. goto out;
  159. pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
  160. for (i = 0; i < 32; i++) {
  161. if (pte_present(*pte))
  162. set_pte(pte, pte_wrprotect(*pte));
  163. pte++;
  164. }
  165. pte_unmap_unlock(pte, ptl);
  166. out:
  167. flush_tlb();
  168. }
  169. static int do_vm86_irq_handling(int subfunction, int irqnumber);
  170. static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
  171. asmlinkage int sys_vm86old(struct pt_regs regs)
  172. {
  173. struct vm86_struct __user *v86 = (struct vm86_struct __user *)regs.bx;
  174. struct kernel_vm86_struct info; /* declare this _on top_,
  175. * this avoids wasting of stack space.
  176. * This remains on the stack until we
  177. * return to 32 bit user space.
  178. */
  179. struct task_struct *tsk;
  180. int tmp, ret = -EPERM;
  181. tsk = current;
  182. if (tsk->thread.saved_sp0)
  183. goto out;
  184. tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
  185. offsetof(struct kernel_vm86_struct, vm86plus) -
  186. sizeof(info.regs));
  187. ret = -EFAULT;
  188. if (tmp)
  189. goto out;
  190. memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
  191. info.regs32 = &regs;
  192. tsk->thread.vm86_info = v86;
  193. do_sys_vm86(&info, tsk);
  194. ret = 0; /* we never return here */
  195. out:
  196. return ret;
  197. }
  198. asmlinkage int sys_vm86(struct pt_regs regs)
  199. {
  200. struct kernel_vm86_struct info; /* declare this _on top_,
  201. * this avoids wasting of stack space.
  202. * This remains on the stack until we
  203. * return to 32 bit user space.
  204. */
  205. struct task_struct *tsk;
  206. int tmp, ret;
  207. struct vm86plus_struct __user *v86;
  208. tsk = current;
  209. switch (regs.bx) {
  210. case VM86_REQUEST_IRQ:
  211. case VM86_FREE_IRQ:
  212. case VM86_GET_IRQ_BITS:
  213. case VM86_GET_AND_RESET_IRQ:
  214. ret = do_vm86_irq_handling(regs.bx, (int)regs.cx);
  215. goto out;
  216. case VM86_PLUS_INSTALL_CHECK:
  217. /*
  218. * NOTE: on old vm86 stuff this will return the error
  219. * from access_ok(), because the subfunction is
  220. * interpreted as (invalid) address to vm86_struct.
  221. * So the installation check works.
  222. */
  223. ret = 0;
  224. goto out;
  225. }
  226. /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
  227. ret = -EPERM;
  228. if (tsk->thread.saved_sp0)
  229. goto out;
  230. v86 = (struct vm86plus_struct __user *)regs.cx;
  231. tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
  232. offsetof(struct kernel_vm86_struct, regs32) -
  233. sizeof(info.regs));
  234. ret = -EFAULT;
  235. if (tmp)
  236. goto out;
  237. info.regs32 = &regs;
  238. info.vm86plus.is_vm86pus = 1;
  239. tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
  240. do_sys_vm86(&info, tsk);
  241. ret = 0; /* we never return here */
  242. out:
  243. return ret;
  244. }
  245. static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
  246. {
  247. struct tss_struct *tss;
  248. /*
  249. * make sure the vm86() system call doesn't try to do anything silly
  250. */
  251. info->regs.pt.ds = 0;
  252. info->regs.pt.es = 0;
  253. info->regs.pt.fs = 0;
  254. /* we are clearing gs later just before "jmp resume_userspace",
  255. * because it is not saved/restored.
  256. */
  257. /*
  258. * The flags register is also special: we cannot trust that the user
  259. * has set it up safely, so this makes sure interrupt etc flags are
  260. * inherited from protected mode.
  261. */
  262. VEFLAGS = info->regs.pt.flags;
  263. info->regs.pt.flags &= SAFE_MASK;
  264. info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
  265. info->regs.pt.flags |= X86_VM_MASK;
  266. switch (info->cpu_type) {
  267. case CPU_286:
  268. tsk->thread.v86mask = 0;
  269. break;
  270. case CPU_386:
  271. tsk->thread.v86mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
  272. break;
  273. case CPU_486:
  274. tsk->thread.v86mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
  275. break;
  276. default:
  277. tsk->thread.v86mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
  278. break;
  279. }
  280. /*
  281. * Save old state, set default return value (%ax) to 0
  282. */
  283. info->regs32->ax = 0;
  284. tsk->thread.saved_sp0 = tsk->thread.sp0;
  285. tsk->thread.saved_fs = info->regs32->fs;
  286. savesegment(gs, tsk->thread.saved_gs);
  287. tss = &per_cpu(init_tss, get_cpu());
  288. tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
  289. if (cpu_has_sep)
  290. tsk->thread.sysenter_cs = 0;
  291. load_sp0(tss, &tsk->thread);
  292. put_cpu();
  293. tsk->thread.screen_bitmap = info->screen_bitmap;
  294. if (info->flags & VM86_SCREEN_BITMAP)
  295. mark_screen_rdonly(tsk->mm);
  296. /*call audit_syscall_exit since we do not exit via the normal paths */
  297. if (unlikely(current->audit_context))
  298. audit_syscall_exit(AUDITSC_RESULT(0), 0);
  299. __asm__ __volatile__(
  300. "movl %0,%%esp\n\t"
  301. "movl %1,%%ebp\n\t"
  302. "mov %2, %%gs\n\t"
  303. "jmp resume_userspace"
  304. : /* no outputs */
  305. :"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
  306. /* we never return here */
  307. }
  308. static inline void return_to_32bit(struct kernel_vm86_regs *regs16, int retval)
  309. {
  310. struct pt_regs *regs32;
  311. regs32 = save_v86_state(regs16);
  312. regs32->ax = retval;
  313. __asm__ __volatile__("movl %0,%%esp\n\t"
  314. "movl %1,%%ebp\n\t"
  315. "jmp resume_userspace"
  316. : : "r" (regs32), "r" (current_thread_info()));
  317. }
  318. static inline void set_IF(struct kernel_vm86_regs *regs)
  319. {
  320. VEFLAGS |= X86_EFLAGS_VIF;
  321. if (VEFLAGS & X86_EFLAGS_VIP)
  322. return_to_32bit(regs, VM86_STI);
  323. }
  324. static inline void clear_IF(struct kernel_vm86_regs *regs)
  325. {
  326. VEFLAGS &= ~X86_EFLAGS_VIF;
  327. }
  328. static inline void clear_TF(struct kernel_vm86_regs *regs)
  329. {
  330. regs->pt.flags &= ~X86_EFLAGS_TF;
  331. }
  332. static inline void clear_AC(struct kernel_vm86_regs *regs)
  333. {
  334. regs->pt.flags &= ~X86_EFLAGS_AC;
  335. }
  336. /*
  337. * It is correct to call set_IF(regs) from the set_vflags_*
  338. * functions. However someone forgot to call clear_IF(regs)
  339. * in the opposite case.
  340. * After the command sequence CLI PUSHF STI POPF you should
  341. * end up with interrupts disabled, but you ended up with
  342. * interrupts enabled.
  343. * ( I was testing my own changes, but the only bug I
  344. * could find was in a function I had not changed. )
  345. * [KD]
  346. */
  347. static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
  348. {
  349. set_flags(VEFLAGS, flags, current->thread.v86mask);
  350. set_flags(regs->pt.flags, flags, SAFE_MASK);
  351. if (flags & X86_EFLAGS_IF)
  352. set_IF(regs);
  353. else
  354. clear_IF(regs);
  355. }
  356. static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
  357. {
  358. set_flags(VFLAGS, flags, current->thread.v86mask);
  359. set_flags(regs->pt.flags, flags, SAFE_MASK);
  360. if (flags & X86_EFLAGS_IF)
  361. set_IF(regs);
  362. else
  363. clear_IF(regs);
  364. }
  365. static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
  366. {
  367. unsigned long flags = regs->pt.flags & RETURN_MASK;
  368. if (VEFLAGS & X86_EFLAGS_VIF)
  369. flags |= X86_EFLAGS_IF;
  370. flags |= X86_EFLAGS_IOPL;
  371. return flags | (VEFLAGS & current->thread.v86mask);
  372. }
  373. static inline int is_revectored(int nr, struct revectored_struct *bitmap)
  374. {
  375. __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
  376. :"=r" (nr)
  377. :"m" (*bitmap), "r" (nr));
  378. return nr;
  379. }
  380. #define val_byte(val, n) (((__u8 *)&val)[n])
  381. #define pushb(base, ptr, val, err_label) \
  382. do { \
  383. __u8 __val = val; \
  384. ptr--; \
  385. if (put_user(__val, base + ptr) < 0) \
  386. goto err_label; \
  387. } while (0)
  388. #define pushw(base, ptr, val, err_label) \
  389. do { \
  390. __u16 __val = val; \
  391. ptr--; \
  392. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  393. goto err_label; \
  394. ptr--; \
  395. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  396. goto err_label; \
  397. } while (0)
  398. #define pushl(base, ptr, val, err_label) \
  399. do { \
  400. __u32 __val = val; \
  401. ptr--; \
  402. if (put_user(val_byte(__val, 3), base + ptr) < 0) \
  403. goto err_label; \
  404. ptr--; \
  405. if (put_user(val_byte(__val, 2), base + ptr) < 0) \
  406. goto err_label; \
  407. ptr--; \
  408. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  409. goto err_label; \
  410. ptr--; \
  411. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  412. goto err_label; \
  413. } while (0)
  414. #define popb(base, ptr, err_label) \
  415. ({ \
  416. __u8 __res; \
  417. if (get_user(__res, base + ptr) < 0) \
  418. goto err_label; \
  419. ptr++; \
  420. __res; \
  421. })
  422. #define popw(base, ptr, err_label) \
  423. ({ \
  424. __u16 __res; \
  425. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  426. goto err_label; \
  427. ptr++; \
  428. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  429. goto err_label; \
  430. ptr++; \
  431. __res; \
  432. })
  433. #define popl(base, ptr, err_label) \
  434. ({ \
  435. __u32 __res; \
  436. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  437. goto err_label; \
  438. ptr++; \
  439. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  440. goto err_label; \
  441. ptr++; \
  442. if (get_user(val_byte(__res, 2), base + ptr) < 0) \
  443. goto err_label; \
  444. ptr++; \
  445. if (get_user(val_byte(__res, 3), base + ptr) < 0) \
  446. goto err_label; \
  447. ptr++; \
  448. __res; \
  449. })
  450. /* There are so many possible reasons for this function to return
  451. * VM86_INTx, so adding another doesn't bother me. We can expect
  452. * userspace programs to be able to handle it. (Getting a problem
  453. * in userspace is always better than an Oops anyway.) [KD]
  454. */
  455. static void do_int(struct kernel_vm86_regs *regs, int i,
  456. unsigned char __user *ssp, unsigned short sp)
  457. {
  458. unsigned long __user *intr_ptr;
  459. unsigned long segoffs;
  460. if (regs->pt.cs == BIOSSEG)
  461. goto cannot_handle;
  462. if (is_revectored(i, &KVM86->int_revectored))
  463. goto cannot_handle;
  464. if (i == 0x21 && is_revectored(AH(regs), &KVM86->int21_revectored))
  465. goto cannot_handle;
  466. intr_ptr = (unsigned long __user *) (i << 2);
  467. if (get_user(segoffs, intr_ptr))
  468. goto cannot_handle;
  469. if ((segoffs >> 16) == BIOSSEG)
  470. goto cannot_handle;
  471. pushw(ssp, sp, get_vflags(regs), cannot_handle);
  472. pushw(ssp, sp, regs->pt.cs, cannot_handle);
  473. pushw(ssp, sp, IP(regs), cannot_handle);
  474. regs->pt.cs = segoffs >> 16;
  475. SP(regs) -= 6;
  476. IP(regs) = segoffs & 0xffff;
  477. clear_TF(regs);
  478. clear_IF(regs);
  479. clear_AC(regs);
  480. return;
  481. cannot_handle:
  482. return_to_32bit(regs, VM86_INTx + (i << 8));
  483. }
  484. int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
  485. {
  486. if (VMPI.is_vm86pus) {
  487. if ((trapno == 3) || (trapno == 1))
  488. return_to_32bit(regs, VM86_TRAP + (trapno << 8));
  489. do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
  490. return 0;
  491. }
  492. if (trapno != 1)
  493. return 1; /* we let this handle by the calling routine */
  494. current->thread.trap_no = trapno;
  495. current->thread.error_code = error_code;
  496. force_sig(SIGTRAP, current);
  497. return 0;
  498. }
  499. void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
  500. {
  501. unsigned char opcode;
  502. unsigned char __user *csp;
  503. unsigned char __user *ssp;
  504. unsigned short ip, sp, orig_flags;
  505. int data32, pref_done;
  506. #define CHECK_IF_IN_TRAP \
  507. if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
  508. newflags |= X86_EFLAGS_TF
  509. #define VM86_FAULT_RETURN do { \
  510. if (VMPI.force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) \
  511. return_to_32bit(regs, VM86_PICRETURN); \
  512. if (orig_flags & X86_EFLAGS_TF) \
  513. handle_vm86_trap(regs, 0, 1); \
  514. return; } while (0)
  515. orig_flags = *(unsigned short *)&regs->pt.flags;
  516. csp = (unsigned char __user *) (regs->pt.cs << 4);
  517. ssp = (unsigned char __user *) (regs->pt.ss << 4);
  518. sp = SP(regs);
  519. ip = IP(regs);
  520. data32 = 0;
  521. pref_done = 0;
  522. do {
  523. switch (opcode = popb(csp, ip, simulate_sigsegv)) {
  524. case 0x66: /* 32-bit data */ data32 = 1; break;
  525. case 0x67: /* 32-bit address */ break;
  526. case 0x2e: /* CS */ break;
  527. case 0x3e: /* DS */ break;
  528. case 0x26: /* ES */ break;
  529. case 0x36: /* SS */ break;
  530. case 0x65: /* GS */ break;
  531. case 0x64: /* FS */ break;
  532. case 0xf2: /* repnz */ break;
  533. case 0xf3: /* rep */ break;
  534. default: pref_done = 1;
  535. }
  536. } while (!pref_done);
  537. switch (opcode) {
  538. /* pushf */
  539. case 0x9c:
  540. if (data32) {
  541. pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
  542. SP(regs) -= 4;
  543. } else {
  544. pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
  545. SP(regs) -= 2;
  546. }
  547. IP(regs) = ip;
  548. VM86_FAULT_RETURN;
  549. /* popf */
  550. case 0x9d:
  551. {
  552. unsigned long newflags;
  553. if (data32) {
  554. newflags = popl(ssp, sp, simulate_sigsegv);
  555. SP(regs) += 4;
  556. } else {
  557. newflags = popw(ssp, sp, simulate_sigsegv);
  558. SP(regs) += 2;
  559. }
  560. IP(regs) = ip;
  561. CHECK_IF_IN_TRAP;
  562. if (data32)
  563. set_vflags_long(newflags, regs);
  564. else
  565. set_vflags_short(newflags, regs);
  566. VM86_FAULT_RETURN;
  567. }
  568. /* int xx */
  569. case 0xcd: {
  570. int intno = popb(csp, ip, simulate_sigsegv);
  571. IP(regs) = ip;
  572. if (VMPI.vm86dbg_active) {
  573. if ((1 << (intno & 7)) & VMPI.vm86dbg_intxxtab[intno >> 3])
  574. return_to_32bit(regs, VM86_INTx + (intno << 8));
  575. }
  576. do_int(regs, intno, ssp, sp);
  577. return;
  578. }
  579. /* iret */
  580. case 0xcf:
  581. {
  582. unsigned long newip;
  583. unsigned long newcs;
  584. unsigned long newflags;
  585. if (data32) {
  586. newip = popl(ssp, sp, simulate_sigsegv);
  587. newcs = popl(ssp, sp, simulate_sigsegv);
  588. newflags = popl(ssp, sp, simulate_sigsegv);
  589. SP(regs) += 12;
  590. } else {
  591. newip = popw(ssp, sp, simulate_sigsegv);
  592. newcs = popw(ssp, sp, simulate_sigsegv);
  593. newflags = popw(ssp, sp, simulate_sigsegv);
  594. SP(regs) += 6;
  595. }
  596. IP(regs) = newip;
  597. regs->pt.cs = newcs;
  598. CHECK_IF_IN_TRAP;
  599. if (data32) {
  600. set_vflags_long(newflags, regs);
  601. } else {
  602. set_vflags_short(newflags, regs);
  603. }
  604. VM86_FAULT_RETURN;
  605. }
  606. /* cli */
  607. case 0xfa:
  608. IP(regs) = ip;
  609. clear_IF(regs);
  610. VM86_FAULT_RETURN;
  611. /* sti */
  612. /*
  613. * Damn. This is incorrect: the 'sti' instruction should actually
  614. * enable interrupts after the /next/ instruction. Not good.
  615. *
  616. * Probably needs some horsing around with the TF flag. Aiee..
  617. */
  618. case 0xfb:
  619. IP(regs) = ip;
  620. set_IF(regs);
  621. VM86_FAULT_RETURN;
  622. default:
  623. return_to_32bit(regs, VM86_UNKNOWN);
  624. }
  625. return;
  626. simulate_sigsegv:
  627. /* FIXME: After a long discussion with Stas we finally
  628. * agreed, that this is wrong. Here we should
  629. * really send a SIGSEGV to the user program.
  630. * But how do we create the correct context? We
  631. * are inside a general protection fault handler
  632. * and has just returned from a page fault handler.
  633. * The correct context for the signal handler
  634. * should be a mixture of the two, but how do we
  635. * get the information? [KD]
  636. */
  637. return_to_32bit(regs, VM86_UNKNOWN);
  638. }
  639. /* ---------------- vm86 special IRQ passing stuff ----------------- */
  640. #define VM86_IRQNAME "vm86irq"
  641. static struct vm86_irqs {
  642. struct task_struct *tsk;
  643. int sig;
  644. } vm86_irqs[16];
  645. static DEFINE_SPINLOCK(irqbits_lock);
  646. static int irqbits;
  647. #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
  648. | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
  649. | (1 << SIGUNUSED))
  650. static irqreturn_t irq_handler(int intno, void *dev_id)
  651. {
  652. int irq_bit;
  653. unsigned long flags;
  654. spin_lock_irqsave(&irqbits_lock, flags);
  655. irq_bit = 1 << intno;
  656. if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
  657. goto out;
  658. irqbits |= irq_bit;
  659. if (vm86_irqs[intno].sig)
  660. send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
  661. /*
  662. * IRQ will be re-enabled when user asks for the irq (whether
  663. * polling or as a result of the signal)
  664. */
  665. disable_irq_nosync(intno);
  666. spin_unlock_irqrestore(&irqbits_lock, flags);
  667. return IRQ_HANDLED;
  668. out:
  669. spin_unlock_irqrestore(&irqbits_lock, flags);
  670. return IRQ_NONE;
  671. }
  672. static inline void free_vm86_irq(int irqnumber)
  673. {
  674. unsigned long flags;
  675. free_irq(irqnumber, NULL);
  676. vm86_irqs[irqnumber].tsk = NULL;
  677. spin_lock_irqsave(&irqbits_lock, flags);
  678. irqbits &= ~(1 << irqnumber);
  679. spin_unlock_irqrestore(&irqbits_lock, flags);
  680. }
  681. void release_vm86_irqs(struct task_struct *task)
  682. {
  683. int i;
  684. for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
  685. if (vm86_irqs[i].tsk == task)
  686. free_vm86_irq(i);
  687. }
  688. static inline int get_and_reset_irq(int irqnumber)
  689. {
  690. int bit;
  691. unsigned long flags;
  692. int ret = 0;
  693. if (invalid_vm86_irq(irqnumber)) return 0;
  694. if (vm86_irqs[irqnumber].tsk != current) return 0;
  695. spin_lock_irqsave(&irqbits_lock, flags);
  696. bit = irqbits & (1 << irqnumber);
  697. irqbits &= ~bit;
  698. if (bit) {
  699. enable_irq(irqnumber);
  700. ret = 1;
  701. }
  702. spin_unlock_irqrestore(&irqbits_lock, flags);
  703. return ret;
  704. }
  705. static int do_vm86_irq_handling(int subfunction, int irqnumber)
  706. {
  707. int ret;
  708. switch (subfunction) {
  709. case VM86_GET_AND_RESET_IRQ: {
  710. return get_and_reset_irq(irqnumber);
  711. }
  712. case VM86_GET_IRQ_BITS: {
  713. return irqbits;
  714. }
  715. case VM86_REQUEST_IRQ: {
  716. int sig = irqnumber >> 8;
  717. int irq = irqnumber & 255;
  718. if (!capable(CAP_SYS_ADMIN)) return -EPERM;
  719. if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
  720. if (invalid_vm86_irq(irq)) return -EPERM;
  721. if (vm86_irqs[irq].tsk) return -EPERM;
  722. ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
  723. if (ret) return ret;
  724. vm86_irqs[irq].sig = sig;
  725. vm86_irqs[irq].tsk = current;
  726. return irq;
  727. }
  728. case VM86_FREE_IRQ: {
  729. if (invalid_vm86_irq(irqnumber)) return -EPERM;
  730. if (!vm86_irqs[irqnumber].tsk) return 0;
  731. if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
  732. free_vm86_irq(irqnumber);
  733. return 0;
  734. }
  735. }
  736. return -EINVAL;
  737. }