traps_32.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. *
  4. * Pentium III FXSR, SSE support
  5. * Gareth Hughes <gareth@valinux.com>, May 2000
  6. */
  7. /*
  8. * 'Traps.c' handles hardware traps and faults after we have saved some
  9. * state in 'asm.s'.
  10. */
  11. #include <linux/interrupt.h>
  12. #include <linux/kallsyms.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/highmem.h>
  15. #include <linux/kprobes.h>
  16. #include <linux/uaccess.h>
  17. #include <linux/utsname.h>
  18. #include <linux/kdebug.h>
  19. #include <linux/kernel.h>
  20. #include <linux/module.h>
  21. #include <linux/ptrace.h>
  22. #include <linux/string.h>
  23. #include <linux/unwind.h>
  24. #include <linux/delay.h>
  25. #include <linux/errno.h>
  26. #include <linux/kexec.h>
  27. #include <linux/sched.h>
  28. #include <linux/timer.h>
  29. #include <linux/init.h>
  30. #include <linux/bug.h>
  31. #include <linux/nmi.h>
  32. #include <linux/mm.h>
  33. #ifdef CONFIG_EISA
  34. #include <linux/ioport.h>
  35. #include <linux/eisa.h>
  36. #endif
  37. #ifdef CONFIG_MCA
  38. #include <linux/mca.h>
  39. #endif
  40. #if defined(CONFIG_EDAC)
  41. #include <linux/edac.h>
  42. #endif
  43. #include <asm/arch_hooks.h>
  44. #include <asm/stacktrace.h>
  45. #include <asm/processor.h>
  46. #include <asm/debugreg.h>
  47. #include <asm/atomic.h>
  48. #include <asm/system.h>
  49. #include <asm/unwind.h>
  50. #include <asm/desc.h>
  51. #include <asm/i387.h>
  52. #include <asm/nmi.h>
  53. #include <asm/smp.h>
  54. #include <asm/io.h>
  55. #include "mach_traps.h"
  56. int panic_on_unrecovered_nmi;
  57. DECLARE_BITMAP(used_vectors, NR_VECTORS);
  58. EXPORT_SYMBOL_GPL(used_vectors);
  59. asmlinkage int system_call(void);
  60. /* Do we ignore FPU interrupts ? */
  61. char ignore_fpu_irq;
  62. /*
  63. * The IDT has to be page-aligned to simplify the Pentium
  64. * F0 0F bug workaround.. We have a special link segment
  65. * for this.
  66. */
  67. gate_desc idt_table[256]
  68. __attribute__((__section__(".data.idt"))) = { { { { 0, 0 } } }, };
  69. asmlinkage void divide_error(void);
  70. asmlinkage void debug(void);
  71. asmlinkage void nmi(void);
  72. asmlinkage void int3(void);
  73. asmlinkage void overflow(void);
  74. asmlinkage void bounds(void);
  75. asmlinkage void invalid_op(void);
  76. asmlinkage void device_not_available(void);
  77. asmlinkage void coprocessor_segment_overrun(void);
  78. asmlinkage void invalid_TSS(void);
  79. asmlinkage void segment_not_present(void);
  80. asmlinkage void stack_segment(void);
  81. asmlinkage void general_protection(void);
  82. asmlinkage void page_fault(void);
  83. asmlinkage void coprocessor_error(void);
  84. asmlinkage void simd_coprocessor_error(void);
  85. asmlinkage void alignment_check(void);
  86. asmlinkage void spurious_interrupt_bug(void);
  87. asmlinkage void machine_check(void);
  88. int kstack_depth_to_print = 24;
  89. static unsigned int code_bytes = 64;
  90. void printk_address(unsigned long address, int reliable)
  91. {
  92. #ifdef CONFIG_KALLSYMS
  93. char namebuf[KSYM_NAME_LEN];
  94. unsigned long offset = 0;
  95. unsigned long symsize;
  96. const char *symname;
  97. char reliab[4] = "";
  98. char *delim = ":";
  99. char *modname;
  100. symname = kallsyms_lookup(address, &symsize, &offset,
  101. &modname, namebuf);
  102. if (!symname) {
  103. printk(" [<%08lx>]\n", address);
  104. return;
  105. }
  106. if (!reliable)
  107. strcpy(reliab, "? ");
  108. if (!modname)
  109. modname = delim = "";
  110. printk(" [<%08lx>] %s%s%s%s%s+0x%lx/0x%lx\n",
  111. address, reliab, delim, modname, delim, symname, offset, symsize);
  112. #else
  113. printk(" [<%08lx>]\n", address);
  114. #endif
  115. }
  116. static inline int valid_stack_ptr(struct thread_info *tinfo, void *p, unsigned size)
  117. {
  118. return p > (void *)tinfo &&
  119. p <= (void *)tinfo + THREAD_SIZE - size;
  120. }
  121. /* The form of the top of the frame on the stack */
  122. struct stack_frame {
  123. struct stack_frame *next_frame;
  124. unsigned long return_address;
  125. };
  126. static inline unsigned long
  127. print_context_stack(struct thread_info *tinfo,
  128. unsigned long *stack, unsigned long bp,
  129. const struct stacktrace_ops *ops, void *data)
  130. {
  131. struct stack_frame *frame = (struct stack_frame *)bp;
  132. while (valid_stack_ptr(tinfo, stack, sizeof(*stack))) {
  133. unsigned long addr;
  134. addr = *stack;
  135. if (__kernel_text_address(addr)) {
  136. if ((unsigned long) stack == bp + 4) {
  137. ops->address(data, addr, 1);
  138. frame = frame->next_frame;
  139. bp = (unsigned long) frame;
  140. } else {
  141. ops->address(data, addr, bp == 0);
  142. }
  143. }
  144. stack++;
  145. }
  146. return bp;
  147. }
  148. #define MSG(msg) ops->warning(data, msg)
  149. void dump_trace(struct task_struct *task, struct pt_regs *regs,
  150. unsigned long *stack, unsigned long bp,
  151. const struct stacktrace_ops *ops, void *data)
  152. {
  153. if (!task)
  154. task = current;
  155. if (!stack) {
  156. unsigned long dummy;
  157. stack = &dummy;
  158. if (task != current)
  159. stack = (unsigned long *)task->thread.sp;
  160. }
  161. #ifdef CONFIG_FRAME_POINTER
  162. if (!bp) {
  163. if (task == current) {
  164. /* Grab bp right from our regs */
  165. asm("movl %%ebp, %0" : "=r" (bp) :);
  166. } else {
  167. /* bp is the last reg pushed by switch_to */
  168. bp = *(unsigned long *) task->thread.sp;
  169. }
  170. }
  171. #endif
  172. while (1) {
  173. struct thread_info *context;
  174. context = (struct thread_info *)
  175. ((unsigned long)stack & (~(THREAD_SIZE - 1)));
  176. bp = print_context_stack(context, stack, bp, ops, data);
  177. /*
  178. * Should be after the line below, but somewhere
  179. * in early boot context comes out corrupted and we
  180. * can't reference it:
  181. */
  182. if (ops->stack(data, "IRQ") < 0)
  183. break;
  184. stack = (unsigned long *)context->previous_esp;
  185. if (!stack)
  186. break;
  187. touch_nmi_watchdog();
  188. }
  189. }
  190. EXPORT_SYMBOL(dump_trace);
  191. static void
  192. print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
  193. {
  194. printk(data);
  195. print_symbol(msg, symbol);
  196. printk("\n");
  197. }
  198. static void print_trace_warning(void *data, char *msg)
  199. {
  200. printk("%s%s\n", (char *)data, msg);
  201. }
  202. static int print_trace_stack(void *data, char *name)
  203. {
  204. return 0;
  205. }
  206. /*
  207. * Print one address/symbol entries per line.
  208. */
  209. static void print_trace_address(void *data, unsigned long addr, int reliable)
  210. {
  211. printk("%s [<%08lx>] ", (char *)data, addr);
  212. if (!reliable)
  213. printk("? ");
  214. print_symbol("%s\n", addr);
  215. touch_nmi_watchdog();
  216. }
  217. static const struct stacktrace_ops print_trace_ops = {
  218. .warning = print_trace_warning,
  219. .warning_symbol = print_trace_warning_symbol,
  220. .stack = print_trace_stack,
  221. .address = print_trace_address,
  222. };
  223. static void
  224. show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
  225. unsigned long *stack, unsigned long bp, char *log_lvl)
  226. {
  227. dump_trace(task, regs, stack, bp, &print_trace_ops, log_lvl);
  228. printk("%s =======================\n", log_lvl);
  229. }
  230. void show_trace(struct task_struct *task, struct pt_regs *regs,
  231. unsigned long *stack, unsigned long bp)
  232. {
  233. show_trace_log_lvl(task, regs, stack, bp, "");
  234. }
  235. static void
  236. show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
  237. unsigned long *sp, unsigned long bp, char *log_lvl)
  238. {
  239. unsigned long *stack;
  240. int i;
  241. if (sp == NULL) {
  242. if (task)
  243. sp = (unsigned long *)task->thread.sp;
  244. else
  245. sp = (unsigned long *)&sp;
  246. }
  247. stack = sp;
  248. for (i = 0; i < kstack_depth_to_print; i++) {
  249. if (kstack_end(stack))
  250. break;
  251. if (i && ((i % 8) == 0))
  252. printk("\n%s ", log_lvl);
  253. printk("%08lx ", *stack++);
  254. }
  255. printk("\n%sCall Trace:\n", log_lvl);
  256. show_trace_log_lvl(task, regs, sp, bp, log_lvl);
  257. }
  258. void show_stack(struct task_struct *task, unsigned long *sp)
  259. {
  260. printk(" ");
  261. show_stack_log_lvl(task, NULL, sp, 0, "");
  262. }
  263. /*
  264. * The architecture-independent dump_stack generator
  265. */
  266. void dump_stack(void)
  267. {
  268. unsigned long bp = 0;
  269. unsigned long stack;
  270. #ifdef CONFIG_FRAME_POINTER
  271. if (!bp)
  272. asm("movl %%ebp, %0" : "=r" (bp):);
  273. #endif
  274. printk("Pid: %d, comm: %.20s %s %s %.*s\n",
  275. current->pid, current->comm, print_tainted(),
  276. init_utsname()->release,
  277. (int)strcspn(init_utsname()->version, " "),
  278. init_utsname()->version);
  279. show_trace(current, NULL, &stack, bp);
  280. }
  281. EXPORT_SYMBOL(dump_stack);
  282. void show_registers(struct pt_regs *regs)
  283. {
  284. int i;
  285. print_modules();
  286. __show_registers(regs, 0);
  287. printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
  288. TASK_COMM_LEN, current->comm, task_pid_nr(current),
  289. current_thread_info(), current, task_thread_info(current));
  290. /*
  291. * When in-kernel, we also print out the stack and code at the
  292. * time of the fault..
  293. */
  294. if (!user_mode_vm(regs)) {
  295. unsigned int code_prologue = code_bytes * 43 / 64;
  296. unsigned int code_len = code_bytes;
  297. unsigned char c;
  298. u8 *ip;
  299. printk("\n" KERN_EMERG "Stack: ");
  300. show_stack_log_lvl(NULL, regs, &regs->sp, 0, KERN_EMERG);
  301. printk(KERN_EMERG "Code: ");
  302. ip = (u8 *)regs->ip - code_prologue;
  303. if (ip < (u8 *)PAGE_OFFSET ||
  304. probe_kernel_address(ip, c)) {
  305. /* try starting at EIP */
  306. ip = (u8 *)regs->ip;
  307. code_len = code_len - code_prologue + 1;
  308. }
  309. for (i = 0; i < code_len; i++, ip++) {
  310. if (ip < (u8 *)PAGE_OFFSET ||
  311. probe_kernel_address(ip, c)) {
  312. printk(" Bad EIP value.");
  313. break;
  314. }
  315. if (ip == (u8 *)regs->ip)
  316. printk("<%02x> ", c);
  317. else
  318. printk("%02x ", c);
  319. }
  320. }
  321. printk("\n");
  322. }
  323. int is_valid_bugaddr(unsigned long ip)
  324. {
  325. unsigned short ud2;
  326. if (ip < PAGE_OFFSET)
  327. return 0;
  328. if (probe_kernel_address((unsigned short *)ip, ud2))
  329. return 0;
  330. return ud2 == 0x0b0f;
  331. }
  332. static int die_counter;
  333. int __kprobes __die(const char *str, struct pt_regs *regs, long err)
  334. {
  335. unsigned short ss;
  336. unsigned long sp;
  337. printk(KERN_EMERG "%s: %04lx [#%d] ", str, err & 0xffff, ++die_counter);
  338. #ifdef CONFIG_PREEMPT
  339. printk("PREEMPT ");
  340. #endif
  341. #ifdef CONFIG_SMP
  342. printk("SMP ");
  343. #endif
  344. #ifdef CONFIG_DEBUG_PAGEALLOC
  345. printk("DEBUG_PAGEALLOC");
  346. #endif
  347. printk("\n");
  348. if (notify_die(DIE_OOPS, str, regs, err,
  349. current->thread.trap_no, SIGSEGV) != NOTIFY_STOP) {
  350. show_registers(regs);
  351. /* Executive summary in case the oops scrolled away */
  352. sp = (unsigned long) (&regs->sp);
  353. savesegment(ss, ss);
  354. if (user_mode(regs)) {
  355. sp = regs->sp;
  356. ss = regs->ss & 0xffff;
  357. }
  358. printk(KERN_EMERG "EIP: [<%08lx>] ", regs->ip);
  359. print_symbol("%s", regs->ip);
  360. printk(" SS:ESP %04x:%08lx\n", ss, sp);
  361. return 0;
  362. }
  363. return 1;
  364. }
  365. /*
  366. * This is gone through when something in the kernel has done something bad
  367. * and is about to be terminated:
  368. */
  369. void die(const char *str, struct pt_regs *regs, long err)
  370. {
  371. static struct {
  372. raw_spinlock_t lock;
  373. u32 lock_owner;
  374. int lock_owner_depth;
  375. } die = {
  376. .lock = __RAW_SPIN_LOCK_UNLOCKED,
  377. .lock_owner = -1,
  378. .lock_owner_depth = 0
  379. };
  380. unsigned long flags;
  381. oops_enter();
  382. if (die.lock_owner != raw_smp_processor_id()) {
  383. console_verbose();
  384. raw_local_irq_save(flags);
  385. __raw_spin_lock(&die.lock);
  386. die.lock_owner = smp_processor_id();
  387. die.lock_owner_depth = 0;
  388. bust_spinlocks(1);
  389. } else {
  390. raw_local_irq_save(flags);
  391. }
  392. if (++die.lock_owner_depth < 3) {
  393. report_bug(regs->ip, regs);
  394. if (__die(str, regs, err))
  395. regs = NULL;
  396. } else {
  397. printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
  398. }
  399. bust_spinlocks(0);
  400. die.lock_owner = -1;
  401. add_taint(TAINT_DIE);
  402. __raw_spin_unlock(&die.lock);
  403. raw_local_irq_restore(flags);
  404. if (!regs)
  405. return;
  406. if (kexec_should_crash(current))
  407. crash_kexec(regs);
  408. if (in_interrupt())
  409. panic("Fatal exception in interrupt");
  410. if (panic_on_oops)
  411. panic("Fatal exception");
  412. oops_exit();
  413. do_exit(SIGSEGV);
  414. }
  415. static inline void
  416. die_if_kernel(const char *str, struct pt_regs *regs, long err)
  417. {
  418. if (!user_mode_vm(regs))
  419. die(str, regs, err);
  420. }
  421. static void __kprobes
  422. do_trap(int trapnr, int signr, char *str, int vm86, struct pt_regs *regs,
  423. long error_code, siginfo_t *info)
  424. {
  425. struct task_struct *tsk = current;
  426. if (regs->flags & X86_VM_MASK) {
  427. if (vm86)
  428. goto vm86_trap;
  429. goto trap_signal;
  430. }
  431. if (!user_mode(regs))
  432. goto kernel_trap;
  433. trap_signal:
  434. /*
  435. * We want error_code and trap_no set for userspace faults and
  436. * kernelspace faults which result in die(), but not
  437. * kernelspace faults which are fixed up. die() gives the
  438. * process no chance to handle the signal and notice the
  439. * kernel fault information, so that won't result in polluting
  440. * the information about previously queued, but not yet
  441. * delivered, faults. See also do_general_protection below.
  442. */
  443. tsk->thread.error_code = error_code;
  444. tsk->thread.trap_no = trapnr;
  445. if (info)
  446. force_sig_info(signr, info, tsk);
  447. else
  448. force_sig(signr, tsk);
  449. return;
  450. kernel_trap:
  451. if (!fixup_exception(regs)) {
  452. tsk->thread.error_code = error_code;
  453. tsk->thread.trap_no = trapnr;
  454. die(str, regs, error_code);
  455. }
  456. return;
  457. vm86_trap:
  458. if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
  459. error_code, trapnr))
  460. goto trap_signal;
  461. return;
  462. }
  463. #define DO_ERROR(trapnr, signr, str, name) \
  464. void do_##name(struct pt_regs *regs, long error_code) \
  465. { \
  466. if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
  467. == NOTIFY_STOP) \
  468. return; \
  469. do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
  470. }
  471. #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr, irq) \
  472. void do_##name(struct pt_regs *regs, long error_code) \
  473. { \
  474. siginfo_t info; \
  475. if (irq) \
  476. local_irq_enable(); \
  477. info.si_signo = signr; \
  478. info.si_errno = 0; \
  479. info.si_code = sicode; \
  480. info.si_addr = (void __user *)siaddr; \
  481. if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
  482. == NOTIFY_STOP) \
  483. return; \
  484. do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
  485. }
  486. #define DO_VM86_ERROR(trapnr, signr, str, name) \
  487. void do_##name(struct pt_regs *regs, long error_code) \
  488. { \
  489. if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
  490. == NOTIFY_STOP) \
  491. return; \
  492. do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
  493. }
  494. #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
  495. void do_##name(struct pt_regs *regs, long error_code) \
  496. { \
  497. siginfo_t info; \
  498. info.si_signo = signr; \
  499. info.si_errno = 0; \
  500. info.si_code = sicode; \
  501. info.si_addr = (void __user *)siaddr; \
  502. trace_hardirqs_fixup(); \
  503. if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
  504. == NOTIFY_STOP) \
  505. return; \
  506. do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
  507. }
  508. DO_VM86_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
  509. #ifndef CONFIG_KPROBES
  510. DO_VM86_ERROR(3, SIGTRAP, "int3", int3)
  511. #endif
  512. DO_VM86_ERROR(4, SIGSEGV, "overflow", overflow)
  513. DO_VM86_ERROR(5, SIGSEGV, "bounds", bounds)
  514. DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip, 0)
  515. DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
  516. DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
  517. DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
  518. DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
  519. DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0, 0)
  520. DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0, 1)
  521. void __kprobes do_general_protection(struct pt_regs *regs, long error_code)
  522. {
  523. struct thread_struct *thread;
  524. struct tss_struct *tss;
  525. int cpu;
  526. cpu = get_cpu();
  527. tss = &per_cpu(init_tss, cpu);
  528. thread = &current->thread;
  529. /*
  530. * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
  531. * invalid offset set (the LAZY one) and the faulting thread has
  532. * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
  533. * and we set the offset field correctly. Then we let the CPU to
  534. * restart the faulting instruction.
  535. */
  536. if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
  537. thread->io_bitmap_ptr) {
  538. memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
  539. thread->io_bitmap_max);
  540. /*
  541. * If the previously set map was extending to higher ports
  542. * than the current one, pad extra space with 0xff (no access).
  543. */
  544. if (thread->io_bitmap_max < tss->io_bitmap_max) {
  545. memset((char *) tss->io_bitmap +
  546. thread->io_bitmap_max, 0xff,
  547. tss->io_bitmap_max - thread->io_bitmap_max);
  548. }
  549. tss->io_bitmap_max = thread->io_bitmap_max;
  550. tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
  551. tss->io_bitmap_owner = thread;
  552. put_cpu();
  553. return;
  554. }
  555. put_cpu();
  556. if (regs->flags & X86_VM_MASK)
  557. goto gp_in_vm86;
  558. if (!user_mode(regs))
  559. goto gp_in_kernel;
  560. current->thread.error_code = error_code;
  561. current->thread.trap_no = 13;
  562. if (show_unhandled_signals && unhandled_signal(current, SIGSEGV) &&
  563. printk_ratelimit()) {
  564. printk(KERN_INFO
  565. "%s[%d] general protection ip:%lx sp:%lx error:%lx",
  566. current->comm, task_pid_nr(current),
  567. regs->ip, regs->sp, error_code);
  568. print_vma_addr(" in ", regs->ip);
  569. printk("\n");
  570. }
  571. force_sig(SIGSEGV, current);
  572. return;
  573. gp_in_vm86:
  574. local_irq_enable();
  575. handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
  576. return;
  577. gp_in_kernel:
  578. if (!fixup_exception(regs)) {
  579. current->thread.error_code = error_code;
  580. current->thread.trap_no = 13;
  581. if (notify_die(DIE_GPF, "general protection fault", regs,
  582. error_code, 13, SIGSEGV) == NOTIFY_STOP)
  583. return;
  584. die("general protection fault", regs, error_code);
  585. }
  586. }
  587. static notrace __kprobes void
  588. mem_parity_error(unsigned char reason, struct pt_regs *regs)
  589. {
  590. printk(KERN_EMERG
  591. "Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
  592. reason, smp_processor_id());
  593. printk(KERN_EMERG
  594. "You have some hardware problem, likely on the PCI bus.\n");
  595. #if defined(CONFIG_EDAC)
  596. if (edac_handler_set()) {
  597. edac_atomic_assert_error();
  598. return;
  599. }
  600. #endif
  601. if (panic_on_unrecovered_nmi)
  602. panic("NMI: Not continuing");
  603. printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
  604. /* Clear and disable the memory parity error line. */
  605. clear_mem_error(reason);
  606. }
  607. static notrace __kprobes void
  608. io_check_error(unsigned char reason, struct pt_regs *regs)
  609. {
  610. unsigned long i;
  611. printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
  612. show_registers(regs);
  613. /* Re-enable the IOCK line, wait for a few seconds */
  614. reason = (reason & 0xf) | 8;
  615. outb(reason, 0x61);
  616. i = 2000;
  617. while (--i)
  618. udelay(1000);
  619. reason &= ~8;
  620. outb(reason, 0x61);
  621. }
  622. static notrace __kprobes void
  623. unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
  624. {
  625. if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
  626. return;
  627. #ifdef CONFIG_MCA
  628. /*
  629. * Might actually be able to figure out what the guilty party
  630. * is:
  631. */
  632. if (MCA_bus) {
  633. mca_handle_nmi();
  634. return;
  635. }
  636. #endif
  637. printk(KERN_EMERG
  638. "Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
  639. reason, smp_processor_id());
  640. printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
  641. if (panic_on_unrecovered_nmi)
  642. panic("NMI: Not continuing");
  643. printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
  644. }
  645. static DEFINE_SPINLOCK(nmi_print_lock);
  646. void notrace __kprobes die_nmi(struct pt_regs *regs, const char *msg)
  647. {
  648. if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) == NOTIFY_STOP)
  649. return;
  650. spin_lock(&nmi_print_lock);
  651. /*
  652. * We are in trouble anyway, lets at least try
  653. * to get a message out:
  654. */
  655. bust_spinlocks(1);
  656. printk(KERN_EMERG "%s", msg);
  657. printk(" on CPU%d, ip %08lx, registers:\n",
  658. smp_processor_id(), regs->ip);
  659. show_registers(regs);
  660. console_silent();
  661. spin_unlock(&nmi_print_lock);
  662. bust_spinlocks(0);
  663. /*
  664. * If we are in kernel we are probably nested up pretty bad
  665. * and might aswell get out now while we still can:
  666. */
  667. if (!user_mode_vm(regs)) {
  668. current->thread.trap_no = 2;
  669. crash_kexec(regs);
  670. }
  671. do_exit(SIGSEGV);
  672. }
  673. static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
  674. {
  675. unsigned char reason = 0;
  676. /* Only the BSP gets external NMIs from the system: */
  677. if (!smp_processor_id())
  678. reason = get_nmi_reason();
  679. if (!(reason & 0xc0)) {
  680. if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
  681. == NOTIFY_STOP)
  682. return;
  683. #ifdef CONFIG_X86_LOCAL_APIC
  684. /*
  685. * Ok, so this is none of the documented NMI sources,
  686. * so it must be the NMI watchdog.
  687. */
  688. if (nmi_watchdog_tick(regs, reason))
  689. return;
  690. if (!do_nmi_callback(regs, smp_processor_id()))
  691. unknown_nmi_error(reason, regs);
  692. #else
  693. unknown_nmi_error(reason, regs);
  694. #endif
  695. return;
  696. }
  697. if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
  698. return;
  699. if (reason & 0x80)
  700. mem_parity_error(reason, regs);
  701. if (reason & 0x40)
  702. io_check_error(reason, regs);
  703. /*
  704. * Reassert NMI in case it became active meanwhile
  705. * as it's edge-triggered:
  706. */
  707. reassert_nmi();
  708. }
  709. static int ignore_nmis;
  710. notrace __kprobes void do_nmi(struct pt_regs *regs, long error_code)
  711. {
  712. int cpu;
  713. nmi_enter();
  714. cpu = smp_processor_id();
  715. ++nmi_count(cpu);
  716. if (!ignore_nmis)
  717. default_do_nmi(regs);
  718. nmi_exit();
  719. }
  720. void stop_nmi(void)
  721. {
  722. acpi_nmi_disable();
  723. ignore_nmis++;
  724. }
  725. void restart_nmi(void)
  726. {
  727. ignore_nmis--;
  728. acpi_nmi_enable();
  729. }
  730. #ifdef CONFIG_KPROBES
  731. void __kprobes do_int3(struct pt_regs *regs, long error_code)
  732. {
  733. trace_hardirqs_fixup();
  734. if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
  735. == NOTIFY_STOP)
  736. return;
  737. /*
  738. * This is an interrupt gate, because kprobes wants interrupts
  739. * disabled. Normal trap handlers don't.
  740. */
  741. restore_interrupts(regs);
  742. do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
  743. }
  744. #endif
  745. /*
  746. * Our handling of the processor debug registers is non-trivial.
  747. * We do not clear them on entry and exit from the kernel. Therefore
  748. * it is possible to get a watchpoint trap here from inside the kernel.
  749. * However, the code in ./ptrace.c has ensured that the user can
  750. * only set watchpoints on userspace addresses. Therefore the in-kernel
  751. * watchpoint trap can only occur in code which is reading/writing
  752. * from user space. Such code must not hold kernel locks (since it
  753. * can equally take a page fault), therefore it is safe to call
  754. * force_sig_info even though that claims and releases locks.
  755. *
  756. * Code in ./signal.c ensures that the debug control register
  757. * is restored before we deliver any signal, and therefore that
  758. * user code runs with the correct debug control register even though
  759. * we clear it here.
  760. *
  761. * Being careful here means that we don't have to be as careful in a
  762. * lot of more complicated places (task switching can be a bit lazy
  763. * about restoring all the debug state, and ptrace doesn't have to
  764. * find every occurrence of the TF bit that could be saved away even
  765. * by user code)
  766. */
  767. void __kprobes do_debug(struct pt_regs *regs, long error_code)
  768. {
  769. struct task_struct *tsk = current;
  770. unsigned int condition;
  771. trace_hardirqs_fixup();
  772. get_debugreg(condition, 6);
  773. /*
  774. * The processor cleared BTF, so don't mark that we need it set.
  775. */
  776. clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR);
  777. tsk->thread.debugctlmsr = 0;
  778. if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
  779. SIGTRAP) == NOTIFY_STOP)
  780. return;
  781. /* It's safe to allow irq's after DR6 has been saved */
  782. if (regs->flags & X86_EFLAGS_IF)
  783. local_irq_enable();
  784. /* Mask out spurious debug traps due to lazy DR7 setting */
  785. if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
  786. if (!tsk->thread.debugreg7)
  787. goto clear_dr7;
  788. }
  789. if (regs->flags & X86_VM_MASK)
  790. goto debug_vm86;
  791. /* Save debug status register where ptrace can see it */
  792. tsk->thread.debugreg6 = condition;
  793. /*
  794. * Single-stepping through TF: make sure we ignore any events in
  795. * kernel space (but re-enable TF when returning to user mode).
  796. */
  797. if (condition & DR_STEP) {
  798. /*
  799. * We already checked v86 mode above, so we can
  800. * check for kernel mode by just checking the CPL
  801. * of CS.
  802. */
  803. if (!user_mode(regs))
  804. goto clear_TF_reenable;
  805. }
  806. /* Ok, finally something we can handle */
  807. send_sigtrap(tsk, regs, error_code);
  808. /*
  809. * Disable additional traps. They'll be re-enabled when
  810. * the signal is delivered.
  811. */
  812. clear_dr7:
  813. set_debugreg(0, 7);
  814. return;
  815. debug_vm86:
  816. handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
  817. return;
  818. clear_TF_reenable:
  819. set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
  820. regs->flags &= ~X86_EFLAGS_TF;
  821. return;
  822. }
  823. /*
  824. * Note that we play around with the 'TS' bit in an attempt to get
  825. * the correct behaviour even in the presence of the asynchronous
  826. * IRQ13 behaviour
  827. */
  828. void math_error(void __user *ip)
  829. {
  830. struct task_struct *task;
  831. unsigned short cwd;
  832. unsigned short swd;
  833. siginfo_t info;
  834. /*
  835. * Save the info for the exception handler and clear the error.
  836. */
  837. task = current;
  838. save_init_fpu(task);
  839. task->thread.trap_no = 16;
  840. task->thread.error_code = 0;
  841. info.si_signo = SIGFPE;
  842. info.si_errno = 0;
  843. info.si_code = __SI_FAULT;
  844. info.si_addr = ip;
  845. /*
  846. * (~cwd & swd) will mask out exceptions that are not set to unmasked
  847. * status. 0x3f is the exception bits in these regs, 0x200 is the
  848. * C1 reg you need in case of a stack fault, 0x040 is the stack
  849. * fault bit. We should only be taking one exception at a time,
  850. * so if this combination doesn't produce any single exception,
  851. * then we have a bad program that isn't syncronizing its FPU usage
  852. * and it will suffer the consequences since we won't be able to
  853. * fully reproduce the context of the exception
  854. */
  855. cwd = get_fpu_cwd(task);
  856. swd = get_fpu_swd(task);
  857. switch (swd & ~cwd & 0x3f) {
  858. case 0x000: /* No unmasked exception */
  859. return;
  860. default: /* Multiple exceptions */
  861. break;
  862. case 0x001: /* Invalid Op */
  863. /*
  864. * swd & 0x240 == 0x040: Stack Underflow
  865. * swd & 0x240 == 0x240: Stack Overflow
  866. * User must clear the SF bit (0x40) if set
  867. */
  868. info.si_code = FPE_FLTINV;
  869. break;
  870. case 0x002: /* Denormalize */
  871. case 0x010: /* Underflow */
  872. info.si_code = FPE_FLTUND;
  873. break;
  874. case 0x004: /* Zero Divide */
  875. info.si_code = FPE_FLTDIV;
  876. break;
  877. case 0x008: /* Overflow */
  878. info.si_code = FPE_FLTOVF;
  879. break;
  880. case 0x020: /* Precision */
  881. info.si_code = FPE_FLTRES;
  882. break;
  883. }
  884. force_sig_info(SIGFPE, &info, task);
  885. }
  886. void do_coprocessor_error(struct pt_regs *regs, long error_code)
  887. {
  888. ignore_fpu_irq = 1;
  889. math_error((void __user *)regs->ip);
  890. }
  891. static void simd_math_error(void __user *ip)
  892. {
  893. struct task_struct *task;
  894. unsigned short mxcsr;
  895. siginfo_t info;
  896. /*
  897. * Save the info for the exception handler and clear the error.
  898. */
  899. task = current;
  900. save_init_fpu(task);
  901. task->thread.trap_no = 19;
  902. task->thread.error_code = 0;
  903. info.si_signo = SIGFPE;
  904. info.si_errno = 0;
  905. info.si_code = __SI_FAULT;
  906. info.si_addr = ip;
  907. /*
  908. * The SIMD FPU exceptions are handled a little differently, as there
  909. * is only a single status/control register. Thus, to determine which
  910. * unmasked exception was caught we must mask the exception mask bits
  911. * at 0x1f80, and then use these to mask the exception bits at 0x3f.
  912. */
  913. mxcsr = get_fpu_mxcsr(task);
  914. switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
  915. case 0x000:
  916. default:
  917. break;
  918. case 0x001: /* Invalid Op */
  919. info.si_code = FPE_FLTINV;
  920. break;
  921. case 0x002: /* Denormalize */
  922. case 0x010: /* Underflow */
  923. info.si_code = FPE_FLTUND;
  924. break;
  925. case 0x004: /* Zero Divide */
  926. info.si_code = FPE_FLTDIV;
  927. break;
  928. case 0x008: /* Overflow */
  929. info.si_code = FPE_FLTOVF;
  930. break;
  931. case 0x020: /* Precision */
  932. info.si_code = FPE_FLTRES;
  933. break;
  934. }
  935. force_sig_info(SIGFPE, &info, task);
  936. }
  937. void do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
  938. {
  939. if (cpu_has_xmm) {
  940. /* Handle SIMD FPU exceptions on PIII+ processors. */
  941. ignore_fpu_irq = 1;
  942. simd_math_error((void __user *)regs->ip);
  943. return;
  944. }
  945. /*
  946. * Handle strange cache flush from user space exception
  947. * in all other cases. This is undocumented behaviour.
  948. */
  949. if (regs->flags & X86_VM_MASK) {
  950. handle_vm86_fault((struct kernel_vm86_regs *)regs, error_code);
  951. return;
  952. }
  953. current->thread.trap_no = 19;
  954. current->thread.error_code = error_code;
  955. die_if_kernel("cache flush denied", regs, error_code);
  956. force_sig(SIGSEGV, current);
  957. }
  958. void do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
  959. {
  960. #if 0
  961. /* No need to warn about this any longer. */
  962. printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
  963. #endif
  964. }
  965. unsigned long patch_espfix_desc(unsigned long uesp, unsigned long kesp)
  966. {
  967. struct desc_struct *gdt = __get_cpu_var(gdt_page).gdt;
  968. unsigned long base = (kesp - uesp) & -THREAD_SIZE;
  969. unsigned long new_kesp = kesp - base;
  970. unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT;
  971. __u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS];
  972. /* Set up base for espfix segment */
  973. desc &= 0x00f0ff0000000000ULL;
  974. desc |= ((((__u64)base) << 16) & 0x000000ffffff0000ULL) |
  975. ((((__u64)base) << 32) & 0xff00000000000000ULL) |
  976. ((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) |
  977. (lim_pages & 0xffff);
  978. *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc;
  979. return new_kesp;
  980. }
  981. /*
  982. * 'math_state_restore()' saves the current math information in the
  983. * old math state array, and gets the new ones from the current task
  984. *
  985. * Careful.. There are problems with IBM-designed IRQ13 behaviour.
  986. * Don't touch unless you *really* know how it works.
  987. *
  988. * Must be called with kernel preemption disabled (in this case,
  989. * local interrupts are disabled at the call-site in entry.S).
  990. */
  991. asmlinkage void math_state_restore(void)
  992. {
  993. struct thread_info *thread = current_thread_info();
  994. struct task_struct *tsk = thread->task;
  995. if (!tsk_used_math(tsk)) {
  996. local_irq_enable();
  997. /*
  998. * does a slab alloc which can sleep
  999. */
  1000. if (init_fpu(tsk)) {
  1001. /*
  1002. * ran out of memory!
  1003. */
  1004. do_group_exit(SIGKILL);
  1005. return;
  1006. }
  1007. local_irq_disable();
  1008. }
  1009. clts(); /* Allow maths ops (or we recurse) */
  1010. restore_fpu(tsk);
  1011. thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
  1012. tsk->fpu_counter++;
  1013. }
  1014. EXPORT_SYMBOL_GPL(math_state_restore);
  1015. #ifndef CONFIG_MATH_EMULATION
  1016. asmlinkage void math_emulate(long arg)
  1017. {
  1018. printk(KERN_EMERG
  1019. "math-emulation not enabled and no coprocessor found.\n");
  1020. printk(KERN_EMERG "killing %s.\n", current->comm);
  1021. force_sig(SIGFPE, current);
  1022. schedule();
  1023. }
  1024. #endif /* CONFIG_MATH_EMULATION */
  1025. void __init trap_init(void)
  1026. {
  1027. int i;
  1028. #ifdef CONFIG_EISA
  1029. void __iomem *p = early_ioremap(0x0FFFD9, 4);
  1030. if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
  1031. EISA_bus = 1;
  1032. early_iounmap(p, 4);
  1033. #endif
  1034. #ifdef CONFIG_X86_LOCAL_APIC
  1035. init_apic_mappings();
  1036. #endif
  1037. set_trap_gate(0, &divide_error);
  1038. set_intr_gate(1, &debug);
  1039. set_intr_gate(2, &nmi);
  1040. set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
  1041. set_system_gate(4, &overflow);
  1042. set_trap_gate(5, &bounds);
  1043. set_trap_gate(6, &invalid_op);
  1044. set_trap_gate(7, &device_not_available);
  1045. set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS);
  1046. set_trap_gate(9, &coprocessor_segment_overrun);
  1047. set_trap_gate(10, &invalid_TSS);
  1048. set_trap_gate(11, &segment_not_present);
  1049. set_trap_gate(12, &stack_segment);
  1050. set_trap_gate(13, &general_protection);
  1051. set_intr_gate(14, &page_fault);
  1052. set_trap_gate(15, &spurious_interrupt_bug);
  1053. set_trap_gate(16, &coprocessor_error);
  1054. set_trap_gate(17, &alignment_check);
  1055. #ifdef CONFIG_X86_MCE
  1056. set_trap_gate(18, &machine_check);
  1057. #endif
  1058. set_trap_gate(19, &simd_coprocessor_error);
  1059. if (cpu_has_fxsr) {
  1060. printk(KERN_INFO "Enabling fast FPU save and restore... ");
  1061. set_in_cr4(X86_CR4_OSFXSR);
  1062. printk("done.\n");
  1063. }
  1064. if (cpu_has_xmm) {
  1065. printk(KERN_INFO
  1066. "Enabling unmasked SIMD FPU exception support... ");
  1067. set_in_cr4(X86_CR4_OSXMMEXCPT);
  1068. printk("done.\n");
  1069. }
  1070. set_system_gate(SYSCALL_VECTOR, &system_call);
  1071. /* Reserve all the builtin and the syscall vector: */
  1072. for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
  1073. set_bit(i, used_vectors);
  1074. set_bit(SYSCALL_VECTOR, used_vectors);
  1075. init_thread_xstate();
  1076. /*
  1077. * Should be a barrier for any external CPU state:
  1078. */
  1079. cpu_init();
  1080. trap_init_hook();
  1081. }
  1082. static int __init kstack_setup(char *s)
  1083. {
  1084. kstack_depth_to_print = simple_strtoul(s, NULL, 0);
  1085. return 1;
  1086. }
  1087. __setup("kstack=", kstack_setup);
  1088. static int __init code_bytes_setup(char *s)
  1089. {
  1090. code_bytes = simple_strtoul(s, NULL, 0);
  1091. if (code_bytes > 8192)
  1092. code_bytes = 8192;
  1093. return 1;
  1094. }
  1095. __setup("code_bytes=", code_bytes_setup);