hpet.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715
  1. #include <linux/clocksource.h>
  2. #include <linux/clockchips.h>
  3. #include <linux/delay.h>
  4. #include <linux/errno.h>
  5. #include <linux/hpet.h>
  6. #include <linux/init.h>
  7. #include <linux/sysdev.h>
  8. #include <linux/pm.h>
  9. #include <asm/fixmap.h>
  10. #include <asm/hpet.h>
  11. #include <asm/i8253.h>
  12. #include <asm/io.h>
  13. #define HPET_MASK CLOCKSOURCE_MASK(32)
  14. #define HPET_SHIFT 22
  15. /* FSEC = 10^-15
  16. NSEC = 10^-9 */
  17. #define FSEC_PER_NSEC 1000000
  18. /*
  19. * HPET address is set in acpi/boot.c, when an ACPI entry exists
  20. */
  21. unsigned long hpet_address;
  22. static void __iomem *hpet_virt_address;
  23. unsigned long hpet_readl(unsigned long a)
  24. {
  25. return readl(hpet_virt_address + a);
  26. }
  27. static inline void hpet_writel(unsigned long d, unsigned long a)
  28. {
  29. writel(d, hpet_virt_address + a);
  30. }
  31. #ifdef CONFIG_X86_64
  32. #include <asm/pgtable.h>
  33. static inline void hpet_set_mapping(void)
  34. {
  35. set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
  36. __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
  37. hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
  38. }
  39. static inline void hpet_clear_mapping(void)
  40. {
  41. hpet_virt_address = NULL;
  42. }
  43. #else
  44. static inline void hpet_set_mapping(void)
  45. {
  46. hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  47. }
  48. static inline void hpet_clear_mapping(void)
  49. {
  50. iounmap(hpet_virt_address);
  51. hpet_virt_address = NULL;
  52. }
  53. #endif
  54. /*
  55. * HPET command line enable / disable
  56. */
  57. static int boot_hpet_disable;
  58. int hpet_force_user;
  59. static int __init hpet_setup(char* str)
  60. {
  61. if (str) {
  62. if (!strncmp("disable", str, 7))
  63. boot_hpet_disable = 1;
  64. if (!strncmp("force", str, 5))
  65. hpet_force_user = 1;
  66. }
  67. return 1;
  68. }
  69. __setup("hpet=", hpet_setup);
  70. static int __init disable_hpet(char *str)
  71. {
  72. boot_hpet_disable = 1;
  73. return 1;
  74. }
  75. __setup("nohpet", disable_hpet);
  76. static inline int is_hpet_capable(void)
  77. {
  78. return (!boot_hpet_disable && hpet_address);
  79. }
  80. /*
  81. * HPET timer interrupt enable / disable
  82. */
  83. static int hpet_legacy_int_enabled;
  84. /**
  85. * is_hpet_enabled - check whether the hpet timer interrupt is enabled
  86. */
  87. int is_hpet_enabled(void)
  88. {
  89. return is_hpet_capable() && hpet_legacy_int_enabled;
  90. }
  91. EXPORT_SYMBOL_GPL(is_hpet_enabled);
  92. /*
  93. * When the hpet driver (/dev/hpet) is enabled, we need to reserve
  94. * timer 0 and timer 1 in case of RTC emulation.
  95. */
  96. #ifdef CONFIG_HPET
  97. static void hpet_reserve_platform_timers(unsigned long id)
  98. {
  99. struct hpet __iomem *hpet = hpet_virt_address;
  100. struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
  101. unsigned int nrtimers, i;
  102. struct hpet_data hd;
  103. nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
  104. memset(&hd, 0, sizeof (hd));
  105. hd.hd_phys_address = hpet_address;
  106. hd.hd_address = hpet;
  107. hd.hd_nirqs = nrtimers;
  108. hd.hd_flags = HPET_DATA_PLATFORM;
  109. hpet_reserve_timer(&hd, 0);
  110. #ifdef CONFIG_HPET_EMULATE_RTC
  111. hpet_reserve_timer(&hd, 1);
  112. #endif
  113. hd.hd_irq[0] = HPET_LEGACY_8254;
  114. hd.hd_irq[1] = HPET_LEGACY_RTC;
  115. for (i = 2; i < nrtimers; timer++, i++)
  116. hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
  117. Tn_INT_ROUTE_CNF_SHIFT;
  118. hpet_alloc(&hd);
  119. }
  120. #else
  121. static void hpet_reserve_platform_timers(unsigned long id) { }
  122. #endif
  123. /*
  124. * Common hpet info
  125. */
  126. static unsigned long hpet_period;
  127. static void hpet_legacy_set_mode(enum clock_event_mode mode,
  128. struct clock_event_device *evt);
  129. static int hpet_legacy_next_event(unsigned long delta,
  130. struct clock_event_device *evt);
  131. /*
  132. * The hpet clock event device
  133. */
  134. static struct clock_event_device hpet_clockevent = {
  135. .name = "hpet",
  136. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  137. .set_mode = hpet_legacy_set_mode,
  138. .set_next_event = hpet_legacy_next_event,
  139. .shift = 32,
  140. .irq = 0,
  141. .rating = 50,
  142. };
  143. static void hpet_start_counter(void)
  144. {
  145. unsigned long cfg = hpet_readl(HPET_CFG);
  146. cfg &= ~HPET_CFG_ENABLE;
  147. hpet_writel(cfg, HPET_CFG);
  148. hpet_writel(0, HPET_COUNTER);
  149. hpet_writel(0, HPET_COUNTER + 4);
  150. cfg |= HPET_CFG_ENABLE;
  151. hpet_writel(cfg, HPET_CFG);
  152. }
  153. static void hpet_resume_device(void)
  154. {
  155. force_hpet_resume();
  156. }
  157. static void hpet_restart_counter(void)
  158. {
  159. hpet_resume_device();
  160. hpet_start_counter();
  161. }
  162. static void hpet_enable_legacy_int(void)
  163. {
  164. unsigned long cfg = hpet_readl(HPET_CFG);
  165. cfg |= HPET_CFG_LEGACY;
  166. hpet_writel(cfg, HPET_CFG);
  167. hpet_legacy_int_enabled = 1;
  168. }
  169. static void hpet_legacy_clockevent_register(void)
  170. {
  171. uint64_t hpet_freq;
  172. /* Start HPET legacy interrupts */
  173. hpet_enable_legacy_int();
  174. /*
  175. * The period is a femto seconds value. We need to calculate the
  176. * scaled math multiplication factor for nanosecond to hpet tick
  177. * conversion.
  178. */
  179. hpet_freq = 1000000000000000ULL;
  180. do_div(hpet_freq, hpet_period);
  181. hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
  182. NSEC_PER_SEC, 32);
  183. /* Calculate the min / max delta */
  184. hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
  185. &hpet_clockevent);
  186. hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
  187. &hpet_clockevent);
  188. /*
  189. * Start hpet with the boot cpu mask and make it
  190. * global after the IO_APIC has been initialized.
  191. */
  192. hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
  193. clockevents_register_device(&hpet_clockevent);
  194. global_clock_event = &hpet_clockevent;
  195. printk(KERN_DEBUG "hpet clockevent registered\n");
  196. }
  197. static void hpet_legacy_set_mode(enum clock_event_mode mode,
  198. struct clock_event_device *evt)
  199. {
  200. unsigned long cfg, cmp, now;
  201. uint64_t delta;
  202. switch(mode) {
  203. case CLOCK_EVT_MODE_PERIODIC:
  204. delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
  205. delta >>= hpet_clockevent.shift;
  206. now = hpet_readl(HPET_COUNTER);
  207. cmp = now + (unsigned long) delta;
  208. cfg = hpet_readl(HPET_T0_CFG);
  209. cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
  210. HPET_TN_SETVAL | HPET_TN_32BIT;
  211. hpet_writel(cfg, HPET_T0_CFG);
  212. /*
  213. * The first write after writing TN_SETVAL to the
  214. * config register sets the counter value, the second
  215. * write sets the period.
  216. */
  217. hpet_writel(cmp, HPET_T0_CMP);
  218. udelay(1);
  219. hpet_writel((unsigned long) delta, HPET_T0_CMP);
  220. break;
  221. case CLOCK_EVT_MODE_ONESHOT:
  222. cfg = hpet_readl(HPET_T0_CFG);
  223. cfg &= ~HPET_TN_PERIODIC;
  224. cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
  225. hpet_writel(cfg, HPET_T0_CFG);
  226. break;
  227. case CLOCK_EVT_MODE_UNUSED:
  228. case CLOCK_EVT_MODE_SHUTDOWN:
  229. cfg = hpet_readl(HPET_T0_CFG);
  230. cfg &= ~HPET_TN_ENABLE;
  231. hpet_writel(cfg, HPET_T0_CFG);
  232. break;
  233. case CLOCK_EVT_MODE_RESUME:
  234. hpet_enable_legacy_int();
  235. break;
  236. }
  237. }
  238. static int hpet_legacy_next_event(unsigned long delta,
  239. struct clock_event_device *evt)
  240. {
  241. unsigned long cnt;
  242. cnt = hpet_readl(HPET_COUNTER);
  243. cnt += delta;
  244. hpet_writel(cnt, HPET_T0_CMP);
  245. return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
  246. }
  247. /*
  248. * Clock source related code
  249. */
  250. static cycle_t read_hpet(void)
  251. {
  252. return (cycle_t)hpet_readl(HPET_COUNTER);
  253. }
  254. #ifdef CONFIG_X86_64
  255. static cycle_t __vsyscall_fn vread_hpet(void)
  256. {
  257. return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
  258. }
  259. #endif
  260. static struct clocksource clocksource_hpet = {
  261. .name = "hpet",
  262. .rating = 250,
  263. .read = read_hpet,
  264. .mask = HPET_MASK,
  265. .shift = HPET_SHIFT,
  266. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  267. .resume = hpet_restart_counter,
  268. #ifdef CONFIG_X86_64
  269. .vread = vread_hpet,
  270. #endif
  271. };
  272. static int hpet_clocksource_register(void)
  273. {
  274. u64 tmp, start, now;
  275. cycle_t t1;
  276. /* Start the counter */
  277. hpet_start_counter();
  278. /* Verify whether hpet counter works */
  279. t1 = read_hpet();
  280. rdtscll(start);
  281. /*
  282. * We don't know the TSC frequency yet, but waiting for
  283. * 200000 TSC cycles is safe:
  284. * 4 GHz == 50us
  285. * 1 GHz == 200us
  286. */
  287. do {
  288. rep_nop();
  289. rdtscll(now);
  290. } while ((now - start) < 200000UL);
  291. if (t1 == read_hpet()) {
  292. printk(KERN_WARNING
  293. "HPET counter not counting. HPET disabled\n");
  294. return -ENODEV;
  295. }
  296. /* Initialize and register HPET clocksource
  297. *
  298. * hpet period is in femto seconds per cycle
  299. * so we need to convert this to ns/cyc units
  300. * approximated by mult/2^shift
  301. *
  302. * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
  303. * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
  304. * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
  305. * (fsec/cyc << shift)/1000000 = mult
  306. * (hpet_period << shift)/FSEC_PER_NSEC = mult
  307. */
  308. tmp = (u64)hpet_period << HPET_SHIFT;
  309. do_div(tmp, FSEC_PER_NSEC);
  310. clocksource_hpet.mult = (u32)tmp;
  311. clocksource_register(&clocksource_hpet);
  312. return 0;
  313. }
  314. /**
  315. * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
  316. */
  317. int __init hpet_enable(void)
  318. {
  319. unsigned long id;
  320. if (!is_hpet_capable())
  321. return 0;
  322. hpet_set_mapping();
  323. /*
  324. * Read the period and check for a sane value:
  325. */
  326. hpet_period = hpet_readl(HPET_PERIOD);
  327. if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
  328. goto out_nohpet;
  329. /*
  330. * Read the HPET ID register to retrieve the IRQ routing
  331. * information and the number of channels
  332. */
  333. id = hpet_readl(HPET_ID);
  334. #ifdef CONFIG_HPET_EMULATE_RTC
  335. /*
  336. * The legacy routing mode needs at least two channels, tick timer
  337. * and the rtc emulation channel.
  338. */
  339. if (!(id & HPET_ID_NUMBER))
  340. goto out_nohpet;
  341. #endif
  342. if (hpet_clocksource_register())
  343. goto out_nohpet;
  344. if (id & HPET_ID_LEGSUP) {
  345. hpet_legacy_clockevent_register();
  346. return 1;
  347. }
  348. return 0;
  349. out_nohpet:
  350. hpet_clear_mapping();
  351. boot_hpet_disable = 1;
  352. return 0;
  353. }
  354. /*
  355. * Needs to be late, as the reserve_timer code calls kalloc !
  356. *
  357. * Not a problem on i386 as hpet_enable is called from late_time_init,
  358. * but on x86_64 it is necessary !
  359. */
  360. static __init int hpet_late_init(void)
  361. {
  362. if (boot_hpet_disable)
  363. return -ENODEV;
  364. if (!hpet_address) {
  365. if (!force_hpet_address)
  366. return -ENODEV;
  367. hpet_address = force_hpet_address;
  368. hpet_enable();
  369. if (!hpet_virt_address)
  370. return -ENODEV;
  371. }
  372. hpet_reserve_platform_timers(hpet_readl(HPET_ID));
  373. return 0;
  374. }
  375. fs_initcall(hpet_late_init);
  376. void hpet_disable(void)
  377. {
  378. if (is_hpet_capable()) {
  379. unsigned long cfg = hpet_readl(HPET_CFG);
  380. if (hpet_legacy_int_enabled) {
  381. cfg &= ~HPET_CFG_LEGACY;
  382. hpet_legacy_int_enabled = 0;
  383. }
  384. cfg &= ~HPET_CFG_ENABLE;
  385. hpet_writel(cfg, HPET_CFG);
  386. }
  387. }
  388. #ifdef CONFIG_HPET_EMULATE_RTC
  389. /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
  390. * is enabled, we support RTC interrupt functionality in software.
  391. * RTC has 3 kinds of interrupts:
  392. * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
  393. * is updated
  394. * 2) Alarm Interrupt - generate an interrupt at a specific time of day
  395. * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
  396. * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
  397. * (1) and (2) above are implemented using polling at a frequency of
  398. * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
  399. * overhead. (DEFAULT_RTC_INT_FREQ)
  400. * For (3), we use interrupts at 64Hz or user specified periodic
  401. * frequency, whichever is higher.
  402. */
  403. #include <linux/mc146818rtc.h>
  404. #include <linux/rtc.h>
  405. #include <asm/rtc.h>
  406. #define DEFAULT_RTC_INT_FREQ 64
  407. #define DEFAULT_RTC_SHIFT 6
  408. #define RTC_NUM_INTS 1
  409. static unsigned long hpet_rtc_flags;
  410. static unsigned long hpet_prev_update_sec;
  411. static struct rtc_time hpet_alarm_time;
  412. static unsigned long hpet_pie_count;
  413. static unsigned long hpet_t1_cmp;
  414. static unsigned long hpet_default_delta;
  415. static unsigned long hpet_pie_delta;
  416. static unsigned long hpet_pie_limit;
  417. static rtc_irq_handler irq_handler;
  418. /*
  419. * Registers a IRQ handler.
  420. */
  421. int hpet_register_irq_handler(rtc_irq_handler handler)
  422. {
  423. if (!is_hpet_enabled())
  424. return -ENODEV;
  425. if (irq_handler)
  426. return -EBUSY;
  427. irq_handler = handler;
  428. return 0;
  429. }
  430. EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
  431. /*
  432. * Deregisters the IRQ handler registered with hpet_register_irq_handler()
  433. * and does cleanup.
  434. */
  435. void hpet_unregister_irq_handler(rtc_irq_handler handler)
  436. {
  437. if (!is_hpet_enabled())
  438. return;
  439. irq_handler = NULL;
  440. hpet_rtc_flags = 0;
  441. }
  442. EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
  443. /*
  444. * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
  445. * is not supported by all HPET implementations for timer 1.
  446. *
  447. * hpet_rtc_timer_init() is called when the rtc is initialized.
  448. */
  449. int hpet_rtc_timer_init(void)
  450. {
  451. unsigned long cfg, cnt, delta, flags;
  452. if (!is_hpet_enabled())
  453. return 0;
  454. if (!hpet_default_delta) {
  455. uint64_t clc;
  456. clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
  457. clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
  458. hpet_default_delta = (unsigned long) clc;
  459. }
  460. if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
  461. delta = hpet_default_delta;
  462. else
  463. delta = hpet_pie_delta;
  464. local_irq_save(flags);
  465. cnt = delta + hpet_readl(HPET_COUNTER);
  466. hpet_writel(cnt, HPET_T1_CMP);
  467. hpet_t1_cmp = cnt;
  468. cfg = hpet_readl(HPET_T1_CFG);
  469. cfg &= ~HPET_TN_PERIODIC;
  470. cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
  471. hpet_writel(cfg, HPET_T1_CFG);
  472. local_irq_restore(flags);
  473. return 1;
  474. }
  475. EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
  476. /*
  477. * The functions below are called from rtc driver.
  478. * Return 0 if HPET is not being used.
  479. * Otherwise do the necessary changes and return 1.
  480. */
  481. int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
  482. {
  483. if (!is_hpet_enabled())
  484. return 0;
  485. hpet_rtc_flags &= ~bit_mask;
  486. return 1;
  487. }
  488. EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
  489. int hpet_set_rtc_irq_bit(unsigned long bit_mask)
  490. {
  491. unsigned long oldbits = hpet_rtc_flags;
  492. if (!is_hpet_enabled())
  493. return 0;
  494. hpet_rtc_flags |= bit_mask;
  495. if (!oldbits)
  496. hpet_rtc_timer_init();
  497. return 1;
  498. }
  499. EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
  500. int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
  501. unsigned char sec)
  502. {
  503. if (!is_hpet_enabled())
  504. return 0;
  505. hpet_alarm_time.tm_hour = hrs;
  506. hpet_alarm_time.tm_min = min;
  507. hpet_alarm_time.tm_sec = sec;
  508. return 1;
  509. }
  510. EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
  511. int hpet_set_periodic_freq(unsigned long freq)
  512. {
  513. uint64_t clc;
  514. if (!is_hpet_enabled())
  515. return 0;
  516. if (freq <= DEFAULT_RTC_INT_FREQ)
  517. hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
  518. else {
  519. clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
  520. do_div(clc, freq);
  521. clc >>= hpet_clockevent.shift;
  522. hpet_pie_delta = (unsigned long) clc;
  523. }
  524. return 1;
  525. }
  526. EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
  527. int hpet_rtc_dropped_irq(void)
  528. {
  529. return is_hpet_enabled();
  530. }
  531. EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
  532. static void hpet_rtc_timer_reinit(void)
  533. {
  534. unsigned long cfg, delta;
  535. int lost_ints = -1;
  536. if (unlikely(!hpet_rtc_flags)) {
  537. cfg = hpet_readl(HPET_T1_CFG);
  538. cfg &= ~HPET_TN_ENABLE;
  539. hpet_writel(cfg, HPET_T1_CFG);
  540. return;
  541. }
  542. if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
  543. delta = hpet_default_delta;
  544. else
  545. delta = hpet_pie_delta;
  546. /*
  547. * Increment the comparator value until we are ahead of the
  548. * current count.
  549. */
  550. do {
  551. hpet_t1_cmp += delta;
  552. hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
  553. lost_ints++;
  554. } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
  555. if (lost_ints) {
  556. if (hpet_rtc_flags & RTC_PIE)
  557. hpet_pie_count += lost_ints;
  558. if (printk_ratelimit())
  559. printk(KERN_WARNING "rtc: lost %d interrupts\n",
  560. lost_ints);
  561. }
  562. }
  563. irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
  564. {
  565. struct rtc_time curr_time;
  566. unsigned long rtc_int_flag = 0;
  567. hpet_rtc_timer_reinit();
  568. memset(&curr_time, 0, sizeof(struct rtc_time));
  569. if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
  570. get_rtc_time(&curr_time);
  571. if (hpet_rtc_flags & RTC_UIE &&
  572. curr_time.tm_sec != hpet_prev_update_sec) {
  573. rtc_int_flag = RTC_UF;
  574. hpet_prev_update_sec = curr_time.tm_sec;
  575. }
  576. if (hpet_rtc_flags & RTC_PIE &&
  577. ++hpet_pie_count >= hpet_pie_limit) {
  578. rtc_int_flag |= RTC_PF;
  579. hpet_pie_count = 0;
  580. }
  581. if (hpet_rtc_flags & RTC_AIE &&
  582. (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
  583. (curr_time.tm_min == hpet_alarm_time.tm_min) &&
  584. (curr_time.tm_hour == hpet_alarm_time.tm_hour))
  585. rtc_int_flag |= RTC_AF;
  586. if (rtc_int_flag) {
  587. rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
  588. if (irq_handler)
  589. irq_handler(rtc_int_flag, dev_id);
  590. }
  591. return IRQ_HANDLED;
  592. }
  593. EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
  594. #endif