smp.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475
  1. /* smp.c: Sparc64 SMP support.
  2. *
  3. * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/kernel.h>
  7. #include <linux/sched.h>
  8. #include <linux/mm.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/threads.h>
  11. #include <linux/smp.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/delay.h>
  15. #include <linux/init.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/cache.h>
  20. #include <linux/jiffies.h>
  21. #include <linux/profile.h>
  22. #include <linux/lmb.h>
  23. #include <asm/head.h>
  24. #include <asm/ptrace.h>
  25. #include <asm/atomic.h>
  26. #include <asm/tlbflush.h>
  27. #include <asm/mmu_context.h>
  28. #include <asm/cpudata.h>
  29. #include <asm/hvtramp.h>
  30. #include <asm/io.h>
  31. #include <asm/timer.h>
  32. #include <asm/irq.h>
  33. #include <asm/irq_regs.h>
  34. #include <asm/page.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/oplib.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/timer.h>
  39. #include <asm/starfire.h>
  40. #include <asm/tlb.h>
  41. #include <asm/sections.h>
  42. #include <asm/prom.h>
  43. #include <asm/mdesc.h>
  44. #include <asm/ldc.h>
  45. #include <asm/hypervisor.h>
  46. int sparc64_multi_core __read_mostly;
  47. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
  48. cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
  49. DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  50. cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  51. { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  52. EXPORT_SYMBOL(cpu_possible_map);
  53. EXPORT_SYMBOL(cpu_online_map);
  54. EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  55. EXPORT_SYMBOL(cpu_core_map);
  56. static cpumask_t smp_commenced_mask;
  57. void smp_info(struct seq_file *m)
  58. {
  59. int i;
  60. seq_printf(m, "State:\n");
  61. for_each_online_cpu(i)
  62. seq_printf(m, "CPU%d:\t\tonline\n", i);
  63. }
  64. void smp_bogo(struct seq_file *m)
  65. {
  66. int i;
  67. for_each_online_cpu(i)
  68. seq_printf(m,
  69. "Cpu%dClkTck\t: %016lx\n",
  70. i, cpu_data(i).clock_tick);
  71. }
  72. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
  73. extern void setup_sparc64_timer(void);
  74. static volatile unsigned long callin_flag = 0;
  75. void __cpuinit smp_callin(void)
  76. {
  77. int cpuid = hard_smp_processor_id();
  78. __local_per_cpu_offset = __per_cpu_offset(cpuid);
  79. if (tlb_type == hypervisor)
  80. sun4v_ktsb_register();
  81. __flush_tlb_all();
  82. setup_sparc64_timer();
  83. if (cheetah_pcache_forced_on)
  84. cheetah_enable_pcache();
  85. local_irq_enable();
  86. callin_flag = 1;
  87. __asm__ __volatile__("membar #Sync\n\t"
  88. "flush %%g6" : : : "memory");
  89. /* Clear this or we will die instantly when we
  90. * schedule back to this idler...
  91. */
  92. current_thread_info()->new_child = 0;
  93. /* Attach to the address space of init_task. */
  94. atomic_inc(&init_mm.mm_count);
  95. current->active_mm = &init_mm;
  96. while (!cpu_isset(cpuid, smp_commenced_mask))
  97. rmb();
  98. spin_lock(&call_lock);
  99. cpu_set(cpuid, cpu_online_map);
  100. spin_unlock(&call_lock);
  101. /* idle thread is expected to have preempt disabled */
  102. preempt_disable();
  103. }
  104. void cpu_panic(void)
  105. {
  106. printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
  107. panic("SMP bolixed\n");
  108. }
  109. /* This tick register synchronization scheme is taken entirely from
  110. * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
  111. *
  112. * The only change I've made is to rework it so that the master
  113. * initiates the synchonization instead of the slave. -DaveM
  114. */
  115. #define MASTER 0
  116. #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
  117. #define NUM_ROUNDS 64 /* magic value */
  118. #define NUM_ITERS 5 /* likewise */
  119. static DEFINE_SPINLOCK(itc_sync_lock);
  120. static unsigned long go[SLAVE + 1];
  121. #define DEBUG_TICK_SYNC 0
  122. static inline long get_delta (long *rt, long *master)
  123. {
  124. unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
  125. unsigned long tcenter, t0, t1, tm;
  126. unsigned long i;
  127. for (i = 0; i < NUM_ITERS; i++) {
  128. t0 = tick_ops->get_tick();
  129. go[MASTER] = 1;
  130. membar_storeload();
  131. while (!(tm = go[SLAVE]))
  132. rmb();
  133. go[SLAVE] = 0;
  134. wmb();
  135. t1 = tick_ops->get_tick();
  136. if (t1 - t0 < best_t1 - best_t0)
  137. best_t0 = t0, best_t1 = t1, best_tm = tm;
  138. }
  139. *rt = best_t1 - best_t0;
  140. *master = best_tm - best_t0;
  141. /* average best_t0 and best_t1 without overflow: */
  142. tcenter = (best_t0/2 + best_t1/2);
  143. if (best_t0 % 2 + best_t1 % 2 == 2)
  144. tcenter++;
  145. return tcenter - best_tm;
  146. }
  147. void smp_synchronize_tick_client(void)
  148. {
  149. long i, delta, adj, adjust_latency = 0, done = 0;
  150. unsigned long flags, rt, master_time_stamp, bound;
  151. #if DEBUG_TICK_SYNC
  152. struct {
  153. long rt; /* roundtrip time */
  154. long master; /* master's timestamp */
  155. long diff; /* difference between midpoint and master's timestamp */
  156. long lat; /* estimate of itc adjustment latency */
  157. } t[NUM_ROUNDS];
  158. #endif
  159. go[MASTER] = 1;
  160. while (go[MASTER])
  161. rmb();
  162. local_irq_save(flags);
  163. {
  164. for (i = 0; i < NUM_ROUNDS; i++) {
  165. delta = get_delta(&rt, &master_time_stamp);
  166. if (delta == 0) {
  167. done = 1; /* let's lock on to this... */
  168. bound = rt;
  169. }
  170. if (!done) {
  171. if (i > 0) {
  172. adjust_latency += -delta;
  173. adj = -delta + adjust_latency/4;
  174. } else
  175. adj = -delta;
  176. tick_ops->add_tick(adj);
  177. }
  178. #if DEBUG_TICK_SYNC
  179. t[i].rt = rt;
  180. t[i].master = master_time_stamp;
  181. t[i].diff = delta;
  182. t[i].lat = adjust_latency/4;
  183. #endif
  184. }
  185. }
  186. local_irq_restore(flags);
  187. #if DEBUG_TICK_SYNC
  188. for (i = 0; i < NUM_ROUNDS; i++)
  189. printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
  190. t[i].rt, t[i].master, t[i].diff, t[i].lat);
  191. #endif
  192. printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
  193. "(last diff %ld cycles, maxerr %lu cycles)\n",
  194. smp_processor_id(), delta, rt);
  195. }
  196. static void smp_start_sync_tick_client(int cpu);
  197. static void smp_synchronize_one_tick(int cpu)
  198. {
  199. unsigned long flags, i;
  200. go[MASTER] = 0;
  201. smp_start_sync_tick_client(cpu);
  202. /* wait for client to be ready */
  203. while (!go[MASTER])
  204. rmb();
  205. /* now let the client proceed into his loop */
  206. go[MASTER] = 0;
  207. membar_storeload();
  208. spin_lock_irqsave(&itc_sync_lock, flags);
  209. {
  210. for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
  211. while (!go[MASTER])
  212. rmb();
  213. go[MASTER] = 0;
  214. wmb();
  215. go[SLAVE] = tick_ops->get_tick();
  216. membar_storeload();
  217. }
  218. }
  219. spin_unlock_irqrestore(&itc_sync_lock, flags);
  220. }
  221. #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
  222. /* XXX Put this in some common place. XXX */
  223. static unsigned long kimage_addr_to_ra(void *p)
  224. {
  225. unsigned long val = (unsigned long) p;
  226. return kern_base + (val - KERNBASE);
  227. }
  228. static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
  229. {
  230. extern unsigned long sparc64_ttable_tl0;
  231. extern unsigned long kern_locked_tte_data;
  232. struct hvtramp_descr *hdesc;
  233. unsigned long trampoline_ra;
  234. struct trap_per_cpu *tb;
  235. u64 tte_vaddr, tte_data;
  236. unsigned long hv_err;
  237. int i;
  238. hdesc = kzalloc(sizeof(*hdesc) +
  239. (sizeof(struct hvtramp_mapping) *
  240. num_kernel_image_mappings - 1),
  241. GFP_KERNEL);
  242. if (!hdesc) {
  243. printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
  244. "hvtramp_descr.\n");
  245. return;
  246. }
  247. hdesc->cpu = cpu;
  248. hdesc->num_mappings = num_kernel_image_mappings;
  249. tb = &trap_block[cpu];
  250. tb->hdesc = hdesc;
  251. hdesc->fault_info_va = (unsigned long) &tb->fault_info;
  252. hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
  253. hdesc->thread_reg = thread_reg;
  254. tte_vaddr = (unsigned long) KERNBASE;
  255. tte_data = kern_locked_tte_data;
  256. for (i = 0; i < hdesc->num_mappings; i++) {
  257. hdesc->maps[i].vaddr = tte_vaddr;
  258. hdesc->maps[i].tte = tte_data;
  259. tte_vaddr += 0x400000;
  260. tte_data += 0x400000;
  261. }
  262. trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
  263. hv_err = sun4v_cpu_start(cpu, trampoline_ra,
  264. kimage_addr_to_ra(&sparc64_ttable_tl0),
  265. __pa(hdesc));
  266. if (hv_err)
  267. printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
  268. "gives error %lu\n", hv_err);
  269. }
  270. #endif
  271. extern unsigned long sparc64_cpu_startup;
  272. /* The OBP cpu startup callback truncates the 3rd arg cookie to
  273. * 32-bits (I think) so to be safe we have it read the pointer
  274. * contained here so we work on >4GB machines. -DaveM
  275. */
  276. static struct thread_info *cpu_new_thread = NULL;
  277. static int __devinit smp_boot_one_cpu(unsigned int cpu)
  278. {
  279. struct trap_per_cpu *tb = &trap_block[cpu];
  280. unsigned long entry =
  281. (unsigned long)(&sparc64_cpu_startup);
  282. unsigned long cookie =
  283. (unsigned long)(&cpu_new_thread);
  284. struct task_struct *p;
  285. int timeout, ret;
  286. p = fork_idle(cpu);
  287. if (IS_ERR(p))
  288. return PTR_ERR(p);
  289. callin_flag = 0;
  290. cpu_new_thread = task_thread_info(p);
  291. if (tlb_type == hypervisor) {
  292. #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
  293. if (ldom_domaining_enabled)
  294. ldom_startcpu_cpuid(cpu,
  295. (unsigned long) cpu_new_thread);
  296. else
  297. #endif
  298. prom_startcpu_cpuid(cpu, entry, cookie);
  299. } else {
  300. struct device_node *dp = of_find_node_by_cpuid(cpu);
  301. prom_startcpu(dp->node, entry, cookie);
  302. }
  303. for (timeout = 0; timeout < 50000; timeout++) {
  304. if (callin_flag)
  305. break;
  306. udelay(100);
  307. }
  308. if (callin_flag) {
  309. ret = 0;
  310. } else {
  311. printk("Processor %d is stuck.\n", cpu);
  312. ret = -ENODEV;
  313. }
  314. cpu_new_thread = NULL;
  315. if (tb->hdesc) {
  316. kfree(tb->hdesc);
  317. tb->hdesc = NULL;
  318. }
  319. return ret;
  320. }
  321. static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
  322. {
  323. u64 result, target;
  324. int stuck, tmp;
  325. if (this_is_starfire) {
  326. /* map to real upaid */
  327. cpu = (((cpu & 0x3c) << 1) |
  328. ((cpu & 0x40) >> 4) |
  329. (cpu & 0x3));
  330. }
  331. target = (cpu << 14) | 0x70;
  332. again:
  333. /* Ok, this is the real Spitfire Errata #54.
  334. * One must read back from a UDB internal register
  335. * after writes to the UDB interrupt dispatch, but
  336. * before the membar Sync for that write.
  337. * So we use the high UDB control register (ASI 0x7f,
  338. * ADDR 0x20) for the dummy read. -DaveM
  339. */
  340. tmp = 0x40;
  341. __asm__ __volatile__(
  342. "wrpr %1, %2, %%pstate\n\t"
  343. "stxa %4, [%0] %3\n\t"
  344. "stxa %5, [%0+%8] %3\n\t"
  345. "add %0, %8, %0\n\t"
  346. "stxa %6, [%0+%8] %3\n\t"
  347. "membar #Sync\n\t"
  348. "stxa %%g0, [%7] %3\n\t"
  349. "membar #Sync\n\t"
  350. "mov 0x20, %%g1\n\t"
  351. "ldxa [%%g1] 0x7f, %%g0\n\t"
  352. "membar #Sync"
  353. : "=r" (tmp)
  354. : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
  355. "r" (data0), "r" (data1), "r" (data2), "r" (target),
  356. "r" (0x10), "0" (tmp)
  357. : "g1");
  358. /* NOTE: PSTATE_IE is still clear. */
  359. stuck = 100000;
  360. do {
  361. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  362. : "=r" (result)
  363. : "i" (ASI_INTR_DISPATCH_STAT));
  364. if (result == 0) {
  365. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  366. : : "r" (pstate));
  367. return;
  368. }
  369. stuck -= 1;
  370. if (stuck == 0)
  371. break;
  372. } while (result & 0x1);
  373. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  374. : : "r" (pstate));
  375. if (stuck == 0) {
  376. printk("CPU[%d]: mondo stuckage result[%016lx]\n",
  377. smp_processor_id(), result);
  378. } else {
  379. udelay(2);
  380. goto again;
  381. }
  382. }
  383. static inline void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
  384. {
  385. u64 pstate;
  386. int i;
  387. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  388. for_each_cpu_mask(i, mask)
  389. spitfire_xcall_helper(data0, data1, data2, pstate, i);
  390. }
  391. /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
  392. * packet, but we have no use for that. However we do take advantage of
  393. * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
  394. */
  395. static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
  396. {
  397. u64 pstate, ver, busy_mask;
  398. int nack_busy_id, is_jbus, need_more;
  399. if (cpus_empty(mask))
  400. return;
  401. /* Unfortunately, someone at Sun had the brilliant idea to make the
  402. * busy/nack fields hard-coded by ITID number for this Ultra-III
  403. * derivative processor.
  404. */
  405. __asm__ ("rdpr %%ver, %0" : "=r" (ver));
  406. is_jbus = ((ver >> 32) == __JALAPENO_ID ||
  407. (ver >> 32) == __SERRANO_ID);
  408. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  409. retry:
  410. need_more = 0;
  411. __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
  412. : : "r" (pstate), "i" (PSTATE_IE));
  413. /* Setup the dispatch data registers. */
  414. __asm__ __volatile__("stxa %0, [%3] %6\n\t"
  415. "stxa %1, [%4] %6\n\t"
  416. "stxa %2, [%5] %6\n\t"
  417. "membar #Sync\n\t"
  418. : /* no outputs */
  419. : "r" (data0), "r" (data1), "r" (data2),
  420. "r" (0x40), "r" (0x50), "r" (0x60),
  421. "i" (ASI_INTR_W));
  422. nack_busy_id = 0;
  423. busy_mask = 0;
  424. {
  425. int i;
  426. for_each_cpu_mask(i, mask) {
  427. u64 target = (i << 14) | 0x70;
  428. if (is_jbus) {
  429. busy_mask |= (0x1UL << (i * 2));
  430. } else {
  431. target |= (nack_busy_id << 24);
  432. busy_mask |= (0x1UL <<
  433. (nack_busy_id * 2));
  434. }
  435. __asm__ __volatile__(
  436. "stxa %%g0, [%0] %1\n\t"
  437. "membar #Sync\n\t"
  438. : /* no outputs */
  439. : "r" (target), "i" (ASI_INTR_W));
  440. nack_busy_id++;
  441. if (nack_busy_id == 32) {
  442. need_more = 1;
  443. break;
  444. }
  445. }
  446. }
  447. /* Now, poll for completion. */
  448. {
  449. u64 dispatch_stat, nack_mask;
  450. long stuck;
  451. stuck = 100000 * nack_busy_id;
  452. nack_mask = busy_mask << 1;
  453. do {
  454. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  455. : "=r" (dispatch_stat)
  456. : "i" (ASI_INTR_DISPATCH_STAT));
  457. if (!(dispatch_stat & (busy_mask | nack_mask))) {
  458. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  459. : : "r" (pstate));
  460. if (unlikely(need_more)) {
  461. int i, cnt = 0;
  462. for_each_cpu_mask(i, mask) {
  463. cpu_clear(i, mask);
  464. cnt++;
  465. if (cnt == 32)
  466. break;
  467. }
  468. goto retry;
  469. }
  470. return;
  471. }
  472. if (!--stuck)
  473. break;
  474. } while (dispatch_stat & busy_mask);
  475. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  476. : : "r" (pstate));
  477. if (dispatch_stat & busy_mask) {
  478. /* Busy bits will not clear, continue instead
  479. * of freezing up on this cpu.
  480. */
  481. printk("CPU[%d]: mondo stuckage result[%016lx]\n",
  482. smp_processor_id(), dispatch_stat);
  483. } else {
  484. int i, this_busy_nack = 0;
  485. /* Delay some random time with interrupts enabled
  486. * to prevent deadlock.
  487. */
  488. udelay(2 * nack_busy_id);
  489. /* Clear out the mask bits for cpus which did not
  490. * NACK us.
  491. */
  492. for_each_cpu_mask(i, mask) {
  493. u64 check_mask;
  494. if (is_jbus)
  495. check_mask = (0x2UL << (2*i));
  496. else
  497. check_mask = (0x2UL <<
  498. this_busy_nack);
  499. if ((dispatch_stat & check_mask) == 0)
  500. cpu_clear(i, mask);
  501. this_busy_nack += 2;
  502. if (this_busy_nack == 64)
  503. break;
  504. }
  505. goto retry;
  506. }
  507. }
  508. }
  509. /* Multi-cpu list version. */
  510. static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
  511. {
  512. struct trap_per_cpu *tb;
  513. u16 *cpu_list;
  514. u64 *mondo;
  515. cpumask_t error_mask;
  516. unsigned long flags, status;
  517. int cnt, retries, this_cpu, prev_sent, i;
  518. if (cpus_empty(mask))
  519. return;
  520. /* We have to do this whole thing with interrupts fully disabled.
  521. * Otherwise if we send an xcall from interrupt context it will
  522. * corrupt both our mondo block and cpu list state.
  523. *
  524. * One consequence of this is that we cannot use timeout mechanisms
  525. * that depend upon interrupts being delivered locally. So, for
  526. * example, we cannot sample jiffies and expect it to advance.
  527. *
  528. * Fortunately, udelay() uses %stick/%tick so we can use that.
  529. */
  530. local_irq_save(flags);
  531. this_cpu = smp_processor_id();
  532. tb = &trap_block[this_cpu];
  533. mondo = __va(tb->cpu_mondo_block_pa);
  534. mondo[0] = data0;
  535. mondo[1] = data1;
  536. mondo[2] = data2;
  537. wmb();
  538. cpu_list = __va(tb->cpu_list_pa);
  539. /* Setup the initial cpu list. */
  540. cnt = 0;
  541. for_each_cpu_mask(i, mask)
  542. cpu_list[cnt++] = i;
  543. cpus_clear(error_mask);
  544. retries = 0;
  545. prev_sent = 0;
  546. do {
  547. int forward_progress, n_sent;
  548. status = sun4v_cpu_mondo_send(cnt,
  549. tb->cpu_list_pa,
  550. tb->cpu_mondo_block_pa);
  551. /* HV_EOK means all cpus received the xcall, we're done. */
  552. if (likely(status == HV_EOK))
  553. break;
  554. /* First, see if we made any forward progress.
  555. *
  556. * The hypervisor indicates successful sends by setting
  557. * cpu list entries to the value 0xffff.
  558. */
  559. n_sent = 0;
  560. for (i = 0; i < cnt; i++) {
  561. if (likely(cpu_list[i] == 0xffff))
  562. n_sent++;
  563. }
  564. forward_progress = 0;
  565. if (n_sent > prev_sent)
  566. forward_progress = 1;
  567. prev_sent = n_sent;
  568. /* If we get a HV_ECPUERROR, then one or more of the cpus
  569. * in the list are in error state. Use the cpu_state()
  570. * hypervisor call to find out which cpus are in error state.
  571. */
  572. if (unlikely(status == HV_ECPUERROR)) {
  573. for (i = 0; i < cnt; i++) {
  574. long err;
  575. u16 cpu;
  576. cpu = cpu_list[i];
  577. if (cpu == 0xffff)
  578. continue;
  579. err = sun4v_cpu_state(cpu);
  580. if (err >= 0 &&
  581. err == HV_CPU_STATE_ERROR) {
  582. cpu_list[i] = 0xffff;
  583. cpu_set(cpu, error_mask);
  584. }
  585. }
  586. } else if (unlikely(status != HV_EWOULDBLOCK))
  587. goto fatal_mondo_error;
  588. /* Don't bother rewriting the CPU list, just leave the
  589. * 0xffff and non-0xffff entries in there and the
  590. * hypervisor will do the right thing.
  591. *
  592. * Only advance timeout state if we didn't make any
  593. * forward progress.
  594. */
  595. if (unlikely(!forward_progress)) {
  596. if (unlikely(++retries > 10000))
  597. goto fatal_mondo_timeout;
  598. /* Delay a little bit to let other cpus catch up
  599. * on their cpu mondo queue work.
  600. */
  601. udelay(2 * cnt);
  602. }
  603. } while (1);
  604. local_irq_restore(flags);
  605. if (unlikely(!cpus_empty(error_mask)))
  606. goto fatal_mondo_cpu_error;
  607. return;
  608. fatal_mondo_cpu_error:
  609. printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
  610. "were in error state\n",
  611. this_cpu);
  612. printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
  613. for_each_cpu_mask(i, error_mask)
  614. printk("%d ", i);
  615. printk("]\n");
  616. return;
  617. fatal_mondo_timeout:
  618. local_irq_restore(flags);
  619. printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
  620. " progress after %d retries.\n",
  621. this_cpu, retries);
  622. goto dump_cpu_list_and_out;
  623. fatal_mondo_error:
  624. local_irq_restore(flags);
  625. printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
  626. this_cpu, status);
  627. printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
  628. "mondo_block_pa(%lx)\n",
  629. this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
  630. dump_cpu_list_and_out:
  631. printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
  632. for (i = 0; i < cnt; i++)
  633. printk("%u ", cpu_list[i]);
  634. printk("]\n");
  635. }
  636. /* Send cross call to all processors mentioned in MASK
  637. * except self.
  638. */
  639. static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
  640. {
  641. u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
  642. int this_cpu = get_cpu();
  643. cpus_and(mask, mask, cpu_online_map);
  644. cpu_clear(this_cpu, mask);
  645. if (tlb_type == spitfire)
  646. spitfire_xcall_deliver(data0, data1, data2, mask);
  647. else if (tlb_type == cheetah || tlb_type == cheetah_plus)
  648. cheetah_xcall_deliver(data0, data1, data2, mask);
  649. else
  650. hypervisor_xcall_deliver(data0, data1, data2, mask);
  651. /* NOTE: Caller runs local copy on master. */
  652. put_cpu();
  653. }
  654. extern unsigned long xcall_sync_tick;
  655. static void smp_start_sync_tick_client(int cpu)
  656. {
  657. cpumask_t mask = cpumask_of_cpu(cpu);
  658. smp_cross_call_masked(&xcall_sync_tick,
  659. 0, 0, 0, mask);
  660. }
  661. /* Send cross call to all processors except self. */
  662. #define smp_cross_call(func, ctx, data1, data2) \
  663. smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
  664. struct call_data_struct {
  665. void (*func) (void *info);
  666. void *info;
  667. atomic_t finished;
  668. int wait;
  669. };
  670. static struct call_data_struct *call_data;
  671. extern unsigned long xcall_call_function;
  672. /**
  673. * smp_call_function(): Run a function on all other CPUs.
  674. * @func: The function to run. This must be fast and non-blocking.
  675. * @info: An arbitrary pointer to pass to the function.
  676. * @nonatomic: currently unused.
  677. * @wait: If true, wait (atomically) until function has completed on other CPUs.
  678. *
  679. * Returns 0 on success, else a negative status code. Does not return until
  680. * remote CPUs are nearly ready to execute <<func>> or are or have executed.
  681. *
  682. * You must not call this function with disabled interrupts or from a
  683. * hardware interrupt handler or from a bottom half handler.
  684. */
  685. static int smp_call_function_mask(void (*func)(void *info), void *info,
  686. int nonatomic, int wait, cpumask_t mask)
  687. {
  688. struct call_data_struct data;
  689. int cpus;
  690. /* Can deadlock when called with interrupts disabled */
  691. WARN_ON(irqs_disabled());
  692. data.func = func;
  693. data.info = info;
  694. atomic_set(&data.finished, 0);
  695. data.wait = wait;
  696. spin_lock(&call_lock);
  697. cpu_clear(smp_processor_id(), mask);
  698. cpus = cpus_weight(mask);
  699. if (!cpus)
  700. goto out_unlock;
  701. call_data = &data;
  702. mb();
  703. smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
  704. /* Wait for response */
  705. while (atomic_read(&data.finished) != cpus)
  706. cpu_relax();
  707. out_unlock:
  708. spin_unlock(&call_lock);
  709. return 0;
  710. }
  711. int smp_call_function(void (*func)(void *info), void *info,
  712. int nonatomic, int wait)
  713. {
  714. return smp_call_function_mask(func, info, nonatomic, wait,
  715. cpu_online_map);
  716. }
  717. void smp_call_function_client(int irq, struct pt_regs *regs)
  718. {
  719. void (*func) (void *info) = call_data->func;
  720. void *info = call_data->info;
  721. clear_softint(1 << irq);
  722. irq_enter();
  723. if (!call_data->wait) {
  724. /* let initiator proceed after getting data */
  725. atomic_inc(&call_data->finished);
  726. }
  727. func(info);
  728. irq_exit();
  729. if (call_data->wait) {
  730. /* let initiator proceed only after completion */
  731. atomic_inc(&call_data->finished);
  732. }
  733. }
  734. static void tsb_sync(void *info)
  735. {
  736. struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
  737. struct mm_struct *mm = info;
  738. /* It is not valid to test "currrent->active_mm == mm" here.
  739. *
  740. * The value of "current" is not changed atomically with
  741. * switch_mm(). But that's OK, we just need to check the
  742. * current cpu's trap block PGD physical address.
  743. */
  744. if (tp->pgd_paddr == __pa(mm->pgd))
  745. tsb_context_switch(mm);
  746. }
  747. void smp_tsb_sync(struct mm_struct *mm)
  748. {
  749. smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
  750. }
  751. extern unsigned long xcall_flush_tlb_mm;
  752. extern unsigned long xcall_flush_tlb_pending;
  753. extern unsigned long xcall_flush_tlb_kernel_range;
  754. extern unsigned long xcall_report_regs;
  755. extern unsigned long xcall_receive_signal;
  756. extern unsigned long xcall_new_mmu_context_version;
  757. #ifdef DCACHE_ALIASING_POSSIBLE
  758. extern unsigned long xcall_flush_dcache_page_cheetah;
  759. #endif
  760. extern unsigned long xcall_flush_dcache_page_spitfire;
  761. #ifdef CONFIG_DEBUG_DCFLUSH
  762. extern atomic_t dcpage_flushes;
  763. extern atomic_t dcpage_flushes_xcall;
  764. #endif
  765. static inline void __local_flush_dcache_page(struct page *page)
  766. {
  767. #ifdef DCACHE_ALIASING_POSSIBLE
  768. __flush_dcache_page(page_address(page),
  769. ((tlb_type == spitfire) &&
  770. page_mapping(page) != NULL));
  771. #else
  772. if (page_mapping(page) != NULL &&
  773. tlb_type == spitfire)
  774. __flush_icache_page(__pa(page_address(page)));
  775. #endif
  776. }
  777. void smp_flush_dcache_page_impl(struct page *page, int cpu)
  778. {
  779. cpumask_t mask = cpumask_of_cpu(cpu);
  780. int this_cpu;
  781. if (tlb_type == hypervisor)
  782. return;
  783. #ifdef CONFIG_DEBUG_DCFLUSH
  784. atomic_inc(&dcpage_flushes);
  785. #endif
  786. this_cpu = get_cpu();
  787. if (cpu == this_cpu) {
  788. __local_flush_dcache_page(page);
  789. } else if (cpu_online(cpu)) {
  790. void *pg_addr = page_address(page);
  791. u64 data0;
  792. if (tlb_type == spitfire) {
  793. data0 =
  794. ((u64)&xcall_flush_dcache_page_spitfire);
  795. if (page_mapping(page) != NULL)
  796. data0 |= ((u64)1 << 32);
  797. spitfire_xcall_deliver(data0,
  798. __pa(pg_addr),
  799. (u64) pg_addr,
  800. mask);
  801. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  802. #ifdef DCACHE_ALIASING_POSSIBLE
  803. data0 =
  804. ((u64)&xcall_flush_dcache_page_cheetah);
  805. cheetah_xcall_deliver(data0,
  806. __pa(pg_addr),
  807. 0, mask);
  808. #endif
  809. }
  810. #ifdef CONFIG_DEBUG_DCFLUSH
  811. atomic_inc(&dcpage_flushes_xcall);
  812. #endif
  813. }
  814. put_cpu();
  815. }
  816. void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
  817. {
  818. void *pg_addr = page_address(page);
  819. cpumask_t mask = cpu_online_map;
  820. u64 data0;
  821. int this_cpu;
  822. if (tlb_type == hypervisor)
  823. return;
  824. this_cpu = get_cpu();
  825. cpu_clear(this_cpu, mask);
  826. #ifdef CONFIG_DEBUG_DCFLUSH
  827. atomic_inc(&dcpage_flushes);
  828. #endif
  829. if (cpus_empty(mask))
  830. goto flush_self;
  831. if (tlb_type == spitfire) {
  832. data0 = ((u64)&xcall_flush_dcache_page_spitfire);
  833. if (page_mapping(page) != NULL)
  834. data0 |= ((u64)1 << 32);
  835. spitfire_xcall_deliver(data0,
  836. __pa(pg_addr),
  837. (u64) pg_addr,
  838. mask);
  839. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  840. #ifdef DCACHE_ALIASING_POSSIBLE
  841. data0 = ((u64)&xcall_flush_dcache_page_cheetah);
  842. cheetah_xcall_deliver(data0,
  843. __pa(pg_addr),
  844. 0, mask);
  845. #endif
  846. }
  847. #ifdef CONFIG_DEBUG_DCFLUSH
  848. atomic_inc(&dcpage_flushes_xcall);
  849. #endif
  850. flush_self:
  851. __local_flush_dcache_page(page);
  852. put_cpu();
  853. }
  854. static void __smp_receive_signal_mask(cpumask_t mask)
  855. {
  856. smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
  857. }
  858. void smp_receive_signal(int cpu)
  859. {
  860. cpumask_t mask = cpumask_of_cpu(cpu);
  861. if (cpu_online(cpu))
  862. __smp_receive_signal_mask(mask);
  863. }
  864. void smp_receive_signal_client(int irq, struct pt_regs *regs)
  865. {
  866. irq_enter();
  867. clear_softint(1 << irq);
  868. irq_exit();
  869. }
  870. void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
  871. {
  872. struct mm_struct *mm;
  873. unsigned long flags;
  874. irq_enter();
  875. clear_softint(1 << irq);
  876. /* See if we need to allocate a new TLB context because
  877. * the version of the one we are using is now out of date.
  878. */
  879. mm = current->active_mm;
  880. if (unlikely(!mm || (mm == &init_mm)))
  881. return;
  882. spin_lock_irqsave(&mm->context.lock, flags);
  883. if (unlikely(!CTX_VALID(mm->context)))
  884. get_new_mmu_context(mm);
  885. spin_unlock_irqrestore(&mm->context.lock, flags);
  886. load_secondary_context(mm);
  887. __flush_tlb_mm(CTX_HWBITS(mm->context),
  888. SECONDARY_CONTEXT);
  889. irq_exit();
  890. }
  891. void smp_new_mmu_context_version(void)
  892. {
  893. smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
  894. }
  895. void smp_report_regs(void)
  896. {
  897. smp_cross_call(&xcall_report_regs, 0, 0, 0);
  898. }
  899. /* We know that the window frames of the user have been flushed
  900. * to the stack before we get here because all callers of us
  901. * are flush_tlb_*() routines, and these run after flush_cache_*()
  902. * which performs the flushw.
  903. *
  904. * The SMP TLB coherency scheme we use works as follows:
  905. *
  906. * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
  907. * space has (potentially) executed on, this is the heuristic
  908. * we use to avoid doing cross calls.
  909. *
  910. * Also, for flushing from kswapd and also for clones, we
  911. * use cpu_vm_mask as the list of cpus to make run the TLB.
  912. *
  913. * 2) TLB context numbers are shared globally across all processors
  914. * in the system, this allows us to play several games to avoid
  915. * cross calls.
  916. *
  917. * One invariant is that when a cpu switches to a process, and
  918. * that processes tsk->active_mm->cpu_vm_mask does not have the
  919. * current cpu's bit set, that tlb context is flushed locally.
  920. *
  921. * If the address space is non-shared (ie. mm->count == 1) we avoid
  922. * cross calls when we want to flush the currently running process's
  923. * tlb state. This is done by clearing all cpu bits except the current
  924. * processor's in current->active_mm->cpu_vm_mask and performing the
  925. * flush locally only. This will force any subsequent cpus which run
  926. * this task to flush the context from the local tlb if the process
  927. * migrates to another cpu (again).
  928. *
  929. * 3) For shared address spaces (threads) and swapping we bite the
  930. * bullet for most cases and perform the cross call (but only to
  931. * the cpus listed in cpu_vm_mask).
  932. *
  933. * The performance gain from "optimizing" away the cross call for threads is
  934. * questionable (in theory the big win for threads is the massive sharing of
  935. * address space state across processors).
  936. */
  937. /* This currently is only used by the hugetlb arch pre-fault
  938. * hook on UltraSPARC-III+ and later when changing the pagesize
  939. * bits of the context register for an address space.
  940. */
  941. void smp_flush_tlb_mm(struct mm_struct *mm)
  942. {
  943. u32 ctx = CTX_HWBITS(mm->context);
  944. int cpu = get_cpu();
  945. if (atomic_read(&mm->mm_users) == 1) {
  946. mm->cpu_vm_mask = cpumask_of_cpu(cpu);
  947. goto local_flush_and_out;
  948. }
  949. smp_cross_call_masked(&xcall_flush_tlb_mm,
  950. ctx, 0, 0,
  951. mm->cpu_vm_mask);
  952. local_flush_and_out:
  953. __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
  954. put_cpu();
  955. }
  956. void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
  957. {
  958. u32 ctx = CTX_HWBITS(mm->context);
  959. int cpu = get_cpu();
  960. if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
  961. mm->cpu_vm_mask = cpumask_of_cpu(cpu);
  962. else
  963. smp_cross_call_masked(&xcall_flush_tlb_pending,
  964. ctx, nr, (unsigned long) vaddrs,
  965. mm->cpu_vm_mask);
  966. __flush_tlb_pending(ctx, nr, vaddrs);
  967. put_cpu();
  968. }
  969. void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
  970. {
  971. start &= PAGE_MASK;
  972. end = PAGE_ALIGN(end);
  973. if (start != end) {
  974. smp_cross_call(&xcall_flush_tlb_kernel_range,
  975. 0, start, end);
  976. __flush_tlb_kernel_range(start, end);
  977. }
  978. }
  979. /* CPU capture. */
  980. /* #define CAPTURE_DEBUG */
  981. extern unsigned long xcall_capture;
  982. static atomic_t smp_capture_depth = ATOMIC_INIT(0);
  983. static atomic_t smp_capture_registry = ATOMIC_INIT(0);
  984. static unsigned long penguins_are_doing_time;
  985. void smp_capture(void)
  986. {
  987. int result = atomic_add_ret(1, &smp_capture_depth);
  988. if (result == 1) {
  989. int ncpus = num_online_cpus();
  990. #ifdef CAPTURE_DEBUG
  991. printk("CPU[%d]: Sending penguins to jail...",
  992. smp_processor_id());
  993. #endif
  994. penguins_are_doing_time = 1;
  995. membar_storestore_loadstore();
  996. atomic_inc(&smp_capture_registry);
  997. smp_cross_call(&xcall_capture, 0, 0, 0);
  998. while (atomic_read(&smp_capture_registry) != ncpus)
  999. rmb();
  1000. #ifdef CAPTURE_DEBUG
  1001. printk("done\n");
  1002. #endif
  1003. }
  1004. }
  1005. void smp_release(void)
  1006. {
  1007. if (atomic_dec_and_test(&smp_capture_depth)) {
  1008. #ifdef CAPTURE_DEBUG
  1009. printk("CPU[%d]: Giving pardon to "
  1010. "imprisoned penguins\n",
  1011. smp_processor_id());
  1012. #endif
  1013. penguins_are_doing_time = 0;
  1014. membar_storeload_storestore();
  1015. atomic_dec(&smp_capture_registry);
  1016. }
  1017. }
  1018. /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
  1019. * can service tlb flush xcalls...
  1020. */
  1021. extern void prom_world(int);
  1022. void smp_penguin_jailcell(int irq, struct pt_regs *regs)
  1023. {
  1024. clear_softint(1 << irq);
  1025. irq_enter();
  1026. preempt_disable();
  1027. __asm__ __volatile__("flushw");
  1028. prom_world(1);
  1029. atomic_inc(&smp_capture_registry);
  1030. membar_storeload_storestore();
  1031. while (penguins_are_doing_time)
  1032. rmb();
  1033. atomic_dec(&smp_capture_registry);
  1034. prom_world(0);
  1035. preempt_enable();
  1036. irq_exit();
  1037. }
  1038. /* /proc/profile writes can call this, don't __init it please. */
  1039. int setup_profiling_timer(unsigned int multiplier)
  1040. {
  1041. return -EINVAL;
  1042. }
  1043. void __init smp_prepare_cpus(unsigned int max_cpus)
  1044. {
  1045. }
  1046. void __devinit smp_prepare_boot_cpu(void)
  1047. {
  1048. }
  1049. void __devinit smp_fill_in_sib_core_maps(void)
  1050. {
  1051. unsigned int i;
  1052. for_each_present_cpu(i) {
  1053. unsigned int j;
  1054. cpus_clear(cpu_core_map[i]);
  1055. if (cpu_data(i).core_id == 0) {
  1056. cpu_set(i, cpu_core_map[i]);
  1057. continue;
  1058. }
  1059. for_each_present_cpu(j) {
  1060. if (cpu_data(i).core_id ==
  1061. cpu_data(j).core_id)
  1062. cpu_set(j, cpu_core_map[i]);
  1063. }
  1064. }
  1065. for_each_present_cpu(i) {
  1066. unsigned int j;
  1067. cpus_clear(per_cpu(cpu_sibling_map, i));
  1068. if (cpu_data(i).proc_id == -1) {
  1069. cpu_set(i, per_cpu(cpu_sibling_map, i));
  1070. continue;
  1071. }
  1072. for_each_present_cpu(j) {
  1073. if (cpu_data(i).proc_id ==
  1074. cpu_data(j).proc_id)
  1075. cpu_set(j, per_cpu(cpu_sibling_map, i));
  1076. }
  1077. }
  1078. }
  1079. int __cpuinit __cpu_up(unsigned int cpu)
  1080. {
  1081. int ret = smp_boot_one_cpu(cpu);
  1082. if (!ret) {
  1083. cpu_set(cpu, smp_commenced_mask);
  1084. while (!cpu_isset(cpu, cpu_online_map))
  1085. mb();
  1086. if (!cpu_isset(cpu, cpu_online_map)) {
  1087. ret = -ENODEV;
  1088. } else {
  1089. /* On SUN4V, writes to %tick and %stick are
  1090. * not allowed.
  1091. */
  1092. if (tlb_type != hypervisor)
  1093. smp_synchronize_one_tick(cpu);
  1094. }
  1095. }
  1096. return ret;
  1097. }
  1098. #ifdef CONFIG_HOTPLUG_CPU
  1099. void cpu_play_dead(void)
  1100. {
  1101. int cpu = smp_processor_id();
  1102. unsigned long pstate;
  1103. idle_task_exit();
  1104. if (tlb_type == hypervisor) {
  1105. struct trap_per_cpu *tb = &trap_block[cpu];
  1106. sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
  1107. tb->cpu_mondo_pa, 0);
  1108. sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
  1109. tb->dev_mondo_pa, 0);
  1110. sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
  1111. tb->resum_mondo_pa, 0);
  1112. sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
  1113. tb->nonresum_mondo_pa, 0);
  1114. }
  1115. cpu_clear(cpu, smp_commenced_mask);
  1116. membar_safe("#Sync");
  1117. local_irq_disable();
  1118. __asm__ __volatile__(
  1119. "rdpr %%pstate, %0\n\t"
  1120. "wrpr %0, %1, %%pstate"
  1121. : "=r" (pstate)
  1122. : "i" (PSTATE_IE));
  1123. while (1)
  1124. barrier();
  1125. }
  1126. int __cpu_disable(void)
  1127. {
  1128. int cpu = smp_processor_id();
  1129. cpuinfo_sparc *c;
  1130. int i;
  1131. for_each_cpu_mask(i, cpu_core_map[cpu])
  1132. cpu_clear(cpu, cpu_core_map[i]);
  1133. cpus_clear(cpu_core_map[cpu]);
  1134. for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
  1135. cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
  1136. cpus_clear(per_cpu(cpu_sibling_map, cpu));
  1137. c = &cpu_data(cpu);
  1138. c->core_id = 0;
  1139. c->proc_id = -1;
  1140. spin_lock(&call_lock);
  1141. cpu_clear(cpu, cpu_online_map);
  1142. spin_unlock(&call_lock);
  1143. smp_wmb();
  1144. /* Make sure no interrupts point to this cpu. */
  1145. fixup_irqs();
  1146. local_irq_enable();
  1147. mdelay(1);
  1148. local_irq_disable();
  1149. return 0;
  1150. }
  1151. void __cpu_die(unsigned int cpu)
  1152. {
  1153. int i;
  1154. for (i = 0; i < 100; i++) {
  1155. smp_rmb();
  1156. if (!cpu_isset(cpu, smp_commenced_mask))
  1157. break;
  1158. msleep(100);
  1159. }
  1160. if (cpu_isset(cpu, smp_commenced_mask)) {
  1161. printk(KERN_ERR "CPU %u didn't die...\n", cpu);
  1162. } else {
  1163. #if defined(CONFIG_SUN_LDOMS)
  1164. unsigned long hv_err;
  1165. int limit = 100;
  1166. do {
  1167. hv_err = sun4v_cpu_stop(cpu);
  1168. if (hv_err == HV_EOK) {
  1169. cpu_clear(cpu, cpu_present_map);
  1170. break;
  1171. }
  1172. } while (--limit > 0);
  1173. if (limit <= 0) {
  1174. printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
  1175. hv_err);
  1176. }
  1177. #endif
  1178. }
  1179. }
  1180. #endif
  1181. void __init smp_cpus_done(unsigned int max_cpus)
  1182. {
  1183. }
  1184. void smp_send_reschedule(int cpu)
  1185. {
  1186. smp_receive_signal(cpu);
  1187. }
  1188. /* This is a nop because we capture all other cpus
  1189. * anyways when making the PROM active.
  1190. */
  1191. void smp_send_stop(void)
  1192. {
  1193. }
  1194. unsigned long __per_cpu_base __read_mostly;
  1195. unsigned long __per_cpu_shift __read_mostly;
  1196. EXPORT_SYMBOL(__per_cpu_base);
  1197. EXPORT_SYMBOL(__per_cpu_shift);
  1198. void __init real_setup_per_cpu_areas(void)
  1199. {
  1200. unsigned long paddr, goal, size, i;
  1201. char *ptr;
  1202. /* Copy section for each CPU (we discard the original) */
  1203. goal = PERCPU_ENOUGH_ROOM;
  1204. __per_cpu_shift = PAGE_SHIFT;
  1205. for (size = PAGE_SIZE; size < goal; size <<= 1UL)
  1206. __per_cpu_shift++;
  1207. paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE);
  1208. if (!paddr) {
  1209. prom_printf("Cannot allocate per-cpu memory.\n");
  1210. prom_halt();
  1211. }
  1212. ptr = __va(paddr);
  1213. __per_cpu_base = ptr - __per_cpu_start;
  1214. for (i = 0; i < NR_CPUS; i++, ptr += size)
  1215. memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
  1216. /* Setup %g5 for the boot cpu. */
  1217. __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
  1218. }