vmem.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. /*
  2. * arch/s390/mm/vmem.c
  3. *
  4. * Copyright IBM Corp. 2006
  5. * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  6. */
  7. #include <linux/bootmem.h>
  8. #include <linux/pfn.h>
  9. #include <linux/mm.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <asm/pgalloc.h>
  13. #include <asm/pgtable.h>
  14. #include <asm/setup.h>
  15. #include <asm/tlbflush.h>
  16. static DEFINE_MUTEX(vmem_mutex);
  17. struct memory_segment {
  18. struct list_head list;
  19. unsigned long start;
  20. unsigned long size;
  21. };
  22. static LIST_HEAD(mem_segs);
  23. void __meminit memmap_init(unsigned long size, int nid, unsigned long zone,
  24. unsigned long start_pfn)
  25. {
  26. struct page *start, *end;
  27. struct page *map_start, *map_end;
  28. int i;
  29. start = pfn_to_page(start_pfn);
  30. end = start + size;
  31. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  32. unsigned long cstart, cend;
  33. cstart = PFN_DOWN(memory_chunk[i].addr);
  34. cend = cstart + PFN_DOWN(memory_chunk[i].size);
  35. map_start = mem_map + cstart;
  36. map_end = mem_map + cend;
  37. if (map_start < start)
  38. map_start = start;
  39. if (map_end > end)
  40. map_end = end;
  41. map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
  42. / sizeof(struct page);
  43. map_end += ((PFN_ALIGN((unsigned long) map_end)
  44. - (unsigned long) map_end)
  45. / sizeof(struct page));
  46. if (map_start < map_end)
  47. memmap_init_zone((unsigned long)(map_end - map_start),
  48. nid, zone, page_to_pfn(map_start),
  49. MEMMAP_EARLY);
  50. }
  51. }
  52. static void __ref *vmem_alloc_pages(unsigned int order)
  53. {
  54. if (slab_is_available())
  55. return (void *)__get_free_pages(GFP_KERNEL, order);
  56. return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
  57. }
  58. static inline pud_t *vmem_pud_alloc(void)
  59. {
  60. pud_t *pud = NULL;
  61. #ifdef CONFIG_64BIT
  62. pud = vmem_alloc_pages(2);
  63. if (!pud)
  64. return NULL;
  65. pud_val(*pud) = _REGION3_ENTRY_EMPTY;
  66. memcpy(pud + 1, pud, (PTRS_PER_PUD - 1)*sizeof(pud_t));
  67. #endif
  68. return pud;
  69. }
  70. static inline pmd_t *vmem_pmd_alloc(void)
  71. {
  72. pmd_t *pmd = NULL;
  73. #ifdef CONFIG_64BIT
  74. pmd = vmem_alloc_pages(2);
  75. if (!pmd)
  76. return NULL;
  77. clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE*4);
  78. #endif
  79. return pmd;
  80. }
  81. static pte_t __init_refok *vmem_pte_alloc(void)
  82. {
  83. pte_t *pte;
  84. if (slab_is_available())
  85. pte = (pte_t *) page_table_alloc(&init_mm);
  86. else
  87. pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
  88. if (!pte)
  89. return NULL;
  90. clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
  91. PTRS_PER_PTE * sizeof(pte_t));
  92. return pte;
  93. }
  94. /*
  95. * Add a physical memory range to the 1:1 mapping.
  96. */
  97. static int vmem_add_range(unsigned long start, unsigned long size)
  98. {
  99. unsigned long address;
  100. pgd_t *pg_dir;
  101. pud_t *pu_dir;
  102. pmd_t *pm_dir;
  103. pte_t *pt_dir;
  104. pte_t pte;
  105. int ret = -ENOMEM;
  106. for (address = start; address < start + size; address += PAGE_SIZE) {
  107. pg_dir = pgd_offset_k(address);
  108. if (pgd_none(*pg_dir)) {
  109. pu_dir = vmem_pud_alloc();
  110. if (!pu_dir)
  111. goto out;
  112. pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
  113. }
  114. pu_dir = pud_offset(pg_dir, address);
  115. if (pud_none(*pu_dir)) {
  116. pm_dir = vmem_pmd_alloc();
  117. if (!pm_dir)
  118. goto out;
  119. pud_populate_kernel(&init_mm, pu_dir, pm_dir);
  120. }
  121. pm_dir = pmd_offset(pu_dir, address);
  122. if (pmd_none(*pm_dir)) {
  123. pt_dir = vmem_pte_alloc();
  124. if (!pt_dir)
  125. goto out;
  126. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  127. }
  128. pt_dir = pte_offset_kernel(pm_dir, address);
  129. pte = pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL);
  130. *pt_dir = pte;
  131. }
  132. ret = 0;
  133. out:
  134. flush_tlb_kernel_range(start, start + size);
  135. return ret;
  136. }
  137. /*
  138. * Remove a physical memory range from the 1:1 mapping.
  139. * Currently only invalidates page table entries.
  140. */
  141. static void vmem_remove_range(unsigned long start, unsigned long size)
  142. {
  143. unsigned long address;
  144. pgd_t *pg_dir;
  145. pud_t *pu_dir;
  146. pmd_t *pm_dir;
  147. pte_t *pt_dir;
  148. pte_t pte;
  149. pte_val(pte) = _PAGE_TYPE_EMPTY;
  150. for (address = start; address < start + size; address += PAGE_SIZE) {
  151. pg_dir = pgd_offset_k(address);
  152. pu_dir = pud_offset(pg_dir, address);
  153. if (pud_none(*pu_dir))
  154. continue;
  155. pm_dir = pmd_offset(pu_dir, address);
  156. if (pmd_none(*pm_dir))
  157. continue;
  158. pt_dir = pte_offset_kernel(pm_dir, address);
  159. *pt_dir = pte;
  160. }
  161. flush_tlb_kernel_range(start, start + size);
  162. }
  163. /*
  164. * Add a backed mem_map array to the virtual mem_map array.
  165. */
  166. static int vmem_add_mem_map(unsigned long start, unsigned long size)
  167. {
  168. unsigned long address, start_addr, end_addr;
  169. struct page *map_start, *map_end;
  170. pgd_t *pg_dir;
  171. pud_t *pu_dir;
  172. pmd_t *pm_dir;
  173. pte_t *pt_dir;
  174. pte_t pte;
  175. int ret = -ENOMEM;
  176. map_start = VMEM_MAP + PFN_DOWN(start);
  177. map_end = VMEM_MAP + PFN_DOWN(start + size);
  178. start_addr = (unsigned long) map_start & PAGE_MASK;
  179. end_addr = PFN_ALIGN((unsigned long) map_end);
  180. for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
  181. pg_dir = pgd_offset_k(address);
  182. if (pgd_none(*pg_dir)) {
  183. pu_dir = vmem_pud_alloc();
  184. if (!pu_dir)
  185. goto out;
  186. pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
  187. }
  188. pu_dir = pud_offset(pg_dir, address);
  189. if (pud_none(*pu_dir)) {
  190. pm_dir = vmem_pmd_alloc();
  191. if (!pm_dir)
  192. goto out;
  193. pud_populate_kernel(&init_mm, pu_dir, pm_dir);
  194. }
  195. pm_dir = pmd_offset(pu_dir, address);
  196. if (pmd_none(*pm_dir)) {
  197. pt_dir = vmem_pte_alloc();
  198. if (!pt_dir)
  199. goto out;
  200. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  201. }
  202. pt_dir = pte_offset_kernel(pm_dir, address);
  203. if (pte_none(*pt_dir)) {
  204. unsigned long new_page;
  205. new_page =__pa(vmem_alloc_pages(0));
  206. if (!new_page)
  207. goto out;
  208. pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
  209. *pt_dir = pte;
  210. }
  211. }
  212. ret = 0;
  213. out:
  214. flush_tlb_kernel_range(start_addr, end_addr);
  215. return ret;
  216. }
  217. static int vmem_add_mem(unsigned long start, unsigned long size)
  218. {
  219. int ret;
  220. ret = vmem_add_mem_map(start, size);
  221. if (ret)
  222. return ret;
  223. return vmem_add_range(start, size);
  224. }
  225. /*
  226. * Add memory segment to the segment list if it doesn't overlap with
  227. * an already present segment.
  228. */
  229. static int insert_memory_segment(struct memory_segment *seg)
  230. {
  231. struct memory_segment *tmp;
  232. if (seg->start + seg->size >= VMEM_MAX_PHYS ||
  233. seg->start + seg->size < seg->start)
  234. return -ERANGE;
  235. list_for_each_entry(tmp, &mem_segs, list) {
  236. if (seg->start >= tmp->start + tmp->size)
  237. continue;
  238. if (seg->start + seg->size <= tmp->start)
  239. continue;
  240. return -ENOSPC;
  241. }
  242. list_add(&seg->list, &mem_segs);
  243. return 0;
  244. }
  245. /*
  246. * Remove memory segment from the segment list.
  247. */
  248. static void remove_memory_segment(struct memory_segment *seg)
  249. {
  250. list_del(&seg->list);
  251. }
  252. static void __remove_shared_memory(struct memory_segment *seg)
  253. {
  254. remove_memory_segment(seg);
  255. vmem_remove_range(seg->start, seg->size);
  256. }
  257. int remove_shared_memory(unsigned long start, unsigned long size)
  258. {
  259. struct memory_segment *seg;
  260. int ret;
  261. mutex_lock(&vmem_mutex);
  262. ret = -ENOENT;
  263. list_for_each_entry(seg, &mem_segs, list) {
  264. if (seg->start == start && seg->size == size)
  265. break;
  266. }
  267. if (seg->start != start || seg->size != size)
  268. goto out;
  269. ret = 0;
  270. __remove_shared_memory(seg);
  271. kfree(seg);
  272. out:
  273. mutex_unlock(&vmem_mutex);
  274. return ret;
  275. }
  276. int add_shared_memory(unsigned long start, unsigned long size)
  277. {
  278. struct memory_segment *seg;
  279. struct page *page;
  280. unsigned long pfn, num_pfn, end_pfn;
  281. int ret;
  282. mutex_lock(&vmem_mutex);
  283. ret = -ENOMEM;
  284. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  285. if (!seg)
  286. goto out;
  287. seg->start = start;
  288. seg->size = size;
  289. ret = insert_memory_segment(seg);
  290. if (ret)
  291. goto out_free;
  292. ret = vmem_add_mem(start, size);
  293. if (ret)
  294. goto out_remove;
  295. pfn = PFN_DOWN(start);
  296. num_pfn = PFN_DOWN(size);
  297. end_pfn = pfn + num_pfn;
  298. page = pfn_to_page(pfn);
  299. memset(page, 0, num_pfn * sizeof(struct page));
  300. for (; pfn < end_pfn; pfn++) {
  301. page = pfn_to_page(pfn);
  302. init_page_count(page);
  303. reset_page_mapcount(page);
  304. SetPageReserved(page);
  305. INIT_LIST_HEAD(&page->lru);
  306. }
  307. goto out;
  308. out_remove:
  309. __remove_shared_memory(seg);
  310. out_free:
  311. kfree(seg);
  312. out:
  313. mutex_unlock(&vmem_mutex);
  314. return ret;
  315. }
  316. /*
  317. * map whole physical memory to virtual memory (identity mapping)
  318. * we reserve enough space in the vmalloc area for vmemmap to hotplug
  319. * additional memory segments.
  320. */
  321. void __init vmem_map_init(void)
  322. {
  323. int i;
  324. INIT_LIST_HEAD(&init_mm.context.crst_list);
  325. INIT_LIST_HEAD(&init_mm.context.pgtable_list);
  326. init_mm.context.noexec = 0;
  327. NODE_DATA(0)->node_mem_map = VMEM_MAP;
  328. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++)
  329. vmem_add_mem(memory_chunk[i].addr, memory_chunk[i].size);
  330. }
  331. /*
  332. * Convert memory chunk array to a memory segment list so there is a single
  333. * list that contains both r/w memory and shared memory segments.
  334. */
  335. static int __init vmem_convert_memory_chunk(void)
  336. {
  337. struct memory_segment *seg;
  338. int i;
  339. mutex_lock(&vmem_mutex);
  340. for (i = 0; i < MEMORY_CHUNKS; i++) {
  341. if (!memory_chunk[i].size)
  342. continue;
  343. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  344. if (!seg)
  345. panic("Out of memory...\n");
  346. seg->start = memory_chunk[i].addr;
  347. seg->size = memory_chunk[i].size;
  348. insert_memory_segment(seg);
  349. }
  350. mutex_unlock(&vmem_mutex);
  351. return 0;
  352. }
  353. core_initcall(vmem_convert_memory_chunk);