inode.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839
  1. /*
  2. * SPU file system
  3. *
  4. * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
  5. *
  6. * Author: Arnd Bergmann <arndb@de.ibm.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/file.h>
  23. #include <linux/fs.h>
  24. #include <linux/backing-dev.h>
  25. #include <linux/init.h>
  26. #include <linux/ioctl.h>
  27. #include <linux/module.h>
  28. #include <linux/mount.h>
  29. #include <linux/namei.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/poll.h>
  32. #include <linux/slab.h>
  33. #include <linux/parser.h>
  34. #include <asm/prom.h>
  35. #include <asm/spu.h>
  36. #include <asm/spu_priv1.h>
  37. #include <asm/uaccess.h>
  38. #include "spufs.h"
  39. static struct kmem_cache *spufs_inode_cache;
  40. char *isolated_loader;
  41. static int isolated_loader_size;
  42. static struct inode *
  43. spufs_alloc_inode(struct super_block *sb)
  44. {
  45. struct spufs_inode_info *ei;
  46. ei = kmem_cache_alloc(spufs_inode_cache, GFP_KERNEL);
  47. if (!ei)
  48. return NULL;
  49. ei->i_gang = NULL;
  50. ei->i_ctx = NULL;
  51. ei->i_openers = 0;
  52. return &ei->vfs_inode;
  53. }
  54. static void
  55. spufs_destroy_inode(struct inode *inode)
  56. {
  57. kmem_cache_free(spufs_inode_cache, SPUFS_I(inode));
  58. }
  59. static void
  60. spufs_init_once(struct kmem_cache *cachep, void *p)
  61. {
  62. struct spufs_inode_info *ei = p;
  63. inode_init_once(&ei->vfs_inode);
  64. }
  65. static struct inode *
  66. spufs_new_inode(struct super_block *sb, int mode)
  67. {
  68. struct inode *inode;
  69. inode = new_inode(sb);
  70. if (!inode)
  71. goto out;
  72. inode->i_mode = mode;
  73. inode->i_uid = current->fsuid;
  74. inode->i_gid = current->fsgid;
  75. inode->i_blocks = 0;
  76. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  77. out:
  78. return inode;
  79. }
  80. static int
  81. spufs_setattr(struct dentry *dentry, struct iattr *attr)
  82. {
  83. struct inode *inode = dentry->d_inode;
  84. if ((attr->ia_valid & ATTR_SIZE) &&
  85. (attr->ia_size != inode->i_size))
  86. return -EINVAL;
  87. return inode_setattr(inode, attr);
  88. }
  89. static int
  90. spufs_new_file(struct super_block *sb, struct dentry *dentry,
  91. const struct file_operations *fops, int mode,
  92. struct spu_context *ctx)
  93. {
  94. static struct inode_operations spufs_file_iops = {
  95. .setattr = spufs_setattr,
  96. };
  97. struct inode *inode;
  98. int ret;
  99. ret = -ENOSPC;
  100. inode = spufs_new_inode(sb, S_IFREG | mode);
  101. if (!inode)
  102. goto out;
  103. ret = 0;
  104. inode->i_op = &spufs_file_iops;
  105. inode->i_fop = fops;
  106. inode->i_private = SPUFS_I(inode)->i_ctx = get_spu_context(ctx);
  107. d_add(dentry, inode);
  108. out:
  109. return ret;
  110. }
  111. static void
  112. spufs_delete_inode(struct inode *inode)
  113. {
  114. struct spufs_inode_info *ei = SPUFS_I(inode);
  115. if (ei->i_ctx)
  116. put_spu_context(ei->i_ctx);
  117. if (ei->i_gang)
  118. put_spu_gang(ei->i_gang);
  119. clear_inode(inode);
  120. }
  121. static void spufs_prune_dir(struct dentry *dir)
  122. {
  123. struct dentry *dentry, *tmp;
  124. mutex_lock(&dir->d_inode->i_mutex);
  125. list_for_each_entry_safe(dentry, tmp, &dir->d_subdirs, d_u.d_child) {
  126. spin_lock(&dcache_lock);
  127. spin_lock(&dentry->d_lock);
  128. if (!(d_unhashed(dentry)) && dentry->d_inode) {
  129. dget_locked(dentry);
  130. __d_drop(dentry);
  131. spin_unlock(&dentry->d_lock);
  132. simple_unlink(dir->d_inode, dentry);
  133. spin_unlock(&dcache_lock);
  134. dput(dentry);
  135. } else {
  136. spin_unlock(&dentry->d_lock);
  137. spin_unlock(&dcache_lock);
  138. }
  139. }
  140. shrink_dcache_parent(dir);
  141. mutex_unlock(&dir->d_inode->i_mutex);
  142. }
  143. /* Caller must hold parent->i_mutex */
  144. static int spufs_rmdir(struct inode *parent, struct dentry *dir)
  145. {
  146. /* remove all entries */
  147. spufs_prune_dir(dir);
  148. d_drop(dir);
  149. return simple_rmdir(parent, dir);
  150. }
  151. static int spufs_fill_dir(struct dentry *dir, struct tree_descr *files,
  152. int mode, struct spu_context *ctx)
  153. {
  154. struct dentry *dentry, *tmp;
  155. int ret;
  156. while (files->name && files->name[0]) {
  157. ret = -ENOMEM;
  158. dentry = d_alloc_name(dir, files->name);
  159. if (!dentry)
  160. goto out;
  161. ret = spufs_new_file(dir->d_sb, dentry, files->ops,
  162. files->mode & mode, ctx);
  163. if (ret)
  164. goto out;
  165. files++;
  166. }
  167. return 0;
  168. out:
  169. /*
  170. * remove all children from dir. dir->inode is not set so don't
  171. * just simply use spufs_prune_dir() and panic afterwards :)
  172. * dput() looks like it will do the right thing:
  173. * - dec parent's ref counter
  174. * - remove child from parent's child list
  175. * - free child's inode if possible
  176. * - free child
  177. */
  178. list_for_each_entry_safe(dentry, tmp, &dir->d_subdirs, d_u.d_child) {
  179. dput(dentry);
  180. }
  181. shrink_dcache_parent(dir);
  182. return ret;
  183. }
  184. static int spufs_dir_close(struct inode *inode, struct file *file)
  185. {
  186. struct spu_context *ctx;
  187. struct inode *parent;
  188. struct dentry *dir;
  189. int ret;
  190. dir = file->f_path.dentry;
  191. parent = dir->d_parent->d_inode;
  192. ctx = SPUFS_I(dir->d_inode)->i_ctx;
  193. mutex_lock(&parent->i_mutex);
  194. ret = spufs_rmdir(parent, dir);
  195. mutex_unlock(&parent->i_mutex);
  196. WARN_ON(ret);
  197. /* We have to give up the mm_struct */
  198. spu_forget(ctx);
  199. return dcache_dir_close(inode, file);
  200. }
  201. const struct file_operations spufs_context_fops = {
  202. .open = dcache_dir_open,
  203. .release = spufs_dir_close,
  204. .llseek = dcache_dir_lseek,
  205. .read = generic_read_dir,
  206. .readdir = dcache_readdir,
  207. .fsync = simple_sync_file,
  208. };
  209. EXPORT_SYMBOL_GPL(spufs_context_fops);
  210. static int
  211. spufs_mkdir(struct inode *dir, struct dentry *dentry, unsigned int flags,
  212. int mode)
  213. {
  214. int ret;
  215. struct inode *inode;
  216. struct spu_context *ctx;
  217. ret = -ENOSPC;
  218. inode = spufs_new_inode(dir->i_sb, mode | S_IFDIR);
  219. if (!inode)
  220. goto out;
  221. if (dir->i_mode & S_ISGID) {
  222. inode->i_gid = dir->i_gid;
  223. inode->i_mode &= S_ISGID;
  224. }
  225. ctx = alloc_spu_context(SPUFS_I(dir)->i_gang); /* XXX gang */
  226. SPUFS_I(inode)->i_ctx = ctx;
  227. if (!ctx)
  228. goto out_iput;
  229. ctx->flags = flags;
  230. inode->i_op = &simple_dir_inode_operations;
  231. inode->i_fop = &simple_dir_operations;
  232. if (flags & SPU_CREATE_NOSCHED)
  233. ret = spufs_fill_dir(dentry, spufs_dir_nosched_contents,
  234. mode, ctx);
  235. else
  236. ret = spufs_fill_dir(dentry, spufs_dir_contents, mode, ctx);
  237. if (ret)
  238. goto out_free_ctx;
  239. d_instantiate(dentry, inode);
  240. dget(dentry);
  241. dir->i_nlink++;
  242. dentry->d_inode->i_nlink++;
  243. goto out;
  244. out_free_ctx:
  245. spu_forget(ctx);
  246. put_spu_context(ctx);
  247. out_iput:
  248. iput(inode);
  249. out:
  250. return ret;
  251. }
  252. static int spufs_context_open(struct dentry *dentry, struct vfsmount *mnt)
  253. {
  254. int ret;
  255. struct file *filp;
  256. ret = get_unused_fd();
  257. if (ret < 0) {
  258. dput(dentry);
  259. mntput(mnt);
  260. goto out;
  261. }
  262. filp = dentry_open(dentry, mnt, O_RDONLY);
  263. if (IS_ERR(filp)) {
  264. put_unused_fd(ret);
  265. ret = PTR_ERR(filp);
  266. goto out;
  267. }
  268. filp->f_op = &spufs_context_fops;
  269. fd_install(ret, filp);
  270. out:
  271. return ret;
  272. }
  273. static struct spu_context *
  274. spufs_assert_affinity(unsigned int flags, struct spu_gang *gang,
  275. struct file *filp)
  276. {
  277. struct spu_context *tmp, *neighbor, *err;
  278. int count, node;
  279. int aff_supp;
  280. aff_supp = !list_empty(&(list_entry(cbe_spu_info[0].spus.next,
  281. struct spu, cbe_list))->aff_list);
  282. if (!aff_supp)
  283. return ERR_PTR(-EINVAL);
  284. if (flags & SPU_CREATE_GANG)
  285. return ERR_PTR(-EINVAL);
  286. if (flags & SPU_CREATE_AFFINITY_MEM &&
  287. gang->aff_ref_ctx &&
  288. gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM)
  289. return ERR_PTR(-EEXIST);
  290. if (gang->aff_flags & AFF_MERGED)
  291. return ERR_PTR(-EBUSY);
  292. neighbor = NULL;
  293. if (flags & SPU_CREATE_AFFINITY_SPU) {
  294. if (!filp || filp->f_op != &spufs_context_fops)
  295. return ERR_PTR(-EINVAL);
  296. neighbor = get_spu_context(
  297. SPUFS_I(filp->f_dentry->d_inode)->i_ctx);
  298. if (!list_empty(&neighbor->aff_list) && !(neighbor->aff_head) &&
  299. !list_is_last(&neighbor->aff_list, &gang->aff_list_head) &&
  300. !list_entry(neighbor->aff_list.next, struct spu_context,
  301. aff_list)->aff_head) {
  302. err = ERR_PTR(-EEXIST);
  303. goto out_put_neighbor;
  304. }
  305. if (gang != neighbor->gang) {
  306. err = ERR_PTR(-EINVAL);
  307. goto out_put_neighbor;
  308. }
  309. count = 1;
  310. list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
  311. count++;
  312. if (list_empty(&neighbor->aff_list))
  313. count++;
  314. for (node = 0; node < MAX_NUMNODES; node++) {
  315. if ((cbe_spu_info[node].n_spus - atomic_read(
  316. &cbe_spu_info[node].reserved_spus)) >= count)
  317. break;
  318. }
  319. if (node == MAX_NUMNODES) {
  320. err = ERR_PTR(-EEXIST);
  321. goto out_put_neighbor;
  322. }
  323. }
  324. return neighbor;
  325. out_put_neighbor:
  326. put_spu_context(neighbor);
  327. return err;
  328. }
  329. static void
  330. spufs_set_affinity(unsigned int flags, struct spu_context *ctx,
  331. struct spu_context *neighbor)
  332. {
  333. if (flags & SPU_CREATE_AFFINITY_MEM)
  334. ctx->gang->aff_ref_ctx = ctx;
  335. if (flags & SPU_CREATE_AFFINITY_SPU) {
  336. if (list_empty(&neighbor->aff_list)) {
  337. list_add_tail(&neighbor->aff_list,
  338. &ctx->gang->aff_list_head);
  339. neighbor->aff_head = 1;
  340. }
  341. if (list_is_last(&neighbor->aff_list, &ctx->gang->aff_list_head)
  342. || list_entry(neighbor->aff_list.next, struct spu_context,
  343. aff_list)->aff_head) {
  344. list_add(&ctx->aff_list, &neighbor->aff_list);
  345. } else {
  346. list_add_tail(&ctx->aff_list, &neighbor->aff_list);
  347. if (neighbor->aff_head) {
  348. neighbor->aff_head = 0;
  349. ctx->aff_head = 1;
  350. }
  351. }
  352. if (!ctx->gang->aff_ref_ctx)
  353. ctx->gang->aff_ref_ctx = ctx;
  354. }
  355. }
  356. static int
  357. spufs_create_context(struct inode *inode, struct dentry *dentry,
  358. struct vfsmount *mnt, int flags, int mode,
  359. struct file *aff_filp)
  360. {
  361. int ret;
  362. int affinity;
  363. struct spu_gang *gang;
  364. struct spu_context *neighbor;
  365. ret = -EPERM;
  366. if ((flags & SPU_CREATE_NOSCHED) &&
  367. !capable(CAP_SYS_NICE))
  368. goto out_unlock;
  369. ret = -EINVAL;
  370. if ((flags & (SPU_CREATE_NOSCHED | SPU_CREATE_ISOLATE))
  371. == SPU_CREATE_ISOLATE)
  372. goto out_unlock;
  373. ret = -ENODEV;
  374. if ((flags & SPU_CREATE_ISOLATE) && !isolated_loader)
  375. goto out_unlock;
  376. gang = NULL;
  377. neighbor = NULL;
  378. affinity = flags & (SPU_CREATE_AFFINITY_MEM | SPU_CREATE_AFFINITY_SPU);
  379. if (affinity) {
  380. gang = SPUFS_I(inode)->i_gang;
  381. ret = -EINVAL;
  382. if (!gang)
  383. goto out_unlock;
  384. mutex_lock(&gang->aff_mutex);
  385. neighbor = spufs_assert_affinity(flags, gang, aff_filp);
  386. if (IS_ERR(neighbor)) {
  387. ret = PTR_ERR(neighbor);
  388. goto out_aff_unlock;
  389. }
  390. }
  391. ret = spufs_mkdir(inode, dentry, flags, mode & S_IRWXUGO);
  392. if (ret)
  393. goto out_aff_unlock;
  394. if (affinity) {
  395. spufs_set_affinity(flags, SPUFS_I(dentry->d_inode)->i_ctx,
  396. neighbor);
  397. if (neighbor)
  398. put_spu_context(neighbor);
  399. }
  400. /*
  401. * get references for dget and mntget, will be released
  402. * in error path of *_open().
  403. */
  404. ret = spufs_context_open(dget(dentry), mntget(mnt));
  405. if (ret < 0) {
  406. WARN_ON(spufs_rmdir(inode, dentry));
  407. mutex_unlock(&inode->i_mutex);
  408. spu_forget(SPUFS_I(dentry->d_inode)->i_ctx);
  409. goto out;
  410. }
  411. out_aff_unlock:
  412. if (affinity)
  413. mutex_unlock(&gang->aff_mutex);
  414. out_unlock:
  415. mutex_unlock(&inode->i_mutex);
  416. out:
  417. dput(dentry);
  418. return ret;
  419. }
  420. static int
  421. spufs_mkgang(struct inode *dir, struct dentry *dentry, int mode)
  422. {
  423. int ret;
  424. struct inode *inode;
  425. struct spu_gang *gang;
  426. ret = -ENOSPC;
  427. inode = spufs_new_inode(dir->i_sb, mode | S_IFDIR);
  428. if (!inode)
  429. goto out;
  430. ret = 0;
  431. if (dir->i_mode & S_ISGID) {
  432. inode->i_gid = dir->i_gid;
  433. inode->i_mode &= S_ISGID;
  434. }
  435. gang = alloc_spu_gang();
  436. SPUFS_I(inode)->i_ctx = NULL;
  437. SPUFS_I(inode)->i_gang = gang;
  438. if (!gang)
  439. goto out_iput;
  440. inode->i_op = &simple_dir_inode_operations;
  441. inode->i_fop = &simple_dir_operations;
  442. d_instantiate(dentry, inode);
  443. dir->i_nlink++;
  444. dentry->d_inode->i_nlink++;
  445. return ret;
  446. out_iput:
  447. iput(inode);
  448. out:
  449. return ret;
  450. }
  451. static int spufs_gang_open(struct dentry *dentry, struct vfsmount *mnt)
  452. {
  453. int ret;
  454. struct file *filp;
  455. ret = get_unused_fd();
  456. if (ret < 0) {
  457. dput(dentry);
  458. mntput(mnt);
  459. goto out;
  460. }
  461. filp = dentry_open(dentry, mnt, O_RDONLY);
  462. if (IS_ERR(filp)) {
  463. put_unused_fd(ret);
  464. ret = PTR_ERR(filp);
  465. goto out;
  466. }
  467. filp->f_op = &simple_dir_operations;
  468. fd_install(ret, filp);
  469. out:
  470. return ret;
  471. }
  472. static int spufs_create_gang(struct inode *inode,
  473. struct dentry *dentry,
  474. struct vfsmount *mnt, int mode)
  475. {
  476. int ret;
  477. ret = spufs_mkgang(inode, dentry, mode & S_IRWXUGO);
  478. if (ret)
  479. goto out;
  480. /*
  481. * get references for dget and mntget, will be released
  482. * in error path of *_open().
  483. */
  484. ret = spufs_gang_open(dget(dentry), mntget(mnt));
  485. if (ret < 0) {
  486. int err = simple_rmdir(inode, dentry);
  487. WARN_ON(err);
  488. }
  489. out:
  490. mutex_unlock(&inode->i_mutex);
  491. dput(dentry);
  492. return ret;
  493. }
  494. static struct file_system_type spufs_type;
  495. long spufs_create(struct nameidata *nd, unsigned int flags, mode_t mode,
  496. struct file *filp)
  497. {
  498. struct dentry *dentry;
  499. int ret;
  500. ret = -EINVAL;
  501. /* check if we are on spufs */
  502. if (nd->path.dentry->d_sb->s_type != &spufs_type)
  503. goto out;
  504. /* don't accept undefined flags */
  505. if (flags & (~SPU_CREATE_FLAG_ALL))
  506. goto out;
  507. /* only threads can be underneath a gang */
  508. if (nd->path.dentry != nd->path.dentry->d_sb->s_root) {
  509. if ((flags & SPU_CREATE_GANG) ||
  510. !SPUFS_I(nd->path.dentry->d_inode)->i_gang)
  511. goto out;
  512. }
  513. dentry = lookup_create(nd, 1);
  514. ret = PTR_ERR(dentry);
  515. if (IS_ERR(dentry))
  516. goto out_dir;
  517. ret = -EEXIST;
  518. if (dentry->d_inode)
  519. goto out_dput;
  520. mode &= ~current->fs->umask;
  521. if (flags & SPU_CREATE_GANG)
  522. return spufs_create_gang(nd->path.dentry->d_inode,
  523. dentry, nd->path.mnt, mode);
  524. else
  525. return spufs_create_context(nd->path.dentry->d_inode,
  526. dentry, nd->path.mnt, flags, mode,
  527. filp);
  528. out_dput:
  529. dput(dentry);
  530. out_dir:
  531. mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
  532. out:
  533. return ret;
  534. }
  535. /* File system initialization */
  536. enum {
  537. Opt_uid, Opt_gid, Opt_mode, Opt_err,
  538. };
  539. static match_table_t spufs_tokens = {
  540. { Opt_uid, "uid=%d" },
  541. { Opt_gid, "gid=%d" },
  542. { Opt_mode, "mode=%o" },
  543. { Opt_err, NULL },
  544. };
  545. static int
  546. spufs_parse_options(char *options, struct inode *root)
  547. {
  548. char *p;
  549. substring_t args[MAX_OPT_ARGS];
  550. while ((p = strsep(&options, ",")) != NULL) {
  551. int token, option;
  552. if (!*p)
  553. continue;
  554. token = match_token(p, spufs_tokens, args);
  555. switch (token) {
  556. case Opt_uid:
  557. if (match_int(&args[0], &option))
  558. return 0;
  559. root->i_uid = option;
  560. break;
  561. case Opt_gid:
  562. if (match_int(&args[0], &option))
  563. return 0;
  564. root->i_gid = option;
  565. break;
  566. case Opt_mode:
  567. if (match_octal(&args[0], &option))
  568. return 0;
  569. root->i_mode = option | S_IFDIR;
  570. break;
  571. default:
  572. return 0;
  573. }
  574. }
  575. return 1;
  576. }
  577. static void spufs_exit_isolated_loader(void)
  578. {
  579. free_pages((unsigned long) isolated_loader,
  580. get_order(isolated_loader_size));
  581. }
  582. static void
  583. spufs_init_isolated_loader(void)
  584. {
  585. struct device_node *dn;
  586. const char *loader;
  587. int size;
  588. dn = of_find_node_by_path("/spu-isolation");
  589. if (!dn)
  590. return;
  591. loader = of_get_property(dn, "loader", &size);
  592. if (!loader)
  593. return;
  594. /* the loader must be align on a 16 byte boundary */
  595. isolated_loader = (char *)__get_free_pages(GFP_KERNEL, get_order(size));
  596. if (!isolated_loader)
  597. return;
  598. isolated_loader_size = size;
  599. memcpy(isolated_loader, loader, size);
  600. printk(KERN_INFO "spufs: SPU isolation mode enabled\n");
  601. }
  602. static int
  603. spufs_create_root(struct super_block *sb, void *data)
  604. {
  605. struct inode *inode;
  606. int ret;
  607. ret = -ENODEV;
  608. if (!spu_management_ops)
  609. goto out;
  610. ret = -ENOMEM;
  611. inode = spufs_new_inode(sb, S_IFDIR | 0775);
  612. if (!inode)
  613. goto out;
  614. inode->i_op = &simple_dir_inode_operations;
  615. inode->i_fop = &simple_dir_operations;
  616. SPUFS_I(inode)->i_ctx = NULL;
  617. ret = -EINVAL;
  618. if (!spufs_parse_options(data, inode))
  619. goto out_iput;
  620. ret = -ENOMEM;
  621. sb->s_root = d_alloc_root(inode);
  622. if (!sb->s_root)
  623. goto out_iput;
  624. return 0;
  625. out_iput:
  626. iput(inode);
  627. out:
  628. return ret;
  629. }
  630. static int
  631. spufs_fill_super(struct super_block *sb, void *data, int silent)
  632. {
  633. static struct super_operations s_ops = {
  634. .alloc_inode = spufs_alloc_inode,
  635. .destroy_inode = spufs_destroy_inode,
  636. .statfs = simple_statfs,
  637. .delete_inode = spufs_delete_inode,
  638. .drop_inode = generic_delete_inode,
  639. .show_options = generic_show_options,
  640. };
  641. save_mount_options(sb, data);
  642. sb->s_maxbytes = MAX_LFS_FILESIZE;
  643. sb->s_blocksize = PAGE_CACHE_SIZE;
  644. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  645. sb->s_magic = SPUFS_MAGIC;
  646. sb->s_op = &s_ops;
  647. return spufs_create_root(sb, data);
  648. }
  649. static int
  650. spufs_get_sb(struct file_system_type *fstype, int flags,
  651. const char *name, void *data, struct vfsmount *mnt)
  652. {
  653. return get_sb_single(fstype, flags, data, spufs_fill_super, mnt);
  654. }
  655. static struct file_system_type spufs_type = {
  656. .owner = THIS_MODULE,
  657. .name = "spufs",
  658. .get_sb = spufs_get_sb,
  659. .kill_sb = kill_litter_super,
  660. };
  661. static int __init spufs_init(void)
  662. {
  663. int ret;
  664. ret = -ENODEV;
  665. if (!spu_management_ops)
  666. goto out;
  667. ret = -ENOMEM;
  668. spufs_inode_cache = kmem_cache_create("spufs_inode_cache",
  669. sizeof(struct spufs_inode_info), 0,
  670. SLAB_HWCACHE_ALIGN, spufs_init_once);
  671. if (!spufs_inode_cache)
  672. goto out;
  673. ret = spu_sched_init();
  674. if (ret)
  675. goto out_cache;
  676. ret = register_filesystem(&spufs_type);
  677. if (ret)
  678. goto out_sched;
  679. ret = register_spu_syscalls(&spufs_calls);
  680. if (ret)
  681. goto out_fs;
  682. spufs_init_isolated_loader();
  683. return 0;
  684. out_fs:
  685. unregister_filesystem(&spufs_type);
  686. out_sched:
  687. spu_sched_exit();
  688. out_cache:
  689. kmem_cache_destroy(spufs_inode_cache);
  690. out:
  691. return ret;
  692. }
  693. module_init(spufs_init);
  694. static void __exit spufs_exit(void)
  695. {
  696. spu_sched_exit();
  697. spufs_exit_isolated_loader();
  698. unregister_spu_syscalls(&spufs_calls);
  699. unregister_filesystem(&spufs_type);
  700. kmem_cache_destroy(spufs_inode_cache);
  701. }
  702. module_exit(spufs_exit);
  703. MODULE_LICENSE("GPL");
  704. MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");