4xx.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610
  1. /*
  2. * Copyright 2007 David Gibson, IBM Corporation.
  3. *
  4. * Based on earlier code:
  5. * Matt Porter <mporter@kernel.crashing.org>
  6. * Copyright 2002-2005 MontaVista Software Inc.
  7. *
  8. * Eugene Surovegin <eugene.surovegin@zultys.com> or <ebs@ebshome.net>
  9. * Copyright (c) 2003, 2004 Zultys Technologies
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. */
  16. #include <stddef.h>
  17. #include "types.h"
  18. #include "string.h"
  19. #include "stdio.h"
  20. #include "ops.h"
  21. #include "reg.h"
  22. #include "dcr.h"
  23. /* Read the 4xx SDRAM controller to get size of system memory. */
  24. void ibm4xx_sdram_fixup_memsize(void)
  25. {
  26. int i;
  27. unsigned long memsize, bank_config;
  28. memsize = 0;
  29. for (i = 0; i < ARRAY_SIZE(sdram_bxcr); i++) {
  30. bank_config = SDRAM0_READ(sdram_bxcr[i]);
  31. if (bank_config & SDRAM_CONFIG_BANK_ENABLE)
  32. memsize += SDRAM_CONFIG_BANK_SIZE(bank_config);
  33. }
  34. dt_fixup_memory(0, memsize);
  35. }
  36. /* Read the 440SPe MQ controller to get size of system memory. */
  37. #define DCRN_MQ0_B0BAS 0x40
  38. #define DCRN_MQ0_B1BAS 0x41
  39. #define DCRN_MQ0_B2BAS 0x42
  40. #define DCRN_MQ0_B3BAS 0x43
  41. static u64 ibm440spe_decode_bas(u32 bas)
  42. {
  43. u64 base = ((u64)(bas & 0xFFE00000u)) << 2;
  44. /* open coded because I'm paranoid about invalid values */
  45. switch ((bas >> 4) & 0xFFF) {
  46. case 0:
  47. return 0;
  48. case 0xffc:
  49. return base + 0x000800000ull;
  50. case 0xff8:
  51. return base + 0x001000000ull;
  52. case 0xff0:
  53. return base + 0x002000000ull;
  54. case 0xfe0:
  55. return base + 0x004000000ull;
  56. case 0xfc0:
  57. return base + 0x008000000ull;
  58. case 0xf80:
  59. return base + 0x010000000ull;
  60. case 0xf00:
  61. return base + 0x020000000ull;
  62. case 0xe00:
  63. return base + 0x040000000ull;
  64. case 0xc00:
  65. return base + 0x080000000ull;
  66. case 0x800:
  67. return base + 0x100000000ull;
  68. }
  69. printf("Memory BAS value 0x%08x unsupported !\n", bas);
  70. return 0;
  71. }
  72. void ibm440spe_fixup_memsize(void)
  73. {
  74. u64 banktop, memsize = 0;
  75. /* Ultimately, we should directly construct the memory node
  76. * so we are able to handle holes in the memory address space
  77. */
  78. banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B0BAS));
  79. if (banktop > memsize)
  80. memsize = banktop;
  81. banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B1BAS));
  82. if (banktop > memsize)
  83. memsize = banktop;
  84. banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B2BAS));
  85. if (banktop > memsize)
  86. memsize = banktop;
  87. banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B3BAS));
  88. if (banktop > memsize)
  89. memsize = banktop;
  90. dt_fixup_memory(0, memsize);
  91. }
  92. /* 4xx DDR1/2 Denali memory controller support */
  93. /* DDR0 registers */
  94. #define DDR0_02 2
  95. #define DDR0_08 8
  96. #define DDR0_10 10
  97. #define DDR0_14 14
  98. #define DDR0_42 42
  99. #define DDR0_43 43
  100. /* DDR0_02 */
  101. #define DDR_START 0x1
  102. #define DDR_START_SHIFT 0
  103. #define DDR_MAX_CS_REG 0x3
  104. #define DDR_MAX_CS_REG_SHIFT 24
  105. #define DDR_MAX_COL_REG 0xf
  106. #define DDR_MAX_COL_REG_SHIFT 16
  107. #define DDR_MAX_ROW_REG 0xf
  108. #define DDR_MAX_ROW_REG_SHIFT 8
  109. /* DDR0_08 */
  110. #define DDR_DDR2_MODE 0x1
  111. #define DDR_DDR2_MODE_SHIFT 0
  112. /* DDR0_10 */
  113. #define DDR_CS_MAP 0x3
  114. #define DDR_CS_MAP_SHIFT 8
  115. /* DDR0_14 */
  116. #define DDR_REDUC 0x1
  117. #define DDR_REDUC_SHIFT 16
  118. /* DDR0_42 */
  119. #define DDR_APIN 0x7
  120. #define DDR_APIN_SHIFT 24
  121. /* DDR0_43 */
  122. #define DDR_COL_SZ 0x7
  123. #define DDR_COL_SZ_SHIFT 8
  124. #define DDR_BANK8 0x1
  125. #define DDR_BANK8_SHIFT 0
  126. #define DDR_GET_VAL(val, mask, shift) (((val) >> (shift)) & (mask))
  127. void ibm4xx_denali_fixup_memsize(void)
  128. {
  129. u32 val, max_cs, max_col, max_row;
  130. u32 cs, col, row, bank, dpath;
  131. unsigned long memsize;
  132. val = SDRAM0_READ(DDR0_02);
  133. if (!DDR_GET_VAL(val, DDR_START, DDR_START_SHIFT))
  134. fatal("DDR controller is not initialized\n");
  135. /* get maximum cs col and row values */
  136. max_cs = DDR_GET_VAL(val, DDR_MAX_CS_REG, DDR_MAX_CS_REG_SHIFT);
  137. max_col = DDR_GET_VAL(val, DDR_MAX_COL_REG, DDR_MAX_COL_REG_SHIFT);
  138. max_row = DDR_GET_VAL(val, DDR_MAX_ROW_REG, DDR_MAX_ROW_REG_SHIFT);
  139. /* get CS value */
  140. val = SDRAM0_READ(DDR0_10);
  141. val = DDR_GET_VAL(val, DDR_CS_MAP, DDR_CS_MAP_SHIFT);
  142. cs = 0;
  143. while (val) {
  144. if (val & 0x1)
  145. cs++;
  146. val = val >> 1;
  147. }
  148. if (!cs)
  149. fatal("No memory installed\n");
  150. if (cs > max_cs)
  151. fatal("DDR wrong CS configuration\n");
  152. /* get data path bytes */
  153. val = SDRAM0_READ(DDR0_14);
  154. if (DDR_GET_VAL(val, DDR_REDUC, DDR_REDUC_SHIFT))
  155. dpath = 8; /* 64 bits */
  156. else
  157. dpath = 4; /* 32 bits */
  158. /* get address pins (rows) */
  159. val = SDRAM0_READ(DDR0_42);
  160. row = DDR_GET_VAL(val, DDR_APIN, DDR_APIN_SHIFT);
  161. if (row > max_row)
  162. fatal("DDR wrong APIN configuration\n");
  163. row = max_row - row;
  164. /* get collomn size and banks */
  165. val = SDRAM0_READ(DDR0_43);
  166. col = DDR_GET_VAL(val, DDR_COL_SZ, DDR_COL_SZ_SHIFT);
  167. if (col > max_col)
  168. fatal("DDR wrong COL configuration\n");
  169. col = max_col - col;
  170. if (DDR_GET_VAL(val, DDR_BANK8, DDR_BANK8_SHIFT))
  171. bank = 8; /* 8 banks */
  172. else
  173. bank = 4; /* 4 banks */
  174. memsize = cs * (1 << (col+row)) * bank * dpath;
  175. dt_fixup_memory(0, memsize);
  176. }
  177. #define SPRN_DBCR0_40X 0x3F2
  178. #define SPRN_DBCR0_44X 0x134
  179. #define DBCR0_RST_SYSTEM 0x30000000
  180. void ibm44x_dbcr_reset(void)
  181. {
  182. unsigned long tmp;
  183. asm volatile (
  184. "mfspr %0,%1\n"
  185. "oris %0,%0,%2@h\n"
  186. "mtspr %1,%0"
  187. : "=&r"(tmp) : "i"(SPRN_DBCR0_44X), "i"(DBCR0_RST_SYSTEM)
  188. );
  189. }
  190. void ibm40x_dbcr_reset(void)
  191. {
  192. unsigned long tmp;
  193. asm volatile (
  194. "mfspr %0,%1\n"
  195. "oris %0,%0,%2@h\n"
  196. "mtspr %1,%0"
  197. : "=&r"(tmp) : "i"(SPRN_DBCR0_40X), "i"(DBCR0_RST_SYSTEM)
  198. );
  199. }
  200. #define EMAC_RESET 0x20000000
  201. void ibm4xx_quiesce_eth(u32 *emac0, u32 *emac1)
  202. {
  203. /* Quiesce the MAL and EMAC(s) since PIBS/OpenBIOS don't
  204. * do this for us
  205. */
  206. if (emac0)
  207. *emac0 = EMAC_RESET;
  208. if (emac1)
  209. *emac1 = EMAC_RESET;
  210. mtdcr(DCRN_MAL0_CFG, MAL_RESET);
  211. while (mfdcr(DCRN_MAL0_CFG) & MAL_RESET)
  212. ; /* loop until reset takes effect */
  213. }
  214. /* Read 4xx EBC bus bridge registers to get mappings of the peripheral
  215. * banks into the OPB address space */
  216. void ibm4xx_fixup_ebc_ranges(const char *ebc)
  217. {
  218. void *devp;
  219. u32 bxcr;
  220. u32 ranges[EBC_NUM_BANKS*4];
  221. u32 *p = ranges;
  222. int i;
  223. for (i = 0; i < EBC_NUM_BANKS; i++) {
  224. mtdcr(DCRN_EBC0_CFGADDR, EBC_BXCR(i));
  225. bxcr = mfdcr(DCRN_EBC0_CFGDATA);
  226. if ((bxcr & EBC_BXCR_BU) != EBC_BXCR_BU_OFF) {
  227. *p++ = i;
  228. *p++ = 0;
  229. *p++ = bxcr & EBC_BXCR_BAS;
  230. *p++ = EBC_BXCR_BANK_SIZE(bxcr);
  231. }
  232. }
  233. devp = finddevice(ebc);
  234. if (! devp)
  235. fatal("Couldn't locate EBC node %s\n\r", ebc);
  236. setprop(devp, "ranges", ranges, (p - ranges) * sizeof(u32));
  237. }
  238. /* Calculate 440GP clocks */
  239. void ibm440gp_fixup_clocks(unsigned int sys_clk, unsigned int ser_clk)
  240. {
  241. u32 sys0 = mfdcr(DCRN_CPC0_SYS0);
  242. u32 cr0 = mfdcr(DCRN_CPC0_CR0);
  243. u32 cpu, plb, opb, ebc, tb, uart0, uart1, m;
  244. u32 opdv = CPC0_SYS0_OPDV(sys0);
  245. u32 epdv = CPC0_SYS0_EPDV(sys0);
  246. if (sys0 & CPC0_SYS0_BYPASS) {
  247. /* Bypass system PLL */
  248. cpu = plb = sys_clk;
  249. } else {
  250. if (sys0 & CPC0_SYS0_EXTSL)
  251. /* PerClk */
  252. m = CPC0_SYS0_FWDVB(sys0) * opdv * epdv;
  253. else
  254. /* CPU clock */
  255. m = CPC0_SYS0_FBDV(sys0) * CPC0_SYS0_FWDVA(sys0);
  256. cpu = sys_clk * m / CPC0_SYS0_FWDVA(sys0);
  257. plb = sys_clk * m / CPC0_SYS0_FWDVB(sys0);
  258. }
  259. opb = plb / opdv;
  260. ebc = opb / epdv;
  261. /* FIXME: Check if this is for all 440GP, or just Ebony */
  262. if ((mfpvr() & 0xf0000fff) == 0x40000440)
  263. /* Rev. B 440GP, use external system clock */
  264. tb = sys_clk;
  265. else
  266. /* Rev. C 440GP, errata force us to use internal clock */
  267. tb = cpu;
  268. if (cr0 & CPC0_CR0_U0EC)
  269. /* External UART clock */
  270. uart0 = ser_clk;
  271. else
  272. /* Internal UART clock */
  273. uart0 = plb / CPC0_CR0_UDIV(cr0);
  274. if (cr0 & CPC0_CR0_U1EC)
  275. /* External UART clock */
  276. uart1 = ser_clk;
  277. else
  278. /* Internal UART clock */
  279. uart1 = plb / CPC0_CR0_UDIV(cr0);
  280. printf("PPC440GP: SysClk = %dMHz (%x)\n\r",
  281. (sys_clk + 500000) / 1000000, sys_clk);
  282. dt_fixup_cpu_clocks(cpu, tb, 0);
  283. dt_fixup_clock("/plb", plb);
  284. dt_fixup_clock("/plb/opb", opb);
  285. dt_fixup_clock("/plb/opb/ebc", ebc);
  286. dt_fixup_clock("/plb/opb/serial@40000200", uart0);
  287. dt_fixup_clock("/plb/opb/serial@40000300", uart1);
  288. }
  289. #define SPRN_CCR1 0x378
  290. static inline u32 __fix_zero(u32 v, u32 def)
  291. {
  292. return v ? v : def;
  293. }
  294. static unsigned int __ibm440eplike_fixup_clocks(unsigned int sys_clk,
  295. unsigned int tmr_clk,
  296. int per_clk_from_opb)
  297. {
  298. /* PLL config */
  299. u32 pllc = CPR0_READ(DCRN_CPR0_PLLC);
  300. u32 plld = CPR0_READ(DCRN_CPR0_PLLD);
  301. /* Dividers */
  302. u32 fbdv = __fix_zero((plld >> 24) & 0x1f, 32);
  303. u32 fwdva = __fix_zero((plld >> 16) & 0xf, 16);
  304. u32 fwdvb = __fix_zero((plld >> 8) & 7, 8);
  305. u32 lfbdv = __fix_zero(plld & 0x3f, 64);
  306. u32 pradv0 = __fix_zero((CPR0_READ(DCRN_CPR0_PRIMAD) >> 24) & 7, 8);
  307. u32 prbdv0 = __fix_zero((CPR0_READ(DCRN_CPR0_PRIMBD) >> 24) & 7, 8);
  308. u32 opbdv0 = __fix_zero((CPR0_READ(DCRN_CPR0_OPBD) >> 24) & 3, 4);
  309. u32 perdv0 = __fix_zero((CPR0_READ(DCRN_CPR0_PERD) >> 24) & 3, 4);
  310. /* Input clocks for primary dividers */
  311. u32 clk_a, clk_b;
  312. /* Resulting clocks */
  313. u32 cpu, plb, opb, ebc, vco;
  314. /* Timebase */
  315. u32 ccr1, tb = tmr_clk;
  316. if (pllc & 0x40000000) {
  317. u32 m;
  318. /* Feedback path */
  319. switch ((pllc >> 24) & 7) {
  320. case 0:
  321. /* PLLOUTx */
  322. m = ((pllc & 0x20000000) ? fwdvb : fwdva) * lfbdv;
  323. break;
  324. case 1:
  325. /* CPU */
  326. m = fwdva * pradv0;
  327. break;
  328. case 5:
  329. /* PERClk */
  330. m = fwdvb * prbdv0 * opbdv0 * perdv0;
  331. break;
  332. default:
  333. printf("WARNING ! Invalid PLL feedback source !\n");
  334. goto bypass;
  335. }
  336. m *= fbdv;
  337. vco = sys_clk * m;
  338. clk_a = vco / fwdva;
  339. clk_b = vco / fwdvb;
  340. } else {
  341. bypass:
  342. /* Bypass system PLL */
  343. vco = 0;
  344. clk_a = clk_b = sys_clk;
  345. }
  346. cpu = clk_a / pradv0;
  347. plb = clk_b / prbdv0;
  348. opb = plb / opbdv0;
  349. ebc = (per_clk_from_opb ? opb : plb) / perdv0;
  350. /* Figure out timebase. Either CPU or default TmrClk */
  351. ccr1 = mfspr(SPRN_CCR1);
  352. /* If passed a 0 tmr_clk, force CPU clock */
  353. if (tb == 0) {
  354. ccr1 &= ~0x80u;
  355. mtspr(SPRN_CCR1, ccr1);
  356. }
  357. if ((ccr1 & 0x0080) == 0)
  358. tb = cpu;
  359. dt_fixup_cpu_clocks(cpu, tb, 0);
  360. dt_fixup_clock("/plb", plb);
  361. dt_fixup_clock("/plb/opb", opb);
  362. dt_fixup_clock("/plb/opb/ebc", ebc);
  363. return plb;
  364. }
  365. static void eplike_fixup_uart_clk(int index, const char *path,
  366. unsigned int ser_clk,
  367. unsigned int plb_clk)
  368. {
  369. unsigned int sdr;
  370. unsigned int clock;
  371. switch (index) {
  372. case 0:
  373. sdr = SDR0_READ(DCRN_SDR0_UART0);
  374. break;
  375. case 1:
  376. sdr = SDR0_READ(DCRN_SDR0_UART1);
  377. break;
  378. case 2:
  379. sdr = SDR0_READ(DCRN_SDR0_UART2);
  380. break;
  381. case 3:
  382. sdr = SDR0_READ(DCRN_SDR0_UART3);
  383. break;
  384. default:
  385. return;
  386. }
  387. if (sdr & 0x00800000u)
  388. clock = ser_clk;
  389. else
  390. clock = plb_clk / __fix_zero(sdr & 0xff, 256);
  391. dt_fixup_clock(path, clock);
  392. }
  393. void ibm440ep_fixup_clocks(unsigned int sys_clk,
  394. unsigned int ser_clk,
  395. unsigned int tmr_clk)
  396. {
  397. unsigned int plb_clk = __ibm440eplike_fixup_clocks(sys_clk, tmr_clk, 0);
  398. /* serial clocks beed fixup based on int/ext */
  399. eplike_fixup_uart_clk(0, "/plb/opb/serial@ef600300", ser_clk, plb_clk);
  400. eplike_fixup_uart_clk(1, "/plb/opb/serial@ef600400", ser_clk, plb_clk);
  401. eplike_fixup_uart_clk(2, "/plb/opb/serial@ef600500", ser_clk, plb_clk);
  402. eplike_fixup_uart_clk(3, "/plb/opb/serial@ef600600", ser_clk, plb_clk);
  403. }
  404. void ibm440gx_fixup_clocks(unsigned int sys_clk,
  405. unsigned int ser_clk,
  406. unsigned int tmr_clk)
  407. {
  408. unsigned int plb_clk = __ibm440eplike_fixup_clocks(sys_clk, tmr_clk, 1);
  409. /* serial clocks beed fixup based on int/ext */
  410. eplike_fixup_uart_clk(0, "/plb/opb/serial@40000200", ser_clk, plb_clk);
  411. eplike_fixup_uart_clk(1, "/plb/opb/serial@40000300", ser_clk, plb_clk);
  412. }
  413. void ibm440spe_fixup_clocks(unsigned int sys_clk,
  414. unsigned int ser_clk,
  415. unsigned int tmr_clk)
  416. {
  417. unsigned int plb_clk = __ibm440eplike_fixup_clocks(sys_clk, tmr_clk, 1);
  418. /* serial clocks beed fixup based on int/ext */
  419. eplike_fixup_uart_clk(0, "/plb/opb/serial@10000200", ser_clk, plb_clk);
  420. eplike_fixup_uart_clk(1, "/plb/opb/serial@10000300", ser_clk, plb_clk);
  421. eplike_fixup_uart_clk(2, "/plb/opb/serial@10000600", ser_clk, plb_clk);
  422. }
  423. void ibm405gp_fixup_clocks(unsigned int sys_clk, unsigned int ser_clk)
  424. {
  425. u32 pllmr = mfdcr(DCRN_CPC0_PLLMR);
  426. u32 cpc0_cr0 = mfdcr(DCRN_405_CPC0_CR0);
  427. u32 cpc0_cr1 = mfdcr(DCRN_405_CPC0_CR1);
  428. u32 psr = mfdcr(DCRN_405_CPC0_PSR);
  429. u32 cpu, plb, opb, ebc, tb, uart0, uart1, m;
  430. u32 fwdv, fwdvb, fbdv, cbdv, opdv, epdv, ppdv, udiv;
  431. fwdv = (8 - ((pllmr & 0xe0000000) >> 29));
  432. fbdv = (pllmr & 0x1e000000) >> 25;
  433. if (fbdv == 0)
  434. fbdv = 16;
  435. cbdv = ((pllmr & 0x00060000) >> 17) + 1; /* CPU:PLB */
  436. opdv = ((pllmr & 0x00018000) >> 15) + 1; /* PLB:OPB */
  437. ppdv = ((pllmr & 0x00001800) >> 13) + 1; /* PLB:PCI */
  438. epdv = ((pllmr & 0x00001800) >> 11) + 2; /* PLB:EBC */
  439. udiv = ((cpc0_cr0 & 0x3e) >> 1) + 1;
  440. /* check for 405GPr */
  441. if ((mfpvr() & 0xfffffff0) == (0x50910951 & 0xfffffff0)) {
  442. fwdvb = 8 - (pllmr & 0x00000007);
  443. if (!(psr & 0x00001000)) /* PCI async mode enable == 0 */
  444. if (psr & 0x00000020) /* New mode enable */
  445. m = fwdvb * 2 * ppdv;
  446. else
  447. m = fwdvb * cbdv * ppdv;
  448. else if (psr & 0x00000020) /* New mode enable */
  449. if (psr & 0x00000800) /* PerClk synch mode */
  450. m = fwdvb * 2 * epdv;
  451. else
  452. m = fbdv * fwdv;
  453. else if (epdv == fbdv)
  454. m = fbdv * cbdv * epdv;
  455. else
  456. m = fbdv * fwdvb * cbdv;
  457. cpu = sys_clk * m / fwdv;
  458. plb = sys_clk * m / (fwdvb * cbdv);
  459. } else {
  460. m = fwdv * fbdv * cbdv;
  461. cpu = sys_clk * m / fwdv;
  462. plb = cpu / cbdv;
  463. }
  464. opb = plb / opdv;
  465. ebc = plb / epdv;
  466. if (cpc0_cr0 & 0x80)
  467. /* uart0 uses the external clock */
  468. uart0 = ser_clk;
  469. else
  470. uart0 = cpu / udiv;
  471. if (cpc0_cr0 & 0x40)
  472. /* uart1 uses the external clock */
  473. uart1 = ser_clk;
  474. else
  475. uart1 = cpu / udiv;
  476. /* setup the timebase clock to tick at the cpu frequency */
  477. cpc0_cr1 = cpc0_cr1 & ~0x00800000;
  478. mtdcr(DCRN_405_CPC0_CR1, cpc0_cr1);
  479. tb = cpu;
  480. dt_fixup_cpu_clocks(cpu, tb, 0);
  481. dt_fixup_clock("/plb", plb);
  482. dt_fixup_clock("/plb/opb", opb);
  483. dt_fixup_clock("/plb/ebc", ebc);
  484. dt_fixup_clock("/plb/opb/serial@ef600300", uart0);
  485. dt_fixup_clock("/plb/opb/serial@ef600400", uart1);
  486. }
  487. void ibm405ep_fixup_clocks(unsigned int sys_clk)
  488. {
  489. u32 pllmr0 = mfdcr(DCRN_CPC0_PLLMR0);
  490. u32 pllmr1 = mfdcr(DCRN_CPC0_PLLMR1);
  491. u32 cpc0_ucr = mfdcr(DCRN_CPC0_UCR);
  492. u32 cpu, plb, opb, ebc, uart0, uart1;
  493. u32 fwdva, fwdvb, fbdv, cbdv, opdv, epdv;
  494. u32 pllmr0_ccdv, tb, m;
  495. fwdva = 8 - ((pllmr1 & 0x00070000) >> 16);
  496. fwdvb = 8 - ((pllmr1 & 0x00007000) >> 12);
  497. fbdv = (pllmr1 & 0x00f00000) >> 20;
  498. if (fbdv == 0)
  499. fbdv = 16;
  500. cbdv = ((pllmr0 & 0x00030000) >> 16) + 1; /* CPU:PLB */
  501. epdv = ((pllmr0 & 0x00000300) >> 8) + 2; /* PLB:EBC */
  502. opdv = ((pllmr0 & 0x00003000) >> 12) + 1; /* PLB:OPB */
  503. m = fbdv * fwdvb;
  504. pllmr0_ccdv = ((pllmr0 & 0x00300000) >> 20) + 1;
  505. if (pllmr1 & 0x80000000)
  506. cpu = sys_clk * m / (fwdva * pllmr0_ccdv);
  507. else
  508. cpu = sys_clk / pllmr0_ccdv;
  509. plb = cpu / cbdv;
  510. opb = plb / opdv;
  511. ebc = plb / epdv;
  512. tb = cpu;
  513. uart0 = cpu / (cpc0_ucr & 0x0000007f);
  514. uart1 = cpu / ((cpc0_ucr & 0x00007f00) >> 8);
  515. dt_fixup_cpu_clocks(cpu, tb, 0);
  516. dt_fixup_clock("/plb", plb);
  517. dt_fixup_clock("/plb/opb", opb);
  518. dt_fixup_clock("/plb/ebc", ebc);
  519. dt_fixup_clock("/plb/opb/serial@ef600300", uart0);
  520. dt_fixup_clock("/plb/opb/serial@ef600400", uart1);
  521. }