data.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/aio.h>
  16. #include <linux/writeback.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/bio.h>
  20. #include <linux/prefetch.h>
  21. #include "f2fs.h"
  22. #include "node.h"
  23. #include "segment.h"
  24. /*
  25. * Lock ordering for the change of data block address:
  26. * ->data_page
  27. * ->node_page
  28. * update block addresses in the node page
  29. */
  30. static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
  31. {
  32. struct f2fs_node *rn;
  33. __le32 *addr_array;
  34. struct page *node_page = dn->node_page;
  35. unsigned int ofs_in_node = dn->ofs_in_node;
  36. wait_on_page_writeback(node_page);
  37. rn = (struct f2fs_node *)page_address(node_page);
  38. /* Get physical address of data block */
  39. addr_array = blkaddr_in_node(rn);
  40. addr_array[ofs_in_node] = cpu_to_le32(new_addr);
  41. set_page_dirty(node_page);
  42. }
  43. int reserve_new_block(struct dnode_of_data *dn)
  44. {
  45. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  46. if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
  47. return -EPERM;
  48. if (!inc_valid_block_count(sbi, dn->inode, 1))
  49. return -ENOSPC;
  50. __set_data_blkaddr(dn, NEW_ADDR);
  51. dn->data_blkaddr = NEW_ADDR;
  52. sync_inode_page(dn);
  53. return 0;
  54. }
  55. static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
  56. struct buffer_head *bh_result)
  57. {
  58. struct f2fs_inode_info *fi = F2FS_I(inode);
  59. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  60. pgoff_t start_fofs, end_fofs;
  61. block_t start_blkaddr;
  62. read_lock(&fi->ext.ext_lock);
  63. if (fi->ext.len == 0) {
  64. read_unlock(&fi->ext.ext_lock);
  65. return 0;
  66. }
  67. sbi->total_hit_ext++;
  68. start_fofs = fi->ext.fofs;
  69. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  70. start_blkaddr = fi->ext.blk_addr;
  71. if (pgofs >= start_fofs && pgofs <= end_fofs) {
  72. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  73. size_t count;
  74. clear_buffer_new(bh_result);
  75. map_bh(bh_result, inode->i_sb,
  76. start_blkaddr + pgofs - start_fofs);
  77. count = end_fofs - pgofs + 1;
  78. if (count < (UINT_MAX >> blkbits))
  79. bh_result->b_size = (count << blkbits);
  80. else
  81. bh_result->b_size = UINT_MAX;
  82. sbi->read_hit_ext++;
  83. read_unlock(&fi->ext.ext_lock);
  84. return 1;
  85. }
  86. read_unlock(&fi->ext.ext_lock);
  87. return 0;
  88. }
  89. void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
  90. {
  91. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  92. pgoff_t fofs, start_fofs, end_fofs;
  93. block_t start_blkaddr, end_blkaddr;
  94. BUG_ON(blk_addr == NEW_ADDR);
  95. fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node;
  96. /* Update the page address in the parent node */
  97. __set_data_blkaddr(dn, blk_addr);
  98. write_lock(&fi->ext.ext_lock);
  99. start_fofs = fi->ext.fofs;
  100. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  101. start_blkaddr = fi->ext.blk_addr;
  102. end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
  103. /* Drop and initialize the matched extent */
  104. if (fi->ext.len == 1 && fofs == start_fofs)
  105. fi->ext.len = 0;
  106. /* Initial extent */
  107. if (fi->ext.len == 0) {
  108. if (blk_addr != NULL_ADDR) {
  109. fi->ext.fofs = fofs;
  110. fi->ext.blk_addr = blk_addr;
  111. fi->ext.len = 1;
  112. }
  113. goto end_update;
  114. }
  115. /* Frone merge */
  116. if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
  117. fi->ext.fofs--;
  118. fi->ext.blk_addr--;
  119. fi->ext.len++;
  120. goto end_update;
  121. }
  122. /* Back merge */
  123. if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
  124. fi->ext.len++;
  125. goto end_update;
  126. }
  127. /* Split the existing extent */
  128. if (fi->ext.len > 1 &&
  129. fofs >= start_fofs && fofs <= end_fofs) {
  130. if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
  131. fi->ext.len = fofs - start_fofs;
  132. } else {
  133. fi->ext.fofs = fofs + 1;
  134. fi->ext.blk_addr = start_blkaddr +
  135. fofs - start_fofs + 1;
  136. fi->ext.len -= fofs - start_fofs + 1;
  137. }
  138. goto end_update;
  139. }
  140. write_unlock(&fi->ext.ext_lock);
  141. return;
  142. end_update:
  143. write_unlock(&fi->ext.ext_lock);
  144. sync_inode_page(dn);
  145. return;
  146. }
  147. struct page *find_data_page(struct inode *inode, pgoff_t index)
  148. {
  149. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  150. struct address_space *mapping = inode->i_mapping;
  151. struct dnode_of_data dn;
  152. struct page *page;
  153. int err;
  154. page = find_get_page(mapping, index);
  155. if (page && PageUptodate(page))
  156. return page;
  157. f2fs_put_page(page, 0);
  158. set_new_dnode(&dn, inode, NULL, NULL, 0);
  159. err = get_dnode_of_data(&dn, index, RDONLY_NODE);
  160. if (err)
  161. return ERR_PTR(err);
  162. f2fs_put_dnode(&dn);
  163. if (dn.data_blkaddr == NULL_ADDR)
  164. return ERR_PTR(-ENOENT);
  165. /* By fallocate(), there is no cached page, but with NEW_ADDR */
  166. if (dn.data_blkaddr == NEW_ADDR)
  167. return ERR_PTR(-EINVAL);
  168. page = grab_cache_page(mapping, index);
  169. if (!page)
  170. return ERR_PTR(-ENOMEM);
  171. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  172. if (err) {
  173. f2fs_put_page(page, 1);
  174. return ERR_PTR(err);
  175. }
  176. unlock_page(page);
  177. return page;
  178. }
  179. /*
  180. * If it tries to access a hole, return an error.
  181. * Because, the callers, functions in dir.c and GC, should be able to know
  182. * whether this page exists or not.
  183. */
  184. struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
  185. {
  186. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  187. struct address_space *mapping = inode->i_mapping;
  188. struct dnode_of_data dn;
  189. struct page *page;
  190. int err;
  191. set_new_dnode(&dn, inode, NULL, NULL, 0);
  192. err = get_dnode_of_data(&dn, index, RDONLY_NODE);
  193. if (err)
  194. return ERR_PTR(err);
  195. f2fs_put_dnode(&dn);
  196. if (dn.data_blkaddr == NULL_ADDR)
  197. return ERR_PTR(-ENOENT);
  198. page = grab_cache_page(mapping, index);
  199. if (!page)
  200. return ERR_PTR(-ENOMEM);
  201. if (PageUptodate(page))
  202. return page;
  203. BUG_ON(dn.data_blkaddr == NEW_ADDR);
  204. BUG_ON(dn.data_blkaddr == NULL_ADDR);
  205. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  206. if (err) {
  207. f2fs_put_page(page, 1);
  208. return ERR_PTR(err);
  209. }
  210. return page;
  211. }
  212. /*
  213. * Caller ensures that this data page is never allocated.
  214. * A new zero-filled data page is allocated in the page cache.
  215. */
  216. struct page *get_new_data_page(struct inode *inode, pgoff_t index,
  217. bool new_i_size)
  218. {
  219. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  220. struct address_space *mapping = inode->i_mapping;
  221. struct page *page;
  222. struct dnode_of_data dn;
  223. int err;
  224. set_new_dnode(&dn, inode, NULL, NULL, 0);
  225. err = get_dnode_of_data(&dn, index, 0);
  226. if (err)
  227. return ERR_PTR(err);
  228. if (dn.data_blkaddr == NULL_ADDR) {
  229. if (reserve_new_block(&dn)) {
  230. f2fs_put_dnode(&dn);
  231. return ERR_PTR(-ENOSPC);
  232. }
  233. }
  234. f2fs_put_dnode(&dn);
  235. page = grab_cache_page(mapping, index);
  236. if (!page)
  237. return ERR_PTR(-ENOMEM);
  238. if (PageUptodate(page))
  239. return page;
  240. if (dn.data_blkaddr == NEW_ADDR) {
  241. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  242. } else {
  243. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  244. if (err) {
  245. f2fs_put_page(page, 1);
  246. return ERR_PTR(err);
  247. }
  248. }
  249. SetPageUptodate(page);
  250. if (new_i_size &&
  251. i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
  252. i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
  253. mark_inode_dirty_sync(inode);
  254. }
  255. return page;
  256. }
  257. static void read_end_io(struct bio *bio, int err)
  258. {
  259. const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  260. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  261. do {
  262. struct page *page = bvec->bv_page;
  263. if (--bvec >= bio->bi_io_vec)
  264. prefetchw(&bvec->bv_page->flags);
  265. if (uptodate) {
  266. SetPageUptodate(page);
  267. } else {
  268. ClearPageUptodate(page);
  269. SetPageError(page);
  270. }
  271. unlock_page(page);
  272. } while (bvec >= bio->bi_io_vec);
  273. kfree(bio->bi_private);
  274. bio_put(bio);
  275. }
  276. /*
  277. * Fill the locked page with data located in the block address.
  278. * Read operation is synchronous, and caller must unlock the page.
  279. */
  280. int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
  281. block_t blk_addr, int type)
  282. {
  283. struct block_device *bdev = sbi->sb->s_bdev;
  284. bool sync = (type == READ_SYNC);
  285. struct bio *bio;
  286. /* This page can be already read by other threads */
  287. if (PageUptodate(page)) {
  288. if (!sync)
  289. unlock_page(page);
  290. return 0;
  291. }
  292. down_read(&sbi->bio_sem);
  293. /* Allocate a new bio */
  294. bio = f2fs_bio_alloc(bdev, 1);
  295. /* Initialize the bio */
  296. bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
  297. bio->bi_end_io = read_end_io;
  298. if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
  299. kfree(bio->bi_private);
  300. bio_put(bio);
  301. up_read(&sbi->bio_sem);
  302. return -EFAULT;
  303. }
  304. submit_bio(type, bio);
  305. up_read(&sbi->bio_sem);
  306. /* wait for read completion if sync */
  307. if (sync) {
  308. lock_page(page);
  309. if (PageError(page))
  310. return -EIO;
  311. }
  312. return 0;
  313. }
  314. /*
  315. * This function should be used by the data read flow only where it
  316. * does not check the "create" flag that indicates block allocation.
  317. * The reason for this special functionality is to exploit VFS readahead
  318. * mechanism.
  319. */
  320. static int get_data_block_ro(struct inode *inode, sector_t iblock,
  321. struct buffer_head *bh_result, int create)
  322. {
  323. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  324. unsigned maxblocks = bh_result->b_size >> blkbits;
  325. struct dnode_of_data dn;
  326. pgoff_t pgofs;
  327. int err;
  328. /* Get the page offset from the block offset(iblock) */
  329. pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
  330. if (check_extent_cache(inode, pgofs, bh_result))
  331. return 0;
  332. /* When reading holes, we need its node page */
  333. set_new_dnode(&dn, inode, NULL, NULL, 0);
  334. err = get_dnode_of_data(&dn, pgofs, RDONLY_NODE);
  335. if (err)
  336. return (err == -ENOENT) ? 0 : err;
  337. /* It does not support data allocation */
  338. BUG_ON(create);
  339. if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
  340. int i;
  341. unsigned int end_offset;
  342. end_offset = IS_INODE(dn.node_page) ?
  343. ADDRS_PER_INODE :
  344. ADDRS_PER_BLOCK;
  345. clear_buffer_new(bh_result);
  346. /* Give more consecutive addresses for the read ahead */
  347. for (i = 0; i < end_offset - dn.ofs_in_node; i++)
  348. if (((datablock_addr(dn.node_page,
  349. dn.ofs_in_node + i))
  350. != (dn.data_blkaddr + i)) || maxblocks == i)
  351. break;
  352. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  353. bh_result->b_size = (i << blkbits);
  354. }
  355. f2fs_put_dnode(&dn);
  356. return 0;
  357. }
  358. static int f2fs_read_data_page(struct file *file, struct page *page)
  359. {
  360. return mpage_readpage(page, get_data_block_ro);
  361. }
  362. static int f2fs_read_data_pages(struct file *file,
  363. struct address_space *mapping,
  364. struct list_head *pages, unsigned nr_pages)
  365. {
  366. return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
  367. }
  368. int do_write_data_page(struct page *page)
  369. {
  370. struct inode *inode = page->mapping->host;
  371. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  372. block_t old_blk_addr, new_blk_addr;
  373. struct dnode_of_data dn;
  374. int err = 0;
  375. set_new_dnode(&dn, inode, NULL, NULL, 0);
  376. err = get_dnode_of_data(&dn, page->index, RDONLY_NODE);
  377. if (err)
  378. return err;
  379. old_blk_addr = dn.data_blkaddr;
  380. /* This page is already truncated */
  381. if (old_blk_addr == NULL_ADDR)
  382. goto out_writepage;
  383. set_page_writeback(page);
  384. /*
  385. * If current allocation needs SSR,
  386. * it had better in-place writes for updated data.
  387. */
  388. if (old_blk_addr != NEW_ADDR && !is_cold_data(page) &&
  389. need_inplace_update(inode)) {
  390. rewrite_data_page(F2FS_SB(inode->i_sb), page,
  391. old_blk_addr);
  392. } else {
  393. write_data_page(inode, page, &dn,
  394. old_blk_addr, &new_blk_addr);
  395. update_extent_cache(new_blk_addr, &dn);
  396. F2FS_I(inode)->data_version =
  397. le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver);
  398. }
  399. out_writepage:
  400. f2fs_put_dnode(&dn);
  401. return err;
  402. }
  403. static int f2fs_write_data_page(struct page *page,
  404. struct writeback_control *wbc)
  405. {
  406. struct inode *inode = page->mapping->host;
  407. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  408. loff_t i_size = i_size_read(inode);
  409. const pgoff_t end_index = ((unsigned long long) i_size)
  410. >> PAGE_CACHE_SHIFT;
  411. unsigned offset;
  412. int err = 0;
  413. if (page->index < end_index)
  414. goto out;
  415. /*
  416. * If the offset is out-of-range of file size,
  417. * this page does not have to be written to disk.
  418. */
  419. offset = i_size & (PAGE_CACHE_SIZE - 1);
  420. if ((page->index >= end_index + 1) || !offset) {
  421. if (S_ISDIR(inode->i_mode)) {
  422. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  423. inode_dec_dirty_dents(inode);
  424. }
  425. goto unlock_out;
  426. }
  427. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  428. out:
  429. if (sbi->por_doing)
  430. goto redirty_out;
  431. if (wbc->for_reclaim && !S_ISDIR(inode->i_mode) && !is_cold_data(page))
  432. goto redirty_out;
  433. mutex_lock_op(sbi, DATA_WRITE);
  434. if (S_ISDIR(inode->i_mode)) {
  435. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  436. inode_dec_dirty_dents(inode);
  437. }
  438. err = do_write_data_page(page);
  439. if (err && err != -ENOENT) {
  440. wbc->pages_skipped++;
  441. set_page_dirty(page);
  442. }
  443. mutex_unlock_op(sbi, DATA_WRITE);
  444. if (wbc->for_reclaim)
  445. f2fs_submit_bio(sbi, DATA, true);
  446. if (err == -ENOENT)
  447. goto unlock_out;
  448. clear_cold_data(page);
  449. unlock_page(page);
  450. if (!wbc->for_reclaim && !S_ISDIR(inode->i_mode))
  451. f2fs_balance_fs(sbi);
  452. return 0;
  453. unlock_out:
  454. unlock_page(page);
  455. return (err == -ENOENT) ? 0 : err;
  456. redirty_out:
  457. wbc->pages_skipped++;
  458. set_page_dirty(page);
  459. return AOP_WRITEPAGE_ACTIVATE;
  460. }
  461. #define MAX_DESIRED_PAGES_WP 4096
  462. static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
  463. void *data)
  464. {
  465. struct address_space *mapping = data;
  466. int ret = mapping->a_ops->writepage(page, wbc);
  467. mapping_set_error(mapping, ret);
  468. return ret;
  469. }
  470. static int f2fs_write_data_pages(struct address_space *mapping,
  471. struct writeback_control *wbc)
  472. {
  473. struct inode *inode = mapping->host;
  474. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  475. int ret;
  476. long excess_nrtw = 0, desired_nrtw;
  477. if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
  478. desired_nrtw = MAX_DESIRED_PAGES_WP;
  479. excess_nrtw = desired_nrtw - wbc->nr_to_write;
  480. wbc->nr_to_write = desired_nrtw;
  481. }
  482. if (!S_ISDIR(inode->i_mode))
  483. mutex_lock(&sbi->writepages);
  484. ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
  485. if (!S_ISDIR(inode->i_mode))
  486. mutex_unlock(&sbi->writepages);
  487. f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
  488. remove_dirty_dir_inode(inode);
  489. wbc->nr_to_write -= excess_nrtw;
  490. return ret;
  491. }
  492. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  493. loff_t pos, unsigned len, unsigned flags,
  494. struct page **pagep, void **fsdata)
  495. {
  496. struct inode *inode = mapping->host;
  497. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  498. struct page *page;
  499. pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
  500. struct dnode_of_data dn;
  501. int err = 0;
  502. /* for nobh_write_end */
  503. *fsdata = NULL;
  504. f2fs_balance_fs(sbi);
  505. page = grab_cache_page_write_begin(mapping, index, flags);
  506. if (!page)
  507. return -ENOMEM;
  508. *pagep = page;
  509. mutex_lock_op(sbi, DATA_NEW);
  510. set_new_dnode(&dn, inode, NULL, NULL, 0);
  511. err = get_dnode_of_data(&dn, index, 0);
  512. if (err) {
  513. mutex_unlock_op(sbi, DATA_NEW);
  514. f2fs_put_page(page, 1);
  515. return err;
  516. }
  517. if (dn.data_blkaddr == NULL_ADDR) {
  518. err = reserve_new_block(&dn);
  519. if (err) {
  520. f2fs_put_dnode(&dn);
  521. mutex_unlock_op(sbi, DATA_NEW);
  522. f2fs_put_page(page, 1);
  523. return err;
  524. }
  525. }
  526. f2fs_put_dnode(&dn);
  527. mutex_unlock_op(sbi, DATA_NEW);
  528. if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
  529. return 0;
  530. if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
  531. unsigned start = pos & (PAGE_CACHE_SIZE - 1);
  532. unsigned end = start + len;
  533. /* Reading beyond i_size is simple: memset to zero */
  534. zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
  535. return 0;
  536. }
  537. if (dn.data_blkaddr == NEW_ADDR) {
  538. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  539. } else {
  540. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  541. if (err) {
  542. f2fs_put_page(page, 1);
  543. return err;
  544. }
  545. }
  546. SetPageUptodate(page);
  547. clear_cold_data(page);
  548. return 0;
  549. }
  550. static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
  551. const struct iovec *iov, loff_t offset, unsigned long nr_segs)
  552. {
  553. struct file *file = iocb->ki_filp;
  554. struct inode *inode = file->f_mapping->host;
  555. if (rw == WRITE)
  556. return 0;
  557. /* Needs synchronization with the cleaner */
  558. return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  559. get_data_block_ro);
  560. }
  561. static void f2fs_invalidate_data_page(struct page *page, unsigned long offset)
  562. {
  563. struct inode *inode = page->mapping->host;
  564. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  565. if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
  566. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  567. inode_dec_dirty_dents(inode);
  568. }
  569. ClearPagePrivate(page);
  570. }
  571. static int f2fs_release_data_page(struct page *page, gfp_t wait)
  572. {
  573. ClearPagePrivate(page);
  574. return 0;
  575. }
  576. static int f2fs_set_data_page_dirty(struct page *page)
  577. {
  578. struct address_space *mapping = page->mapping;
  579. struct inode *inode = mapping->host;
  580. SetPageUptodate(page);
  581. if (!PageDirty(page)) {
  582. __set_page_dirty_nobuffers(page);
  583. set_dirty_dir_page(inode, page);
  584. return 1;
  585. }
  586. return 0;
  587. }
  588. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  589. {
  590. return generic_block_bmap(mapping, block, get_data_block_ro);
  591. }
  592. const struct address_space_operations f2fs_dblock_aops = {
  593. .readpage = f2fs_read_data_page,
  594. .readpages = f2fs_read_data_pages,
  595. .writepage = f2fs_write_data_page,
  596. .writepages = f2fs_write_data_pages,
  597. .write_begin = f2fs_write_begin,
  598. .write_end = nobh_write_end,
  599. .set_page_dirty = f2fs_set_data_page_dirty,
  600. .invalidatepage = f2fs_invalidate_data_page,
  601. .releasepage = f2fs_release_data_page,
  602. .direct_IO = f2fs_direct_IO,
  603. .bmap = f2fs_bmap,
  604. };