kvm_main.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/syscore_ops.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <linux/sort.h>
  49. #include <linux/bsearch.h>
  50. #include <asm/processor.h>
  51. #include <asm/io.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/pgtable.h>
  54. #include "coalesced_mmio.h"
  55. #include "async_pf.h"
  56. #define CREATE_TRACE_POINTS
  57. #include <trace/events/kvm.h>
  58. MODULE_AUTHOR("Qumranet");
  59. MODULE_LICENSE("GPL");
  60. /*
  61. * Ordering of locks:
  62. *
  63. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  64. */
  65. DEFINE_RAW_SPINLOCK(kvm_lock);
  66. LIST_HEAD(vm_list);
  67. static cpumask_var_t cpus_hardware_enabled;
  68. static int kvm_usage_count = 0;
  69. static atomic_t hardware_enable_failed;
  70. struct kmem_cache *kvm_vcpu_cache;
  71. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  72. static __read_mostly struct preempt_ops kvm_preempt_ops;
  73. struct dentry *kvm_debugfs_dir;
  74. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  75. unsigned long arg);
  76. #ifdef CONFIG_COMPAT
  77. static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  78. unsigned long arg);
  79. #endif
  80. static int hardware_enable_all(void);
  81. static void hardware_disable_all(void);
  82. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  83. bool kvm_rebooting;
  84. EXPORT_SYMBOL_GPL(kvm_rebooting);
  85. static bool largepages_enabled = true;
  86. bool kvm_is_mmio_pfn(pfn_t pfn)
  87. {
  88. if (is_error_pfn(pfn))
  89. return false;
  90. if (pfn_valid(pfn)) {
  91. int reserved;
  92. struct page *tail = pfn_to_page(pfn);
  93. struct page *head = compound_trans_head(tail);
  94. reserved = PageReserved(head);
  95. if (head != tail) {
  96. /*
  97. * "head" is not a dangling pointer
  98. * (compound_trans_head takes care of that)
  99. * but the hugepage may have been splitted
  100. * from under us (and we may not hold a
  101. * reference count on the head page so it can
  102. * be reused before we run PageReferenced), so
  103. * we've to check PageTail before returning
  104. * what we just read.
  105. */
  106. smp_rmb();
  107. if (PageTail(tail))
  108. return reserved;
  109. }
  110. return PageReserved(tail);
  111. }
  112. return true;
  113. }
  114. /*
  115. * Switches to specified vcpu, until a matching vcpu_put()
  116. */
  117. void vcpu_load(struct kvm_vcpu *vcpu)
  118. {
  119. int cpu;
  120. mutex_lock(&vcpu->mutex);
  121. if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
  122. /* The thread running this VCPU changed. */
  123. struct pid *oldpid = vcpu->pid;
  124. struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
  125. rcu_assign_pointer(vcpu->pid, newpid);
  126. synchronize_rcu();
  127. put_pid(oldpid);
  128. }
  129. cpu = get_cpu();
  130. preempt_notifier_register(&vcpu->preempt_notifier);
  131. kvm_arch_vcpu_load(vcpu, cpu);
  132. put_cpu();
  133. }
  134. void vcpu_put(struct kvm_vcpu *vcpu)
  135. {
  136. preempt_disable();
  137. kvm_arch_vcpu_put(vcpu);
  138. preempt_notifier_unregister(&vcpu->preempt_notifier);
  139. preempt_enable();
  140. mutex_unlock(&vcpu->mutex);
  141. }
  142. static void ack_flush(void *_completed)
  143. {
  144. }
  145. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  146. {
  147. int i, cpu, me;
  148. cpumask_var_t cpus;
  149. bool called = true;
  150. struct kvm_vcpu *vcpu;
  151. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  152. me = get_cpu();
  153. kvm_for_each_vcpu(i, vcpu, kvm) {
  154. kvm_make_request(req, vcpu);
  155. cpu = vcpu->cpu;
  156. /* Set ->requests bit before we read ->mode */
  157. smp_mb();
  158. if (cpus != NULL && cpu != -1 && cpu != me &&
  159. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  160. cpumask_set_cpu(cpu, cpus);
  161. }
  162. if (unlikely(cpus == NULL))
  163. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  164. else if (!cpumask_empty(cpus))
  165. smp_call_function_many(cpus, ack_flush, NULL, 1);
  166. else
  167. called = false;
  168. put_cpu();
  169. free_cpumask_var(cpus);
  170. return called;
  171. }
  172. void kvm_flush_remote_tlbs(struct kvm *kvm)
  173. {
  174. long dirty_count = kvm->tlbs_dirty;
  175. smp_mb();
  176. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  177. ++kvm->stat.remote_tlb_flush;
  178. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  179. }
  180. void kvm_reload_remote_mmus(struct kvm *kvm)
  181. {
  182. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  183. }
  184. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  185. {
  186. struct page *page;
  187. int r;
  188. mutex_init(&vcpu->mutex);
  189. vcpu->cpu = -1;
  190. vcpu->kvm = kvm;
  191. vcpu->vcpu_id = id;
  192. vcpu->pid = NULL;
  193. init_waitqueue_head(&vcpu->wq);
  194. kvm_async_pf_vcpu_init(vcpu);
  195. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  196. if (!page) {
  197. r = -ENOMEM;
  198. goto fail;
  199. }
  200. vcpu->run = page_address(page);
  201. kvm_vcpu_set_in_spin_loop(vcpu, false);
  202. kvm_vcpu_set_dy_eligible(vcpu, false);
  203. r = kvm_arch_vcpu_init(vcpu);
  204. if (r < 0)
  205. goto fail_free_run;
  206. return 0;
  207. fail_free_run:
  208. free_page((unsigned long)vcpu->run);
  209. fail:
  210. return r;
  211. }
  212. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  213. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  214. {
  215. put_pid(vcpu->pid);
  216. kvm_arch_vcpu_uninit(vcpu);
  217. free_page((unsigned long)vcpu->run);
  218. }
  219. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  220. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  221. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  222. {
  223. return container_of(mn, struct kvm, mmu_notifier);
  224. }
  225. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  226. struct mm_struct *mm,
  227. unsigned long address)
  228. {
  229. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  230. int need_tlb_flush, idx;
  231. /*
  232. * When ->invalidate_page runs, the linux pte has been zapped
  233. * already but the page is still allocated until
  234. * ->invalidate_page returns. So if we increase the sequence
  235. * here the kvm page fault will notice if the spte can't be
  236. * established because the page is going to be freed. If
  237. * instead the kvm page fault establishes the spte before
  238. * ->invalidate_page runs, kvm_unmap_hva will release it
  239. * before returning.
  240. *
  241. * The sequence increase only need to be seen at spin_unlock
  242. * time, and not at spin_lock time.
  243. *
  244. * Increasing the sequence after the spin_unlock would be
  245. * unsafe because the kvm page fault could then establish the
  246. * pte after kvm_unmap_hva returned, without noticing the page
  247. * is going to be freed.
  248. */
  249. idx = srcu_read_lock(&kvm->srcu);
  250. spin_lock(&kvm->mmu_lock);
  251. kvm->mmu_notifier_seq++;
  252. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  253. /* we've to flush the tlb before the pages can be freed */
  254. if (need_tlb_flush)
  255. kvm_flush_remote_tlbs(kvm);
  256. spin_unlock(&kvm->mmu_lock);
  257. srcu_read_unlock(&kvm->srcu, idx);
  258. }
  259. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  260. struct mm_struct *mm,
  261. unsigned long address,
  262. pte_t pte)
  263. {
  264. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  265. int idx;
  266. idx = srcu_read_lock(&kvm->srcu);
  267. spin_lock(&kvm->mmu_lock);
  268. kvm->mmu_notifier_seq++;
  269. kvm_set_spte_hva(kvm, address, pte);
  270. spin_unlock(&kvm->mmu_lock);
  271. srcu_read_unlock(&kvm->srcu, idx);
  272. }
  273. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  274. struct mm_struct *mm,
  275. unsigned long start,
  276. unsigned long end)
  277. {
  278. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  279. int need_tlb_flush = 0, idx;
  280. idx = srcu_read_lock(&kvm->srcu);
  281. spin_lock(&kvm->mmu_lock);
  282. /*
  283. * The count increase must become visible at unlock time as no
  284. * spte can be established without taking the mmu_lock and
  285. * count is also read inside the mmu_lock critical section.
  286. */
  287. kvm->mmu_notifier_count++;
  288. need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
  289. need_tlb_flush |= kvm->tlbs_dirty;
  290. /* we've to flush the tlb before the pages can be freed */
  291. if (need_tlb_flush)
  292. kvm_flush_remote_tlbs(kvm);
  293. spin_unlock(&kvm->mmu_lock);
  294. srcu_read_unlock(&kvm->srcu, idx);
  295. }
  296. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  297. struct mm_struct *mm,
  298. unsigned long start,
  299. unsigned long end)
  300. {
  301. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  302. spin_lock(&kvm->mmu_lock);
  303. /*
  304. * This sequence increase will notify the kvm page fault that
  305. * the page that is going to be mapped in the spte could have
  306. * been freed.
  307. */
  308. kvm->mmu_notifier_seq++;
  309. smp_wmb();
  310. /*
  311. * The above sequence increase must be visible before the
  312. * below count decrease, which is ensured by the smp_wmb above
  313. * in conjunction with the smp_rmb in mmu_notifier_retry().
  314. */
  315. kvm->mmu_notifier_count--;
  316. spin_unlock(&kvm->mmu_lock);
  317. BUG_ON(kvm->mmu_notifier_count < 0);
  318. }
  319. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  320. struct mm_struct *mm,
  321. unsigned long address)
  322. {
  323. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  324. int young, idx;
  325. idx = srcu_read_lock(&kvm->srcu);
  326. spin_lock(&kvm->mmu_lock);
  327. young = kvm_age_hva(kvm, address);
  328. if (young)
  329. kvm_flush_remote_tlbs(kvm);
  330. spin_unlock(&kvm->mmu_lock);
  331. srcu_read_unlock(&kvm->srcu, idx);
  332. return young;
  333. }
  334. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  335. struct mm_struct *mm,
  336. unsigned long address)
  337. {
  338. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  339. int young, idx;
  340. idx = srcu_read_lock(&kvm->srcu);
  341. spin_lock(&kvm->mmu_lock);
  342. young = kvm_test_age_hva(kvm, address);
  343. spin_unlock(&kvm->mmu_lock);
  344. srcu_read_unlock(&kvm->srcu, idx);
  345. return young;
  346. }
  347. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  348. struct mm_struct *mm)
  349. {
  350. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  351. int idx;
  352. idx = srcu_read_lock(&kvm->srcu);
  353. kvm_arch_flush_shadow(kvm);
  354. srcu_read_unlock(&kvm->srcu, idx);
  355. }
  356. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  357. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  358. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  359. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  360. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  361. .test_young = kvm_mmu_notifier_test_young,
  362. .change_pte = kvm_mmu_notifier_change_pte,
  363. .release = kvm_mmu_notifier_release,
  364. };
  365. static int kvm_init_mmu_notifier(struct kvm *kvm)
  366. {
  367. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  368. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  369. }
  370. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  371. static int kvm_init_mmu_notifier(struct kvm *kvm)
  372. {
  373. return 0;
  374. }
  375. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  376. static void kvm_init_memslots_id(struct kvm *kvm)
  377. {
  378. int i;
  379. struct kvm_memslots *slots = kvm->memslots;
  380. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  381. slots->id_to_index[i] = slots->memslots[i].id = i;
  382. }
  383. static struct kvm *kvm_create_vm(unsigned long type)
  384. {
  385. int r, i;
  386. struct kvm *kvm = kvm_arch_alloc_vm();
  387. if (!kvm)
  388. return ERR_PTR(-ENOMEM);
  389. r = kvm_arch_init_vm(kvm, type);
  390. if (r)
  391. goto out_err_nodisable;
  392. r = hardware_enable_all();
  393. if (r)
  394. goto out_err_nodisable;
  395. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  396. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  397. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  398. #endif
  399. r = -ENOMEM;
  400. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  401. if (!kvm->memslots)
  402. goto out_err_nosrcu;
  403. kvm_init_memslots_id(kvm);
  404. if (init_srcu_struct(&kvm->srcu))
  405. goto out_err_nosrcu;
  406. for (i = 0; i < KVM_NR_BUSES; i++) {
  407. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  408. GFP_KERNEL);
  409. if (!kvm->buses[i])
  410. goto out_err;
  411. }
  412. spin_lock_init(&kvm->mmu_lock);
  413. kvm->mm = current->mm;
  414. atomic_inc(&kvm->mm->mm_count);
  415. kvm_eventfd_init(kvm);
  416. mutex_init(&kvm->lock);
  417. mutex_init(&kvm->irq_lock);
  418. mutex_init(&kvm->slots_lock);
  419. atomic_set(&kvm->users_count, 1);
  420. r = kvm_init_mmu_notifier(kvm);
  421. if (r)
  422. goto out_err;
  423. raw_spin_lock(&kvm_lock);
  424. list_add(&kvm->vm_list, &vm_list);
  425. raw_spin_unlock(&kvm_lock);
  426. return kvm;
  427. out_err:
  428. cleanup_srcu_struct(&kvm->srcu);
  429. out_err_nosrcu:
  430. hardware_disable_all();
  431. out_err_nodisable:
  432. for (i = 0; i < KVM_NR_BUSES; i++)
  433. kfree(kvm->buses[i]);
  434. kfree(kvm->memslots);
  435. kvm_arch_free_vm(kvm);
  436. return ERR_PTR(r);
  437. }
  438. /*
  439. * Avoid using vmalloc for a small buffer.
  440. * Should not be used when the size is statically known.
  441. */
  442. void *kvm_kvzalloc(unsigned long size)
  443. {
  444. if (size > PAGE_SIZE)
  445. return vzalloc(size);
  446. else
  447. return kzalloc(size, GFP_KERNEL);
  448. }
  449. void kvm_kvfree(const void *addr)
  450. {
  451. if (is_vmalloc_addr(addr))
  452. vfree(addr);
  453. else
  454. kfree(addr);
  455. }
  456. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  457. {
  458. if (!memslot->dirty_bitmap)
  459. return;
  460. kvm_kvfree(memslot->dirty_bitmap);
  461. memslot->dirty_bitmap = NULL;
  462. }
  463. /*
  464. * Free any memory in @free but not in @dont.
  465. */
  466. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  467. struct kvm_memory_slot *dont)
  468. {
  469. if (!dont || free->rmap != dont->rmap)
  470. vfree(free->rmap);
  471. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  472. kvm_destroy_dirty_bitmap(free);
  473. kvm_arch_free_memslot(free, dont);
  474. free->npages = 0;
  475. free->rmap = NULL;
  476. }
  477. void kvm_free_physmem(struct kvm *kvm)
  478. {
  479. struct kvm_memslots *slots = kvm->memslots;
  480. struct kvm_memory_slot *memslot;
  481. kvm_for_each_memslot(memslot, slots)
  482. kvm_free_physmem_slot(memslot, NULL);
  483. kfree(kvm->memslots);
  484. }
  485. static void kvm_destroy_vm(struct kvm *kvm)
  486. {
  487. int i;
  488. struct mm_struct *mm = kvm->mm;
  489. kvm_arch_sync_events(kvm);
  490. raw_spin_lock(&kvm_lock);
  491. list_del(&kvm->vm_list);
  492. raw_spin_unlock(&kvm_lock);
  493. kvm_free_irq_routing(kvm);
  494. for (i = 0; i < KVM_NR_BUSES; i++)
  495. kvm_io_bus_destroy(kvm->buses[i]);
  496. kvm_coalesced_mmio_free(kvm);
  497. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  498. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  499. #else
  500. kvm_arch_flush_shadow(kvm);
  501. #endif
  502. kvm_arch_destroy_vm(kvm);
  503. kvm_free_physmem(kvm);
  504. cleanup_srcu_struct(&kvm->srcu);
  505. kvm_arch_free_vm(kvm);
  506. hardware_disable_all();
  507. mmdrop(mm);
  508. }
  509. void kvm_get_kvm(struct kvm *kvm)
  510. {
  511. atomic_inc(&kvm->users_count);
  512. }
  513. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  514. void kvm_put_kvm(struct kvm *kvm)
  515. {
  516. if (atomic_dec_and_test(&kvm->users_count))
  517. kvm_destroy_vm(kvm);
  518. }
  519. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  520. static int kvm_vm_release(struct inode *inode, struct file *filp)
  521. {
  522. struct kvm *kvm = filp->private_data;
  523. kvm_irqfd_release(kvm);
  524. kvm_put_kvm(kvm);
  525. return 0;
  526. }
  527. /*
  528. * Allocation size is twice as large as the actual dirty bitmap size.
  529. * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
  530. */
  531. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  532. {
  533. #ifndef CONFIG_S390
  534. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  535. memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
  536. if (!memslot->dirty_bitmap)
  537. return -ENOMEM;
  538. #endif /* !CONFIG_S390 */
  539. return 0;
  540. }
  541. static int cmp_memslot(const void *slot1, const void *slot2)
  542. {
  543. struct kvm_memory_slot *s1, *s2;
  544. s1 = (struct kvm_memory_slot *)slot1;
  545. s2 = (struct kvm_memory_slot *)slot2;
  546. if (s1->npages < s2->npages)
  547. return 1;
  548. if (s1->npages > s2->npages)
  549. return -1;
  550. return 0;
  551. }
  552. /*
  553. * Sort the memslots base on its size, so the larger slots
  554. * will get better fit.
  555. */
  556. static void sort_memslots(struct kvm_memslots *slots)
  557. {
  558. int i;
  559. sort(slots->memslots, KVM_MEM_SLOTS_NUM,
  560. sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
  561. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  562. slots->id_to_index[slots->memslots[i].id] = i;
  563. }
  564. void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
  565. {
  566. if (new) {
  567. int id = new->id;
  568. struct kvm_memory_slot *old = id_to_memslot(slots, id);
  569. unsigned long npages = old->npages;
  570. *old = *new;
  571. if (new->npages != npages)
  572. sort_memslots(slots);
  573. }
  574. slots->generation++;
  575. }
  576. /*
  577. * Allocate some memory and give it an address in the guest physical address
  578. * space.
  579. *
  580. * Discontiguous memory is allowed, mostly for framebuffers.
  581. *
  582. * Must be called holding mmap_sem for write.
  583. */
  584. int __kvm_set_memory_region(struct kvm *kvm,
  585. struct kvm_userspace_memory_region *mem,
  586. int user_alloc)
  587. {
  588. int r;
  589. gfn_t base_gfn;
  590. unsigned long npages;
  591. unsigned long i;
  592. struct kvm_memory_slot *memslot;
  593. struct kvm_memory_slot old, new;
  594. struct kvm_memslots *slots, *old_memslots;
  595. r = -EINVAL;
  596. /* General sanity checks */
  597. if (mem->memory_size & (PAGE_SIZE - 1))
  598. goto out;
  599. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  600. goto out;
  601. /* We can read the guest memory with __xxx_user() later on. */
  602. if (user_alloc &&
  603. ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
  604. !access_ok(VERIFY_WRITE,
  605. (void __user *)(unsigned long)mem->userspace_addr,
  606. mem->memory_size)))
  607. goto out;
  608. if (mem->slot >= KVM_MEM_SLOTS_NUM)
  609. goto out;
  610. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  611. goto out;
  612. memslot = id_to_memslot(kvm->memslots, mem->slot);
  613. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  614. npages = mem->memory_size >> PAGE_SHIFT;
  615. r = -EINVAL;
  616. if (npages > KVM_MEM_MAX_NR_PAGES)
  617. goto out;
  618. if (!npages)
  619. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  620. new = old = *memslot;
  621. new.id = mem->slot;
  622. new.base_gfn = base_gfn;
  623. new.npages = npages;
  624. new.flags = mem->flags;
  625. /* Disallow changing a memory slot's size. */
  626. r = -EINVAL;
  627. if (npages && old.npages && npages != old.npages)
  628. goto out_free;
  629. /* Check for overlaps */
  630. r = -EEXIST;
  631. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  632. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  633. if (s == memslot || !s->npages)
  634. continue;
  635. if (!((base_gfn + npages <= s->base_gfn) ||
  636. (base_gfn >= s->base_gfn + s->npages)))
  637. goto out_free;
  638. }
  639. /* Free page dirty bitmap if unneeded */
  640. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  641. new.dirty_bitmap = NULL;
  642. r = -ENOMEM;
  643. /* Allocate if a slot is being created */
  644. if (npages && !old.npages) {
  645. new.user_alloc = user_alloc;
  646. new.userspace_addr = mem->userspace_addr;
  647. #ifndef CONFIG_S390
  648. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  649. if (!new.rmap)
  650. goto out_free;
  651. #endif /* not defined CONFIG_S390 */
  652. if (kvm_arch_create_memslot(&new, npages))
  653. goto out_free;
  654. }
  655. /* Allocate page dirty bitmap if needed */
  656. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  657. if (kvm_create_dirty_bitmap(&new) < 0)
  658. goto out_free;
  659. /* destroy any largepage mappings for dirty tracking */
  660. }
  661. if (!npages) {
  662. struct kvm_memory_slot *slot;
  663. r = -ENOMEM;
  664. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  665. GFP_KERNEL);
  666. if (!slots)
  667. goto out_free;
  668. slot = id_to_memslot(slots, mem->slot);
  669. slot->flags |= KVM_MEMSLOT_INVALID;
  670. update_memslots(slots, NULL);
  671. old_memslots = kvm->memslots;
  672. rcu_assign_pointer(kvm->memslots, slots);
  673. synchronize_srcu_expedited(&kvm->srcu);
  674. /* From this point no new shadow pages pointing to a deleted
  675. * memslot will be created.
  676. *
  677. * validation of sp->gfn happens in:
  678. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  679. * - kvm_is_visible_gfn (mmu_check_roots)
  680. */
  681. kvm_arch_flush_shadow(kvm);
  682. kfree(old_memslots);
  683. }
  684. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  685. if (r)
  686. goto out_free;
  687. /* map/unmap the pages in iommu page table */
  688. if (npages) {
  689. r = kvm_iommu_map_pages(kvm, &new);
  690. if (r)
  691. goto out_free;
  692. } else
  693. kvm_iommu_unmap_pages(kvm, &old);
  694. r = -ENOMEM;
  695. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  696. GFP_KERNEL);
  697. if (!slots)
  698. goto out_free;
  699. /* actual memory is freed via old in kvm_free_physmem_slot below */
  700. if (!npages) {
  701. new.rmap = NULL;
  702. new.dirty_bitmap = NULL;
  703. memset(&new.arch, 0, sizeof(new.arch));
  704. }
  705. update_memslots(slots, &new);
  706. old_memslots = kvm->memslots;
  707. rcu_assign_pointer(kvm->memslots, slots);
  708. synchronize_srcu_expedited(&kvm->srcu);
  709. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  710. /*
  711. * If the new memory slot is created, we need to clear all
  712. * mmio sptes.
  713. */
  714. if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
  715. kvm_arch_flush_shadow(kvm);
  716. kvm_free_physmem_slot(&old, &new);
  717. kfree(old_memslots);
  718. return 0;
  719. out_free:
  720. kvm_free_physmem_slot(&new, &old);
  721. out:
  722. return r;
  723. }
  724. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  725. int kvm_set_memory_region(struct kvm *kvm,
  726. struct kvm_userspace_memory_region *mem,
  727. int user_alloc)
  728. {
  729. int r;
  730. mutex_lock(&kvm->slots_lock);
  731. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  732. mutex_unlock(&kvm->slots_lock);
  733. return r;
  734. }
  735. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  736. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  737. struct
  738. kvm_userspace_memory_region *mem,
  739. int user_alloc)
  740. {
  741. if (mem->slot >= KVM_MEMORY_SLOTS)
  742. return -EINVAL;
  743. return kvm_set_memory_region(kvm, mem, user_alloc);
  744. }
  745. int kvm_get_dirty_log(struct kvm *kvm,
  746. struct kvm_dirty_log *log, int *is_dirty)
  747. {
  748. struct kvm_memory_slot *memslot;
  749. int r, i;
  750. unsigned long n;
  751. unsigned long any = 0;
  752. r = -EINVAL;
  753. if (log->slot >= KVM_MEMORY_SLOTS)
  754. goto out;
  755. memslot = id_to_memslot(kvm->memslots, log->slot);
  756. r = -ENOENT;
  757. if (!memslot->dirty_bitmap)
  758. goto out;
  759. n = kvm_dirty_bitmap_bytes(memslot);
  760. for (i = 0; !any && i < n/sizeof(long); ++i)
  761. any = memslot->dirty_bitmap[i];
  762. r = -EFAULT;
  763. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  764. goto out;
  765. if (any)
  766. *is_dirty = 1;
  767. r = 0;
  768. out:
  769. return r;
  770. }
  771. bool kvm_largepages_enabled(void)
  772. {
  773. return largepages_enabled;
  774. }
  775. void kvm_disable_largepages(void)
  776. {
  777. largepages_enabled = false;
  778. }
  779. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  780. int is_error_page(struct page *page)
  781. {
  782. return IS_ERR(page);
  783. }
  784. EXPORT_SYMBOL_GPL(is_error_page);
  785. int is_error_pfn(pfn_t pfn)
  786. {
  787. return IS_ERR_VALUE(pfn);
  788. }
  789. EXPORT_SYMBOL_GPL(is_error_pfn);
  790. static pfn_t get_bad_pfn(void)
  791. {
  792. return -ENOENT;
  793. }
  794. pfn_t get_fault_pfn(void)
  795. {
  796. return -EFAULT;
  797. }
  798. EXPORT_SYMBOL_GPL(get_fault_pfn);
  799. static pfn_t get_hwpoison_pfn(void)
  800. {
  801. return -EHWPOISON;
  802. }
  803. int is_hwpoison_pfn(pfn_t pfn)
  804. {
  805. return pfn == -EHWPOISON;
  806. }
  807. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  808. int is_noslot_pfn(pfn_t pfn)
  809. {
  810. return pfn == -ENOENT;
  811. }
  812. EXPORT_SYMBOL_GPL(is_noslot_pfn);
  813. int is_invalid_pfn(pfn_t pfn)
  814. {
  815. return !is_noslot_pfn(pfn) && is_error_pfn(pfn);
  816. }
  817. EXPORT_SYMBOL_GPL(is_invalid_pfn);
  818. struct page *get_bad_page(void)
  819. {
  820. return ERR_PTR(-ENOENT);
  821. }
  822. static inline unsigned long bad_hva(void)
  823. {
  824. return PAGE_OFFSET;
  825. }
  826. int kvm_is_error_hva(unsigned long addr)
  827. {
  828. return addr == bad_hva();
  829. }
  830. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  831. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  832. {
  833. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  834. }
  835. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  836. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  837. {
  838. struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
  839. if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
  840. memslot->flags & KVM_MEMSLOT_INVALID)
  841. return 0;
  842. return 1;
  843. }
  844. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  845. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  846. {
  847. struct vm_area_struct *vma;
  848. unsigned long addr, size;
  849. size = PAGE_SIZE;
  850. addr = gfn_to_hva(kvm, gfn);
  851. if (kvm_is_error_hva(addr))
  852. return PAGE_SIZE;
  853. down_read(&current->mm->mmap_sem);
  854. vma = find_vma(current->mm, addr);
  855. if (!vma)
  856. goto out;
  857. size = vma_kernel_pagesize(vma);
  858. out:
  859. up_read(&current->mm->mmap_sem);
  860. return size;
  861. }
  862. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  863. gfn_t *nr_pages)
  864. {
  865. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  866. return bad_hva();
  867. if (nr_pages)
  868. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  869. return gfn_to_hva_memslot(slot, gfn);
  870. }
  871. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  872. {
  873. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  874. }
  875. EXPORT_SYMBOL_GPL(gfn_to_hva);
  876. int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
  877. unsigned long start, int write, struct page **page)
  878. {
  879. int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
  880. if (write)
  881. flags |= FOLL_WRITE;
  882. return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
  883. }
  884. static inline int check_user_page_hwpoison(unsigned long addr)
  885. {
  886. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  887. rc = __get_user_pages(current, current->mm, addr, 1,
  888. flags, NULL, NULL, NULL);
  889. return rc == -EHWPOISON;
  890. }
  891. static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
  892. bool write_fault, bool *writable)
  893. {
  894. struct page *page[1];
  895. int npages = 0;
  896. pfn_t pfn;
  897. /* we can do it either atomically or asynchronously, not both */
  898. BUG_ON(atomic && async);
  899. BUG_ON(!write_fault && !writable);
  900. if (writable)
  901. *writable = true;
  902. if (atomic || async)
  903. npages = __get_user_pages_fast(addr, 1, 1, page);
  904. if (unlikely(npages != 1) && !atomic) {
  905. might_sleep();
  906. if (writable)
  907. *writable = write_fault;
  908. if (async) {
  909. down_read(&current->mm->mmap_sem);
  910. npages = get_user_page_nowait(current, current->mm,
  911. addr, write_fault, page);
  912. up_read(&current->mm->mmap_sem);
  913. } else
  914. npages = get_user_pages_fast(addr, 1, write_fault,
  915. page);
  916. /* map read fault as writable if possible */
  917. if (unlikely(!write_fault) && npages == 1) {
  918. struct page *wpage[1];
  919. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  920. if (npages == 1) {
  921. *writable = true;
  922. put_page(page[0]);
  923. page[0] = wpage[0];
  924. }
  925. npages = 1;
  926. }
  927. }
  928. if (unlikely(npages != 1)) {
  929. struct vm_area_struct *vma;
  930. if (atomic)
  931. return get_fault_pfn();
  932. down_read(&current->mm->mmap_sem);
  933. if (npages == -EHWPOISON ||
  934. (!async && check_user_page_hwpoison(addr))) {
  935. up_read(&current->mm->mmap_sem);
  936. return get_hwpoison_pfn();
  937. }
  938. vma = find_vma_intersection(current->mm, addr, addr+1);
  939. if (vma == NULL)
  940. pfn = get_fault_pfn();
  941. else if ((vma->vm_flags & VM_PFNMAP)) {
  942. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  943. vma->vm_pgoff;
  944. BUG_ON(!kvm_is_mmio_pfn(pfn));
  945. } else {
  946. if (async && (vma->vm_flags & VM_WRITE))
  947. *async = true;
  948. pfn = get_fault_pfn();
  949. }
  950. up_read(&current->mm->mmap_sem);
  951. } else
  952. pfn = page_to_pfn(page[0]);
  953. return pfn;
  954. }
  955. pfn_t hva_to_pfn_atomic(unsigned long addr)
  956. {
  957. return hva_to_pfn(addr, true, NULL, true, NULL);
  958. }
  959. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  960. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  961. bool write_fault, bool *writable)
  962. {
  963. unsigned long addr;
  964. if (async)
  965. *async = false;
  966. addr = gfn_to_hva(kvm, gfn);
  967. if (kvm_is_error_hva(addr))
  968. return get_bad_pfn();
  969. return hva_to_pfn(addr, atomic, async, write_fault, writable);
  970. }
  971. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  972. {
  973. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  974. }
  975. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  976. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  977. bool write_fault, bool *writable)
  978. {
  979. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  980. }
  981. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  982. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  983. {
  984. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  985. }
  986. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  987. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  988. bool *writable)
  989. {
  990. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  991. }
  992. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  993. pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
  994. {
  995. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  996. return hva_to_pfn(addr, false, NULL, true, NULL);
  997. }
  998. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  999. int nr_pages)
  1000. {
  1001. unsigned long addr;
  1002. gfn_t entry;
  1003. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  1004. if (kvm_is_error_hva(addr))
  1005. return -1;
  1006. if (entry < nr_pages)
  1007. return 0;
  1008. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  1009. }
  1010. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  1011. static struct page *kvm_pfn_to_page(pfn_t pfn)
  1012. {
  1013. WARN_ON(kvm_is_mmio_pfn(pfn));
  1014. if (is_error_pfn(pfn) || kvm_is_mmio_pfn(pfn))
  1015. return get_bad_page();
  1016. return pfn_to_page(pfn);
  1017. }
  1018. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1019. {
  1020. pfn_t pfn;
  1021. pfn = gfn_to_pfn(kvm, gfn);
  1022. return kvm_pfn_to_page(pfn);
  1023. }
  1024. EXPORT_SYMBOL_GPL(gfn_to_page);
  1025. void kvm_release_page_clean(struct page *page)
  1026. {
  1027. if (!is_error_page(page))
  1028. kvm_release_pfn_clean(page_to_pfn(page));
  1029. }
  1030. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1031. void kvm_release_pfn_clean(pfn_t pfn)
  1032. {
  1033. if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
  1034. put_page(pfn_to_page(pfn));
  1035. }
  1036. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1037. void kvm_release_page_dirty(struct page *page)
  1038. {
  1039. WARN_ON(is_error_page(page));
  1040. kvm_release_pfn_dirty(page_to_pfn(page));
  1041. }
  1042. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1043. void kvm_release_pfn_dirty(pfn_t pfn)
  1044. {
  1045. kvm_set_pfn_dirty(pfn);
  1046. kvm_release_pfn_clean(pfn);
  1047. }
  1048. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1049. void kvm_set_page_dirty(struct page *page)
  1050. {
  1051. kvm_set_pfn_dirty(page_to_pfn(page));
  1052. }
  1053. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1054. void kvm_set_pfn_dirty(pfn_t pfn)
  1055. {
  1056. if (!kvm_is_mmio_pfn(pfn)) {
  1057. struct page *page = pfn_to_page(pfn);
  1058. if (!PageReserved(page))
  1059. SetPageDirty(page);
  1060. }
  1061. }
  1062. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1063. void kvm_set_pfn_accessed(pfn_t pfn)
  1064. {
  1065. if (!kvm_is_mmio_pfn(pfn))
  1066. mark_page_accessed(pfn_to_page(pfn));
  1067. }
  1068. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1069. void kvm_get_pfn(pfn_t pfn)
  1070. {
  1071. if (!kvm_is_mmio_pfn(pfn))
  1072. get_page(pfn_to_page(pfn));
  1073. }
  1074. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1075. static int next_segment(unsigned long len, int offset)
  1076. {
  1077. if (len > PAGE_SIZE - offset)
  1078. return PAGE_SIZE - offset;
  1079. else
  1080. return len;
  1081. }
  1082. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1083. int len)
  1084. {
  1085. int r;
  1086. unsigned long addr;
  1087. addr = gfn_to_hva(kvm, gfn);
  1088. if (kvm_is_error_hva(addr))
  1089. return -EFAULT;
  1090. r = __copy_from_user(data, (void __user *)addr + offset, len);
  1091. if (r)
  1092. return -EFAULT;
  1093. return 0;
  1094. }
  1095. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1096. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1097. {
  1098. gfn_t gfn = gpa >> PAGE_SHIFT;
  1099. int seg;
  1100. int offset = offset_in_page(gpa);
  1101. int ret;
  1102. while ((seg = next_segment(len, offset)) != 0) {
  1103. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1104. if (ret < 0)
  1105. return ret;
  1106. offset = 0;
  1107. len -= seg;
  1108. data += seg;
  1109. ++gfn;
  1110. }
  1111. return 0;
  1112. }
  1113. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1114. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1115. unsigned long len)
  1116. {
  1117. int r;
  1118. unsigned long addr;
  1119. gfn_t gfn = gpa >> PAGE_SHIFT;
  1120. int offset = offset_in_page(gpa);
  1121. addr = gfn_to_hva(kvm, gfn);
  1122. if (kvm_is_error_hva(addr))
  1123. return -EFAULT;
  1124. pagefault_disable();
  1125. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1126. pagefault_enable();
  1127. if (r)
  1128. return -EFAULT;
  1129. return 0;
  1130. }
  1131. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1132. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1133. int offset, int len)
  1134. {
  1135. int r;
  1136. unsigned long addr;
  1137. addr = gfn_to_hva(kvm, gfn);
  1138. if (kvm_is_error_hva(addr))
  1139. return -EFAULT;
  1140. r = __copy_to_user((void __user *)addr + offset, data, len);
  1141. if (r)
  1142. return -EFAULT;
  1143. mark_page_dirty(kvm, gfn);
  1144. return 0;
  1145. }
  1146. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1147. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1148. unsigned long len)
  1149. {
  1150. gfn_t gfn = gpa >> PAGE_SHIFT;
  1151. int seg;
  1152. int offset = offset_in_page(gpa);
  1153. int ret;
  1154. while ((seg = next_segment(len, offset)) != 0) {
  1155. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1156. if (ret < 0)
  1157. return ret;
  1158. offset = 0;
  1159. len -= seg;
  1160. data += seg;
  1161. ++gfn;
  1162. }
  1163. return 0;
  1164. }
  1165. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1166. gpa_t gpa)
  1167. {
  1168. struct kvm_memslots *slots = kvm_memslots(kvm);
  1169. int offset = offset_in_page(gpa);
  1170. gfn_t gfn = gpa >> PAGE_SHIFT;
  1171. ghc->gpa = gpa;
  1172. ghc->generation = slots->generation;
  1173. ghc->memslot = gfn_to_memslot(kvm, gfn);
  1174. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1175. if (!kvm_is_error_hva(ghc->hva))
  1176. ghc->hva += offset;
  1177. else
  1178. return -EFAULT;
  1179. return 0;
  1180. }
  1181. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1182. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1183. void *data, unsigned long len)
  1184. {
  1185. struct kvm_memslots *slots = kvm_memslots(kvm);
  1186. int r;
  1187. if (slots->generation != ghc->generation)
  1188. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1189. if (kvm_is_error_hva(ghc->hva))
  1190. return -EFAULT;
  1191. r = __copy_to_user((void __user *)ghc->hva, data, len);
  1192. if (r)
  1193. return -EFAULT;
  1194. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1195. return 0;
  1196. }
  1197. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1198. int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1199. void *data, unsigned long len)
  1200. {
  1201. struct kvm_memslots *slots = kvm_memslots(kvm);
  1202. int r;
  1203. if (slots->generation != ghc->generation)
  1204. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1205. if (kvm_is_error_hva(ghc->hva))
  1206. return -EFAULT;
  1207. r = __copy_from_user(data, (void __user *)ghc->hva, len);
  1208. if (r)
  1209. return -EFAULT;
  1210. return 0;
  1211. }
  1212. EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
  1213. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1214. {
  1215. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1216. offset, len);
  1217. }
  1218. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1219. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1220. {
  1221. gfn_t gfn = gpa >> PAGE_SHIFT;
  1222. int seg;
  1223. int offset = offset_in_page(gpa);
  1224. int ret;
  1225. while ((seg = next_segment(len, offset)) != 0) {
  1226. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1227. if (ret < 0)
  1228. return ret;
  1229. offset = 0;
  1230. len -= seg;
  1231. ++gfn;
  1232. }
  1233. return 0;
  1234. }
  1235. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1236. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1237. gfn_t gfn)
  1238. {
  1239. if (memslot && memslot->dirty_bitmap) {
  1240. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1241. /* TODO: introduce set_bit_le() and use it */
  1242. test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
  1243. }
  1244. }
  1245. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1246. {
  1247. struct kvm_memory_slot *memslot;
  1248. memslot = gfn_to_memslot(kvm, gfn);
  1249. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1250. }
  1251. /*
  1252. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1253. */
  1254. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1255. {
  1256. DEFINE_WAIT(wait);
  1257. for (;;) {
  1258. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1259. if (kvm_arch_vcpu_runnable(vcpu)) {
  1260. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1261. break;
  1262. }
  1263. if (kvm_cpu_has_pending_timer(vcpu))
  1264. break;
  1265. if (signal_pending(current))
  1266. break;
  1267. schedule();
  1268. }
  1269. finish_wait(&vcpu->wq, &wait);
  1270. }
  1271. #ifndef CONFIG_S390
  1272. /*
  1273. * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
  1274. */
  1275. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1276. {
  1277. int me;
  1278. int cpu = vcpu->cpu;
  1279. wait_queue_head_t *wqp;
  1280. wqp = kvm_arch_vcpu_wq(vcpu);
  1281. if (waitqueue_active(wqp)) {
  1282. wake_up_interruptible(wqp);
  1283. ++vcpu->stat.halt_wakeup;
  1284. }
  1285. me = get_cpu();
  1286. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  1287. if (kvm_arch_vcpu_should_kick(vcpu))
  1288. smp_send_reschedule(cpu);
  1289. put_cpu();
  1290. }
  1291. #endif /* !CONFIG_S390 */
  1292. void kvm_resched(struct kvm_vcpu *vcpu)
  1293. {
  1294. if (!need_resched())
  1295. return;
  1296. cond_resched();
  1297. }
  1298. EXPORT_SYMBOL_GPL(kvm_resched);
  1299. bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
  1300. {
  1301. struct pid *pid;
  1302. struct task_struct *task = NULL;
  1303. rcu_read_lock();
  1304. pid = rcu_dereference(target->pid);
  1305. if (pid)
  1306. task = get_pid_task(target->pid, PIDTYPE_PID);
  1307. rcu_read_unlock();
  1308. if (!task)
  1309. return false;
  1310. if (task->flags & PF_VCPU) {
  1311. put_task_struct(task);
  1312. return false;
  1313. }
  1314. if (yield_to(task, 1)) {
  1315. put_task_struct(task);
  1316. return true;
  1317. }
  1318. put_task_struct(task);
  1319. return false;
  1320. }
  1321. EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
  1322. #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
  1323. /*
  1324. * Helper that checks whether a VCPU is eligible for directed yield.
  1325. * Most eligible candidate to yield is decided by following heuristics:
  1326. *
  1327. * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
  1328. * (preempted lock holder), indicated by @in_spin_loop.
  1329. * Set at the beiginning and cleared at the end of interception/PLE handler.
  1330. *
  1331. * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
  1332. * chance last time (mostly it has become eligible now since we have probably
  1333. * yielded to lockholder in last iteration. This is done by toggling
  1334. * @dy_eligible each time a VCPU checked for eligibility.)
  1335. *
  1336. * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
  1337. * to preempted lock-holder could result in wrong VCPU selection and CPU
  1338. * burning. Giving priority for a potential lock-holder increases lock
  1339. * progress.
  1340. *
  1341. * Since algorithm is based on heuristics, accessing another VCPU data without
  1342. * locking does not harm. It may result in trying to yield to same VCPU, fail
  1343. * and continue with next VCPU and so on.
  1344. */
  1345. bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
  1346. {
  1347. bool eligible;
  1348. eligible = !vcpu->spin_loop.in_spin_loop ||
  1349. (vcpu->spin_loop.in_spin_loop &&
  1350. vcpu->spin_loop.dy_eligible);
  1351. if (vcpu->spin_loop.in_spin_loop)
  1352. kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
  1353. return eligible;
  1354. }
  1355. #endif
  1356. void kvm_vcpu_on_spin(struct kvm_vcpu *me)
  1357. {
  1358. struct kvm *kvm = me->kvm;
  1359. struct kvm_vcpu *vcpu;
  1360. int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
  1361. int yielded = 0;
  1362. int pass;
  1363. int i;
  1364. kvm_vcpu_set_in_spin_loop(me, true);
  1365. /*
  1366. * We boost the priority of a VCPU that is runnable but not
  1367. * currently running, because it got preempted by something
  1368. * else and called schedule in __vcpu_run. Hopefully that
  1369. * VCPU is holding the lock that we need and will release it.
  1370. * We approximate round-robin by starting at the last boosted VCPU.
  1371. */
  1372. for (pass = 0; pass < 2 && !yielded; pass++) {
  1373. kvm_for_each_vcpu(i, vcpu, kvm) {
  1374. if (!pass && i <= last_boosted_vcpu) {
  1375. i = last_boosted_vcpu;
  1376. continue;
  1377. } else if (pass && i > last_boosted_vcpu)
  1378. break;
  1379. if (vcpu == me)
  1380. continue;
  1381. if (waitqueue_active(&vcpu->wq))
  1382. continue;
  1383. if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
  1384. continue;
  1385. if (kvm_vcpu_yield_to(vcpu)) {
  1386. kvm->last_boosted_vcpu = i;
  1387. yielded = 1;
  1388. break;
  1389. }
  1390. }
  1391. }
  1392. kvm_vcpu_set_in_spin_loop(me, false);
  1393. /* Ensure vcpu is not eligible during next spinloop */
  1394. kvm_vcpu_set_dy_eligible(me, false);
  1395. }
  1396. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1397. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1398. {
  1399. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1400. struct page *page;
  1401. if (vmf->pgoff == 0)
  1402. page = virt_to_page(vcpu->run);
  1403. #ifdef CONFIG_X86
  1404. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1405. page = virt_to_page(vcpu->arch.pio_data);
  1406. #endif
  1407. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1408. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1409. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1410. #endif
  1411. else
  1412. return kvm_arch_vcpu_fault(vcpu, vmf);
  1413. get_page(page);
  1414. vmf->page = page;
  1415. return 0;
  1416. }
  1417. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1418. .fault = kvm_vcpu_fault,
  1419. };
  1420. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1421. {
  1422. vma->vm_ops = &kvm_vcpu_vm_ops;
  1423. return 0;
  1424. }
  1425. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1426. {
  1427. struct kvm_vcpu *vcpu = filp->private_data;
  1428. kvm_put_kvm(vcpu->kvm);
  1429. return 0;
  1430. }
  1431. static struct file_operations kvm_vcpu_fops = {
  1432. .release = kvm_vcpu_release,
  1433. .unlocked_ioctl = kvm_vcpu_ioctl,
  1434. #ifdef CONFIG_COMPAT
  1435. .compat_ioctl = kvm_vcpu_compat_ioctl,
  1436. #endif
  1437. .mmap = kvm_vcpu_mmap,
  1438. .llseek = noop_llseek,
  1439. };
  1440. /*
  1441. * Allocates an inode for the vcpu.
  1442. */
  1443. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1444. {
  1445. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1446. }
  1447. /*
  1448. * Creates some virtual cpus. Good luck creating more than one.
  1449. */
  1450. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1451. {
  1452. int r;
  1453. struct kvm_vcpu *vcpu, *v;
  1454. vcpu = kvm_arch_vcpu_create(kvm, id);
  1455. if (IS_ERR(vcpu))
  1456. return PTR_ERR(vcpu);
  1457. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1458. r = kvm_arch_vcpu_setup(vcpu);
  1459. if (r)
  1460. goto vcpu_destroy;
  1461. mutex_lock(&kvm->lock);
  1462. if (!kvm_vcpu_compatible(vcpu)) {
  1463. r = -EINVAL;
  1464. goto unlock_vcpu_destroy;
  1465. }
  1466. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1467. r = -EINVAL;
  1468. goto unlock_vcpu_destroy;
  1469. }
  1470. kvm_for_each_vcpu(r, v, kvm)
  1471. if (v->vcpu_id == id) {
  1472. r = -EEXIST;
  1473. goto unlock_vcpu_destroy;
  1474. }
  1475. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1476. /* Now it's all set up, let userspace reach it */
  1477. kvm_get_kvm(kvm);
  1478. r = create_vcpu_fd(vcpu);
  1479. if (r < 0) {
  1480. kvm_put_kvm(kvm);
  1481. goto unlock_vcpu_destroy;
  1482. }
  1483. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1484. smp_wmb();
  1485. atomic_inc(&kvm->online_vcpus);
  1486. mutex_unlock(&kvm->lock);
  1487. return r;
  1488. unlock_vcpu_destroy:
  1489. mutex_unlock(&kvm->lock);
  1490. vcpu_destroy:
  1491. kvm_arch_vcpu_destroy(vcpu);
  1492. return r;
  1493. }
  1494. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1495. {
  1496. if (sigset) {
  1497. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1498. vcpu->sigset_active = 1;
  1499. vcpu->sigset = *sigset;
  1500. } else
  1501. vcpu->sigset_active = 0;
  1502. return 0;
  1503. }
  1504. static long kvm_vcpu_ioctl(struct file *filp,
  1505. unsigned int ioctl, unsigned long arg)
  1506. {
  1507. struct kvm_vcpu *vcpu = filp->private_data;
  1508. void __user *argp = (void __user *)arg;
  1509. int r;
  1510. struct kvm_fpu *fpu = NULL;
  1511. struct kvm_sregs *kvm_sregs = NULL;
  1512. if (vcpu->kvm->mm != current->mm)
  1513. return -EIO;
  1514. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1515. /*
  1516. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1517. * so vcpu_load() would break it.
  1518. */
  1519. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1520. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1521. #endif
  1522. vcpu_load(vcpu);
  1523. switch (ioctl) {
  1524. case KVM_RUN:
  1525. r = -EINVAL;
  1526. if (arg)
  1527. goto out;
  1528. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1529. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1530. break;
  1531. case KVM_GET_REGS: {
  1532. struct kvm_regs *kvm_regs;
  1533. r = -ENOMEM;
  1534. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1535. if (!kvm_regs)
  1536. goto out;
  1537. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1538. if (r)
  1539. goto out_free1;
  1540. r = -EFAULT;
  1541. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1542. goto out_free1;
  1543. r = 0;
  1544. out_free1:
  1545. kfree(kvm_regs);
  1546. break;
  1547. }
  1548. case KVM_SET_REGS: {
  1549. struct kvm_regs *kvm_regs;
  1550. r = -ENOMEM;
  1551. kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
  1552. if (IS_ERR(kvm_regs)) {
  1553. r = PTR_ERR(kvm_regs);
  1554. goto out;
  1555. }
  1556. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1557. if (r)
  1558. goto out_free2;
  1559. r = 0;
  1560. out_free2:
  1561. kfree(kvm_regs);
  1562. break;
  1563. }
  1564. case KVM_GET_SREGS: {
  1565. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1566. r = -ENOMEM;
  1567. if (!kvm_sregs)
  1568. goto out;
  1569. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1570. if (r)
  1571. goto out;
  1572. r = -EFAULT;
  1573. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1574. goto out;
  1575. r = 0;
  1576. break;
  1577. }
  1578. case KVM_SET_SREGS: {
  1579. kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
  1580. if (IS_ERR(kvm_sregs)) {
  1581. r = PTR_ERR(kvm_sregs);
  1582. goto out;
  1583. }
  1584. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1585. if (r)
  1586. goto out;
  1587. r = 0;
  1588. break;
  1589. }
  1590. case KVM_GET_MP_STATE: {
  1591. struct kvm_mp_state mp_state;
  1592. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1593. if (r)
  1594. goto out;
  1595. r = -EFAULT;
  1596. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1597. goto out;
  1598. r = 0;
  1599. break;
  1600. }
  1601. case KVM_SET_MP_STATE: {
  1602. struct kvm_mp_state mp_state;
  1603. r = -EFAULT;
  1604. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1605. goto out;
  1606. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1607. if (r)
  1608. goto out;
  1609. r = 0;
  1610. break;
  1611. }
  1612. case KVM_TRANSLATE: {
  1613. struct kvm_translation tr;
  1614. r = -EFAULT;
  1615. if (copy_from_user(&tr, argp, sizeof tr))
  1616. goto out;
  1617. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1618. if (r)
  1619. goto out;
  1620. r = -EFAULT;
  1621. if (copy_to_user(argp, &tr, sizeof tr))
  1622. goto out;
  1623. r = 0;
  1624. break;
  1625. }
  1626. case KVM_SET_GUEST_DEBUG: {
  1627. struct kvm_guest_debug dbg;
  1628. r = -EFAULT;
  1629. if (copy_from_user(&dbg, argp, sizeof dbg))
  1630. goto out;
  1631. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1632. if (r)
  1633. goto out;
  1634. r = 0;
  1635. break;
  1636. }
  1637. case KVM_SET_SIGNAL_MASK: {
  1638. struct kvm_signal_mask __user *sigmask_arg = argp;
  1639. struct kvm_signal_mask kvm_sigmask;
  1640. sigset_t sigset, *p;
  1641. p = NULL;
  1642. if (argp) {
  1643. r = -EFAULT;
  1644. if (copy_from_user(&kvm_sigmask, argp,
  1645. sizeof kvm_sigmask))
  1646. goto out;
  1647. r = -EINVAL;
  1648. if (kvm_sigmask.len != sizeof sigset)
  1649. goto out;
  1650. r = -EFAULT;
  1651. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1652. sizeof sigset))
  1653. goto out;
  1654. p = &sigset;
  1655. }
  1656. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1657. break;
  1658. }
  1659. case KVM_GET_FPU: {
  1660. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1661. r = -ENOMEM;
  1662. if (!fpu)
  1663. goto out;
  1664. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1665. if (r)
  1666. goto out;
  1667. r = -EFAULT;
  1668. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1669. goto out;
  1670. r = 0;
  1671. break;
  1672. }
  1673. case KVM_SET_FPU: {
  1674. fpu = memdup_user(argp, sizeof(*fpu));
  1675. if (IS_ERR(fpu)) {
  1676. r = PTR_ERR(fpu);
  1677. goto out;
  1678. }
  1679. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1680. if (r)
  1681. goto out;
  1682. r = 0;
  1683. break;
  1684. }
  1685. default:
  1686. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1687. }
  1688. out:
  1689. vcpu_put(vcpu);
  1690. kfree(fpu);
  1691. kfree(kvm_sregs);
  1692. return r;
  1693. }
  1694. #ifdef CONFIG_COMPAT
  1695. static long kvm_vcpu_compat_ioctl(struct file *filp,
  1696. unsigned int ioctl, unsigned long arg)
  1697. {
  1698. struct kvm_vcpu *vcpu = filp->private_data;
  1699. void __user *argp = compat_ptr(arg);
  1700. int r;
  1701. if (vcpu->kvm->mm != current->mm)
  1702. return -EIO;
  1703. switch (ioctl) {
  1704. case KVM_SET_SIGNAL_MASK: {
  1705. struct kvm_signal_mask __user *sigmask_arg = argp;
  1706. struct kvm_signal_mask kvm_sigmask;
  1707. compat_sigset_t csigset;
  1708. sigset_t sigset;
  1709. if (argp) {
  1710. r = -EFAULT;
  1711. if (copy_from_user(&kvm_sigmask, argp,
  1712. sizeof kvm_sigmask))
  1713. goto out;
  1714. r = -EINVAL;
  1715. if (kvm_sigmask.len != sizeof csigset)
  1716. goto out;
  1717. r = -EFAULT;
  1718. if (copy_from_user(&csigset, sigmask_arg->sigset,
  1719. sizeof csigset))
  1720. goto out;
  1721. }
  1722. sigset_from_compat(&sigset, &csigset);
  1723. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1724. break;
  1725. }
  1726. default:
  1727. r = kvm_vcpu_ioctl(filp, ioctl, arg);
  1728. }
  1729. out:
  1730. return r;
  1731. }
  1732. #endif
  1733. static long kvm_vm_ioctl(struct file *filp,
  1734. unsigned int ioctl, unsigned long arg)
  1735. {
  1736. struct kvm *kvm = filp->private_data;
  1737. void __user *argp = (void __user *)arg;
  1738. int r;
  1739. if (kvm->mm != current->mm)
  1740. return -EIO;
  1741. switch (ioctl) {
  1742. case KVM_CREATE_VCPU:
  1743. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1744. if (r < 0)
  1745. goto out;
  1746. break;
  1747. case KVM_SET_USER_MEMORY_REGION: {
  1748. struct kvm_userspace_memory_region kvm_userspace_mem;
  1749. r = -EFAULT;
  1750. if (copy_from_user(&kvm_userspace_mem, argp,
  1751. sizeof kvm_userspace_mem))
  1752. goto out;
  1753. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1754. if (r)
  1755. goto out;
  1756. break;
  1757. }
  1758. case KVM_GET_DIRTY_LOG: {
  1759. struct kvm_dirty_log log;
  1760. r = -EFAULT;
  1761. if (copy_from_user(&log, argp, sizeof log))
  1762. goto out;
  1763. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1764. if (r)
  1765. goto out;
  1766. break;
  1767. }
  1768. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1769. case KVM_REGISTER_COALESCED_MMIO: {
  1770. struct kvm_coalesced_mmio_zone zone;
  1771. r = -EFAULT;
  1772. if (copy_from_user(&zone, argp, sizeof zone))
  1773. goto out;
  1774. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1775. if (r)
  1776. goto out;
  1777. r = 0;
  1778. break;
  1779. }
  1780. case KVM_UNREGISTER_COALESCED_MMIO: {
  1781. struct kvm_coalesced_mmio_zone zone;
  1782. r = -EFAULT;
  1783. if (copy_from_user(&zone, argp, sizeof zone))
  1784. goto out;
  1785. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1786. if (r)
  1787. goto out;
  1788. r = 0;
  1789. break;
  1790. }
  1791. #endif
  1792. case KVM_IRQFD: {
  1793. struct kvm_irqfd data;
  1794. r = -EFAULT;
  1795. if (copy_from_user(&data, argp, sizeof data))
  1796. goto out;
  1797. r = kvm_irqfd(kvm, &data);
  1798. break;
  1799. }
  1800. case KVM_IOEVENTFD: {
  1801. struct kvm_ioeventfd data;
  1802. r = -EFAULT;
  1803. if (copy_from_user(&data, argp, sizeof data))
  1804. goto out;
  1805. r = kvm_ioeventfd(kvm, &data);
  1806. break;
  1807. }
  1808. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1809. case KVM_SET_BOOT_CPU_ID:
  1810. r = 0;
  1811. mutex_lock(&kvm->lock);
  1812. if (atomic_read(&kvm->online_vcpus) != 0)
  1813. r = -EBUSY;
  1814. else
  1815. kvm->bsp_vcpu_id = arg;
  1816. mutex_unlock(&kvm->lock);
  1817. break;
  1818. #endif
  1819. #ifdef CONFIG_HAVE_KVM_MSI
  1820. case KVM_SIGNAL_MSI: {
  1821. struct kvm_msi msi;
  1822. r = -EFAULT;
  1823. if (copy_from_user(&msi, argp, sizeof msi))
  1824. goto out;
  1825. r = kvm_send_userspace_msi(kvm, &msi);
  1826. break;
  1827. }
  1828. #endif
  1829. default:
  1830. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1831. if (r == -ENOTTY)
  1832. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1833. }
  1834. out:
  1835. return r;
  1836. }
  1837. #ifdef CONFIG_COMPAT
  1838. struct compat_kvm_dirty_log {
  1839. __u32 slot;
  1840. __u32 padding1;
  1841. union {
  1842. compat_uptr_t dirty_bitmap; /* one bit per page */
  1843. __u64 padding2;
  1844. };
  1845. };
  1846. static long kvm_vm_compat_ioctl(struct file *filp,
  1847. unsigned int ioctl, unsigned long arg)
  1848. {
  1849. struct kvm *kvm = filp->private_data;
  1850. int r;
  1851. if (kvm->mm != current->mm)
  1852. return -EIO;
  1853. switch (ioctl) {
  1854. case KVM_GET_DIRTY_LOG: {
  1855. struct compat_kvm_dirty_log compat_log;
  1856. struct kvm_dirty_log log;
  1857. r = -EFAULT;
  1858. if (copy_from_user(&compat_log, (void __user *)arg,
  1859. sizeof(compat_log)))
  1860. goto out;
  1861. log.slot = compat_log.slot;
  1862. log.padding1 = compat_log.padding1;
  1863. log.padding2 = compat_log.padding2;
  1864. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1865. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1866. if (r)
  1867. goto out;
  1868. break;
  1869. }
  1870. default:
  1871. r = kvm_vm_ioctl(filp, ioctl, arg);
  1872. }
  1873. out:
  1874. return r;
  1875. }
  1876. #endif
  1877. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1878. {
  1879. struct page *page[1];
  1880. unsigned long addr;
  1881. int npages;
  1882. gfn_t gfn = vmf->pgoff;
  1883. struct kvm *kvm = vma->vm_file->private_data;
  1884. addr = gfn_to_hva(kvm, gfn);
  1885. if (kvm_is_error_hva(addr))
  1886. return VM_FAULT_SIGBUS;
  1887. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1888. NULL);
  1889. if (unlikely(npages != 1))
  1890. return VM_FAULT_SIGBUS;
  1891. vmf->page = page[0];
  1892. return 0;
  1893. }
  1894. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1895. .fault = kvm_vm_fault,
  1896. };
  1897. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1898. {
  1899. vma->vm_ops = &kvm_vm_vm_ops;
  1900. return 0;
  1901. }
  1902. static struct file_operations kvm_vm_fops = {
  1903. .release = kvm_vm_release,
  1904. .unlocked_ioctl = kvm_vm_ioctl,
  1905. #ifdef CONFIG_COMPAT
  1906. .compat_ioctl = kvm_vm_compat_ioctl,
  1907. #endif
  1908. .mmap = kvm_vm_mmap,
  1909. .llseek = noop_llseek,
  1910. };
  1911. static int kvm_dev_ioctl_create_vm(unsigned long type)
  1912. {
  1913. int r;
  1914. struct kvm *kvm;
  1915. kvm = kvm_create_vm(type);
  1916. if (IS_ERR(kvm))
  1917. return PTR_ERR(kvm);
  1918. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1919. r = kvm_coalesced_mmio_init(kvm);
  1920. if (r < 0) {
  1921. kvm_put_kvm(kvm);
  1922. return r;
  1923. }
  1924. #endif
  1925. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1926. if (r < 0)
  1927. kvm_put_kvm(kvm);
  1928. return r;
  1929. }
  1930. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1931. {
  1932. switch (arg) {
  1933. case KVM_CAP_USER_MEMORY:
  1934. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1935. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1936. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1937. case KVM_CAP_SET_BOOT_CPU_ID:
  1938. #endif
  1939. case KVM_CAP_INTERNAL_ERROR_DATA:
  1940. #ifdef CONFIG_HAVE_KVM_MSI
  1941. case KVM_CAP_SIGNAL_MSI:
  1942. #endif
  1943. return 1;
  1944. #ifdef KVM_CAP_IRQ_ROUTING
  1945. case KVM_CAP_IRQ_ROUTING:
  1946. return KVM_MAX_IRQ_ROUTES;
  1947. #endif
  1948. default:
  1949. break;
  1950. }
  1951. return kvm_dev_ioctl_check_extension(arg);
  1952. }
  1953. static long kvm_dev_ioctl(struct file *filp,
  1954. unsigned int ioctl, unsigned long arg)
  1955. {
  1956. long r = -EINVAL;
  1957. switch (ioctl) {
  1958. case KVM_GET_API_VERSION:
  1959. r = -EINVAL;
  1960. if (arg)
  1961. goto out;
  1962. r = KVM_API_VERSION;
  1963. break;
  1964. case KVM_CREATE_VM:
  1965. r = kvm_dev_ioctl_create_vm(arg);
  1966. break;
  1967. case KVM_CHECK_EXTENSION:
  1968. r = kvm_dev_ioctl_check_extension_generic(arg);
  1969. break;
  1970. case KVM_GET_VCPU_MMAP_SIZE:
  1971. r = -EINVAL;
  1972. if (arg)
  1973. goto out;
  1974. r = PAGE_SIZE; /* struct kvm_run */
  1975. #ifdef CONFIG_X86
  1976. r += PAGE_SIZE; /* pio data page */
  1977. #endif
  1978. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1979. r += PAGE_SIZE; /* coalesced mmio ring page */
  1980. #endif
  1981. break;
  1982. case KVM_TRACE_ENABLE:
  1983. case KVM_TRACE_PAUSE:
  1984. case KVM_TRACE_DISABLE:
  1985. r = -EOPNOTSUPP;
  1986. break;
  1987. default:
  1988. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1989. }
  1990. out:
  1991. return r;
  1992. }
  1993. static struct file_operations kvm_chardev_ops = {
  1994. .unlocked_ioctl = kvm_dev_ioctl,
  1995. .compat_ioctl = kvm_dev_ioctl,
  1996. .llseek = noop_llseek,
  1997. };
  1998. static struct miscdevice kvm_dev = {
  1999. KVM_MINOR,
  2000. "kvm",
  2001. &kvm_chardev_ops,
  2002. };
  2003. static void hardware_enable_nolock(void *junk)
  2004. {
  2005. int cpu = raw_smp_processor_id();
  2006. int r;
  2007. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2008. return;
  2009. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  2010. r = kvm_arch_hardware_enable(NULL);
  2011. if (r) {
  2012. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2013. atomic_inc(&hardware_enable_failed);
  2014. printk(KERN_INFO "kvm: enabling virtualization on "
  2015. "CPU%d failed\n", cpu);
  2016. }
  2017. }
  2018. static void hardware_enable(void *junk)
  2019. {
  2020. raw_spin_lock(&kvm_lock);
  2021. hardware_enable_nolock(junk);
  2022. raw_spin_unlock(&kvm_lock);
  2023. }
  2024. static void hardware_disable_nolock(void *junk)
  2025. {
  2026. int cpu = raw_smp_processor_id();
  2027. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2028. return;
  2029. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2030. kvm_arch_hardware_disable(NULL);
  2031. }
  2032. static void hardware_disable(void *junk)
  2033. {
  2034. raw_spin_lock(&kvm_lock);
  2035. hardware_disable_nolock(junk);
  2036. raw_spin_unlock(&kvm_lock);
  2037. }
  2038. static void hardware_disable_all_nolock(void)
  2039. {
  2040. BUG_ON(!kvm_usage_count);
  2041. kvm_usage_count--;
  2042. if (!kvm_usage_count)
  2043. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2044. }
  2045. static void hardware_disable_all(void)
  2046. {
  2047. raw_spin_lock(&kvm_lock);
  2048. hardware_disable_all_nolock();
  2049. raw_spin_unlock(&kvm_lock);
  2050. }
  2051. static int hardware_enable_all(void)
  2052. {
  2053. int r = 0;
  2054. raw_spin_lock(&kvm_lock);
  2055. kvm_usage_count++;
  2056. if (kvm_usage_count == 1) {
  2057. atomic_set(&hardware_enable_failed, 0);
  2058. on_each_cpu(hardware_enable_nolock, NULL, 1);
  2059. if (atomic_read(&hardware_enable_failed)) {
  2060. hardware_disable_all_nolock();
  2061. r = -EBUSY;
  2062. }
  2063. }
  2064. raw_spin_unlock(&kvm_lock);
  2065. return r;
  2066. }
  2067. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2068. void *v)
  2069. {
  2070. int cpu = (long)v;
  2071. if (!kvm_usage_count)
  2072. return NOTIFY_OK;
  2073. val &= ~CPU_TASKS_FROZEN;
  2074. switch (val) {
  2075. case CPU_DYING:
  2076. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2077. cpu);
  2078. hardware_disable(NULL);
  2079. break;
  2080. case CPU_STARTING:
  2081. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2082. cpu);
  2083. hardware_enable(NULL);
  2084. break;
  2085. }
  2086. return NOTIFY_OK;
  2087. }
  2088. asmlinkage void kvm_spurious_fault(void)
  2089. {
  2090. /* Fault while not rebooting. We want the trace. */
  2091. BUG();
  2092. }
  2093. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  2094. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2095. void *v)
  2096. {
  2097. /*
  2098. * Some (well, at least mine) BIOSes hang on reboot if
  2099. * in vmx root mode.
  2100. *
  2101. * And Intel TXT required VMX off for all cpu when system shutdown.
  2102. */
  2103. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2104. kvm_rebooting = true;
  2105. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2106. return NOTIFY_OK;
  2107. }
  2108. static struct notifier_block kvm_reboot_notifier = {
  2109. .notifier_call = kvm_reboot,
  2110. .priority = 0,
  2111. };
  2112. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2113. {
  2114. int i;
  2115. for (i = 0; i < bus->dev_count; i++) {
  2116. struct kvm_io_device *pos = bus->range[i].dev;
  2117. kvm_iodevice_destructor(pos);
  2118. }
  2119. kfree(bus);
  2120. }
  2121. int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
  2122. {
  2123. const struct kvm_io_range *r1 = p1;
  2124. const struct kvm_io_range *r2 = p2;
  2125. if (r1->addr < r2->addr)
  2126. return -1;
  2127. if (r1->addr + r1->len > r2->addr + r2->len)
  2128. return 1;
  2129. return 0;
  2130. }
  2131. int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
  2132. gpa_t addr, int len)
  2133. {
  2134. bus->range[bus->dev_count++] = (struct kvm_io_range) {
  2135. .addr = addr,
  2136. .len = len,
  2137. .dev = dev,
  2138. };
  2139. sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
  2140. kvm_io_bus_sort_cmp, NULL);
  2141. return 0;
  2142. }
  2143. int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
  2144. gpa_t addr, int len)
  2145. {
  2146. struct kvm_io_range *range, key;
  2147. int off;
  2148. key = (struct kvm_io_range) {
  2149. .addr = addr,
  2150. .len = len,
  2151. };
  2152. range = bsearch(&key, bus->range, bus->dev_count,
  2153. sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
  2154. if (range == NULL)
  2155. return -ENOENT;
  2156. off = range - bus->range;
  2157. while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
  2158. off--;
  2159. return off;
  2160. }
  2161. /* kvm_io_bus_write - called under kvm->slots_lock */
  2162. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2163. int len, const void *val)
  2164. {
  2165. int idx;
  2166. struct kvm_io_bus *bus;
  2167. struct kvm_io_range range;
  2168. range = (struct kvm_io_range) {
  2169. .addr = addr,
  2170. .len = len,
  2171. };
  2172. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2173. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2174. if (idx < 0)
  2175. return -EOPNOTSUPP;
  2176. while (idx < bus->dev_count &&
  2177. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2178. if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
  2179. return 0;
  2180. idx++;
  2181. }
  2182. return -EOPNOTSUPP;
  2183. }
  2184. /* kvm_io_bus_read - called under kvm->slots_lock */
  2185. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2186. int len, void *val)
  2187. {
  2188. int idx;
  2189. struct kvm_io_bus *bus;
  2190. struct kvm_io_range range;
  2191. range = (struct kvm_io_range) {
  2192. .addr = addr,
  2193. .len = len,
  2194. };
  2195. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2196. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2197. if (idx < 0)
  2198. return -EOPNOTSUPP;
  2199. while (idx < bus->dev_count &&
  2200. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2201. if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
  2202. return 0;
  2203. idx++;
  2204. }
  2205. return -EOPNOTSUPP;
  2206. }
  2207. /* Caller must hold slots_lock. */
  2208. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2209. int len, struct kvm_io_device *dev)
  2210. {
  2211. struct kvm_io_bus *new_bus, *bus;
  2212. bus = kvm->buses[bus_idx];
  2213. if (bus->dev_count > NR_IOBUS_DEVS - 1)
  2214. return -ENOSPC;
  2215. new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
  2216. sizeof(struct kvm_io_range)), GFP_KERNEL);
  2217. if (!new_bus)
  2218. return -ENOMEM;
  2219. memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
  2220. sizeof(struct kvm_io_range)));
  2221. kvm_io_bus_insert_dev(new_bus, dev, addr, len);
  2222. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2223. synchronize_srcu_expedited(&kvm->srcu);
  2224. kfree(bus);
  2225. return 0;
  2226. }
  2227. /* Caller must hold slots_lock. */
  2228. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  2229. struct kvm_io_device *dev)
  2230. {
  2231. int i, r;
  2232. struct kvm_io_bus *new_bus, *bus;
  2233. bus = kvm->buses[bus_idx];
  2234. r = -ENOENT;
  2235. for (i = 0; i < bus->dev_count; i++)
  2236. if (bus->range[i].dev == dev) {
  2237. r = 0;
  2238. break;
  2239. }
  2240. if (r)
  2241. return r;
  2242. new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
  2243. sizeof(struct kvm_io_range)), GFP_KERNEL);
  2244. if (!new_bus)
  2245. return -ENOMEM;
  2246. memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
  2247. new_bus->dev_count--;
  2248. memcpy(new_bus->range + i, bus->range + i + 1,
  2249. (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
  2250. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2251. synchronize_srcu_expedited(&kvm->srcu);
  2252. kfree(bus);
  2253. return r;
  2254. }
  2255. static struct notifier_block kvm_cpu_notifier = {
  2256. .notifier_call = kvm_cpu_hotplug,
  2257. };
  2258. static int vm_stat_get(void *_offset, u64 *val)
  2259. {
  2260. unsigned offset = (long)_offset;
  2261. struct kvm *kvm;
  2262. *val = 0;
  2263. raw_spin_lock(&kvm_lock);
  2264. list_for_each_entry(kvm, &vm_list, vm_list)
  2265. *val += *(u32 *)((void *)kvm + offset);
  2266. raw_spin_unlock(&kvm_lock);
  2267. return 0;
  2268. }
  2269. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2270. static int vcpu_stat_get(void *_offset, u64 *val)
  2271. {
  2272. unsigned offset = (long)_offset;
  2273. struct kvm *kvm;
  2274. struct kvm_vcpu *vcpu;
  2275. int i;
  2276. *val = 0;
  2277. raw_spin_lock(&kvm_lock);
  2278. list_for_each_entry(kvm, &vm_list, vm_list)
  2279. kvm_for_each_vcpu(i, vcpu, kvm)
  2280. *val += *(u32 *)((void *)vcpu + offset);
  2281. raw_spin_unlock(&kvm_lock);
  2282. return 0;
  2283. }
  2284. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2285. static const struct file_operations *stat_fops[] = {
  2286. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2287. [KVM_STAT_VM] = &vm_stat_fops,
  2288. };
  2289. static int kvm_init_debug(void)
  2290. {
  2291. int r = -EFAULT;
  2292. struct kvm_stats_debugfs_item *p;
  2293. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2294. if (kvm_debugfs_dir == NULL)
  2295. goto out;
  2296. for (p = debugfs_entries; p->name; ++p) {
  2297. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2298. (void *)(long)p->offset,
  2299. stat_fops[p->kind]);
  2300. if (p->dentry == NULL)
  2301. goto out_dir;
  2302. }
  2303. return 0;
  2304. out_dir:
  2305. debugfs_remove_recursive(kvm_debugfs_dir);
  2306. out:
  2307. return r;
  2308. }
  2309. static void kvm_exit_debug(void)
  2310. {
  2311. struct kvm_stats_debugfs_item *p;
  2312. for (p = debugfs_entries; p->name; ++p)
  2313. debugfs_remove(p->dentry);
  2314. debugfs_remove(kvm_debugfs_dir);
  2315. }
  2316. static int kvm_suspend(void)
  2317. {
  2318. if (kvm_usage_count)
  2319. hardware_disable_nolock(NULL);
  2320. return 0;
  2321. }
  2322. static void kvm_resume(void)
  2323. {
  2324. if (kvm_usage_count) {
  2325. WARN_ON(raw_spin_is_locked(&kvm_lock));
  2326. hardware_enable_nolock(NULL);
  2327. }
  2328. }
  2329. static struct syscore_ops kvm_syscore_ops = {
  2330. .suspend = kvm_suspend,
  2331. .resume = kvm_resume,
  2332. };
  2333. static inline
  2334. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2335. {
  2336. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2337. }
  2338. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2339. {
  2340. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2341. kvm_arch_vcpu_load(vcpu, cpu);
  2342. }
  2343. static void kvm_sched_out(struct preempt_notifier *pn,
  2344. struct task_struct *next)
  2345. {
  2346. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2347. kvm_arch_vcpu_put(vcpu);
  2348. }
  2349. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2350. struct module *module)
  2351. {
  2352. int r;
  2353. int cpu;
  2354. r = kvm_arch_init(opaque);
  2355. if (r)
  2356. goto out_fail;
  2357. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2358. r = -ENOMEM;
  2359. goto out_free_0;
  2360. }
  2361. r = kvm_arch_hardware_setup();
  2362. if (r < 0)
  2363. goto out_free_0a;
  2364. for_each_online_cpu(cpu) {
  2365. smp_call_function_single(cpu,
  2366. kvm_arch_check_processor_compat,
  2367. &r, 1);
  2368. if (r < 0)
  2369. goto out_free_1;
  2370. }
  2371. r = register_cpu_notifier(&kvm_cpu_notifier);
  2372. if (r)
  2373. goto out_free_2;
  2374. register_reboot_notifier(&kvm_reboot_notifier);
  2375. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2376. if (!vcpu_align)
  2377. vcpu_align = __alignof__(struct kvm_vcpu);
  2378. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2379. 0, NULL);
  2380. if (!kvm_vcpu_cache) {
  2381. r = -ENOMEM;
  2382. goto out_free_3;
  2383. }
  2384. r = kvm_async_pf_init();
  2385. if (r)
  2386. goto out_free;
  2387. kvm_chardev_ops.owner = module;
  2388. kvm_vm_fops.owner = module;
  2389. kvm_vcpu_fops.owner = module;
  2390. r = misc_register(&kvm_dev);
  2391. if (r) {
  2392. printk(KERN_ERR "kvm: misc device register failed\n");
  2393. goto out_unreg;
  2394. }
  2395. register_syscore_ops(&kvm_syscore_ops);
  2396. kvm_preempt_ops.sched_in = kvm_sched_in;
  2397. kvm_preempt_ops.sched_out = kvm_sched_out;
  2398. r = kvm_init_debug();
  2399. if (r) {
  2400. printk(KERN_ERR "kvm: create debugfs files failed\n");
  2401. goto out_undebugfs;
  2402. }
  2403. return 0;
  2404. out_undebugfs:
  2405. unregister_syscore_ops(&kvm_syscore_ops);
  2406. out_unreg:
  2407. kvm_async_pf_deinit();
  2408. out_free:
  2409. kmem_cache_destroy(kvm_vcpu_cache);
  2410. out_free_3:
  2411. unregister_reboot_notifier(&kvm_reboot_notifier);
  2412. unregister_cpu_notifier(&kvm_cpu_notifier);
  2413. out_free_2:
  2414. out_free_1:
  2415. kvm_arch_hardware_unsetup();
  2416. out_free_0a:
  2417. free_cpumask_var(cpus_hardware_enabled);
  2418. out_free_0:
  2419. kvm_arch_exit();
  2420. out_fail:
  2421. return r;
  2422. }
  2423. EXPORT_SYMBOL_GPL(kvm_init);
  2424. void kvm_exit(void)
  2425. {
  2426. kvm_exit_debug();
  2427. misc_deregister(&kvm_dev);
  2428. kmem_cache_destroy(kvm_vcpu_cache);
  2429. kvm_async_pf_deinit();
  2430. unregister_syscore_ops(&kvm_syscore_ops);
  2431. unregister_reboot_notifier(&kvm_reboot_notifier);
  2432. unregister_cpu_notifier(&kvm_cpu_notifier);
  2433. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2434. kvm_arch_hardware_unsetup();
  2435. kvm_arch_exit();
  2436. free_cpumask_var(cpus_hardware_enabled);
  2437. }
  2438. EXPORT_SYMBOL_GPL(kvm_exit);