tcp_input.c 170 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #include <linux/mm.h>
  63. #include <linux/slab.h>
  64. #include <linux/module.h>
  65. #include <linux/sysctl.h>
  66. #include <linux/kernel.h>
  67. #include <net/dst.h>
  68. #include <net/tcp.h>
  69. #include <net/inet_common.h>
  70. #include <linux/ipsec.h>
  71. #include <asm/unaligned.h>
  72. #include <net/netdma.h>
  73. int sysctl_tcp_timestamps __read_mostly = 1;
  74. int sysctl_tcp_window_scaling __read_mostly = 1;
  75. int sysctl_tcp_sack __read_mostly = 1;
  76. int sysctl_tcp_fack __read_mostly = 1;
  77. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  78. EXPORT_SYMBOL(sysctl_tcp_reordering);
  79. int sysctl_tcp_ecn __read_mostly = 2;
  80. EXPORT_SYMBOL(sysctl_tcp_ecn);
  81. int sysctl_tcp_dsack __read_mostly = 1;
  82. int sysctl_tcp_app_win __read_mostly = 31;
  83. int sysctl_tcp_adv_win_scale __read_mostly = 2;
  84. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  85. int sysctl_tcp_stdurg __read_mostly;
  86. int sysctl_tcp_rfc1337 __read_mostly;
  87. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  88. int sysctl_tcp_frto __read_mostly = 2;
  89. int sysctl_tcp_frto_response __read_mostly;
  90. int sysctl_tcp_nometrics_save __read_mostly;
  91. int sysctl_tcp_thin_dupack __read_mostly;
  92. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  93. int sysctl_tcp_abc __read_mostly;
  94. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  95. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  96. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  97. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  98. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  99. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  100. #define FLAG_ECE 0x40 /* ECE in this ACK */
  101. #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
  102. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  103. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  104. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  105. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  106. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  107. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  108. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  109. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  110. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  111. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  112. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  113. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  114. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  115. /* Adapt the MSS value used to make delayed ack decision to the
  116. * real world.
  117. */
  118. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  119. {
  120. struct inet_connection_sock *icsk = inet_csk(sk);
  121. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  122. unsigned int len;
  123. icsk->icsk_ack.last_seg_size = 0;
  124. /* skb->len may jitter because of SACKs, even if peer
  125. * sends good full-sized frames.
  126. */
  127. len = skb_shinfo(skb)->gso_size ? : skb->len;
  128. if (len >= icsk->icsk_ack.rcv_mss) {
  129. icsk->icsk_ack.rcv_mss = len;
  130. } else {
  131. /* Otherwise, we make more careful check taking into account,
  132. * that SACKs block is variable.
  133. *
  134. * "len" is invariant segment length, including TCP header.
  135. */
  136. len += skb->data - skb_transport_header(skb);
  137. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  138. /* If PSH is not set, packet should be
  139. * full sized, provided peer TCP is not badly broken.
  140. * This observation (if it is correct 8)) allows
  141. * to handle super-low mtu links fairly.
  142. */
  143. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  144. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  145. /* Subtract also invariant (if peer is RFC compliant),
  146. * tcp header plus fixed timestamp option length.
  147. * Resulting "len" is MSS free of SACK jitter.
  148. */
  149. len -= tcp_sk(sk)->tcp_header_len;
  150. icsk->icsk_ack.last_seg_size = len;
  151. if (len == lss) {
  152. icsk->icsk_ack.rcv_mss = len;
  153. return;
  154. }
  155. }
  156. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  157. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  158. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  159. }
  160. }
  161. static void tcp_incr_quickack(struct sock *sk)
  162. {
  163. struct inet_connection_sock *icsk = inet_csk(sk);
  164. unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  165. if (quickacks == 0)
  166. quickacks = 2;
  167. if (quickacks > icsk->icsk_ack.quick)
  168. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  169. }
  170. static void tcp_enter_quickack_mode(struct sock *sk)
  171. {
  172. struct inet_connection_sock *icsk = inet_csk(sk);
  173. tcp_incr_quickack(sk);
  174. icsk->icsk_ack.pingpong = 0;
  175. icsk->icsk_ack.ato = TCP_ATO_MIN;
  176. }
  177. /* Send ACKs quickly, if "quick" count is not exhausted
  178. * and the session is not interactive.
  179. */
  180. static inline int tcp_in_quickack_mode(const struct sock *sk)
  181. {
  182. const struct inet_connection_sock *icsk = inet_csk(sk);
  183. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  184. }
  185. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  186. {
  187. if (tp->ecn_flags & TCP_ECN_OK)
  188. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  189. }
  190. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
  191. {
  192. if (tcp_hdr(skb)->cwr)
  193. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  194. }
  195. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  196. {
  197. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  198. }
  199. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
  200. {
  201. if (tp->ecn_flags & TCP_ECN_OK) {
  202. if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
  203. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  204. /* Funny extension: if ECT is not set on a segment,
  205. * it is surely retransmit. It is not in ECN RFC,
  206. * but Linux follows this rule. */
  207. else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
  208. tcp_enter_quickack_mode((struct sock *)tp);
  209. }
  210. }
  211. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
  212. {
  213. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  214. tp->ecn_flags &= ~TCP_ECN_OK;
  215. }
  216. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
  217. {
  218. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  219. tp->ecn_flags &= ~TCP_ECN_OK;
  220. }
  221. static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
  222. {
  223. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  224. return 1;
  225. return 0;
  226. }
  227. /* Buffer size and advertised window tuning.
  228. *
  229. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  230. */
  231. static void tcp_fixup_sndbuf(struct sock *sk)
  232. {
  233. int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
  234. sizeof(struct sk_buff);
  235. if (sk->sk_sndbuf < 3 * sndmem) {
  236. sk->sk_sndbuf = 3 * sndmem;
  237. if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
  238. sk->sk_sndbuf = sysctl_tcp_wmem[2];
  239. }
  240. }
  241. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  242. *
  243. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  244. * forward and advertised in receiver window (tp->rcv_wnd) and
  245. * "application buffer", required to isolate scheduling/application
  246. * latencies from network.
  247. * window_clamp is maximal advertised window. It can be less than
  248. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  249. * is reserved for "application" buffer. The less window_clamp is
  250. * the smoother our behaviour from viewpoint of network, but the lower
  251. * throughput and the higher sensitivity of the connection to losses. 8)
  252. *
  253. * rcv_ssthresh is more strict window_clamp used at "slow start"
  254. * phase to predict further behaviour of this connection.
  255. * It is used for two goals:
  256. * - to enforce header prediction at sender, even when application
  257. * requires some significant "application buffer". It is check #1.
  258. * - to prevent pruning of receive queue because of misprediction
  259. * of receiver window. Check #2.
  260. *
  261. * The scheme does not work when sender sends good segments opening
  262. * window and then starts to feed us spaghetti. But it should work
  263. * in common situations. Otherwise, we have to rely on queue collapsing.
  264. */
  265. /* Slow part of check#2. */
  266. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  267. {
  268. struct tcp_sock *tp = tcp_sk(sk);
  269. /* Optimize this! */
  270. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  271. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  272. while (tp->rcv_ssthresh <= window) {
  273. if (truesize <= skb->len)
  274. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  275. truesize >>= 1;
  276. window >>= 1;
  277. }
  278. return 0;
  279. }
  280. static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
  281. {
  282. struct tcp_sock *tp = tcp_sk(sk);
  283. /* Check #1 */
  284. if (tp->rcv_ssthresh < tp->window_clamp &&
  285. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  286. !tcp_memory_pressure) {
  287. int incr;
  288. /* Check #2. Increase window, if skb with such overhead
  289. * will fit to rcvbuf in future.
  290. */
  291. if (tcp_win_from_space(skb->truesize) <= skb->len)
  292. incr = 2 * tp->advmss;
  293. else
  294. incr = __tcp_grow_window(sk, skb);
  295. if (incr) {
  296. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  297. tp->window_clamp);
  298. inet_csk(sk)->icsk_ack.quick |= 1;
  299. }
  300. }
  301. }
  302. /* 3. Tuning rcvbuf, when connection enters established state. */
  303. static void tcp_fixup_rcvbuf(struct sock *sk)
  304. {
  305. struct tcp_sock *tp = tcp_sk(sk);
  306. int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
  307. /* Try to select rcvbuf so that 4 mss-sized segments
  308. * will fit to window and corresponding skbs will fit to our rcvbuf.
  309. * (was 3; 4 is minimum to allow fast retransmit to work.)
  310. */
  311. while (tcp_win_from_space(rcvmem) < tp->advmss)
  312. rcvmem += 128;
  313. if (sk->sk_rcvbuf < 4 * rcvmem)
  314. sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
  315. }
  316. /* 4. Try to fixup all. It is made immediately after connection enters
  317. * established state.
  318. */
  319. static void tcp_init_buffer_space(struct sock *sk)
  320. {
  321. struct tcp_sock *tp = tcp_sk(sk);
  322. int maxwin;
  323. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  324. tcp_fixup_rcvbuf(sk);
  325. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  326. tcp_fixup_sndbuf(sk);
  327. tp->rcvq_space.space = tp->rcv_wnd;
  328. maxwin = tcp_full_space(sk);
  329. if (tp->window_clamp >= maxwin) {
  330. tp->window_clamp = maxwin;
  331. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  332. tp->window_clamp = max(maxwin -
  333. (maxwin >> sysctl_tcp_app_win),
  334. 4 * tp->advmss);
  335. }
  336. /* Force reservation of one segment. */
  337. if (sysctl_tcp_app_win &&
  338. tp->window_clamp > 2 * tp->advmss &&
  339. tp->window_clamp + tp->advmss > maxwin)
  340. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  341. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  342. tp->snd_cwnd_stamp = tcp_time_stamp;
  343. }
  344. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  345. static void tcp_clamp_window(struct sock *sk)
  346. {
  347. struct tcp_sock *tp = tcp_sk(sk);
  348. struct inet_connection_sock *icsk = inet_csk(sk);
  349. icsk->icsk_ack.quick = 0;
  350. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  351. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  352. !tcp_memory_pressure &&
  353. atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
  354. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  355. sysctl_tcp_rmem[2]);
  356. }
  357. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  358. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  359. }
  360. /* Initialize RCV_MSS value.
  361. * RCV_MSS is an our guess about MSS used by the peer.
  362. * We haven't any direct information about the MSS.
  363. * It's better to underestimate the RCV_MSS rather than overestimate.
  364. * Overestimations make us ACKing less frequently than needed.
  365. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  366. */
  367. void tcp_initialize_rcv_mss(struct sock *sk)
  368. {
  369. struct tcp_sock *tp = tcp_sk(sk);
  370. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  371. hint = min(hint, tp->rcv_wnd / 2);
  372. hint = min(hint, TCP_MSS_DEFAULT);
  373. hint = max(hint, TCP_MIN_MSS);
  374. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  375. }
  376. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  377. /* Receiver "autotuning" code.
  378. *
  379. * The algorithm for RTT estimation w/o timestamps is based on
  380. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  381. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  382. *
  383. * More detail on this code can be found at
  384. * <http://staff.psc.edu/jheffner/>,
  385. * though this reference is out of date. A new paper
  386. * is pending.
  387. */
  388. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  389. {
  390. u32 new_sample = tp->rcv_rtt_est.rtt;
  391. long m = sample;
  392. if (m == 0)
  393. m = 1;
  394. if (new_sample != 0) {
  395. /* If we sample in larger samples in the non-timestamp
  396. * case, we could grossly overestimate the RTT especially
  397. * with chatty applications or bulk transfer apps which
  398. * are stalled on filesystem I/O.
  399. *
  400. * Also, since we are only going for a minimum in the
  401. * non-timestamp case, we do not smooth things out
  402. * else with timestamps disabled convergence takes too
  403. * long.
  404. */
  405. if (!win_dep) {
  406. m -= (new_sample >> 3);
  407. new_sample += m;
  408. } else if (m < new_sample)
  409. new_sample = m << 3;
  410. } else {
  411. /* No previous measure. */
  412. new_sample = m << 3;
  413. }
  414. if (tp->rcv_rtt_est.rtt != new_sample)
  415. tp->rcv_rtt_est.rtt = new_sample;
  416. }
  417. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  418. {
  419. if (tp->rcv_rtt_est.time == 0)
  420. goto new_measure;
  421. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  422. return;
  423. tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
  424. new_measure:
  425. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  426. tp->rcv_rtt_est.time = tcp_time_stamp;
  427. }
  428. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  429. const struct sk_buff *skb)
  430. {
  431. struct tcp_sock *tp = tcp_sk(sk);
  432. if (tp->rx_opt.rcv_tsecr &&
  433. (TCP_SKB_CB(skb)->end_seq -
  434. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  435. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  436. }
  437. /*
  438. * This function should be called every time data is copied to user space.
  439. * It calculates the appropriate TCP receive buffer space.
  440. */
  441. void tcp_rcv_space_adjust(struct sock *sk)
  442. {
  443. struct tcp_sock *tp = tcp_sk(sk);
  444. int time;
  445. int space;
  446. if (tp->rcvq_space.time == 0)
  447. goto new_measure;
  448. time = tcp_time_stamp - tp->rcvq_space.time;
  449. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  450. return;
  451. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  452. space = max(tp->rcvq_space.space, space);
  453. if (tp->rcvq_space.space != space) {
  454. int rcvmem;
  455. tp->rcvq_space.space = space;
  456. if (sysctl_tcp_moderate_rcvbuf &&
  457. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  458. int new_clamp = space;
  459. /* Receive space grows, normalize in order to
  460. * take into account packet headers and sk_buff
  461. * structure overhead.
  462. */
  463. space /= tp->advmss;
  464. if (!space)
  465. space = 1;
  466. rcvmem = (tp->advmss + MAX_TCP_HEADER +
  467. 16 + sizeof(struct sk_buff));
  468. while (tcp_win_from_space(rcvmem) < tp->advmss)
  469. rcvmem += 128;
  470. space *= rcvmem;
  471. space = min(space, sysctl_tcp_rmem[2]);
  472. if (space > sk->sk_rcvbuf) {
  473. sk->sk_rcvbuf = space;
  474. /* Make the window clamp follow along. */
  475. tp->window_clamp = new_clamp;
  476. }
  477. }
  478. }
  479. new_measure:
  480. tp->rcvq_space.seq = tp->copied_seq;
  481. tp->rcvq_space.time = tcp_time_stamp;
  482. }
  483. /* There is something which you must keep in mind when you analyze the
  484. * behavior of the tp->ato delayed ack timeout interval. When a
  485. * connection starts up, we want to ack as quickly as possible. The
  486. * problem is that "good" TCP's do slow start at the beginning of data
  487. * transmission. The means that until we send the first few ACK's the
  488. * sender will sit on his end and only queue most of his data, because
  489. * he can only send snd_cwnd unacked packets at any given time. For
  490. * each ACK we send, he increments snd_cwnd and transmits more of his
  491. * queue. -DaveM
  492. */
  493. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  494. {
  495. struct tcp_sock *tp = tcp_sk(sk);
  496. struct inet_connection_sock *icsk = inet_csk(sk);
  497. u32 now;
  498. inet_csk_schedule_ack(sk);
  499. tcp_measure_rcv_mss(sk, skb);
  500. tcp_rcv_rtt_measure(tp);
  501. now = tcp_time_stamp;
  502. if (!icsk->icsk_ack.ato) {
  503. /* The _first_ data packet received, initialize
  504. * delayed ACK engine.
  505. */
  506. tcp_incr_quickack(sk);
  507. icsk->icsk_ack.ato = TCP_ATO_MIN;
  508. } else {
  509. int m = now - icsk->icsk_ack.lrcvtime;
  510. if (m <= TCP_ATO_MIN / 2) {
  511. /* The fastest case is the first. */
  512. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  513. } else if (m < icsk->icsk_ack.ato) {
  514. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  515. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  516. icsk->icsk_ack.ato = icsk->icsk_rto;
  517. } else if (m > icsk->icsk_rto) {
  518. /* Too long gap. Apparently sender failed to
  519. * restart window, so that we send ACKs quickly.
  520. */
  521. tcp_incr_quickack(sk);
  522. sk_mem_reclaim(sk);
  523. }
  524. }
  525. icsk->icsk_ack.lrcvtime = now;
  526. TCP_ECN_check_ce(tp, skb);
  527. if (skb->len >= 128)
  528. tcp_grow_window(sk, skb);
  529. }
  530. /* Called to compute a smoothed rtt estimate. The data fed to this
  531. * routine either comes from timestamps, or from segments that were
  532. * known _not_ to have been retransmitted [see Karn/Partridge
  533. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  534. * piece by Van Jacobson.
  535. * NOTE: the next three routines used to be one big routine.
  536. * To save cycles in the RFC 1323 implementation it was better to break
  537. * it up into three procedures. -- erics
  538. */
  539. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  540. {
  541. struct tcp_sock *tp = tcp_sk(sk);
  542. long m = mrtt; /* RTT */
  543. /* The following amusing code comes from Jacobson's
  544. * article in SIGCOMM '88. Note that rtt and mdev
  545. * are scaled versions of rtt and mean deviation.
  546. * This is designed to be as fast as possible
  547. * m stands for "measurement".
  548. *
  549. * On a 1990 paper the rto value is changed to:
  550. * RTO = rtt + 4 * mdev
  551. *
  552. * Funny. This algorithm seems to be very broken.
  553. * These formulae increase RTO, when it should be decreased, increase
  554. * too slowly, when it should be increased quickly, decrease too quickly
  555. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  556. * does not matter how to _calculate_ it. Seems, it was trap
  557. * that VJ failed to avoid. 8)
  558. */
  559. if (m == 0)
  560. m = 1;
  561. if (tp->srtt != 0) {
  562. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  563. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  564. if (m < 0) {
  565. m = -m; /* m is now abs(error) */
  566. m -= (tp->mdev >> 2); /* similar update on mdev */
  567. /* This is similar to one of Eifel findings.
  568. * Eifel blocks mdev updates when rtt decreases.
  569. * This solution is a bit different: we use finer gain
  570. * for mdev in this case (alpha*beta).
  571. * Like Eifel it also prevents growth of rto,
  572. * but also it limits too fast rto decreases,
  573. * happening in pure Eifel.
  574. */
  575. if (m > 0)
  576. m >>= 3;
  577. } else {
  578. m -= (tp->mdev >> 2); /* similar update on mdev */
  579. }
  580. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  581. if (tp->mdev > tp->mdev_max) {
  582. tp->mdev_max = tp->mdev;
  583. if (tp->mdev_max > tp->rttvar)
  584. tp->rttvar = tp->mdev_max;
  585. }
  586. if (after(tp->snd_una, tp->rtt_seq)) {
  587. if (tp->mdev_max < tp->rttvar)
  588. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  589. tp->rtt_seq = tp->snd_nxt;
  590. tp->mdev_max = tcp_rto_min(sk);
  591. }
  592. } else {
  593. /* no previous measure. */
  594. tp->srtt = m << 3; /* take the measured time to be rtt */
  595. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  596. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  597. tp->rtt_seq = tp->snd_nxt;
  598. }
  599. }
  600. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  601. * routine referred to above.
  602. */
  603. static inline void tcp_set_rto(struct sock *sk)
  604. {
  605. const struct tcp_sock *tp = tcp_sk(sk);
  606. /* Old crap is replaced with new one. 8)
  607. *
  608. * More seriously:
  609. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  610. * It cannot be less due to utterly erratic ACK generation made
  611. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  612. * to do with delayed acks, because at cwnd>2 true delack timeout
  613. * is invisible. Actually, Linux-2.4 also generates erratic
  614. * ACKs in some circumstances.
  615. */
  616. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  617. /* 2. Fixups made earlier cannot be right.
  618. * If we do not estimate RTO correctly without them,
  619. * all the algo is pure shit and should be replaced
  620. * with correct one. It is exactly, which we pretend to do.
  621. */
  622. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  623. * guarantees that rto is higher.
  624. */
  625. tcp_bound_rto(sk);
  626. }
  627. /* Save metrics learned by this TCP session.
  628. This function is called only, when TCP finishes successfully
  629. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  630. */
  631. void tcp_update_metrics(struct sock *sk)
  632. {
  633. struct tcp_sock *tp = tcp_sk(sk);
  634. struct dst_entry *dst = __sk_dst_get(sk);
  635. if (sysctl_tcp_nometrics_save)
  636. return;
  637. dst_confirm(dst);
  638. if (dst && (dst->flags & DST_HOST)) {
  639. const struct inet_connection_sock *icsk = inet_csk(sk);
  640. int m;
  641. unsigned long rtt;
  642. if (icsk->icsk_backoff || !tp->srtt) {
  643. /* This session failed to estimate rtt. Why?
  644. * Probably, no packets returned in time.
  645. * Reset our results.
  646. */
  647. if (!(dst_metric_locked(dst, RTAX_RTT)))
  648. dst_metric_set(dst, RTAX_RTT, 0);
  649. return;
  650. }
  651. rtt = dst_metric_rtt(dst, RTAX_RTT);
  652. m = rtt - tp->srtt;
  653. /* If newly calculated rtt larger than stored one,
  654. * store new one. Otherwise, use EWMA. Remember,
  655. * rtt overestimation is always better than underestimation.
  656. */
  657. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  658. if (m <= 0)
  659. set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
  660. else
  661. set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
  662. }
  663. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  664. unsigned long var;
  665. if (m < 0)
  666. m = -m;
  667. /* Scale deviation to rttvar fixed point */
  668. m >>= 1;
  669. if (m < tp->mdev)
  670. m = tp->mdev;
  671. var = dst_metric_rtt(dst, RTAX_RTTVAR);
  672. if (m >= var)
  673. var = m;
  674. else
  675. var -= (var - m) >> 2;
  676. set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
  677. }
  678. if (tcp_in_initial_slowstart(tp)) {
  679. /* Slow start still did not finish. */
  680. if (dst_metric(dst, RTAX_SSTHRESH) &&
  681. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  682. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  683. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
  684. if (!dst_metric_locked(dst, RTAX_CWND) &&
  685. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  686. dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
  687. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  688. icsk->icsk_ca_state == TCP_CA_Open) {
  689. /* Cong. avoidance phase, cwnd is reliable. */
  690. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  691. dst_metric_set(dst, RTAX_SSTHRESH,
  692. max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
  693. if (!dst_metric_locked(dst, RTAX_CWND))
  694. dst_metric_set(dst, RTAX_CWND,
  695. (dst_metric(dst, RTAX_CWND) +
  696. tp->snd_cwnd) >> 1);
  697. } else {
  698. /* Else slow start did not finish, cwnd is non-sense,
  699. ssthresh may be also invalid.
  700. */
  701. if (!dst_metric_locked(dst, RTAX_CWND))
  702. dst_metric_set(dst, RTAX_CWND,
  703. (dst_metric(dst, RTAX_CWND) +
  704. tp->snd_ssthresh) >> 1);
  705. if (dst_metric(dst, RTAX_SSTHRESH) &&
  706. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  707. tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
  708. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
  709. }
  710. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  711. if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
  712. tp->reordering != sysctl_tcp_reordering)
  713. dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
  714. }
  715. }
  716. }
  717. __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
  718. {
  719. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  720. if (!cwnd)
  721. cwnd = TCP_INIT_CWND;
  722. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  723. }
  724. /* Set slow start threshold and cwnd not falling to slow start */
  725. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  726. {
  727. struct tcp_sock *tp = tcp_sk(sk);
  728. const struct inet_connection_sock *icsk = inet_csk(sk);
  729. tp->prior_ssthresh = 0;
  730. tp->bytes_acked = 0;
  731. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  732. tp->undo_marker = 0;
  733. if (set_ssthresh)
  734. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  735. tp->snd_cwnd = min(tp->snd_cwnd,
  736. tcp_packets_in_flight(tp) + 1U);
  737. tp->snd_cwnd_cnt = 0;
  738. tp->high_seq = tp->snd_nxt;
  739. tp->snd_cwnd_stamp = tcp_time_stamp;
  740. TCP_ECN_queue_cwr(tp);
  741. tcp_set_ca_state(sk, TCP_CA_CWR);
  742. }
  743. }
  744. /*
  745. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  746. * disables it when reordering is detected
  747. */
  748. static void tcp_disable_fack(struct tcp_sock *tp)
  749. {
  750. /* RFC3517 uses different metric in lost marker => reset on change */
  751. if (tcp_is_fack(tp))
  752. tp->lost_skb_hint = NULL;
  753. tp->rx_opt.sack_ok &= ~2;
  754. }
  755. /* Take a notice that peer is sending D-SACKs */
  756. static void tcp_dsack_seen(struct tcp_sock *tp)
  757. {
  758. tp->rx_opt.sack_ok |= 4;
  759. }
  760. /* Initialize metrics on socket. */
  761. static void tcp_init_metrics(struct sock *sk)
  762. {
  763. struct tcp_sock *tp = tcp_sk(sk);
  764. struct dst_entry *dst = __sk_dst_get(sk);
  765. if (dst == NULL)
  766. goto reset;
  767. dst_confirm(dst);
  768. if (dst_metric_locked(dst, RTAX_CWND))
  769. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  770. if (dst_metric(dst, RTAX_SSTHRESH)) {
  771. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  772. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  773. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  774. } else {
  775. /* ssthresh may have been reduced unnecessarily during.
  776. * 3WHS. Restore it back to its initial default.
  777. */
  778. tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
  779. }
  780. if (dst_metric(dst, RTAX_REORDERING) &&
  781. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  782. tcp_disable_fack(tp);
  783. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  784. }
  785. if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
  786. goto reset;
  787. /* Initial rtt is determined from SYN,SYN-ACK.
  788. * The segment is small and rtt may appear much
  789. * less than real one. Use per-dst memory
  790. * to make it more realistic.
  791. *
  792. * A bit of theory. RTT is time passed after "normal" sized packet
  793. * is sent until it is ACKed. In normal circumstances sending small
  794. * packets force peer to delay ACKs and calculation is correct too.
  795. * The algorithm is adaptive and, provided we follow specs, it
  796. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  797. * tricks sort of "quick acks" for time long enough to decrease RTT
  798. * to low value, and then abruptly stops to do it and starts to delay
  799. * ACKs, wait for troubles.
  800. */
  801. if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
  802. tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
  803. tp->rtt_seq = tp->snd_nxt;
  804. }
  805. if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
  806. tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
  807. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  808. }
  809. tcp_set_rto(sk);
  810. reset:
  811. if (tp->srtt == 0) {
  812. /* RFC2988bis: We've failed to get a valid RTT sample from
  813. * 3WHS. This is most likely due to retransmission,
  814. * including spurious one. Reset the RTO back to 3secs
  815. * from the more aggressive 1sec to avoid more spurious
  816. * retransmission.
  817. */
  818. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
  819. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
  820. }
  821. /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
  822. * retransmitted. In light of RFC2988bis' more aggressive 1sec
  823. * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
  824. * retransmission has occurred.
  825. */
  826. if (tp->total_retrans > 1)
  827. tp->snd_cwnd = 1;
  828. else
  829. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  830. tp->snd_cwnd_stamp = tcp_time_stamp;
  831. }
  832. static void tcp_update_reordering(struct sock *sk, const int metric,
  833. const int ts)
  834. {
  835. struct tcp_sock *tp = tcp_sk(sk);
  836. if (metric > tp->reordering) {
  837. int mib_idx;
  838. tp->reordering = min(TCP_MAX_REORDERING, metric);
  839. /* This exciting event is worth to be remembered. 8) */
  840. if (ts)
  841. mib_idx = LINUX_MIB_TCPTSREORDER;
  842. else if (tcp_is_reno(tp))
  843. mib_idx = LINUX_MIB_TCPRENOREORDER;
  844. else if (tcp_is_fack(tp))
  845. mib_idx = LINUX_MIB_TCPFACKREORDER;
  846. else
  847. mib_idx = LINUX_MIB_TCPSACKREORDER;
  848. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  849. #if FASTRETRANS_DEBUG > 1
  850. printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
  851. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  852. tp->reordering,
  853. tp->fackets_out,
  854. tp->sacked_out,
  855. tp->undo_marker ? tp->undo_retrans : 0);
  856. #endif
  857. tcp_disable_fack(tp);
  858. }
  859. }
  860. /* This must be called before lost_out is incremented */
  861. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  862. {
  863. if ((tp->retransmit_skb_hint == NULL) ||
  864. before(TCP_SKB_CB(skb)->seq,
  865. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  866. tp->retransmit_skb_hint = skb;
  867. if (!tp->lost_out ||
  868. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  869. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  870. }
  871. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  872. {
  873. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  874. tcp_verify_retransmit_hint(tp, skb);
  875. tp->lost_out += tcp_skb_pcount(skb);
  876. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  877. }
  878. }
  879. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  880. struct sk_buff *skb)
  881. {
  882. tcp_verify_retransmit_hint(tp, skb);
  883. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  884. tp->lost_out += tcp_skb_pcount(skb);
  885. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  886. }
  887. }
  888. /* This procedure tags the retransmission queue when SACKs arrive.
  889. *
  890. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  891. * Packets in queue with these bits set are counted in variables
  892. * sacked_out, retrans_out and lost_out, correspondingly.
  893. *
  894. * Valid combinations are:
  895. * Tag InFlight Description
  896. * 0 1 - orig segment is in flight.
  897. * S 0 - nothing flies, orig reached receiver.
  898. * L 0 - nothing flies, orig lost by net.
  899. * R 2 - both orig and retransmit are in flight.
  900. * L|R 1 - orig is lost, retransmit is in flight.
  901. * S|R 1 - orig reached receiver, retrans is still in flight.
  902. * (L|S|R is logically valid, it could occur when L|R is sacked,
  903. * but it is equivalent to plain S and code short-curcuits it to S.
  904. * L|S is logically invalid, it would mean -1 packet in flight 8))
  905. *
  906. * These 6 states form finite state machine, controlled by the following events:
  907. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  908. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  909. * 3. Loss detection event of one of three flavors:
  910. * A. Scoreboard estimator decided the packet is lost.
  911. * A'. Reno "three dupacks" marks head of queue lost.
  912. * A''. Its FACK modfication, head until snd.fack is lost.
  913. * B. SACK arrives sacking data transmitted after never retransmitted
  914. * hole was sent out.
  915. * C. SACK arrives sacking SND.NXT at the moment, when the
  916. * segment was retransmitted.
  917. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  918. *
  919. * It is pleasant to note, that state diagram turns out to be commutative,
  920. * so that we are allowed not to be bothered by order of our actions,
  921. * when multiple events arrive simultaneously. (see the function below).
  922. *
  923. * Reordering detection.
  924. * --------------------
  925. * Reordering metric is maximal distance, which a packet can be displaced
  926. * in packet stream. With SACKs we can estimate it:
  927. *
  928. * 1. SACK fills old hole and the corresponding segment was not
  929. * ever retransmitted -> reordering. Alas, we cannot use it
  930. * when segment was retransmitted.
  931. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  932. * for retransmitted and already SACKed segment -> reordering..
  933. * Both of these heuristics are not used in Loss state, when we cannot
  934. * account for retransmits accurately.
  935. *
  936. * SACK block validation.
  937. * ----------------------
  938. *
  939. * SACK block range validation checks that the received SACK block fits to
  940. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  941. * Note that SND.UNA is not included to the range though being valid because
  942. * it means that the receiver is rather inconsistent with itself reporting
  943. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  944. * perfectly valid, however, in light of RFC2018 which explicitly states
  945. * that "SACK block MUST reflect the newest segment. Even if the newest
  946. * segment is going to be discarded ...", not that it looks very clever
  947. * in case of head skb. Due to potentional receiver driven attacks, we
  948. * choose to avoid immediate execution of a walk in write queue due to
  949. * reneging and defer head skb's loss recovery to standard loss recovery
  950. * procedure that will eventually trigger (nothing forbids us doing this).
  951. *
  952. * Implements also blockage to start_seq wrap-around. Problem lies in the
  953. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  954. * there's no guarantee that it will be before snd_nxt (n). The problem
  955. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  956. * wrap (s_w):
  957. *
  958. * <- outs wnd -> <- wrapzone ->
  959. * u e n u_w e_w s n_w
  960. * | | | | | | |
  961. * |<------------+------+----- TCP seqno space --------------+---------->|
  962. * ...-- <2^31 ->| |<--------...
  963. * ...---- >2^31 ------>| |<--------...
  964. *
  965. * Current code wouldn't be vulnerable but it's better still to discard such
  966. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  967. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  968. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  969. * equal to the ideal case (infinite seqno space without wrap caused issues).
  970. *
  971. * With D-SACK the lower bound is extended to cover sequence space below
  972. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  973. * again, D-SACK block must not to go across snd_una (for the same reason as
  974. * for the normal SACK blocks, explained above). But there all simplicity
  975. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  976. * fully below undo_marker they do not affect behavior in anyway and can
  977. * therefore be safely ignored. In rare cases (which are more or less
  978. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  979. * fragmentation and packet reordering past skb's retransmission. To consider
  980. * them correctly, the acceptable range must be extended even more though
  981. * the exact amount is rather hard to quantify. However, tp->max_window can
  982. * be used as an exaggerated estimate.
  983. */
  984. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  985. u32 start_seq, u32 end_seq)
  986. {
  987. /* Too far in future, or reversed (interpretation is ambiguous) */
  988. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  989. return 0;
  990. /* Nasty start_seq wrap-around check (see comments above) */
  991. if (!before(start_seq, tp->snd_nxt))
  992. return 0;
  993. /* In outstanding window? ...This is valid exit for D-SACKs too.
  994. * start_seq == snd_una is non-sensical (see comments above)
  995. */
  996. if (after(start_seq, tp->snd_una))
  997. return 1;
  998. if (!is_dsack || !tp->undo_marker)
  999. return 0;
  1000. /* ...Then it's D-SACK, and must reside below snd_una completely */
  1001. if (!after(end_seq, tp->snd_una))
  1002. return 0;
  1003. if (!before(start_seq, tp->undo_marker))
  1004. return 1;
  1005. /* Too old */
  1006. if (!after(end_seq, tp->undo_marker))
  1007. return 0;
  1008. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  1009. * start_seq < undo_marker and end_seq >= undo_marker.
  1010. */
  1011. return !before(start_seq, end_seq - tp->max_window);
  1012. }
  1013. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  1014. * Event "C". Later note: FACK people cheated me again 8), we have to account
  1015. * for reordering! Ugly, but should help.
  1016. *
  1017. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  1018. * less than what is now known to be received by the other end (derived from
  1019. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  1020. * retransmitted skbs to avoid some costly processing per ACKs.
  1021. */
  1022. static void tcp_mark_lost_retrans(struct sock *sk)
  1023. {
  1024. const struct inet_connection_sock *icsk = inet_csk(sk);
  1025. struct tcp_sock *tp = tcp_sk(sk);
  1026. struct sk_buff *skb;
  1027. int cnt = 0;
  1028. u32 new_low_seq = tp->snd_nxt;
  1029. u32 received_upto = tcp_highest_sack_seq(tp);
  1030. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  1031. !after(received_upto, tp->lost_retrans_low) ||
  1032. icsk->icsk_ca_state != TCP_CA_Recovery)
  1033. return;
  1034. tcp_for_write_queue(skb, sk) {
  1035. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  1036. if (skb == tcp_send_head(sk))
  1037. break;
  1038. if (cnt == tp->retrans_out)
  1039. break;
  1040. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1041. continue;
  1042. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1043. continue;
  1044. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  1045. * constraint here (see above) but figuring out that at
  1046. * least tp->reordering SACK blocks reside between ack_seq
  1047. * and received_upto is not easy task to do cheaply with
  1048. * the available datastructures.
  1049. *
  1050. * Whether FACK should check here for tp->reordering segs
  1051. * in-between one could argue for either way (it would be
  1052. * rather simple to implement as we could count fack_count
  1053. * during the walk and do tp->fackets_out - fack_count).
  1054. */
  1055. if (after(received_upto, ack_seq)) {
  1056. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1057. tp->retrans_out -= tcp_skb_pcount(skb);
  1058. tcp_skb_mark_lost_uncond_verify(tp, skb);
  1059. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  1060. } else {
  1061. if (before(ack_seq, new_low_seq))
  1062. new_low_seq = ack_seq;
  1063. cnt += tcp_skb_pcount(skb);
  1064. }
  1065. }
  1066. if (tp->retrans_out)
  1067. tp->lost_retrans_low = new_low_seq;
  1068. }
  1069. static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
  1070. struct tcp_sack_block_wire *sp, int num_sacks,
  1071. u32 prior_snd_una)
  1072. {
  1073. struct tcp_sock *tp = tcp_sk(sk);
  1074. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  1075. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  1076. int dup_sack = 0;
  1077. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1078. dup_sack = 1;
  1079. tcp_dsack_seen(tp);
  1080. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  1081. } else if (num_sacks > 1) {
  1082. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  1083. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  1084. if (!after(end_seq_0, end_seq_1) &&
  1085. !before(start_seq_0, start_seq_1)) {
  1086. dup_sack = 1;
  1087. tcp_dsack_seen(tp);
  1088. NET_INC_STATS_BH(sock_net(sk),
  1089. LINUX_MIB_TCPDSACKOFORECV);
  1090. }
  1091. }
  1092. /* D-SACK for already forgotten data... Do dumb counting. */
  1093. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  1094. !after(end_seq_0, prior_snd_una) &&
  1095. after(end_seq_0, tp->undo_marker))
  1096. tp->undo_retrans--;
  1097. return dup_sack;
  1098. }
  1099. struct tcp_sacktag_state {
  1100. int reord;
  1101. int fack_count;
  1102. int flag;
  1103. };
  1104. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1105. * the incoming SACK may not exactly match but we can find smaller MSS
  1106. * aligned portion of it that matches. Therefore we might need to fragment
  1107. * which may fail and creates some hassle (caller must handle error case
  1108. * returns).
  1109. *
  1110. * FIXME: this could be merged to shift decision code
  1111. */
  1112. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1113. u32 start_seq, u32 end_seq)
  1114. {
  1115. int in_sack, err;
  1116. unsigned int pkt_len;
  1117. unsigned int mss;
  1118. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1119. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1120. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1121. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1122. mss = tcp_skb_mss(skb);
  1123. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1124. if (!in_sack) {
  1125. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1126. if (pkt_len < mss)
  1127. pkt_len = mss;
  1128. } else {
  1129. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1130. if (pkt_len < mss)
  1131. return -EINVAL;
  1132. }
  1133. /* Round if necessary so that SACKs cover only full MSSes
  1134. * and/or the remaining small portion (if present)
  1135. */
  1136. if (pkt_len > mss) {
  1137. unsigned int new_len = (pkt_len / mss) * mss;
  1138. if (!in_sack && new_len < pkt_len) {
  1139. new_len += mss;
  1140. if (new_len > skb->len)
  1141. return 0;
  1142. }
  1143. pkt_len = new_len;
  1144. }
  1145. err = tcp_fragment(sk, skb, pkt_len, mss);
  1146. if (err < 0)
  1147. return err;
  1148. }
  1149. return in_sack;
  1150. }
  1151. static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
  1152. struct tcp_sacktag_state *state,
  1153. int dup_sack, int pcount)
  1154. {
  1155. struct tcp_sock *tp = tcp_sk(sk);
  1156. u8 sacked = TCP_SKB_CB(skb)->sacked;
  1157. int fack_count = state->fack_count;
  1158. /* Account D-SACK for retransmitted packet. */
  1159. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1160. if (tp->undo_marker && tp->undo_retrans &&
  1161. after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
  1162. tp->undo_retrans--;
  1163. if (sacked & TCPCB_SACKED_ACKED)
  1164. state->reord = min(fack_count, state->reord);
  1165. }
  1166. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1167. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1168. return sacked;
  1169. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1170. if (sacked & TCPCB_SACKED_RETRANS) {
  1171. /* If the segment is not tagged as lost,
  1172. * we do not clear RETRANS, believing
  1173. * that retransmission is still in flight.
  1174. */
  1175. if (sacked & TCPCB_LOST) {
  1176. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1177. tp->lost_out -= pcount;
  1178. tp->retrans_out -= pcount;
  1179. }
  1180. } else {
  1181. if (!(sacked & TCPCB_RETRANS)) {
  1182. /* New sack for not retransmitted frame,
  1183. * which was in hole. It is reordering.
  1184. */
  1185. if (before(TCP_SKB_CB(skb)->seq,
  1186. tcp_highest_sack_seq(tp)))
  1187. state->reord = min(fack_count,
  1188. state->reord);
  1189. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1190. if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
  1191. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1192. }
  1193. if (sacked & TCPCB_LOST) {
  1194. sacked &= ~TCPCB_LOST;
  1195. tp->lost_out -= pcount;
  1196. }
  1197. }
  1198. sacked |= TCPCB_SACKED_ACKED;
  1199. state->flag |= FLAG_DATA_SACKED;
  1200. tp->sacked_out += pcount;
  1201. fack_count += pcount;
  1202. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1203. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1204. before(TCP_SKB_CB(skb)->seq,
  1205. TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1206. tp->lost_cnt_hint += pcount;
  1207. if (fack_count > tp->fackets_out)
  1208. tp->fackets_out = fack_count;
  1209. }
  1210. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1211. * frames and clear it. undo_retrans is decreased above, L|R frames
  1212. * are accounted above as well.
  1213. */
  1214. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1215. sacked &= ~TCPCB_SACKED_RETRANS;
  1216. tp->retrans_out -= pcount;
  1217. }
  1218. return sacked;
  1219. }
  1220. static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1221. struct tcp_sacktag_state *state,
  1222. unsigned int pcount, int shifted, int mss,
  1223. int dup_sack)
  1224. {
  1225. struct tcp_sock *tp = tcp_sk(sk);
  1226. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1227. BUG_ON(!pcount);
  1228. /* Tweak before seqno plays */
  1229. if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
  1230. !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
  1231. tp->lost_cnt_hint += pcount;
  1232. TCP_SKB_CB(prev)->end_seq += shifted;
  1233. TCP_SKB_CB(skb)->seq += shifted;
  1234. skb_shinfo(prev)->gso_segs += pcount;
  1235. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1236. skb_shinfo(skb)->gso_segs -= pcount;
  1237. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1238. * in theory this shouldn't be necessary but as long as DSACK
  1239. * code can come after this skb later on it's better to keep
  1240. * setting gso_size to something.
  1241. */
  1242. if (!skb_shinfo(prev)->gso_size) {
  1243. skb_shinfo(prev)->gso_size = mss;
  1244. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1245. }
  1246. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1247. if (skb_shinfo(skb)->gso_segs <= 1) {
  1248. skb_shinfo(skb)->gso_size = 0;
  1249. skb_shinfo(skb)->gso_type = 0;
  1250. }
  1251. /* We discard results */
  1252. tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
  1253. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1254. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1255. if (skb->len > 0) {
  1256. BUG_ON(!tcp_skb_pcount(skb));
  1257. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1258. return 0;
  1259. }
  1260. /* Whole SKB was eaten :-) */
  1261. if (skb == tp->retransmit_skb_hint)
  1262. tp->retransmit_skb_hint = prev;
  1263. if (skb == tp->scoreboard_skb_hint)
  1264. tp->scoreboard_skb_hint = prev;
  1265. if (skb == tp->lost_skb_hint) {
  1266. tp->lost_skb_hint = prev;
  1267. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1268. }
  1269. TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
  1270. if (skb == tcp_highest_sack(sk))
  1271. tcp_advance_highest_sack(sk, skb);
  1272. tcp_unlink_write_queue(skb, sk);
  1273. sk_wmem_free_skb(sk, skb);
  1274. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1275. return 1;
  1276. }
  1277. /* I wish gso_size would have a bit more sane initialization than
  1278. * something-or-zero which complicates things
  1279. */
  1280. static int tcp_skb_seglen(struct sk_buff *skb)
  1281. {
  1282. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1283. }
  1284. /* Shifting pages past head area doesn't work */
  1285. static int skb_can_shift(struct sk_buff *skb)
  1286. {
  1287. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1288. }
  1289. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1290. * skb.
  1291. */
  1292. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1293. struct tcp_sacktag_state *state,
  1294. u32 start_seq, u32 end_seq,
  1295. int dup_sack)
  1296. {
  1297. struct tcp_sock *tp = tcp_sk(sk);
  1298. struct sk_buff *prev;
  1299. int mss;
  1300. int pcount = 0;
  1301. int len;
  1302. int in_sack;
  1303. if (!sk_can_gso(sk))
  1304. goto fallback;
  1305. /* Normally R but no L won't result in plain S */
  1306. if (!dup_sack &&
  1307. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1308. goto fallback;
  1309. if (!skb_can_shift(skb))
  1310. goto fallback;
  1311. /* This frame is about to be dropped (was ACKed). */
  1312. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1313. goto fallback;
  1314. /* Can only happen with delayed DSACK + discard craziness */
  1315. if (unlikely(skb == tcp_write_queue_head(sk)))
  1316. goto fallback;
  1317. prev = tcp_write_queue_prev(sk, skb);
  1318. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1319. goto fallback;
  1320. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1321. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1322. if (in_sack) {
  1323. len = skb->len;
  1324. pcount = tcp_skb_pcount(skb);
  1325. mss = tcp_skb_seglen(skb);
  1326. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1327. * drop this restriction as unnecessary
  1328. */
  1329. if (mss != tcp_skb_seglen(prev))
  1330. goto fallback;
  1331. } else {
  1332. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1333. goto noop;
  1334. /* CHECKME: This is non-MSS split case only?, this will
  1335. * cause skipped skbs due to advancing loop btw, original
  1336. * has that feature too
  1337. */
  1338. if (tcp_skb_pcount(skb) <= 1)
  1339. goto noop;
  1340. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1341. if (!in_sack) {
  1342. /* TODO: head merge to next could be attempted here
  1343. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1344. * though it might not be worth of the additional hassle
  1345. *
  1346. * ...we can probably just fallback to what was done
  1347. * previously. We could try merging non-SACKed ones
  1348. * as well but it probably isn't going to buy off
  1349. * because later SACKs might again split them, and
  1350. * it would make skb timestamp tracking considerably
  1351. * harder problem.
  1352. */
  1353. goto fallback;
  1354. }
  1355. len = end_seq - TCP_SKB_CB(skb)->seq;
  1356. BUG_ON(len < 0);
  1357. BUG_ON(len > skb->len);
  1358. /* MSS boundaries should be honoured or else pcount will
  1359. * severely break even though it makes things bit trickier.
  1360. * Optimize common case to avoid most of the divides
  1361. */
  1362. mss = tcp_skb_mss(skb);
  1363. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1364. * drop this restriction as unnecessary
  1365. */
  1366. if (mss != tcp_skb_seglen(prev))
  1367. goto fallback;
  1368. if (len == mss) {
  1369. pcount = 1;
  1370. } else if (len < mss) {
  1371. goto noop;
  1372. } else {
  1373. pcount = len / mss;
  1374. len = pcount * mss;
  1375. }
  1376. }
  1377. if (!skb_shift(prev, skb, len))
  1378. goto fallback;
  1379. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1380. goto out;
  1381. /* Hole filled allows collapsing with the next as well, this is very
  1382. * useful when hole on every nth skb pattern happens
  1383. */
  1384. if (prev == tcp_write_queue_tail(sk))
  1385. goto out;
  1386. skb = tcp_write_queue_next(sk, prev);
  1387. if (!skb_can_shift(skb) ||
  1388. (skb == tcp_send_head(sk)) ||
  1389. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1390. (mss != tcp_skb_seglen(skb)))
  1391. goto out;
  1392. len = skb->len;
  1393. if (skb_shift(prev, skb, len)) {
  1394. pcount += tcp_skb_pcount(skb);
  1395. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1396. }
  1397. out:
  1398. state->fack_count += pcount;
  1399. return prev;
  1400. noop:
  1401. return skb;
  1402. fallback:
  1403. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1404. return NULL;
  1405. }
  1406. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1407. struct tcp_sack_block *next_dup,
  1408. struct tcp_sacktag_state *state,
  1409. u32 start_seq, u32 end_seq,
  1410. int dup_sack_in)
  1411. {
  1412. struct tcp_sock *tp = tcp_sk(sk);
  1413. struct sk_buff *tmp;
  1414. tcp_for_write_queue_from(skb, sk) {
  1415. int in_sack = 0;
  1416. int dup_sack = dup_sack_in;
  1417. if (skb == tcp_send_head(sk))
  1418. break;
  1419. /* queue is in-order => we can short-circuit the walk early */
  1420. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1421. break;
  1422. if ((next_dup != NULL) &&
  1423. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1424. in_sack = tcp_match_skb_to_sack(sk, skb,
  1425. next_dup->start_seq,
  1426. next_dup->end_seq);
  1427. if (in_sack > 0)
  1428. dup_sack = 1;
  1429. }
  1430. /* skb reference here is a bit tricky to get right, since
  1431. * shifting can eat and free both this skb and the next,
  1432. * so not even _safe variant of the loop is enough.
  1433. */
  1434. if (in_sack <= 0) {
  1435. tmp = tcp_shift_skb_data(sk, skb, state,
  1436. start_seq, end_seq, dup_sack);
  1437. if (tmp != NULL) {
  1438. if (tmp != skb) {
  1439. skb = tmp;
  1440. continue;
  1441. }
  1442. in_sack = 0;
  1443. } else {
  1444. in_sack = tcp_match_skb_to_sack(sk, skb,
  1445. start_seq,
  1446. end_seq);
  1447. }
  1448. }
  1449. if (unlikely(in_sack < 0))
  1450. break;
  1451. if (in_sack) {
  1452. TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
  1453. state,
  1454. dup_sack,
  1455. tcp_skb_pcount(skb));
  1456. if (!before(TCP_SKB_CB(skb)->seq,
  1457. tcp_highest_sack_seq(tp)))
  1458. tcp_advance_highest_sack(sk, skb);
  1459. }
  1460. state->fack_count += tcp_skb_pcount(skb);
  1461. }
  1462. return skb;
  1463. }
  1464. /* Avoid all extra work that is being done by sacktag while walking in
  1465. * a normal way
  1466. */
  1467. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1468. struct tcp_sacktag_state *state,
  1469. u32 skip_to_seq)
  1470. {
  1471. tcp_for_write_queue_from(skb, sk) {
  1472. if (skb == tcp_send_head(sk))
  1473. break;
  1474. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1475. break;
  1476. state->fack_count += tcp_skb_pcount(skb);
  1477. }
  1478. return skb;
  1479. }
  1480. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1481. struct sock *sk,
  1482. struct tcp_sack_block *next_dup,
  1483. struct tcp_sacktag_state *state,
  1484. u32 skip_to_seq)
  1485. {
  1486. if (next_dup == NULL)
  1487. return skb;
  1488. if (before(next_dup->start_seq, skip_to_seq)) {
  1489. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1490. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1491. next_dup->start_seq, next_dup->end_seq,
  1492. 1);
  1493. }
  1494. return skb;
  1495. }
  1496. static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
  1497. {
  1498. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1499. }
  1500. static int
  1501. tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
  1502. u32 prior_snd_una)
  1503. {
  1504. const struct inet_connection_sock *icsk = inet_csk(sk);
  1505. struct tcp_sock *tp = tcp_sk(sk);
  1506. unsigned char *ptr = (skb_transport_header(ack_skb) +
  1507. TCP_SKB_CB(ack_skb)->sacked);
  1508. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1509. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1510. struct tcp_sack_block *cache;
  1511. struct tcp_sacktag_state state;
  1512. struct sk_buff *skb;
  1513. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1514. int used_sacks;
  1515. int found_dup_sack = 0;
  1516. int i, j;
  1517. int first_sack_index;
  1518. state.flag = 0;
  1519. state.reord = tp->packets_out;
  1520. if (!tp->sacked_out) {
  1521. if (WARN_ON(tp->fackets_out))
  1522. tp->fackets_out = 0;
  1523. tcp_highest_sack_reset(sk);
  1524. }
  1525. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1526. num_sacks, prior_snd_una);
  1527. if (found_dup_sack)
  1528. state.flag |= FLAG_DSACKING_ACK;
  1529. /* Eliminate too old ACKs, but take into
  1530. * account more or less fresh ones, they can
  1531. * contain valid SACK info.
  1532. */
  1533. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1534. return 0;
  1535. if (!tp->packets_out)
  1536. goto out;
  1537. used_sacks = 0;
  1538. first_sack_index = 0;
  1539. for (i = 0; i < num_sacks; i++) {
  1540. int dup_sack = !i && found_dup_sack;
  1541. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1542. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1543. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1544. sp[used_sacks].start_seq,
  1545. sp[used_sacks].end_seq)) {
  1546. int mib_idx;
  1547. if (dup_sack) {
  1548. if (!tp->undo_marker)
  1549. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1550. else
  1551. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1552. } else {
  1553. /* Don't count olds caused by ACK reordering */
  1554. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1555. !after(sp[used_sacks].end_seq, tp->snd_una))
  1556. continue;
  1557. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1558. }
  1559. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1560. if (i == 0)
  1561. first_sack_index = -1;
  1562. continue;
  1563. }
  1564. /* Ignore very old stuff early */
  1565. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1566. continue;
  1567. used_sacks++;
  1568. }
  1569. /* order SACK blocks to allow in order walk of the retrans queue */
  1570. for (i = used_sacks - 1; i > 0; i--) {
  1571. for (j = 0; j < i; j++) {
  1572. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1573. swap(sp[j], sp[j + 1]);
  1574. /* Track where the first SACK block goes to */
  1575. if (j == first_sack_index)
  1576. first_sack_index = j + 1;
  1577. }
  1578. }
  1579. }
  1580. skb = tcp_write_queue_head(sk);
  1581. state.fack_count = 0;
  1582. i = 0;
  1583. if (!tp->sacked_out) {
  1584. /* It's already past, so skip checking against it */
  1585. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1586. } else {
  1587. cache = tp->recv_sack_cache;
  1588. /* Skip empty blocks in at head of the cache */
  1589. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1590. !cache->end_seq)
  1591. cache++;
  1592. }
  1593. while (i < used_sacks) {
  1594. u32 start_seq = sp[i].start_seq;
  1595. u32 end_seq = sp[i].end_seq;
  1596. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1597. struct tcp_sack_block *next_dup = NULL;
  1598. if (found_dup_sack && ((i + 1) == first_sack_index))
  1599. next_dup = &sp[i + 1];
  1600. /* Event "B" in the comment above. */
  1601. if (after(end_seq, tp->high_seq))
  1602. state.flag |= FLAG_DATA_LOST;
  1603. /* Skip too early cached blocks */
  1604. while (tcp_sack_cache_ok(tp, cache) &&
  1605. !before(start_seq, cache->end_seq))
  1606. cache++;
  1607. /* Can skip some work by looking recv_sack_cache? */
  1608. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1609. after(end_seq, cache->start_seq)) {
  1610. /* Head todo? */
  1611. if (before(start_seq, cache->start_seq)) {
  1612. skb = tcp_sacktag_skip(skb, sk, &state,
  1613. start_seq);
  1614. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1615. &state,
  1616. start_seq,
  1617. cache->start_seq,
  1618. dup_sack);
  1619. }
  1620. /* Rest of the block already fully processed? */
  1621. if (!after(end_seq, cache->end_seq))
  1622. goto advance_sp;
  1623. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1624. &state,
  1625. cache->end_seq);
  1626. /* ...tail remains todo... */
  1627. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1628. /* ...but better entrypoint exists! */
  1629. skb = tcp_highest_sack(sk);
  1630. if (skb == NULL)
  1631. break;
  1632. state.fack_count = tp->fackets_out;
  1633. cache++;
  1634. goto walk;
  1635. }
  1636. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1637. /* Check overlap against next cached too (past this one already) */
  1638. cache++;
  1639. continue;
  1640. }
  1641. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1642. skb = tcp_highest_sack(sk);
  1643. if (skb == NULL)
  1644. break;
  1645. state.fack_count = tp->fackets_out;
  1646. }
  1647. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1648. walk:
  1649. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1650. start_seq, end_seq, dup_sack);
  1651. advance_sp:
  1652. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1653. * due to in-order walk
  1654. */
  1655. if (after(end_seq, tp->frto_highmark))
  1656. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1657. i++;
  1658. }
  1659. /* Clear the head of the cache sack blocks so we can skip it next time */
  1660. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1661. tp->recv_sack_cache[i].start_seq = 0;
  1662. tp->recv_sack_cache[i].end_seq = 0;
  1663. }
  1664. for (j = 0; j < used_sacks; j++)
  1665. tp->recv_sack_cache[i++] = sp[j];
  1666. tcp_mark_lost_retrans(sk);
  1667. tcp_verify_left_out(tp);
  1668. if ((state.reord < tp->fackets_out) &&
  1669. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1670. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1671. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1672. out:
  1673. #if FASTRETRANS_DEBUG > 0
  1674. WARN_ON((int)tp->sacked_out < 0);
  1675. WARN_ON((int)tp->lost_out < 0);
  1676. WARN_ON((int)tp->retrans_out < 0);
  1677. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1678. #endif
  1679. return state.flag;
  1680. }
  1681. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1682. * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
  1683. */
  1684. static int tcp_limit_reno_sacked(struct tcp_sock *tp)
  1685. {
  1686. u32 holes;
  1687. holes = max(tp->lost_out, 1U);
  1688. holes = min(holes, tp->packets_out);
  1689. if ((tp->sacked_out + holes) > tp->packets_out) {
  1690. tp->sacked_out = tp->packets_out - holes;
  1691. return 1;
  1692. }
  1693. return 0;
  1694. }
  1695. /* If we receive more dupacks than we expected counting segments
  1696. * in assumption of absent reordering, interpret this as reordering.
  1697. * The only another reason could be bug in receiver TCP.
  1698. */
  1699. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1700. {
  1701. struct tcp_sock *tp = tcp_sk(sk);
  1702. if (tcp_limit_reno_sacked(tp))
  1703. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1704. }
  1705. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1706. static void tcp_add_reno_sack(struct sock *sk)
  1707. {
  1708. struct tcp_sock *tp = tcp_sk(sk);
  1709. tp->sacked_out++;
  1710. tcp_check_reno_reordering(sk, 0);
  1711. tcp_verify_left_out(tp);
  1712. }
  1713. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1714. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1715. {
  1716. struct tcp_sock *tp = tcp_sk(sk);
  1717. if (acked > 0) {
  1718. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1719. if (acked - 1 >= tp->sacked_out)
  1720. tp->sacked_out = 0;
  1721. else
  1722. tp->sacked_out -= acked - 1;
  1723. }
  1724. tcp_check_reno_reordering(sk, acked);
  1725. tcp_verify_left_out(tp);
  1726. }
  1727. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1728. {
  1729. tp->sacked_out = 0;
  1730. }
  1731. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1732. {
  1733. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1734. }
  1735. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1736. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1737. */
  1738. int tcp_use_frto(struct sock *sk)
  1739. {
  1740. const struct tcp_sock *tp = tcp_sk(sk);
  1741. const struct inet_connection_sock *icsk = inet_csk(sk);
  1742. struct sk_buff *skb;
  1743. if (!sysctl_tcp_frto)
  1744. return 0;
  1745. /* MTU probe and F-RTO won't really play nicely along currently */
  1746. if (icsk->icsk_mtup.probe_size)
  1747. return 0;
  1748. if (tcp_is_sackfrto(tp))
  1749. return 1;
  1750. /* Avoid expensive walking of rexmit queue if possible */
  1751. if (tp->retrans_out > 1)
  1752. return 0;
  1753. skb = tcp_write_queue_head(sk);
  1754. if (tcp_skb_is_last(sk, skb))
  1755. return 1;
  1756. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1757. tcp_for_write_queue_from(skb, sk) {
  1758. if (skb == tcp_send_head(sk))
  1759. break;
  1760. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1761. return 0;
  1762. /* Short-circuit when first non-SACKed skb has been checked */
  1763. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1764. break;
  1765. }
  1766. return 1;
  1767. }
  1768. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1769. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1770. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1771. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1772. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1773. * bits are handled if the Loss state is really to be entered (in
  1774. * tcp_enter_frto_loss).
  1775. *
  1776. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1777. * does:
  1778. * "Reduce ssthresh if it has not yet been made inside this window."
  1779. */
  1780. void tcp_enter_frto(struct sock *sk)
  1781. {
  1782. const struct inet_connection_sock *icsk = inet_csk(sk);
  1783. struct tcp_sock *tp = tcp_sk(sk);
  1784. struct sk_buff *skb;
  1785. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1786. tp->snd_una == tp->high_seq ||
  1787. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1788. !icsk->icsk_retransmits)) {
  1789. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1790. /* Our state is too optimistic in ssthresh() call because cwnd
  1791. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1792. * recovery has not yet completed. Pattern would be this: RTO,
  1793. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1794. * up here twice).
  1795. * RFC4138 should be more specific on what to do, even though
  1796. * RTO is quite unlikely to occur after the first Cumulative ACK
  1797. * due to back-off and complexity of triggering events ...
  1798. */
  1799. if (tp->frto_counter) {
  1800. u32 stored_cwnd;
  1801. stored_cwnd = tp->snd_cwnd;
  1802. tp->snd_cwnd = 2;
  1803. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1804. tp->snd_cwnd = stored_cwnd;
  1805. } else {
  1806. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1807. }
  1808. /* ... in theory, cong.control module could do "any tricks" in
  1809. * ssthresh(), which means that ca_state, lost bits and lost_out
  1810. * counter would have to be faked before the call occurs. We
  1811. * consider that too expensive, unlikely and hacky, so modules
  1812. * using these in ssthresh() must deal these incompatibility
  1813. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1814. */
  1815. tcp_ca_event(sk, CA_EVENT_FRTO);
  1816. }
  1817. tp->undo_marker = tp->snd_una;
  1818. tp->undo_retrans = 0;
  1819. skb = tcp_write_queue_head(sk);
  1820. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1821. tp->undo_marker = 0;
  1822. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1823. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1824. tp->retrans_out -= tcp_skb_pcount(skb);
  1825. }
  1826. tcp_verify_left_out(tp);
  1827. /* Too bad if TCP was application limited */
  1828. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1829. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1830. * The last condition is necessary at least in tp->frto_counter case.
  1831. */
  1832. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1833. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1834. after(tp->high_seq, tp->snd_una)) {
  1835. tp->frto_highmark = tp->high_seq;
  1836. } else {
  1837. tp->frto_highmark = tp->snd_nxt;
  1838. }
  1839. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1840. tp->high_seq = tp->snd_nxt;
  1841. tp->frto_counter = 1;
  1842. }
  1843. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1844. * which indicates that we should follow the traditional RTO recovery,
  1845. * i.e. mark everything lost and do go-back-N retransmission.
  1846. */
  1847. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1848. {
  1849. struct tcp_sock *tp = tcp_sk(sk);
  1850. struct sk_buff *skb;
  1851. tp->lost_out = 0;
  1852. tp->retrans_out = 0;
  1853. if (tcp_is_reno(tp))
  1854. tcp_reset_reno_sack(tp);
  1855. tcp_for_write_queue(skb, sk) {
  1856. if (skb == tcp_send_head(sk))
  1857. break;
  1858. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1859. /*
  1860. * Count the retransmission made on RTO correctly (only when
  1861. * waiting for the first ACK and did not get it)...
  1862. */
  1863. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1864. /* For some reason this R-bit might get cleared? */
  1865. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1866. tp->retrans_out += tcp_skb_pcount(skb);
  1867. /* ...enter this if branch just for the first segment */
  1868. flag |= FLAG_DATA_ACKED;
  1869. } else {
  1870. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1871. tp->undo_marker = 0;
  1872. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1873. }
  1874. /* Marking forward transmissions that were made after RTO lost
  1875. * can cause unnecessary retransmissions in some scenarios,
  1876. * SACK blocks will mitigate that in some but not in all cases.
  1877. * We used to not mark them but it was causing break-ups with
  1878. * receivers that do only in-order receival.
  1879. *
  1880. * TODO: we could detect presence of such receiver and select
  1881. * different behavior per flow.
  1882. */
  1883. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1884. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1885. tp->lost_out += tcp_skb_pcount(skb);
  1886. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1887. }
  1888. }
  1889. tcp_verify_left_out(tp);
  1890. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1891. tp->snd_cwnd_cnt = 0;
  1892. tp->snd_cwnd_stamp = tcp_time_stamp;
  1893. tp->frto_counter = 0;
  1894. tp->bytes_acked = 0;
  1895. tp->reordering = min_t(unsigned int, tp->reordering,
  1896. sysctl_tcp_reordering);
  1897. tcp_set_ca_state(sk, TCP_CA_Loss);
  1898. tp->high_seq = tp->snd_nxt;
  1899. TCP_ECN_queue_cwr(tp);
  1900. tcp_clear_all_retrans_hints(tp);
  1901. }
  1902. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1903. {
  1904. tp->retrans_out = 0;
  1905. tp->lost_out = 0;
  1906. tp->undo_marker = 0;
  1907. tp->undo_retrans = 0;
  1908. }
  1909. void tcp_clear_retrans(struct tcp_sock *tp)
  1910. {
  1911. tcp_clear_retrans_partial(tp);
  1912. tp->fackets_out = 0;
  1913. tp->sacked_out = 0;
  1914. }
  1915. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1916. * and reset tags completely, otherwise preserve SACKs. If receiver
  1917. * dropped its ofo queue, we will know this due to reneging detection.
  1918. */
  1919. void tcp_enter_loss(struct sock *sk, int how)
  1920. {
  1921. const struct inet_connection_sock *icsk = inet_csk(sk);
  1922. struct tcp_sock *tp = tcp_sk(sk);
  1923. struct sk_buff *skb;
  1924. /* Reduce ssthresh if it has not yet been made inside this window. */
  1925. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1926. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1927. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1928. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1929. tcp_ca_event(sk, CA_EVENT_LOSS);
  1930. }
  1931. tp->snd_cwnd = 1;
  1932. tp->snd_cwnd_cnt = 0;
  1933. tp->snd_cwnd_stamp = tcp_time_stamp;
  1934. tp->bytes_acked = 0;
  1935. tcp_clear_retrans_partial(tp);
  1936. if (tcp_is_reno(tp))
  1937. tcp_reset_reno_sack(tp);
  1938. if (!how) {
  1939. /* Push undo marker, if it was plain RTO and nothing
  1940. * was retransmitted. */
  1941. tp->undo_marker = tp->snd_una;
  1942. } else {
  1943. tp->sacked_out = 0;
  1944. tp->fackets_out = 0;
  1945. }
  1946. tcp_clear_all_retrans_hints(tp);
  1947. tcp_for_write_queue(skb, sk) {
  1948. if (skb == tcp_send_head(sk))
  1949. break;
  1950. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1951. tp->undo_marker = 0;
  1952. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1953. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1954. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1955. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1956. tp->lost_out += tcp_skb_pcount(skb);
  1957. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1958. }
  1959. }
  1960. tcp_verify_left_out(tp);
  1961. tp->reordering = min_t(unsigned int, tp->reordering,
  1962. sysctl_tcp_reordering);
  1963. tcp_set_ca_state(sk, TCP_CA_Loss);
  1964. tp->high_seq = tp->snd_nxt;
  1965. TCP_ECN_queue_cwr(tp);
  1966. /* Abort F-RTO algorithm if one is in progress */
  1967. tp->frto_counter = 0;
  1968. }
  1969. /* If ACK arrived pointing to a remembered SACK, it means that our
  1970. * remembered SACKs do not reflect real state of receiver i.e.
  1971. * receiver _host_ is heavily congested (or buggy).
  1972. *
  1973. * Do processing similar to RTO timeout.
  1974. */
  1975. static int tcp_check_sack_reneging(struct sock *sk, int flag)
  1976. {
  1977. if (flag & FLAG_SACK_RENEGING) {
  1978. struct inet_connection_sock *icsk = inet_csk(sk);
  1979. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1980. tcp_enter_loss(sk, 1);
  1981. icsk->icsk_retransmits++;
  1982. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1983. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1984. icsk->icsk_rto, TCP_RTO_MAX);
  1985. return 1;
  1986. }
  1987. return 0;
  1988. }
  1989. static inline int tcp_fackets_out(struct tcp_sock *tp)
  1990. {
  1991. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1992. }
  1993. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1994. * counter when SACK is enabled (without SACK, sacked_out is used for
  1995. * that purpose).
  1996. *
  1997. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1998. * segments up to the highest received SACK block so far and holes in
  1999. * between them.
  2000. *
  2001. * With reordering, holes may still be in flight, so RFC3517 recovery
  2002. * uses pure sacked_out (total number of SACKed segments) even though
  2003. * it violates the RFC that uses duplicate ACKs, often these are equal
  2004. * but when e.g. out-of-window ACKs or packet duplication occurs,
  2005. * they differ. Since neither occurs due to loss, TCP should really
  2006. * ignore them.
  2007. */
  2008. static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
  2009. {
  2010. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  2011. }
  2012. static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
  2013. {
  2014. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  2015. }
  2016. static inline int tcp_head_timedout(struct sock *sk)
  2017. {
  2018. struct tcp_sock *tp = tcp_sk(sk);
  2019. return tp->packets_out &&
  2020. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  2021. }
  2022. /* Linux NewReno/SACK/FACK/ECN state machine.
  2023. * --------------------------------------
  2024. *
  2025. * "Open" Normal state, no dubious events, fast path.
  2026. * "Disorder" In all the respects it is "Open",
  2027. * but requires a bit more attention. It is entered when
  2028. * we see some SACKs or dupacks. It is split of "Open"
  2029. * mainly to move some processing from fast path to slow one.
  2030. * "CWR" CWND was reduced due to some Congestion Notification event.
  2031. * It can be ECN, ICMP source quench, local device congestion.
  2032. * "Recovery" CWND was reduced, we are fast-retransmitting.
  2033. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  2034. *
  2035. * tcp_fastretrans_alert() is entered:
  2036. * - each incoming ACK, if state is not "Open"
  2037. * - when arrived ACK is unusual, namely:
  2038. * * SACK
  2039. * * Duplicate ACK.
  2040. * * ECN ECE.
  2041. *
  2042. * Counting packets in flight is pretty simple.
  2043. *
  2044. * in_flight = packets_out - left_out + retrans_out
  2045. *
  2046. * packets_out is SND.NXT-SND.UNA counted in packets.
  2047. *
  2048. * retrans_out is number of retransmitted segments.
  2049. *
  2050. * left_out is number of segments left network, but not ACKed yet.
  2051. *
  2052. * left_out = sacked_out + lost_out
  2053. *
  2054. * sacked_out: Packets, which arrived to receiver out of order
  2055. * and hence not ACKed. With SACKs this number is simply
  2056. * amount of SACKed data. Even without SACKs
  2057. * it is easy to give pretty reliable estimate of this number,
  2058. * counting duplicate ACKs.
  2059. *
  2060. * lost_out: Packets lost by network. TCP has no explicit
  2061. * "loss notification" feedback from network (for now).
  2062. * It means that this number can be only _guessed_.
  2063. * Actually, it is the heuristics to predict lossage that
  2064. * distinguishes different algorithms.
  2065. *
  2066. * F.e. after RTO, when all the queue is considered as lost,
  2067. * lost_out = packets_out and in_flight = retrans_out.
  2068. *
  2069. * Essentially, we have now two algorithms counting
  2070. * lost packets.
  2071. *
  2072. * FACK: It is the simplest heuristics. As soon as we decided
  2073. * that something is lost, we decide that _all_ not SACKed
  2074. * packets until the most forward SACK are lost. I.e.
  2075. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  2076. * It is absolutely correct estimate, if network does not reorder
  2077. * packets. And it loses any connection to reality when reordering
  2078. * takes place. We use FACK by default until reordering
  2079. * is suspected on the path to this destination.
  2080. *
  2081. * NewReno: when Recovery is entered, we assume that one segment
  2082. * is lost (classic Reno). While we are in Recovery and
  2083. * a partial ACK arrives, we assume that one more packet
  2084. * is lost (NewReno). This heuristics are the same in NewReno
  2085. * and SACK.
  2086. *
  2087. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  2088. * deflation etc. CWND is real congestion window, never inflated, changes
  2089. * only according to classic VJ rules.
  2090. *
  2091. * Really tricky (and requiring careful tuning) part of algorithm
  2092. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  2093. * The first determines the moment _when_ we should reduce CWND and,
  2094. * hence, slow down forward transmission. In fact, it determines the moment
  2095. * when we decide that hole is caused by loss, rather than by a reorder.
  2096. *
  2097. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  2098. * holes, caused by lost packets.
  2099. *
  2100. * And the most logically complicated part of algorithm is undo
  2101. * heuristics. We detect false retransmits due to both too early
  2102. * fast retransmit (reordering) and underestimated RTO, analyzing
  2103. * timestamps and D-SACKs. When we detect that some segments were
  2104. * retransmitted by mistake and CWND reduction was wrong, we undo
  2105. * window reduction and abort recovery phase. This logic is hidden
  2106. * inside several functions named tcp_try_undo_<something>.
  2107. */
  2108. /* This function decides, when we should leave Disordered state
  2109. * and enter Recovery phase, reducing congestion window.
  2110. *
  2111. * Main question: may we further continue forward transmission
  2112. * with the same cwnd?
  2113. */
  2114. static int tcp_time_to_recover(struct sock *sk)
  2115. {
  2116. struct tcp_sock *tp = tcp_sk(sk);
  2117. __u32 packets_out;
  2118. /* Do not perform any recovery during F-RTO algorithm */
  2119. if (tp->frto_counter)
  2120. return 0;
  2121. /* Trick#1: The loss is proven. */
  2122. if (tp->lost_out)
  2123. return 1;
  2124. /* Not-A-Trick#2 : Classic rule... */
  2125. if (tcp_dupack_heuristics(tp) > tp->reordering)
  2126. return 1;
  2127. /* Trick#3 : when we use RFC2988 timer restart, fast
  2128. * retransmit can be triggered by timeout of queue head.
  2129. */
  2130. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  2131. return 1;
  2132. /* Trick#4: It is still not OK... But will it be useful to delay
  2133. * recovery more?
  2134. */
  2135. packets_out = tp->packets_out;
  2136. if (packets_out <= tp->reordering &&
  2137. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  2138. !tcp_may_send_now(sk)) {
  2139. /* We have nothing to send. This connection is limited
  2140. * either by receiver window or by application.
  2141. */
  2142. return 1;
  2143. }
  2144. /* If a thin stream is detected, retransmit after first
  2145. * received dupack. Employ only if SACK is supported in order
  2146. * to avoid possible corner-case series of spurious retransmissions
  2147. * Use only if there are no unsent data.
  2148. */
  2149. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  2150. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  2151. tcp_is_sack(tp) && !tcp_send_head(sk))
  2152. return 1;
  2153. return 0;
  2154. }
  2155. /* New heuristics: it is possible only after we switched to restart timer
  2156. * each time when something is ACKed. Hence, we can detect timed out packets
  2157. * during fast retransmit without falling to slow start.
  2158. *
  2159. * Usefulness of this as is very questionable, since we should know which of
  2160. * the segments is the next to timeout which is relatively expensive to find
  2161. * in general case unless we add some data structure just for that. The
  2162. * current approach certainly won't find the right one too often and when it
  2163. * finally does find _something_ it usually marks large part of the window
  2164. * right away (because a retransmission with a larger timestamp blocks the
  2165. * loop from advancing). -ij
  2166. */
  2167. static void tcp_timeout_skbs(struct sock *sk)
  2168. {
  2169. struct tcp_sock *tp = tcp_sk(sk);
  2170. struct sk_buff *skb;
  2171. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2172. return;
  2173. skb = tp->scoreboard_skb_hint;
  2174. if (tp->scoreboard_skb_hint == NULL)
  2175. skb = tcp_write_queue_head(sk);
  2176. tcp_for_write_queue_from(skb, sk) {
  2177. if (skb == tcp_send_head(sk))
  2178. break;
  2179. if (!tcp_skb_timedout(sk, skb))
  2180. break;
  2181. tcp_skb_mark_lost(tp, skb);
  2182. }
  2183. tp->scoreboard_skb_hint = skb;
  2184. tcp_verify_left_out(tp);
  2185. }
  2186. /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
  2187. * is against sacked "cnt", otherwise it's against facked "cnt"
  2188. */
  2189. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  2190. {
  2191. struct tcp_sock *tp = tcp_sk(sk);
  2192. struct sk_buff *skb;
  2193. int cnt, oldcnt;
  2194. int err;
  2195. unsigned int mss;
  2196. WARN_ON(packets > tp->packets_out);
  2197. if (tp->lost_skb_hint) {
  2198. skb = tp->lost_skb_hint;
  2199. cnt = tp->lost_cnt_hint;
  2200. /* Head already handled? */
  2201. if (mark_head && skb != tcp_write_queue_head(sk))
  2202. return;
  2203. } else {
  2204. skb = tcp_write_queue_head(sk);
  2205. cnt = 0;
  2206. }
  2207. tcp_for_write_queue_from(skb, sk) {
  2208. if (skb == tcp_send_head(sk))
  2209. break;
  2210. /* TODO: do this better */
  2211. /* this is not the most efficient way to do this... */
  2212. tp->lost_skb_hint = skb;
  2213. tp->lost_cnt_hint = cnt;
  2214. if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
  2215. break;
  2216. oldcnt = cnt;
  2217. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2218. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2219. cnt += tcp_skb_pcount(skb);
  2220. if (cnt > packets) {
  2221. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  2222. (oldcnt >= packets))
  2223. break;
  2224. mss = skb_shinfo(skb)->gso_size;
  2225. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2226. if (err < 0)
  2227. break;
  2228. cnt = packets;
  2229. }
  2230. tcp_skb_mark_lost(tp, skb);
  2231. if (mark_head)
  2232. break;
  2233. }
  2234. tcp_verify_left_out(tp);
  2235. }
  2236. /* Account newly detected lost packet(s) */
  2237. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2238. {
  2239. struct tcp_sock *tp = tcp_sk(sk);
  2240. if (tcp_is_reno(tp)) {
  2241. tcp_mark_head_lost(sk, 1, 1);
  2242. } else if (tcp_is_fack(tp)) {
  2243. int lost = tp->fackets_out - tp->reordering;
  2244. if (lost <= 0)
  2245. lost = 1;
  2246. tcp_mark_head_lost(sk, lost, 0);
  2247. } else {
  2248. int sacked_upto = tp->sacked_out - tp->reordering;
  2249. if (sacked_upto >= 0)
  2250. tcp_mark_head_lost(sk, sacked_upto, 0);
  2251. else if (fast_rexmit)
  2252. tcp_mark_head_lost(sk, 1, 1);
  2253. }
  2254. tcp_timeout_skbs(sk);
  2255. }
  2256. /* CWND moderation, preventing bursts due to too big ACKs
  2257. * in dubious situations.
  2258. */
  2259. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2260. {
  2261. tp->snd_cwnd = min(tp->snd_cwnd,
  2262. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2263. tp->snd_cwnd_stamp = tcp_time_stamp;
  2264. }
  2265. /* Lower bound on congestion window is slow start threshold
  2266. * unless congestion avoidance choice decides to overide it.
  2267. */
  2268. static inline u32 tcp_cwnd_min(const struct sock *sk)
  2269. {
  2270. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  2271. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  2272. }
  2273. /* Decrease cwnd each second ack. */
  2274. static void tcp_cwnd_down(struct sock *sk, int flag)
  2275. {
  2276. struct tcp_sock *tp = tcp_sk(sk);
  2277. int decr = tp->snd_cwnd_cnt + 1;
  2278. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  2279. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  2280. tp->snd_cwnd_cnt = decr & 1;
  2281. decr >>= 1;
  2282. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  2283. tp->snd_cwnd -= decr;
  2284. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2285. tp->snd_cwnd_stamp = tcp_time_stamp;
  2286. }
  2287. }
  2288. /* Nothing was retransmitted or returned timestamp is less
  2289. * than timestamp of the first retransmission.
  2290. */
  2291. static inline int tcp_packet_delayed(struct tcp_sock *tp)
  2292. {
  2293. return !tp->retrans_stamp ||
  2294. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2295. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2296. }
  2297. /* Undo procedures. */
  2298. #if FASTRETRANS_DEBUG > 1
  2299. static void DBGUNDO(struct sock *sk, const char *msg)
  2300. {
  2301. struct tcp_sock *tp = tcp_sk(sk);
  2302. struct inet_sock *inet = inet_sk(sk);
  2303. if (sk->sk_family == AF_INET) {
  2304. printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2305. msg,
  2306. &inet->inet_daddr, ntohs(inet->inet_dport),
  2307. tp->snd_cwnd, tcp_left_out(tp),
  2308. tp->snd_ssthresh, tp->prior_ssthresh,
  2309. tp->packets_out);
  2310. }
  2311. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2312. else if (sk->sk_family == AF_INET6) {
  2313. struct ipv6_pinfo *np = inet6_sk(sk);
  2314. printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2315. msg,
  2316. &np->daddr, ntohs(inet->inet_dport),
  2317. tp->snd_cwnd, tcp_left_out(tp),
  2318. tp->snd_ssthresh, tp->prior_ssthresh,
  2319. tp->packets_out);
  2320. }
  2321. #endif
  2322. }
  2323. #else
  2324. #define DBGUNDO(x...) do { } while (0)
  2325. #endif
  2326. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2327. {
  2328. struct tcp_sock *tp = tcp_sk(sk);
  2329. if (tp->prior_ssthresh) {
  2330. const struct inet_connection_sock *icsk = inet_csk(sk);
  2331. if (icsk->icsk_ca_ops->undo_cwnd)
  2332. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2333. else
  2334. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2335. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2336. tp->snd_ssthresh = tp->prior_ssthresh;
  2337. TCP_ECN_withdraw_cwr(tp);
  2338. }
  2339. } else {
  2340. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2341. }
  2342. tp->snd_cwnd_stamp = tcp_time_stamp;
  2343. }
  2344. static inline int tcp_may_undo(struct tcp_sock *tp)
  2345. {
  2346. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2347. }
  2348. /* People celebrate: "We love our President!" */
  2349. static int tcp_try_undo_recovery(struct sock *sk)
  2350. {
  2351. struct tcp_sock *tp = tcp_sk(sk);
  2352. if (tcp_may_undo(tp)) {
  2353. int mib_idx;
  2354. /* Happy end! We did not retransmit anything
  2355. * or our original transmission succeeded.
  2356. */
  2357. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2358. tcp_undo_cwr(sk, true);
  2359. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2360. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2361. else
  2362. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2363. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2364. tp->undo_marker = 0;
  2365. }
  2366. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2367. /* Hold old state until something *above* high_seq
  2368. * is ACKed. For Reno it is MUST to prevent false
  2369. * fast retransmits (RFC2582). SACK TCP is safe. */
  2370. tcp_moderate_cwnd(tp);
  2371. return 1;
  2372. }
  2373. tcp_set_ca_state(sk, TCP_CA_Open);
  2374. return 0;
  2375. }
  2376. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2377. static void tcp_try_undo_dsack(struct sock *sk)
  2378. {
  2379. struct tcp_sock *tp = tcp_sk(sk);
  2380. if (tp->undo_marker && !tp->undo_retrans) {
  2381. DBGUNDO(sk, "D-SACK");
  2382. tcp_undo_cwr(sk, true);
  2383. tp->undo_marker = 0;
  2384. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2385. }
  2386. }
  2387. /* We can clear retrans_stamp when there are no retransmissions in the
  2388. * window. It would seem that it is trivially available for us in
  2389. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2390. * what will happen if errors occur when sending retransmission for the
  2391. * second time. ...It could the that such segment has only
  2392. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2393. * the head skb is enough except for some reneging corner cases that
  2394. * are not worth the effort.
  2395. *
  2396. * Main reason for all this complexity is the fact that connection dying
  2397. * time now depends on the validity of the retrans_stamp, in particular,
  2398. * that successive retransmissions of a segment must not advance
  2399. * retrans_stamp under any conditions.
  2400. */
  2401. static int tcp_any_retrans_done(struct sock *sk)
  2402. {
  2403. struct tcp_sock *tp = tcp_sk(sk);
  2404. struct sk_buff *skb;
  2405. if (tp->retrans_out)
  2406. return 1;
  2407. skb = tcp_write_queue_head(sk);
  2408. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2409. return 1;
  2410. return 0;
  2411. }
  2412. /* Undo during fast recovery after partial ACK. */
  2413. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2414. {
  2415. struct tcp_sock *tp = tcp_sk(sk);
  2416. /* Partial ACK arrived. Force Hoe's retransmit. */
  2417. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2418. if (tcp_may_undo(tp)) {
  2419. /* Plain luck! Hole if filled with delayed
  2420. * packet, rather than with a retransmit.
  2421. */
  2422. if (!tcp_any_retrans_done(sk))
  2423. tp->retrans_stamp = 0;
  2424. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2425. DBGUNDO(sk, "Hoe");
  2426. tcp_undo_cwr(sk, false);
  2427. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2428. /* So... Do not make Hoe's retransmit yet.
  2429. * If the first packet was delayed, the rest
  2430. * ones are most probably delayed as well.
  2431. */
  2432. failed = 0;
  2433. }
  2434. return failed;
  2435. }
  2436. /* Undo during loss recovery after partial ACK. */
  2437. static int tcp_try_undo_loss(struct sock *sk)
  2438. {
  2439. struct tcp_sock *tp = tcp_sk(sk);
  2440. if (tcp_may_undo(tp)) {
  2441. struct sk_buff *skb;
  2442. tcp_for_write_queue(skb, sk) {
  2443. if (skb == tcp_send_head(sk))
  2444. break;
  2445. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2446. }
  2447. tcp_clear_all_retrans_hints(tp);
  2448. DBGUNDO(sk, "partial loss");
  2449. tp->lost_out = 0;
  2450. tcp_undo_cwr(sk, true);
  2451. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2452. inet_csk(sk)->icsk_retransmits = 0;
  2453. tp->undo_marker = 0;
  2454. if (tcp_is_sack(tp))
  2455. tcp_set_ca_state(sk, TCP_CA_Open);
  2456. return 1;
  2457. }
  2458. return 0;
  2459. }
  2460. static inline void tcp_complete_cwr(struct sock *sk)
  2461. {
  2462. struct tcp_sock *tp = tcp_sk(sk);
  2463. /* Do not moderate cwnd if it's already undone in cwr or recovery. */
  2464. if (tp->undo_marker) {
  2465. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
  2466. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2467. else /* PRR */
  2468. tp->snd_cwnd = tp->snd_ssthresh;
  2469. tp->snd_cwnd_stamp = tcp_time_stamp;
  2470. }
  2471. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2472. }
  2473. static void tcp_try_keep_open(struct sock *sk)
  2474. {
  2475. struct tcp_sock *tp = tcp_sk(sk);
  2476. int state = TCP_CA_Open;
  2477. if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
  2478. state = TCP_CA_Disorder;
  2479. if (inet_csk(sk)->icsk_ca_state != state) {
  2480. tcp_set_ca_state(sk, state);
  2481. tp->high_seq = tp->snd_nxt;
  2482. }
  2483. }
  2484. static void tcp_try_to_open(struct sock *sk, int flag)
  2485. {
  2486. struct tcp_sock *tp = tcp_sk(sk);
  2487. tcp_verify_left_out(tp);
  2488. if (!tp->frto_counter && !tcp_any_retrans_done(sk))
  2489. tp->retrans_stamp = 0;
  2490. if (flag & FLAG_ECE)
  2491. tcp_enter_cwr(sk, 1);
  2492. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2493. tcp_try_keep_open(sk);
  2494. tcp_moderate_cwnd(tp);
  2495. } else {
  2496. tcp_cwnd_down(sk, flag);
  2497. }
  2498. }
  2499. static void tcp_mtup_probe_failed(struct sock *sk)
  2500. {
  2501. struct inet_connection_sock *icsk = inet_csk(sk);
  2502. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2503. icsk->icsk_mtup.probe_size = 0;
  2504. }
  2505. static void tcp_mtup_probe_success(struct sock *sk)
  2506. {
  2507. struct tcp_sock *tp = tcp_sk(sk);
  2508. struct inet_connection_sock *icsk = inet_csk(sk);
  2509. /* FIXME: breaks with very large cwnd */
  2510. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2511. tp->snd_cwnd = tp->snd_cwnd *
  2512. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2513. icsk->icsk_mtup.probe_size;
  2514. tp->snd_cwnd_cnt = 0;
  2515. tp->snd_cwnd_stamp = tcp_time_stamp;
  2516. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2517. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2518. icsk->icsk_mtup.probe_size = 0;
  2519. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2520. }
  2521. /* Do a simple retransmit without using the backoff mechanisms in
  2522. * tcp_timer. This is used for path mtu discovery.
  2523. * The socket is already locked here.
  2524. */
  2525. void tcp_simple_retransmit(struct sock *sk)
  2526. {
  2527. const struct inet_connection_sock *icsk = inet_csk(sk);
  2528. struct tcp_sock *tp = tcp_sk(sk);
  2529. struct sk_buff *skb;
  2530. unsigned int mss = tcp_current_mss(sk);
  2531. u32 prior_lost = tp->lost_out;
  2532. tcp_for_write_queue(skb, sk) {
  2533. if (skb == tcp_send_head(sk))
  2534. break;
  2535. if (tcp_skb_seglen(skb) > mss &&
  2536. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2537. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2538. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2539. tp->retrans_out -= tcp_skb_pcount(skb);
  2540. }
  2541. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2542. }
  2543. }
  2544. tcp_clear_retrans_hints_partial(tp);
  2545. if (prior_lost == tp->lost_out)
  2546. return;
  2547. if (tcp_is_reno(tp))
  2548. tcp_limit_reno_sacked(tp);
  2549. tcp_verify_left_out(tp);
  2550. /* Don't muck with the congestion window here.
  2551. * Reason is that we do not increase amount of _data_
  2552. * in network, but units changed and effective
  2553. * cwnd/ssthresh really reduced now.
  2554. */
  2555. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2556. tp->high_seq = tp->snd_nxt;
  2557. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2558. tp->prior_ssthresh = 0;
  2559. tp->undo_marker = 0;
  2560. tcp_set_ca_state(sk, TCP_CA_Loss);
  2561. }
  2562. tcp_xmit_retransmit_queue(sk);
  2563. }
  2564. EXPORT_SYMBOL(tcp_simple_retransmit);
  2565. /* This function implements the PRR algorithm, specifcally the PRR-SSRB
  2566. * (proportional rate reduction with slow start reduction bound) as described in
  2567. * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
  2568. * It computes the number of packets to send (sndcnt) based on packets newly
  2569. * delivered:
  2570. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2571. * cwnd reductions across a full RTT.
  2572. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2573. * losses and/or application stalls), do not perform any further cwnd
  2574. * reductions, but instead slow start up to ssthresh.
  2575. */
  2576. static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
  2577. int fast_rexmit, int flag)
  2578. {
  2579. struct tcp_sock *tp = tcp_sk(sk);
  2580. int sndcnt = 0;
  2581. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2582. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2583. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2584. tp->prior_cwnd - 1;
  2585. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2586. } else {
  2587. sndcnt = min_t(int, delta,
  2588. max_t(int, tp->prr_delivered - tp->prr_out,
  2589. newly_acked_sacked) + 1);
  2590. }
  2591. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2592. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2593. }
  2594. /* Process an event, which can update packets-in-flight not trivially.
  2595. * Main goal of this function is to calculate new estimate for left_out,
  2596. * taking into account both packets sitting in receiver's buffer and
  2597. * packets lost by network.
  2598. *
  2599. * Besides that it does CWND reduction, when packet loss is detected
  2600. * and changes state of machine.
  2601. *
  2602. * It does _not_ decide what to send, it is made in function
  2603. * tcp_xmit_retransmit_queue().
  2604. */
  2605. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2606. int newly_acked_sacked, int flag)
  2607. {
  2608. struct inet_connection_sock *icsk = inet_csk(sk);
  2609. struct tcp_sock *tp = tcp_sk(sk);
  2610. int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  2611. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2612. (tcp_fackets_out(tp) > tp->reordering));
  2613. int fast_rexmit = 0, mib_idx;
  2614. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2615. tp->sacked_out = 0;
  2616. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2617. tp->fackets_out = 0;
  2618. /* Now state machine starts.
  2619. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2620. if (flag & FLAG_ECE)
  2621. tp->prior_ssthresh = 0;
  2622. /* B. In all the states check for reneging SACKs. */
  2623. if (tcp_check_sack_reneging(sk, flag))
  2624. return;
  2625. /* C. Process data loss notification, provided it is valid. */
  2626. if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
  2627. before(tp->snd_una, tp->high_seq) &&
  2628. icsk->icsk_ca_state != TCP_CA_Open &&
  2629. tp->fackets_out > tp->reordering) {
  2630. tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
  2631. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
  2632. }
  2633. /* D. Check consistency of the current state. */
  2634. tcp_verify_left_out(tp);
  2635. /* E. Check state exit conditions. State can be terminated
  2636. * when high_seq is ACKed. */
  2637. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2638. WARN_ON(tp->retrans_out != 0);
  2639. tp->retrans_stamp = 0;
  2640. } else if (!before(tp->snd_una, tp->high_seq)) {
  2641. switch (icsk->icsk_ca_state) {
  2642. case TCP_CA_Loss:
  2643. icsk->icsk_retransmits = 0;
  2644. if (tcp_try_undo_recovery(sk))
  2645. return;
  2646. break;
  2647. case TCP_CA_CWR:
  2648. /* CWR is to be held something *above* high_seq
  2649. * is ACKed for CWR bit to reach receiver. */
  2650. if (tp->snd_una != tp->high_seq) {
  2651. tcp_complete_cwr(sk);
  2652. tcp_set_ca_state(sk, TCP_CA_Open);
  2653. }
  2654. break;
  2655. case TCP_CA_Disorder:
  2656. tcp_try_undo_dsack(sk);
  2657. if (!tp->undo_marker ||
  2658. /* For SACK case do not Open to allow to undo
  2659. * catching for all duplicate ACKs. */
  2660. tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
  2661. tp->undo_marker = 0;
  2662. tcp_set_ca_state(sk, TCP_CA_Open);
  2663. }
  2664. break;
  2665. case TCP_CA_Recovery:
  2666. if (tcp_is_reno(tp))
  2667. tcp_reset_reno_sack(tp);
  2668. if (tcp_try_undo_recovery(sk))
  2669. return;
  2670. tcp_complete_cwr(sk);
  2671. break;
  2672. }
  2673. }
  2674. /* F. Process state. */
  2675. switch (icsk->icsk_ca_state) {
  2676. case TCP_CA_Recovery:
  2677. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2678. if (tcp_is_reno(tp) && is_dupack)
  2679. tcp_add_reno_sack(sk);
  2680. } else
  2681. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2682. break;
  2683. case TCP_CA_Loss:
  2684. if (flag & FLAG_DATA_ACKED)
  2685. icsk->icsk_retransmits = 0;
  2686. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2687. tcp_reset_reno_sack(tp);
  2688. if (!tcp_try_undo_loss(sk)) {
  2689. tcp_moderate_cwnd(tp);
  2690. tcp_xmit_retransmit_queue(sk);
  2691. return;
  2692. }
  2693. if (icsk->icsk_ca_state != TCP_CA_Open)
  2694. return;
  2695. /* Loss is undone; fall through to processing in Open state. */
  2696. default:
  2697. if (tcp_is_reno(tp)) {
  2698. if (flag & FLAG_SND_UNA_ADVANCED)
  2699. tcp_reset_reno_sack(tp);
  2700. if (is_dupack)
  2701. tcp_add_reno_sack(sk);
  2702. }
  2703. if (icsk->icsk_ca_state == TCP_CA_Disorder)
  2704. tcp_try_undo_dsack(sk);
  2705. if (!tcp_time_to_recover(sk)) {
  2706. tcp_try_to_open(sk, flag);
  2707. return;
  2708. }
  2709. /* MTU probe failure: don't reduce cwnd */
  2710. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2711. icsk->icsk_mtup.probe_size &&
  2712. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2713. tcp_mtup_probe_failed(sk);
  2714. /* Restores the reduction we did in tcp_mtup_probe() */
  2715. tp->snd_cwnd++;
  2716. tcp_simple_retransmit(sk);
  2717. return;
  2718. }
  2719. /* Otherwise enter Recovery state */
  2720. if (tcp_is_reno(tp))
  2721. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2722. else
  2723. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2724. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2725. tp->high_seq = tp->snd_nxt;
  2726. tp->prior_ssthresh = 0;
  2727. tp->undo_marker = tp->snd_una;
  2728. tp->undo_retrans = tp->retrans_out;
  2729. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  2730. if (!(flag & FLAG_ECE))
  2731. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2732. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2733. TCP_ECN_queue_cwr(tp);
  2734. }
  2735. tp->bytes_acked = 0;
  2736. tp->snd_cwnd_cnt = 0;
  2737. tp->prior_cwnd = tp->snd_cwnd;
  2738. tp->prr_delivered = 0;
  2739. tp->prr_out = 0;
  2740. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2741. fast_rexmit = 1;
  2742. }
  2743. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2744. tcp_update_scoreboard(sk, fast_rexmit);
  2745. tp->prr_delivered += newly_acked_sacked;
  2746. tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
  2747. tcp_xmit_retransmit_queue(sk);
  2748. }
  2749. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2750. {
  2751. tcp_rtt_estimator(sk, seq_rtt);
  2752. tcp_set_rto(sk);
  2753. inet_csk(sk)->icsk_backoff = 0;
  2754. }
  2755. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2756. /* Read draft-ietf-tcplw-high-performance before mucking
  2757. * with this code. (Supersedes RFC1323)
  2758. */
  2759. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2760. {
  2761. /* RTTM Rule: A TSecr value received in a segment is used to
  2762. * update the averaged RTT measurement only if the segment
  2763. * acknowledges some new data, i.e., only if it advances the
  2764. * left edge of the send window.
  2765. *
  2766. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2767. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2768. *
  2769. * Changed: reset backoff as soon as we see the first valid sample.
  2770. * If we do not, we get strongly overestimated rto. With timestamps
  2771. * samples are accepted even from very old segments: f.e., when rtt=1
  2772. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2773. * answer arrives rto becomes 120 seconds! If at least one of segments
  2774. * in window is lost... Voila. --ANK (010210)
  2775. */
  2776. struct tcp_sock *tp = tcp_sk(sk);
  2777. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2778. }
  2779. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2780. {
  2781. /* We don't have a timestamp. Can only use
  2782. * packets that are not retransmitted to determine
  2783. * rtt estimates. Also, we must not reset the
  2784. * backoff for rto until we get a non-retransmitted
  2785. * packet. This allows us to deal with a situation
  2786. * where the network delay has increased suddenly.
  2787. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2788. */
  2789. if (flag & FLAG_RETRANS_DATA_ACKED)
  2790. return;
  2791. tcp_valid_rtt_meas(sk, seq_rtt);
  2792. }
  2793. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2794. const s32 seq_rtt)
  2795. {
  2796. const struct tcp_sock *tp = tcp_sk(sk);
  2797. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2798. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2799. tcp_ack_saw_tstamp(sk, flag);
  2800. else if (seq_rtt >= 0)
  2801. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2802. }
  2803. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2804. {
  2805. const struct inet_connection_sock *icsk = inet_csk(sk);
  2806. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2807. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2808. }
  2809. /* Restart timer after forward progress on connection.
  2810. * RFC2988 recommends to restart timer to now+rto.
  2811. */
  2812. static void tcp_rearm_rto(struct sock *sk)
  2813. {
  2814. struct tcp_sock *tp = tcp_sk(sk);
  2815. if (!tp->packets_out) {
  2816. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2817. } else {
  2818. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2819. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2820. }
  2821. }
  2822. /* If we get here, the whole TSO packet has not been acked. */
  2823. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2824. {
  2825. struct tcp_sock *tp = tcp_sk(sk);
  2826. u32 packets_acked;
  2827. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2828. packets_acked = tcp_skb_pcount(skb);
  2829. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2830. return 0;
  2831. packets_acked -= tcp_skb_pcount(skb);
  2832. if (packets_acked) {
  2833. BUG_ON(tcp_skb_pcount(skb) == 0);
  2834. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2835. }
  2836. return packets_acked;
  2837. }
  2838. /* Remove acknowledged frames from the retransmission queue. If our packet
  2839. * is before the ack sequence we can discard it as it's confirmed to have
  2840. * arrived at the other end.
  2841. */
  2842. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2843. u32 prior_snd_una)
  2844. {
  2845. struct tcp_sock *tp = tcp_sk(sk);
  2846. const struct inet_connection_sock *icsk = inet_csk(sk);
  2847. struct sk_buff *skb;
  2848. u32 now = tcp_time_stamp;
  2849. int fully_acked = 1;
  2850. int flag = 0;
  2851. u32 pkts_acked = 0;
  2852. u32 reord = tp->packets_out;
  2853. u32 prior_sacked = tp->sacked_out;
  2854. s32 seq_rtt = -1;
  2855. s32 ca_seq_rtt = -1;
  2856. ktime_t last_ackt = net_invalid_timestamp();
  2857. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2858. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2859. u32 acked_pcount;
  2860. u8 sacked = scb->sacked;
  2861. /* Determine how many packets and what bytes were acked, tso and else */
  2862. if (after(scb->end_seq, tp->snd_una)) {
  2863. if (tcp_skb_pcount(skb) == 1 ||
  2864. !after(tp->snd_una, scb->seq))
  2865. break;
  2866. acked_pcount = tcp_tso_acked(sk, skb);
  2867. if (!acked_pcount)
  2868. break;
  2869. fully_acked = 0;
  2870. } else {
  2871. acked_pcount = tcp_skb_pcount(skb);
  2872. }
  2873. if (sacked & TCPCB_RETRANS) {
  2874. if (sacked & TCPCB_SACKED_RETRANS)
  2875. tp->retrans_out -= acked_pcount;
  2876. flag |= FLAG_RETRANS_DATA_ACKED;
  2877. ca_seq_rtt = -1;
  2878. seq_rtt = -1;
  2879. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2880. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2881. } else {
  2882. ca_seq_rtt = now - scb->when;
  2883. last_ackt = skb->tstamp;
  2884. if (seq_rtt < 0) {
  2885. seq_rtt = ca_seq_rtt;
  2886. }
  2887. if (!(sacked & TCPCB_SACKED_ACKED))
  2888. reord = min(pkts_acked, reord);
  2889. }
  2890. if (sacked & TCPCB_SACKED_ACKED)
  2891. tp->sacked_out -= acked_pcount;
  2892. if (sacked & TCPCB_LOST)
  2893. tp->lost_out -= acked_pcount;
  2894. tp->packets_out -= acked_pcount;
  2895. pkts_acked += acked_pcount;
  2896. /* Initial outgoing SYN's get put onto the write_queue
  2897. * just like anything else we transmit. It is not
  2898. * true data, and if we misinform our callers that
  2899. * this ACK acks real data, we will erroneously exit
  2900. * connection startup slow start one packet too
  2901. * quickly. This is severely frowned upon behavior.
  2902. */
  2903. if (!(scb->flags & TCPHDR_SYN)) {
  2904. flag |= FLAG_DATA_ACKED;
  2905. } else {
  2906. flag |= FLAG_SYN_ACKED;
  2907. tp->retrans_stamp = 0;
  2908. }
  2909. if (!fully_acked)
  2910. break;
  2911. tcp_unlink_write_queue(skb, sk);
  2912. sk_wmem_free_skb(sk, skb);
  2913. tp->scoreboard_skb_hint = NULL;
  2914. if (skb == tp->retransmit_skb_hint)
  2915. tp->retransmit_skb_hint = NULL;
  2916. if (skb == tp->lost_skb_hint)
  2917. tp->lost_skb_hint = NULL;
  2918. }
  2919. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2920. tp->snd_up = tp->snd_una;
  2921. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2922. flag |= FLAG_SACK_RENEGING;
  2923. if (flag & FLAG_ACKED) {
  2924. const struct tcp_congestion_ops *ca_ops
  2925. = inet_csk(sk)->icsk_ca_ops;
  2926. if (unlikely(icsk->icsk_mtup.probe_size &&
  2927. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2928. tcp_mtup_probe_success(sk);
  2929. }
  2930. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2931. tcp_rearm_rto(sk);
  2932. if (tcp_is_reno(tp)) {
  2933. tcp_remove_reno_sacks(sk, pkts_acked);
  2934. } else {
  2935. int delta;
  2936. /* Non-retransmitted hole got filled? That's reordering */
  2937. if (reord < prior_fackets)
  2938. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2939. delta = tcp_is_fack(tp) ? pkts_acked :
  2940. prior_sacked - tp->sacked_out;
  2941. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2942. }
  2943. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2944. if (ca_ops->pkts_acked) {
  2945. s32 rtt_us = -1;
  2946. /* Is the ACK triggering packet unambiguous? */
  2947. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2948. /* High resolution needed and available? */
  2949. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2950. !ktime_equal(last_ackt,
  2951. net_invalid_timestamp()))
  2952. rtt_us = ktime_us_delta(ktime_get_real(),
  2953. last_ackt);
  2954. else if (ca_seq_rtt >= 0)
  2955. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2956. }
  2957. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2958. }
  2959. }
  2960. #if FASTRETRANS_DEBUG > 0
  2961. WARN_ON((int)tp->sacked_out < 0);
  2962. WARN_ON((int)tp->lost_out < 0);
  2963. WARN_ON((int)tp->retrans_out < 0);
  2964. if (!tp->packets_out && tcp_is_sack(tp)) {
  2965. icsk = inet_csk(sk);
  2966. if (tp->lost_out) {
  2967. printk(KERN_DEBUG "Leak l=%u %d\n",
  2968. tp->lost_out, icsk->icsk_ca_state);
  2969. tp->lost_out = 0;
  2970. }
  2971. if (tp->sacked_out) {
  2972. printk(KERN_DEBUG "Leak s=%u %d\n",
  2973. tp->sacked_out, icsk->icsk_ca_state);
  2974. tp->sacked_out = 0;
  2975. }
  2976. if (tp->retrans_out) {
  2977. printk(KERN_DEBUG "Leak r=%u %d\n",
  2978. tp->retrans_out, icsk->icsk_ca_state);
  2979. tp->retrans_out = 0;
  2980. }
  2981. }
  2982. #endif
  2983. return flag;
  2984. }
  2985. static void tcp_ack_probe(struct sock *sk)
  2986. {
  2987. const struct tcp_sock *tp = tcp_sk(sk);
  2988. struct inet_connection_sock *icsk = inet_csk(sk);
  2989. /* Was it a usable window open? */
  2990. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2991. icsk->icsk_backoff = 0;
  2992. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2993. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2994. * This function is not for random using!
  2995. */
  2996. } else {
  2997. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2998. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2999. TCP_RTO_MAX);
  3000. }
  3001. }
  3002. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  3003. {
  3004. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  3005. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  3006. }
  3007. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  3008. {
  3009. const struct tcp_sock *tp = tcp_sk(sk);
  3010. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  3011. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  3012. }
  3013. /* Check that window update is acceptable.
  3014. * The function assumes that snd_una<=ack<=snd_next.
  3015. */
  3016. static inline int tcp_may_update_window(const struct tcp_sock *tp,
  3017. const u32 ack, const u32 ack_seq,
  3018. const u32 nwin)
  3019. {
  3020. return after(ack, tp->snd_una) ||
  3021. after(ack_seq, tp->snd_wl1) ||
  3022. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  3023. }
  3024. /* Update our send window.
  3025. *
  3026. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  3027. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  3028. */
  3029. static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
  3030. u32 ack_seq)
  3031. {
  3032. struct tcp_sock *tp = tcp_sk(sk);
  3033. int flag = 0;
  3034. u32 nwin = ntohs(tcp_hdr(skb)->window);
  3035. if (likely(!tcp_hdr(skb)->syn))
  3036. nwin <<= tp->rx_opt.snd_wscale;
  3037. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  3038. flag |= FLAG_WIN_UPDATE;
  3039. tcp_update_wl(tp, ack_seq);
  3040. if (tp->snd_wnd != nwin) {
  3041. tp->snd_wnd = nwin;
  3042. /* Note, it is the only place, where
  3043. * fast path is recovered for sending TCP.
  3044. */
  3045. tp->pred_flags = 0;
  3046. tcp_fast_path_check(sk);
  3047. if (nwin > tp->max_window) {
  3048. tp->max_window = nwin;
  3049. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  3050. }
  3051. }
  3052. }
  3053. tp->snd_una = ack;
  3054. return flag;
  3055. }
  3056. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  3057. * continue in congestion avoidance.
  3058. */
  3059. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  3060. {
  3061. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  3062. tp->snd_cwnd_cnt = 0;
  3063. tp->bytes_acked = 0;
  3064. TCP_ECN_queue_cwr(tp);
  3065. tcp_moderate_cwnd(tp);
  3066. }
  3067. /* A conservative spurious RTO response algorithm: reduce cwnd using
  3068. * rate halving and continue in congestion avoidance.
  3069. */
  3070. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  3071. {
  3072. tcp_enter_cwr(sk, 0);
  3073. }
  3074. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  3075. {
  3076. if (flag & FLAG_ECE)
  3077. tcp_ratehalving_spur_to_response(sk);
  3078. else
  3079. tcp_undo_cwr(sk, true);
  3080. }
  3081. /* F-RTO spurious RTO detection algorithm (RFC4138)
  3082. *
  3083. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  3084. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  3085. * window (but not to or beyond highest sequence sent before RTO):
  3086. * On First ACK, send two new segments out.
  3087. * On Second ACK, RTO was likely spurious. Do spurious response (response
  3088. * algorithm is not part of the F-RTO detection algorithm
  3089. * given in RFC4138 but can be selected separately).
  3090. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  3091. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  3092. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  3093. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  3094. *
  3095. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  3096. * original window even after we transmit two new data segments.
  3097. *
  3098. * SACK version:
  3099. * on first step, wait until first cumulative ACK arrives, then move to
  3100. * the second step. In second step, the next ACK decides.
  3101. *
  3102. * F-RTO is implemented (mainly) in four functions:
  3103. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  3104. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  3105. * called when tcp_use_frto() showed green light
  3106. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  3107. * - tcp_enter_frto_loss() is called if there is not enough evidence
  3108. * to prove that the RTO is indeed spurious. It transfers the control
  3109. * from F-RTO to the conventional RTO recovery
  3110. */
  3111. static int tcp_process_frto(struct sock *sk, int flag)
  3112. {
  3113. struct tcp_sock *tp = tcp_sk(sk);
  3114. tcp_verify_left_out(tp);
  3115. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3116. if (flag & FLAG_DATA_ACKED)
  3117. inet_csk(sk)->icsk_retransmits = 0;
  3118. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3119. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3120. tp->undo_marker = 0;
  3121. if (!before(tp->snd_una, tp->frto_highmark)) {
  3122. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3123. return 1;
  3124. }
  3125. if (!tcp_is_sackfrto(tp)) {
  3126. /* RFC4138 shortcoming in step 2; should also have case c):
  3127. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3128. * data, winupdate
  3129. */
  3130. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3131. return 1;
  3132. if (!(flag & FLAG_DATA_ACKED)) {
  3133. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3134. flag);
  3135. return 1;
  3136. }
  3137. } else {
  3138. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3139. /* Prevent sending of new data. */
  3140. tp->snd_cwnd = min(tp->snd_cwnd,
  3141. tcp_packets_in_flight(tp));
  3142. return 1;
  3143. }
  3144. if ((tp->frto_counter >= 2) &&
  3145. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3146. ((flag & FLAG_DATA_SACKED) &&
  3147. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3148. /* RFC4138 shortcoming (see comment above) */
  3149. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3150. (flag & FLAG_NOT_DUP))
  3151. return 1;
  3152. tcp_enter_frto_loss(sk, 3, flag);
  3153. return 1;
  3154. }
  3155. }
  3156. if (tp->frto_counter == 1) {
  3157. /* tcp_may_send_now needs to see updated state */
  3158. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3159. tp->frto_counter = 2;
  3160. if (!tcp_may_send_now(sk))
  3161. tcp_enter_frto_loss(sk, 2, flag);
  3162. return 1;
  3163. } else {
  3164. switch (sysctl_tcp_frto_response) {
  3165. case 2:
  3166. tcp_undo_spur_to_response(sk, flag);
  3167. break;
  3168. case 1:
  3169. tcp_conservative_spur_to_response(tp);
  3170. break;
  3171. default:
  3172. tcp_ratehalving_spur_to_response(sk);
  3173. break;
  3174. }
  3175. tp->frto_counter = 0;
  3176. tp->undo_marker = 0;
  3177. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3178. }
  3179. return 0;
  3180. }
  3181. /* This routine deals with incoming acks, but not outgoing ones. */
  3182. static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
  3183. {
  3184. struct inet_connection_sock *icsk = inet_csk(sk);
  3185. struct tcp_sock *tp = tcp_sk(sk);
  3186. u32 prior_snd_una = tp->snd_una;
  3187. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3188. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3189. u32 prior_in_flight;
  3190. u32 prior_fackets;
  3191. int prior_packets;
  3192. int prior_sacked = tp->sacked_out;
  3193. int newly_acked_sacked = 0;
  3194. int frto_cwnd = 0;
  3195. /* If the ack is older than previous acks
  3196. * then we can probably ignore it.
  3197. */
  3198. if (before(ack, prior_snd_una))
  3199. goto old_ack;
  3200. /* If the ack includes data we haven't sent yet, discard
  3201. * this segment (RFC793 Section 3.9).
  3202. */
  3203. if (after(ack, tp->snd_nxt))
  3204. goto invalid_ack;
  3205. if (after(ack, prior_snd_una))
  3206. flag |= FLAG_SND_UNA_ADVANCED;
  3207. if (sysctl_tcp_abc) {
  3208. if (icsk->icsk_ca_state < TCP_CA_CWR)
  3209. tp->bytes_acked += ack - prior_snd_una;
  3210. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  3211. /* we assume just one segment left network */
  3212. tp->bytes_acked += min(ack - prior_snd_una,
  3213. tp->mss_cache);
  3214. }
  3215. prior_fackets = tp->fackets_out;
  3216. prior_in_flight = tcp_packets_in_flight(tp);
  3217. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3218. /* Window is constant, pure forward advance.
  3219. * No more checks are required.
  3220. * Note, we use the fact that SND.UNA>=SND.WL2.
  3221. */
  3222. tcp_update_wl(tp, ack_seq);
  3223. tp->snd_una = ack;
  3224. flag |= FLAG_WIN_UPDATE;
  3225. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3226. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3227. } else {
  3228. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3229. flag |= FLAG_DATA;
  3230. else
  3231. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3232. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3233. if (TCP_SKB_CB(skb)->sacked)
  3234. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3235. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3236. flag |= FLAG_ECE;
  3237. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3238. }
  3239. /* We passed data and got it acked, remove any soft error
  3240. * log. Something worked...
  3241. */
  3242. sk->sk_err_soft = 0;
  3243. icsk->icsk_probes_out = 0;
  3244. tp->rcv_tstamp = tcp_time_stamp;
  3245. prior_packets = tp->packets_out;
  3246. if (!prior_packets)
  3247. goto no_queue;
  3248. /* See if we can take anything off of the retransmit queue. */
  3249. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3250. newly_acked_sacked = (prior_packets - prior_sacked) -
  3251. (tp->packets_out - tp->sacked_out);
  3252. if (tp->frto_counter)
  3253. frto_cwnd = tcp_process_frto(sk, flag);
  3254. /* Guarantee sacktag reordering detection against wrap-arounds */
  3255. if (before(tp->frto_highmark, tp->snd_una))
  3256. tp->frto_highmark = 0;
  3257. if (tcp_ack_is_dubious(sk, flag)) {
  3258. /* Advance CWND, if state allows this. */
  3259. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3260. tcp_may_raise_cwnd(sk, flag))
  3261. tcp_cong_avoid(sk, ack, prior_in_flight);
  3262. tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
  3263. newly_acked_sacked, flag);
  3264. } else {
  3265. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3266. tcp_cong_avoid(sk, ack, prior_in_flight);
  3267. }
  3268. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3269. dst_confirm(__sk_dst_get(sk));
  3270. return 1;
  3271. no_queue:
  3272. /* If this ack opens up a zero window, clear backoff. It was
  3273. * being used to time the probes, and is probably far higher than
  3274. * it needs to be for normal retransmission.
  3275. */
  3276. if (tcp_send_head(sk))
  3277. tcp_ack_probe(sk);
  3278. return 1;
  3279. invalid_ack:
  3280. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3281. return -1;
  3282. old_ack:
  3283. if (TCP_SKB_CB(skb)->sacked) {
  3284. tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3285. if (icsk->icsk_ca_state == TCP_CA_Open)
  3286. tcp_try_keep_open(sk);
  3287. }
  3288. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3289. return 0;
  3290. }
  3291. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3292. * But, this can also be called on packets in the established flow when
  3293. * the fast version below fails.
  3294. */
  3295. void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3296. u8 **hvpp, int estab)
  3297. {
  3298. unsigned char *ptr;
  3299. struct tcphdr *th = tcp_hdr(skb);
  3300. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3301. ptr = (unsigned char *)(th + 1);
  3302. opt_rx->saw_tstamp = 0;
  3303. while (length > 0) {
  3304. int opcode = *ptr++;
  3305. int opsize;
  3306. switch (opcode) {
  3307. case TCPOPT_EOL:
  3308. return;
  3309. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3310. length--;
  3311. continue;
  3312. default:
  3313. opsize = *ptr++;
  3314. if (opsize < 2) /* "silly options" */
  3315. return;
  3316. if (opsize > length)
  3317. return; /* don't parse partial options */
  3318. switch (opcode) {
  3319. case TCPOPT_MSS:
  3320. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3321. u16 in_mss = get_unaligned_be16(ptr);
  3322. if (in_mss) {
  3323. if (opt_rx->user_mss &&
  3324. opt_rx->user_mss < in_mss)
  3325. in_mss = opt_rx->user_mss;
  3326. opt_rx->mss_clamp = in_mss;
  3327. }
  3328. }
  3329. break;
  3330. case TCPOPT_WINDOW:
  3331. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3332. !estab && sysctl_tcp_window_scaling) {
  3333. __u8 snd_wscale = *(__u8 *)ptr;
  3334. opt_rx->wscale_ok = 1;
  3335. if (snd_wscale > 14) {
  3336. if (net_ratelimit())
  3337. printk(KERN_INFO "tcp_parse_options: Illegal window "
  3338. "scaling value %d >14 received.\n",
  3339. snd_wscale);
  3340. snd_wscale = 14;
  3341. }
  3342. opt_rx->snd_wscale = snd_wscale;
  3343. }
  3344. break;
  3345. case TCPOPT_TIMESTAMP:
  3346. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3347. ((estab && opt_rx->tstamp_ok) ||
  3348. (!estab && sysctl_tcp_timestamps))) {
  3349. opt_rx->saw_tstamp = 1;
  3350. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3351. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3352. }
  3353. break;
  3354. case TCPOPT_SACK_PERM:
  3355. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3356. !estab && sysctl_tcp_sack) {
  3357. opt_rx->sack_ok = 1;
  3358. tcp_sack_reset(opt_rx);
  3359. }
  3360. break;
  3361. case TCPOPT_SACK:
  3362. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3363. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3364. opt_rx->sack_ok) {
  3365. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3366. }
  3367. break;
  3368. #ifdef CONFIG_TCP_MD5SIG
  3369. case TCPOPT_MD5SIG:
  3370. /*
  3371. * The MD5 Hash has already been
  3372. * checked (see tcp_v{4,6}_do_rcv()).
  3373. */
  3374. break;
  3375. #endif
  3376. case TCPOPT_COOKIE:
  3377. /* This option is variable length.
  3378. */
  3379. switch (opsize) {
  3380. case TCPOLEN_COOKIE_BASE:
  3381. /* not yet implemented */
  3382. break;
  3383. case TCPOLEN_COOKIE_PAIR:
  3384. /* not yet implemented */
  3385. break;
  3386. case TCPOLEN_COOKIE_MIN+0:
  3387. case TCPOLEN_COOKIE_MIN+2:
  3388. case TCPOLEN_COOKIE_MIN+4:
  3389. case TCPOLEN_COOKIE_MIN+6:
  3390. case TCPOLEN_COOKIE_MAX:
  3391. /* 16-bit multiple */
  3392. opt_rx->cookie_plus = opsize;
  3393. *hvpp = ptr;
  3394. break;
  3395. default:
  3396. /* ignore option */
  3397. break;
  3398. }
  3399. break;
  3400. }
  3401. ptr += opsize-2;
  3402. length -= opsize;
  3403. }
  3404. }
  3405. }
  3406. EXPORT_SYMBOL(tcp_parse_options);
  3407. static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
  3408. {
  3409. __be32 *ptr = (__be32 *)(th + 1);
  3410. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3411. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3412. tp->rx_opt.saw_tstamp = 1;
  3413. ++ptr;
  3414. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3415. ++ptr;
  3416. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3417. return 1;
  3418. }
  3419. return 0;
  3420. }
  3421. /* Fast parse options. This hopes to only see timestamps.
  3422. * If it is wrong it falls back on tcp_parse_options().
  3423. */
  3424. static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
  3425. struct tcp_sock *tp, u8 **hvpp)
  3426. {
  3427. /* In the spirit of fast parsing, compare doff directly to constant
  3428. * values. Because equality is used, short doff can be ignored here.
  3429. */
  3430. if (th->doff == (sizeof(*th) / 4)) {
  3431. tp->rx_opt.saw_tstamp = 0;
  3432. return 0;
  3433. } else if (tp->rx_opt.tstamp_ok &&
  3434. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3435. if (tcp_parse_aligned_timestamp(tp, th))
  3436. return 1;
  3437. }
  3438. tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
  3439. return 1;
  3440. }
  3441. #ifdef CONFIG_TCP_MD5SIG
  3442. /*
  3443. * Parse MD5 Signature option
  3444. */
  3445. u8 *tcp_parse_md5sig_option(struct tcphdr *th)
  3446. {
  3447. int length = (th->doff << 2) - sizeof (*th);
  3448. u8 *ptr = (u8*)(th + 1);
  3449. /* If the TCP option is too short, we can short cut */
  3450. if (length < TCPOLEN_MD5SIG)
  3451. return NULL;
  3452. while (length > 0) {
  3453. int opcode = *ptr++;
  3454. int opsize;
  3455. switch(opcode) {
  3456. case TCPOPT_EOL:
  3457. return NULL;
  3458. case TCPOPT_NOP:
  3459. length--;
  3460. continue;
  3461. default:
  3462. opsize = *ptr++;
  3463. if (opsize < 2 || opsize > length)
  3464. return NULL;
  3465. if (opcode == TCPOPT_MD5SIG)
  3466. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3467. }
  3468. ptr += opsize - 2;
  3469. length -= opsize;
  3470. }
  3471. return NULL;
  3472. }
  3473. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3474. #endif
  3475. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3476. {
  3477. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3478. tp->rx_opt.ts_recent_stamp = get_seconds();
  3479. }
  3480. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3481. {
  3482. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3483. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3484. * extra check below makes sure this can only happen
  3485. * for pure ACK frames. -DaveM
  3486. *
  3487. * Not only, also it occurs for expired timestamps.
  3488. */
  3489. if (tcp_paws_check(&tp->rx_opt, 0))
  3490. tcp_store_ts_recent(tp);
  3491. }
  3492. }
  3493. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3494. *
  3495. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3496. * it can pass through stack. So, the following predicate verifies that
  3497. * this segment is not used for anything but congestion avoidance or
  3498. * fast retransmit. Moreover, we even are able to eliminate most of such
  3499. * second order effects, if we apply some small "replay" window (~RTO)
  3500. * to timestamp space.
  3501. *
  3502. * All these measures still do not guarantee that we reject wrapped ACKs
  3503. * on networks with high bandwidth, when sequence space is recycled fastly,
  3504. * but it guarantees that such events will be very rare and do not affect
  3505. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3506. * buggy extension.
  3507. *
  3508. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3509. * states that events when retransmit arrives after original data are rare.
  3510. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3511. * the biggest problem on large power networks even with minor reordering.
  3512. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3513. * up to bandwidth of 18Gigabit/sec. 8) ]
  3514. */
  3515. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3516. {
  3517. struct tcp_sock *tp = tcp_sk(sk);
  3518. struct tcphdr *th = tcp_hdr(skb);
  3519. u32 seq = TCP_SKB_CB(skb)->seq;
  3520. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3521. return (/* 1. Pure ACK with correct sequence number. */
  3522. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3523. /* 2. ... and duplicate ACK. */
  3524. ack == tp->snd_una &&
  3525. /* 3. ... and does not update window. */
  3526. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3527. /* 4. ... and sits in replay window. */
  3528. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3529. }
  3530. static inline int tcp_paws_discard(const struct sock *sk,
  3531. const struct sk_buff *skb)
  3532. {
  3533. const struct tcp_sock *tp = tcp_sk(sk);
  3534. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3535. !tcp_disordered_ack(sk, skb);
  3536. }
  3537. /* Check segment sequence number for validity.
  3538. *
  3539. * Segment controls are considered valid, if the segment
  3540. * fits to the window after truncation to the window. Acceptability
  3541. * of data (and SYN, FIN, of course) is checked separately.
  3542. * See tcp_data_queue(), for example.
  3543. *
  3544. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3545. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3546. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3547. * (borrowed from freebsd)
  3548. */
  3549. static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
  3550. {
  3551. return !before(end_seq, tp->rcv_wup) &&
  3552. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3553. }
  3554. /* When we get a reset we do this. */
  3555. static void tcp_reset(struct sock *sk)
  3556. {
  3557. /* We want the right error as BSD sees it (and indeed as we do). */
  3558. switch (sk->sk_state) {
  3559. case TCP_SYN_SENT:
  3560. sk->sk_err = ECONNREFUSED;
  3561. break;
  3562. case TCP_CLOSE_WAIT:
  3563. sk->sk_err = EPIPE;
  3564. break;
  3565. case TCP_CLOSE:
  3566. return;
  3567. default:
  3568. sk->sk_err = ECONNRESET;
  3569. }
  3570. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3571. smp_wmb();
  3572. if (!sock_flag(sk, SOCK_DEAD))
  3573. sk->sk_error_report(sk);
  3574. tcp_done(sk);
  3575. }
  3576. /*
  3577. * Process the FIN bit. This now behaves as it is supposed to work
  3578. * and the FIN takes effect when it is validly part of sequence
  3579. * space. Not before when we get holes.
  3580. *
  3581. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3582. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3583. * TIME-WAIT)
  3584. *
  3585. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3586. * close and we go into CLOSING (and later onto TIME-WAIT)
  3587. *
  3588. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3589. */
  3590. static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
  3591. {
  3592. struct tcp_sock *tp = tcp_sk(sk);
  3593. inet_csk_schedule_ack(sk);
  3594. sk->sk_shutdown |= RCV_SHUTDOWN;
  3595. sock_set_flag(sk, SOCK_DONE);
  3596. switch (sk->sk_state) {
  3597. case TCP_SYN_RECV:
  3598. case TCP_ESTABLISHED:
  3599. /* Move to CLOSE_WAIT */
  3600. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3601. inet_csk(sk)->icsk_ack.pingpong = 1;
  3602. break;
  3603. case TCP_CLOSE_WAIT:
  3604. case TCP_CLOSING:
  3605. /* Received a retransmission of the FIN, do
  3606. * nothing.
  3607. */
  3608. break;
  3609. case TCP_LAST_ACK:
  3610. /* RFC793: Remain in the LAST-ACK state. */
  3611. break;
  3612. case TCP_FIN_WAIT1:
  3613. /* This case occurs when a simultaneous close
  3614. * happens, we must ack the received FIN and
  3615. * enter the CLOSING state.
  3616. */
  3617. tcp_send_ack(sk);
  3618. tcp_set_state(sk, TCP_CLOSING);
  3619. break;
  3620. case TCP_FIN_WAIT2:
  3621. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3622. tcp_send_ack(sk);
  3623. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3624. break;
  3625. default:
  3626. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3627. * cases we should never reach this piece of code.
  3628. */
  3629. printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
  3630. __func__, sk->sk_state);
  3631. break;
  3632. }
  3633. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3634. * Probably, we should reset in this case. For now drop them.
  3635. */
  3636. __skb_queue_purge(&tp->out_of_order_queue);
  3637. if (tcp_is_sack(tp))
  3638. tcp_sack_reset(&tp->rx_opt);
  3639. sk_mem_reclaim(sk);
  3640. if (!sock_flag(sk, SOCK_DEAD)) {
  3641. sk->sk_state_change(sk);
  3642. /* Do not send POLL_HUP for half duplex close. */
  3643. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3644. sk->sk_state == TCP_CLOSE)
  3645. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3646. else
  3647. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3648. }
  3649. }
  3650. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3651. u32 end_seq)
  3652. {
  3653. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3654. if (before(seq, sp->start_seq))
  3655. sp->start_seq = seq;
  3656. if (after(end_seq, sp->end_seq))
  3657. sp->end_seq = end_seq;
  3658. return 1;
  3659. }
  3660. return 0;
  3661. }
  3662. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3663. {
  3664. struct tcp_sock *tp = tcp_sk(sk);
  3665. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3666. int mib_idx;
  3667. if (before(seq, tp->rcv_nxt))
  3668. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3669. else
  3670. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3671. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3672. tp->rx_opt.dsack = 1;
  3673. tp->duplicate_sack[0].start_seq = seq;
  3674. tp->duplicate_sack[0].end_seq = end_seq;
  3675. }
  3676. }
  3677. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3678. {
  3679. struct tcp_sock *tp = tcp_sk(sk);
  3680. if (!tp->rx_opt.dsack)
  3681. tcp_dsack_set(sk, seq, end_seq);
  3682. else
  3683. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3684. }
  3685. static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
  3686. {
  3687. struct tcp_sock *tp = tcp_sk(sk);
  3688. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3689. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3690. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3691. tcp_enter_quickack_mode(sk);
  3692. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3693. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3694. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3695. end_seq = tp->rcv_nxt;
  3696. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3697. }
  3698. }
  3699. tcp_send_ack(sk);
  3700. }
  3701. /* These routines update the SACK block as out-of-order packets arrive or
  3702. * in-order packets close up the sequence space.
  3703. */
  3704. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3705. {
  3706. int this_sack;
  3707. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3708. struct tcp_sack_block *swalk = sp + 1;
  3709. /* See if the recent change to the first SACK eats into
  3710. * or hits the sequence space of other SACK blocks, if so coalesce.
  3711. */
  3712. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3713. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3714. int i;
  3715. /* Zap SWALK, by moving every further SACK up by one slot.
  3716. * Decrease num_sacks.
  3717. */
  3718. tp->rx_opt.num_sacks--;
  3719. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3720. sp[i] = sp[i + 1];
  3721. continue;
  3722. }
  3723. this_sack++, swalk++;
  3724. }
  3725. }
  3726. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3727. {
  3728. struct tcp_sock *tp = tcp_sk(sk);
  3729. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3730. int cur_sacks = tp->rx_opt.num_sacks;
  3731. int this_sack;
  3732. if (!cur_sacks)
  3733. goto new_sack;
  3734. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3735. if (tcp_sack_extend(sp, seq, end_seq)) {
  3736. /* Rotate this_sack to the first one. */
  3737. for (; this_sack > 0; this_sack--, sp--)
  3738. swap(*sp, *(sp - 1));
  3739. if (cur_sacks > 1)
  3740. tcp_sack_maybe_coalesce(tp);
  3741. return;
  3742. }
  3743. }
  3744. /* Could not find an adjacent existing SACK, build a new one,
  3745. * put it at the front, and shift everyone else down. We
  3746. * always know there is at least one SACK present already here.
  3747. *
  3748. * If the sack array is full, forget about the last one.
  3749. */
  3750. if (this_sack >= TCP_NUM_SACKS) {
  3751. this_sack--;
  3752. tp->rx_opt.num_sacks--;
  3753. sp--;
  3754. }
  3755. for (; this_sack > 0; this_sack--, sp--)
  3756. *sp = *(sp - 1);
  3757. new_sack:
  3758. /* Build the new head SACK, and we're done. */
  3759. sp->start_seq = seq;
  3760. sp->end_seq = end_seq;
  3761. tp->rx_opt.num_sacks++;
  3762. }
  3763. /* RCV.NXT advances, some SACKs should be eaten. */
  3764. static void tcp_sack_remove(struct tcp_sock *tp)
  3765. {
  3766. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3767. int num_sacks = tp->rx_opt.num_sacks;
  3768. int this_sack;
  3769. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3770. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3771. tp->rx_opt.num_sacks = 0;
  3772. return;
  3773. }
  3774. for (this_sack = 0; this_sack < num_sacks;) {
  3775. /* Check if the start of the sack is covered by RCV.NXT. */
  3776. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3777. int i;
  3778. /* RCV.NXT must cover all the block! */
  3779. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3780. /* Zap this SACK, by moving forward any other SACKS. */
  3781. for (i=this_sack+1; i < num_sacks; i++)
  3782. tp->selective_acks[i-1] = tp->selective_acks[i];
  3783. num_sacks--;
  3784. continue;
  3785. }
  3786. this_sack++;
  3787. sp++;
  3788. }
  3789. tp->rx_opt.num_sacks = num_sacks;
  3790. }
  3791. /* This one checks to see if we can put data from the
  3792. * out_of_order queue into the receive_queue.
  3793. */
  3794. static void tcp_ofo_queue(struct sock *sk)
  3795. {
  3796. struct tcp_sock *tp = tcp_sk(sk);
  3797. __u32 dsack_high = tp->rcv_nxt;
  3798. struct sk_buff *skb;
  3799. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3800. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3801. break;
  3802. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3803. __u32 dsack = dsack_high;
  3804. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3805. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3806. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3807. }
  3808. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3809. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3810. __skb_unlink(skb, &tp->out_of_order_queue);
  3811. __kfree_skb(skb);
  3812. continue;
  3813. }
  3814. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3815. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3816. TCP_SKB_CB(skb)->end_seq);
  3817. __skb_unlink(skb, &tp->out_of_order_queue);
  3818. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3819. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3820. if (tcp_hdr(skb)->fin)
  3821. tcp_fin(skb, sk, tcp_hdr(skb));
  3822. }
  3823. }
  3824. static int tcp_prune_ofo_queue(struct sock *sk);
  3825. static int tcp_prune_queue(struct sock *sk);
  3826. static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
  3827. {
  3828. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3829. !sk_rmem_schedule(sk, size)) {
  3830. if (tcp_prune_queue(sk) < 0)
  3831. return -1;
  3832. if (!sk_rmem_schedule(sk, size)) {
  3833. if (!tcp_prune_ofo_queue(sk))
  3834. return -1;
  3835. if (!sk_rmem_schedule(sk, size))
  3836. return -1;
  3837. }
  3838. }
  3839. return 0;
  3840. }
  3841. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3842. {
  3843. struct tcphdr *th = tcp_hdr(skb);
  3844. struct tcp_sock *tp = tcp_sk(sk);
  3845. int eaten = -1;
  3846. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3847. goto drop;
  3848. skb_dst_drop(skb);
  3849. __skb_pull(skb, th->doff * 4);
  3850. TCP_ECN_accept_cwr(tp, skb);
  3851. tp->rx_opt.dsack = 0;
  3852. /* Queue data for delivery to the user.
  3853. * Packets in sequence go to the receive queue.
  3854. * Out of sequence packets to the out_of_order_queue.
  3855. */
  3856. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3857. if (tcp_receive_window(tp) == 0)
  3858. goto out_of_window;
  3859. /* Ok. In sequence. In window. */
  3860. if (tp->ucopy.task == current &&
  3861. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3862. sock_owned_by_user(sk) && !tp->urg_data) {
  3863. int chunk = min_t(unsigned int, skb->len,
  3864. tp->ucopy.len);
  3865. __set_current_state(TASK_RUNNING);
  3866. local_bh_enable();
  3867. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3868. tp->ucopy.len -= chunk;
  3869. tp->copied_seq += chunk;
  3870. eaten = (chunk == skb->len);
  3871. tcp_rcv_space_adjust(sk);
  3872. }
  3873. local_bh_disable();
  3874. }
  3875. if (eaten <= 0) {
  3876. queue_and_out:
  3877. if (eaten < 0 &&
  3878. tcp_try_rmem_schedule(sk, skb->truesize))
  3879. goto drop;
  3880. skb_set_owner_r(skb, sk);
  3881. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3882. }
  3883. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3884. if (skb->len)
  3885. tcp_event_data_recv(sk, skb);
  3886. if (th->fin)
  3887. tcp_fin(skb, sk, th);
  3888. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3889. tcp_ofo_queue(sk);
  3890. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3891. * gap in queue is filled.
  3892. */
  3893. if (skb_queue_empty(&tp->out_of_order_queue))
  3894. inet_csk(sk)->icsk_ack.pingpong = 0;
  3895. }
  3896. if (tp->rx_opt.num_sacks)
  3897. tcp_sack_remove(tp);
  3898. tcp_fast_path_check(sk);
  3899. if (eaten > 0)
  3900. __kfree_skb(skb);
  3901. else if (!sock_flag(sk, SOCK_DEAD))
  3902. sk->sk_data_ready(sk, 0);
  3903. return;
  3904. }
  3905. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3906. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3907. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3908. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3909. out_of_window:
  3910. tcp_enter_quickack_mode(sk);
  3911. inet_csk_schedule_ack(sk);
  3912. drop:
  3913. __kfree_skb(skb);
  3914. return;
  3915. }
  3916. /* Out of window. F.e. zero window probe. */
  3917. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3918. goto out_of_window;
  3919. tcp_enter_quickack_mode(sk);
  3920. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3921. /* Partial packet, seq < rcv_next < end_seq */
  3922. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3923. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3924. TCP_SKB_CB(skb)->end_seq);
  3925. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3926. /* If window is closed, drop tail of packet. But after
  3927. * remembering D-SACK for its head made in previous line.
  3928. */
  3929. if (!tcp_receive_window(tp))
  3930. goto out_of_window;
  3931. goto queue_and_out;
  3932. }
  3933. TCP_ECN_check_ce(tp, skb);
  3934. if (tcp_try_rmem_schedule(sk, skb->truesize))
  3935. goto drop;
  3936. /* Disable header prediction. */
  3937. tp->pred_flags = 0;
  3938. inet_csk_schedule_ack(sk);
  3939. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3940. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3941. skb_set_owner_r(skb, sk);
  3942. if (!skb_peek(&tp->out_of_order_queue)) {
  3943. /* Initial out of order segment, build 1 SACK. */
  3944. if (tcp_is_sack(tp)) {
  3945. tp->rx_opt.num_sacks = 1;
  3946. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3947. tp->selective_acks[0].end_seq =
  3948. TCP_SKB_CB(skb)->end_seq;
  3949. }
  3950. __skb_queue_head(&tp->out_of_order_queue, skb);
  3951. } else {
  3952. struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3953. u32 seq = TCP_SKB_CB(skb)->seq;
  3954. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3955. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3956. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3957. if (!tp->rx_opt.num_sacks ||
  3958. tp->selective_acks[0].end_seq != seq)
  3959. goto add_sack;
  3960. /* Common case: data arrive in order after hole. */
  3961. tp->selective_acks[0].end_seq = end_seq;
  3962. return;
  3963. }
  3964. /* Find place to insert this segment. */
  3965. while (1) {
  3966. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3967. break;
  3968. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3969. skb1 = NULL;
  3970. break;
  3971. }
  3972. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3973. }
  3974. /* Do skb overlap to previous one? */
  3975. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3976. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3977. /* All the bits are present. Drop. */
  3978. __kfree_skb(skb);
  3979. tcp_dsack_set(sk, seq, end_seq);
  3980. goto add_sack;
  3981. }
  3982. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3983. /* Partial overlap. */
  3984. tcp_dsack_set(sk, seq,
  3985. TCP_SKB_CB(skb1)->end_seq);
  3986. } else {
  3987. if (skb_queue_is_first(&tp->out_of_order_queue,
  3988. skb1))
  3989. skb1 = NULL;
  3990. else
  3991. skb1 = skb_queue_prev(
  3992. &tp->out_of_order_queue,
  3993. skb1);
  3994. }
  3995. }
  3996. if (!skb1)
  3997. __skb_queue_head(&tp->out_of_order_queue, skb);
  3998. else
  3999. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  4000. /* And clean segments covered by new one as whole. */
  4001. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  4002. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  4003. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  4004. break;
  4005. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  4006. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4007. end_seq);
  4008. break;
  4009. }
  4010. __skb_unlink(skb1, &tp->out_of_order_queue);
  4011. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4012. TCP_SKB_CB(skb1)->end_seq);
  4013. __kfree_skb(skb1);
  4014. }
  4015. add_sack:
  4016. if (tcp_is_sack(tp))
  4017. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  4018. }
  4019. }
  4020. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4021. struct sk_buff_head *list)
  4022. {
  4023. struct sk_buff *next = NULL;
  4024. if (!skb_queue_is_last(list, skb))
  4025. next = skb_queue_next(list, skb);
  4026. __skb_unlink(skb, list);
  4027. __kfree_skb(skb);
  4028. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4029. return next;
  4030. }
  4031. /* Collapse contiguous sequence of skbs head..tail with
  4032. * sequence numbers start..end.
  4033. *
  4034. * If tail is NULL, this means until the end of the list.
  4035. *
  4036. * Segments with FIN/SYN are not collapsed (only because this
  4037. * simplifies code)
  4038. */
  4039. static void
  4040. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4041. struct sk_buff *head, struct sk_buff *tail,
  4042. u32 start, u32 end)
  4043. {
  4044. struct sk_buff *skb, *n;
  4045. bool end_of_skbs;
  4046. /* First, check that queue is collapsible and find
  4047. * the point where collapsing can be useful. */
  4048. skb = head;
  4049. restart:
  4050. end_of_skbs = true;
  4051. skb_queue_walk_from_safe(list, skb, n) {
  4052. if (skb == tail)
  4053. break;
  4054. /* No new bits? It is possible on ofo queue. */
  4055. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4056. skb = tcp_collapse_one(sk, skb, list);
  4057. if (!skb)
  4058. break;
  4059. goto restart;
  4060. }
  4061. /* The first skb to collapse is:
  4062. * - not SYN/FIN and
  4063. * - bloated or contains data before "start" or
  4064. * overlaps to the next one.
  4065. */
  4066. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  4067. (tcp_win_from_space(skb->truesize) > skb->len ||
  4068. before(TCP_SKB_CB(skb)->seq, start))) {
  4069. end_of_skbs = false;
  4070. break;
  4071. }
  4072. if (!skb_queue_is_last(list, skb)) {
  4073. struct sk_buff *next = skb_queue_next(list, skb);
  4074. if (next != tail &&
  4075. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4076. end_of_skbs = false;
  4077. break;
  4078. }
  4079. }
  4080. /* Decided to skip this, advance start seq. */
  4081. start = TCP_SKB_CB(skb)->end_seq;
  4082. }
  4083. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  4084. return;
  4085. while (before(start, end)) {
  4086. struct sk_buff *nskb;
  4087. unsigned int header = skb_headroom(skb);
  4088. int copy = SKB_MAX_ORDER(header, 0);
  4089. /* Too big header? This can happen with IPv6. */
  4090. if (copy < 0)
  4091. return;
  4092. if (end - start < copy)
  4093. copy = end - start;
  4094. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  4095. if (!nskb)
  4096. return;
  4097. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  4098. skb_set_network_header(nskb, (skb_network_header(skb) -
  4099. skb->head));
  4100. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  4101. skb->head));
  4102. skb_reserve(nskb, header);
  4103. memcpy(nskb->head, skb->head, header);
  4104. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4105. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4106. __skb_queue_before(list, skb, nskb);
  4107. skb_set_owner_r(nskb, sk);
  4108. /* Copy data, releasing collapsed skbs. */
  4109. while (copy > 0) {
  4110. int offset = start - TCP_SKB_CB(skb)->seq;
  4111. int size = TCP_SKB_CB(skb)->end_seq - start;
  4112. BUG_ON(offset < 0);
  4113. if (size > 0) {
  4114. size = min(copy, size);
  4115. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4116. BUG();
  4117. TCP_SKB_CB(nskb)->end_seq += size;
  4118. copy -= size;
  4119. start += size;
  4120. }
  4121. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4122. skb = tcp_collapse_one(sk, skb, list);
  4123. if (!skb ||
  4124. skb == tail ||
  4125. tcp_hdr(skb)->syn ||
  4126. tcp_hdr(skb)->fin)
  4127. return;
  4128. }
  4129. }
  4130. }
  4131. }
  4132. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4133. * and tcp_collapse() them until all the queue is collapsed.
  4134. */
  4135. static void tcp_collapse_ofo_queue(struct sock *sk)
  4136. {
  4137. struct tcp_sock *tp = tcp_sk(sk);
  4138. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4139. struct sk_buff *head;
  4140. u32 start, end;
  4141. if (skb == NULL)
  4142. return;
  4143. start = TCP_SKB_CB(skb)->seq;
  4144. end = TCP_SKB_CB(skb)->end_seq;
  4145. head = skb;
  4146. for (;;) {
  4147. struct sk_buff *next = NULL;
  4148. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4149. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4150. skb = next;
  4151. /* Segment is terminated when we see gap or when
  4152. * we are at the end of all the queue. */
  4153. if (!skb ||
  4154. after(TCP_SKB_CB(skb)->seq, end) ||
  4155. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4156. tcp_collapse(sk, &tp->out_of_order_queue,
  4157. head, skb, start, end);
  4158. head = skb;
  4159. if (!skb)
  4160. break;
  4161. /* Start new segment */
  4162. start = TCP_SKB_CB(skb)->seq;
  4163. end = TCP_SKB_CB(skb)->end_seq;
  4164. } else {
  4165. if (before(TCP_SKB_CB(skb)->seq, start))
  4166. start = TCP_SKB_CB(skb)->seq;
  4167. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4168. end = TCP_SKB_CB(skb)->end_seq;
  4169. }
  4170. }
  4171. }
  4172. /*
  4173. * Purge the out-of-order queue.
  4174. * Return true if queue was pruned.
  4175. */
  4176. static int tcp_prune_ofo_queue(struct sock *sk)
  4177. {
  4178. struct tcp_sock *tp = tcp_sk(sk);
  4179. int res = 0;
  4180. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4181. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4182. __skb_queue_purge(&tp->out_of_order_queue);
  4183. /* Reset SACK state. A conforming SACK implementation will
  4184. * do the same at a timeout based retransmit. When a connection
  4185. * is in a sad state like this, we care only about integrity
  4186. * of the connection not performance.
  4187. */
  4188. if (tp->rx_opt.sack_ok)
  4189. tcp_sack_reset(&tp->rx_opt);
  4190. sk_mem_reclaim(sk);
  4191. res = 1;
  4192. }
  4193. return res;
  4194. }
  4195. /* Reduce allocated memory if we can, trying to get
  4196. * the socket within its memory limits again.
  4197. *
  4198. * Return less than zero if we should start dropping frames
  4199. * until the socket owning process reads some of the data
  4200. * to stabilize the situation.
  4201. */
  4202. static int tcp_prune_queue(struct sock *sk)
  4203. {
  4204. struct tcp_sock *tp = tcp_sk(sk);
  4205. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4206. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4207. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4208. tcp_clamp_window(sk);
  4209. else if (tcp_memory_pressure)
  4210. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4211. tcp_collapse_ofo_queue(sk);
  4212. if (!skb_queue_empty(&sk->sk_receive_queue))
  4213. tcp_collapse(sk, &sk->sk_receive_queue,
  4214. skb_peek(&sk->sk_receive_queue),
  4215. NULL,
  4216. tp->copied_seq, tp->rcv_nxt);
  4217. sk_mem_reclaim(sk);
  4218. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4219. return 0;
  4220. /* Collapsing did not help, destructive actions follow.
  4221. * This must not ever occur. */
  4222. tcp_prune_ofo_queue(sk);
  4223. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4224. return 0;
  4225. /* If we are really being abused, tell the caller to silently
  4226. * drop receive data on the floor. It will get retransmitted
  4227. * and hopefully then we'll have sufficient space.
  4228. */
  4229. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4230. /* Massive buffer overcommit. */
  4231. tp->pred_flags = 0;
  4232. return -1;
  4233. }
  4234. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4235. * As additional protections, we do not touch cwnd in retransmission phases,
  4236. * and if application hit its sndbuf limit recently.
  4237. */
  4238. void tcp_cwnd_application_limited(struct sock *sk)
  4239. {
  4240. struct tcp_sock *tp = tcp_sk(sk);
  4241. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4242. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4243. /* Limited by application or receiver window. */
  4244. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4245. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4246. if (win_used < tp->snd_cwnd) {
  4247. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4248. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4249. }
  4250. tp->snd_cwnd_used = 0;
  4251. }
  4252. tp->snd_cwnd_stamp = tcp_time_stamp;
  4253. }
  4254. static int tcp_should_expand_sndbuf(struct sock *sk)
  4255. {
  4256. struct tcp_sock *tp = tcp_sk(sk);
  4257. /* If the user specified a specific send buffer setting, do
  4258. * not modify it.
  4259. */
  4260. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4261. return 0;
  4262. /* If we are under global TCP memory pressure, do not expand. */
  4263. if (tcp_memory_pressure)
  4264. return 0;
  4265. /* If we are under soft global TCP memory pressure, do not expand. */
  4266. if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
  4267. return 0;
  4268. /* If we filled the congestion window, do not expand. */
  4269. if (tp->packets_out >= tp->snd_cwnd)
  4270. return 0;
  4271. return 1;
  4272. }
  4273. /* When incoming ACK allowed to free some skb from write_queue,
  4274. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4275. * on the exit from tcp input handler.
  4276. *
  4277. * PROBLEM: sndbuf expansion does not work well with largesend.
  4278. */
  4279. static void tcp_new_space(struct sock *sk)
  4280. {
  4281. struct tcp_sock *tp = tcp_sk(sk);
  4282. if (tcp_should_expand_sndbuf(sk)) {
  4283. int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  4284. MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
  4285. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4286. tp->reordering + 1);
  4287. sndmem *= 2 * demanded;
  4288. if (sndmem > sk->sk_sndbuf)
  4289. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4290. tp->snd_cwnd_stamp = tcp_time_stamp;
  4291. }
  4292. sk->sk_write_space(sk);
  4293. }
  4294. static void tcp_check_space(struct sock *sk)
  4295. {
  4296. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4297. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4298. if (sk->sk_socket &&
  4299. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4300. tcp_new_space(sk);
  4301. }
  4302. }
  4303. static inline void tcp_data_snd_check(struct sock *sk)
  4304. {
  4305. tcp_push_pending_frames(sk);
  4306. tcp_check_space(sk);
  4307. }
  4308. /*
  4309. * Check if sending an ack is needed.
  4310. */
  4311. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4312. {
  4313. struct tcp_sock *tp = tcp_sk(sk);
  4314. /* More than one full frame received... */
  4315. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4316. /* ... and right edge of window advances far enough.
  4317. * (tcp_recvmsg() will send ACK otherwise). Or...
  4318. */
  4319. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4320. /* We ACK each frame or... */
  4321. tcp_in_quickack_mode(sk) ||
  4322. /* We have out of order data. */
  4323. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4324. /* Then ack it now */
  4325. tcp_send_ack(sk);
  4326. } else {
  4327. /* Else, send delayed ack. */
  4328. tcp_send_delayed_ack(sk);
  4329. }
  4330. }
  4331. static inline void tcp_ack_snd_check(struct sock *sk)
  4332. {
  4333. if (!inet_csk_ack_scheduled(sk)) {
  4334. /* We sent a data segment already. */
  4335. return;
  4336. }
  4337. __tcp_ack_snd_check(sk, 1);
  4338. }
  4339. /*
  4340. * This routine is only called when we have urgent data
  4341. * signaled. Its the 'slow' part of tcp_urg. It could be
  4342. * moved inline now as tcp_urg is only called from one
  4343. * place. We handle URGent data wrong. We have to - as
  4344. * BSD still doesn't use the correction from RFC961.
  4345. * For 1003.1g we should support a new option TCP_STDURG to permit
  4346. * either form (or just set the sysctl tcp_stdurg).
  4347. */
  4348. static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
  4349. {
  4350. struct tcp_sock *tp = tcp_sk(sk);
  4351. u32 ptr = ntohs(th->urg_ptr);
  4352. if (ptr && !sysctl_tcp_stdurg)
  4353. ptr--;
  4354. ptr += ntohl(th->seq);
  4355. /* Ignore urgent data that we've already seen and read. */
  4356. if (after(tp->copied_seq, ptr))
  4357. return;
  4358. /* Do not replay urg ptr.
  4359. *
  4360. * NOTE: interesting situation not covered by specs.
  4361. * Misbehaving sender may send urg ptr, pointing to segment,
  4362. * which we already have in ofo queue. We are not able to fetch
  4363. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4364. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4365. * situations. But it is worth to think about possibility of some
  4366. * DoSes using some hypothetical application level deadlock.
  4367. */
  4368. if (before(ptr, tp->rcv_nxt))
  4369. return;
  4370. /* Do we already have a newer (or duplicate) urgent pointer? */
  4371. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4372. return;
  4373. /* Tell the world about our new urgent pointer. */
  4374. sk_send_sigurg(sk);
  4375. /* We may be adding urgent data when the last byte read was
  4376. * urgent. To do this requires some care. We cannot just ignore
  4377. * tp->copied_seq since we would read the last urgent byte again
  4378. * as data, nor can we alter copied_seq until this data arrives
  4379. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4380. *
  4381. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4382. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4383. * and expect that both A and B disappear from stream. This is _wrong_.
  4384. * Though this happens in BSD with high probability, this is occasional.
  4385. * Any application relying on this is buggy. Note also, that fix "works"
  4386. * only in this artificial test. Insert some normal data between A and B and we will
  4387. * decline of BSD again. Verdict: it is better to remove to trap
  4388. * buggy users.
  4389. */
  4390. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4391. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4392. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4393. tp->copied_seq++;
  4394. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4395. __skb_unlink(skb, &sk->sk_receive_queue);
  4396. __kfree_skb(skb);
  4397. }
  4398. }
  4399. tp->urg_data = TCP_URG_NOTYET;
  4400. tp->urg_seq = ptr;
  4401. /* Disable header prediction. */
  4402. tp->pred_flags = 0;
  4403. }
  4404. /* This is the 'fast' part of urgent handling. */
  4405. static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
  4406. {
  4407. struct tcp_sock *tp = tcp_sk(sk);
  4408. /* Check if we get a new urgent pointer - normally not. */
  4409. if (th->urg)
  4410. tcp_check_urg(sk, th);
  4411. /* Do we wait for any urgent data? - normally not... */
  4412. if (tp->urg_data == TCP_URG_NOTYET) {
  4413. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4414. th->syn;
  4415. /* Is the urgent pointer pointing into this packet? */
  4416. if (ptr < skb->len) {
  4417. u8 tmp;
  4418. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4419. BUG();
  4420. tp->urg_data = TCP_URG_VALID | tmp;
  4421. if (!sock_flag(sk, SOCK_DEAD))
  4422. sk->sk_data_ready(sk, 0);
  4423. }
  4424. }
  4425. }
  4426. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4427. {
  4428. struct tcp_sock *tp = tcp_sk(sk);
  4429. int chunk = skb->len - hlen;
  4430. int err;
  4431. local_bh_enable();
  4432. if (skb_csum_unnecessary(skb))
  4433. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4434. else
  4435. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4436. tp->ucopy.iov);
  4437. if (!err) {
  4438. tp->ucopy.len -= chunk;
  4439. tp->copied_seq += chunk;
  4440. tcp_rcv_space_adjust(sk);
  4441. }
  4442. local_bh_disable();
  4443. return err;
  4444. }
  4445. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4446. struct sk_buff *skb)
  4447. {
  4448. __sum16 result;
  4449. if (sock_owned_by_user(sk)) {
  4450. local_bh_enable();
  4451. result = __tcp_checksum_complete(skb);
  4452. local_bh_disable();
  4453. } else {
  4454. result = __tcp_checksum_complete(skb);
  4455. }
  4456. return result;
  4457. }
  4458. static inline int tcp_checksum_complete_user(struct sock *sk,
  4459. struct sk_buff *skb)
  4460. {
  4461. return !skb_csum_unnecessary(skb) &&
  4462. __tcp_checksum_complete_user(sk, skb);
  4463. }
  4464. #ifdef CONFIG_NET_DMA
  4465. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4466. int hlen)
  4467. {
  4468. struct tcp_sock *tp = tcp_sk(sk);
  4469. int chunk = skb->len - hlen;
  4470. int dma_cookie;
  4471. int copied_early = 0;
  4472. if (tp->ucopy.wakeup)
  4473. return 0;
  4474. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4475. tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
  4476. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4477. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4478. skb, hlen,
  4479. tp->ucopy.iov, chunk,
  4480. tp->ucopy.pinned_list);
  4481. if (dma_cookie < 0)
  4482. goto out;
  4483. tp->ucopy.dma_cookie = dma_cookie;
  4484. copied_early = 1;
  4485. tp->ucopy.len -= chunk;
  4486. tp->copied_seq += chunk;
  4487. tcp_rcv_space_adjust(sk);
  4488. if ((tp->ucopy.len == 0) ||
  4489. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4490. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4491. tp->ucopy.wakeup = 1;
  4492. sk->sk_data_ready(sk, 0);
  4493. }
  4494. } else if (chunk > 0) {
  4495. tp->ucopy.wakeup = 1;
  4496. sk->sk_data_ready(sk, 0);
  4497. }
  4498. out:
  4499. return copied_early;
  4500. }
  4501. #endif /* CONFIG_NET_DMA */
  4502. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4503. * play significant role here.
  4504. */
  4505. static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4506. struct tcphdr *th, int syn_inerr)
  4507. {
  4508. u8 *hash_location;
  4509. struct tcp_sock *tp = tcp_sk(sk);
  4510. /* RFC1323: H1. Apply PAWS check first. */
  4511. if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
  4512. tp->rx_opt.saw_tstamp &&
  4513. tcp_paws_discard(sk, skb)) {
  4514. if (!th->rst) {
  4515. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4516. tcp_send_dupack(sk, skb);
  4517. goto discard;
  4518. }
  4519. /* Reset is accepted even if it did not pass PAWS. */
  4520. }
  4521. /* Step 1: check sequence number */
  4522. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4523. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4524. * (RST) segments are validated by checking their SEQ-fields."
  4525. * And page 69: "If an incoming segment is not acceptable,
  4526. * an acknowledgment should be sent in reply (unless the RST
  4527. * bit is set, if so drop the segment and return)".
  4528. */
  4529. if (!th->rst)
  4530. tcp_send_dupack(sk, skb);
  4531. goto discard;
  4532. }
  4533. /* Step 2: check RST bit */
  4534. if (th->rst) {
  4535. tcp_reset(sk);
  4536. goto discard;
  4537. }
  4538. /* ts_recent update must be made after we are sure that the packet
  4539. * is in window.
  4540. */
  4541. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4542. /* step 3: check security and precedence [ignored] */
  4543. /* step 4: Check for a SYN in window. */
  4544. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4545. if (syn_inerr)
  4546. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4547. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
  4548. tcp_reset(sk);
  4549. return -1;
  4550. }
  4551. return 1;
  4552. discard:
  4553. __kfree_skb(skb);
  4554. return 0;
  4555. }
  4556. /*
  4557. * TCP receive function for the ESTABLISHED state.
  4558. *
  4559. * It is split into a fast path and a slow path. The fast path is
  4560. * disabled when:
  4561. * - A zero window was announced from us - zero window probing
  4562. * is only handled properly in the slow path.
  4563. * - Out of order segments arrived.
  4564. * - Urgent data is expected.
  4565. * - There is no buffer space left
  4566. * - Unexpected TCP flags/window values/header lengths are received
  4567. * (detected by checking the TCP header against pred_flags)
  4568. * - Data is sent in both directions. Fast path only supports pure senders
  4569. * or pure receivers (this means either the sequence number or the ack
  4570. * value must stay constant)
  4571. * - Unexpected TCP option.
  4572. *
  4573. * When these conditions are not satisfied it drops into a standard
  4574. * receive procedure patterned after RFC793 to handle all cases.
  4575. * The first three cases are guaranteed by proper pred_flags setting,
  4576. * the rest is checked inline. Fast processing is turned on in
  4577. * tcp_data_queue when everything is OK.
  4578. */
  4579. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4580. struct tcphdr *th, unsigned len)
  4581. {
  4582. struct tcp_sock *tp = tcp_sk(sk);
  4583. int res;
  4584. /*
  4585. * Header prediction.
  4586. * The code loosely follows the one in the famous
  4587. * "30 instruction TCP receive" Van Jacobson mail.
  4588. *
  4589. * Van's trick is to deposit buffers into socket queue
  4590. * on a device interrupt, to call tcp_recv function
  4591. * on the receive process context and checksum and copy
  4592. * the buffer to user space. smart...
  4593. *
  4594. * Our current scheme is not silly either but we take the
  4595. * extra cost of the net_bh soft interrupt processing...
  4596. * We do checksum and copy also but from device to kernel.
  4597. */
  4598. tp->rx_opt.saw_tstamp = 0;
  4599. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4600. * if header_prediction is to be made
  4601. * 'S' will always be tp->tcp_header_len >> 2
  4602. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4603. * turn it off (when there are holes in the receive
  4604. * space for instance)
  4605. * PSH flag is ignored.
  4606. */
  4607. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4608. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4609. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4610. int tcp_header_len = tp->tcp_header_len;
  4611. /* Timestamp header prediction: tcp_header_len
  4612. * is automatically equal to th->doff*4 due to pred_flags
  4613. * match.
  4614. */
  4615. /* Check timestamp */
  4616. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4617. /* No? Slow path! */
  4618. if (!tcp_parse_aligned_timestamp(tp, th))
  4619. goto slow_path;
  4620. /* If PAWS failed, check it more carefully in slow path */
  4621. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4622. goto slow_path;
  4623. /* DO NOT update ts_recent here, if checksum fails
  4624. * and timestamp was corrupted part, it will result
  4625. * in a hung connection since we will drop all
  4626. * future packets due to the PAWS test.
  4627. */
  4628. }
  4629. if (len <= tcp_header_len) {
  4630. /* Bulk data transfer: sender */
  4631. if (len == tcp_header_len) {
  4632. /* Predicted packet is in window by definition.
  4633. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4634. * Hence, check seq<=rcv_wup reduces to:
  4635. */
  4636. if (tcp_header_len ==
  4637. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4638. tp->rcv_nxt == tp->rcv_wup)
  4639. tcp_store_ts_recent(tp);
  4640. /* We know that such packets are checksummed
  4641. * on entry.
  4642. */
  4643. tcp_ack(sk, skb, 0);
  4644. __kfree_skb(skb);
  4645. tcp_data_snd_check(sk);
  4646. return 0;
  4647. } else { /* Header too small */
  4648. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4649. goto discard;
  4650. }
  4651. } else {
  4652. int eaten = 0;
  4653. int copied_early = 0;
  4654. if (tp->copied_seq == tp->rcv_nxt &&
  4655. len - tcp_header_len <= tp->ucopy.len) {
  4656. #ifdef CONFIG_NET_DMA
  4657. if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4658. copied_early = 1;
  4659. eaten = 1;
  4660. }
  4661. #endif
  4662. if (tp->ucopy.task == current &&
  4663. sock_owned_by_user(sk) && !copied_early) {
  4664. __set_current_state(TASK_RUNNING);
  4665. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4666. eaten = 1;
  4667. }
  4668. if (eaten) {
  4669. /* Predicted packet is in window by definition.
  4670. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4671. * Hence, check seq<=rcv_wup reduces to:
  4672. */
  4673. if (tcp_header_len ==
  4674. (sizeof(struct tcphdr) +
  4675. TCPOLEN_TSTAMP_ALIGNED) &&
  4676. tp->rcv_nxt == tp->rcv_wup)
  4677. tcp_store_ts_recent(tp);
  4678. tcp_rcv_rtt_measure_ts(sk, skb);
  4679. __skb_pull(skb, tcp_header_len);
  4680. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4681. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4682. }
  4683. if (copied_early)
  4684. tcp_cleanup_rbuf(sk, skb->len);
  4685. }
  4686. if (!eaten) {
  4687. if (tcp_checksum_complete_user(sk, skb))
  4688. goto csum_error;
  4689. /* Predicted packet is in window by definition.
  4690. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4691. * Hence, check seq<=rcv_wup reduces to:
  4692. */
  4693. if (tcp_header_len ==
  4694. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4695. tp->rcv_nxt == tp->rcv_wup)
  4696. tcp_store_ts_recent(tp);
  4697. tcp_rcv_rtt_measure_ts(sk, skb);
  4698. if ((int)skb->truesize > sk->sk_forward_alloc)
  4699. goto step5;
  4700. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4701. /* Bulk data transfer: receiver */
  4702. __skb_pull(skb, tcp_header_len);
  4703. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4704. skb_set_owner_r(skb, sk);
  4705. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4706. }
  4707. tcp_event_data_recv(sk, skb);
  4708. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4709. /* Well, only one small jumplet in fast path... */
  4710. tcp_ack(sk, skb, FLAG_DATA);
  4711. tcp_data_snd_check(sk);
  4712. if (!inet_csk_ack_scheduled(sk))
  4713. goto no_ack;
  4714. }
  4715. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4716. __tcp_ack_snd_check(sk, 0);
  4717. no_ack:
  4718. #ifdef CONFIG_NET_DMA
  4719. if (copied_early)
  4720. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4721. else
  4722. #endif
  4723. if (eaten)
  4724. __kfree_skb(skb);
  4725. else
  4726. sk->sk_data_ready(sk, 0);
  4727. return 0;
  4728. }
  4729. }
  4730. slow_path:
  4731. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4732. goto csum_error;
  4733. /*
  4734. * Standard slow path.
  4735. */
  4736. res = tcp_validate_incoming(sk, skb, th, 1);
  4737. if (res <= 0)
  4738. return -res;
  4739. step5:
  4740. if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
  4741. goto discard;
  4742. tcp_rcv_rtt_measure_ts(sk, skb);
  4743. /* Process urgent data. */
  4744. tcp_urg(sk, skb, th);
  4745. /* step 7: process the segment text */
  4746. tcp_data_queue(sk, skb);
  4747. tcp_data_snd_check(sk);
  4748. tcp_ack_snd_check(sk);
  4749. return 0;
  4750. csum_error:
  4751. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4752. discard:
  4753. __kfree_skb(skb);
  4754. return 0;
  4755. }
  4756. EXPORT_SYMBOL(tcp_rcv_established);
  4757. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4758. struct tcphdr *th, unsigned len)
  4759. {
  4760. u8 *hash_location;
  4761. struct inet_connection_sock *icsk = inet_csk(sk);
  4762. struct tcp_sock *tp = tcp_sk(sk);
  4763. struct tcp_cookie_values *cvp = tp->cookie_values;
  4764. int saved_clamp = tp->rx_opt.mss_clamp;
  4765. tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
  4766. if (th->ack) {
  4767. /* rfc793:
  4768. * "If the state is SYN-SENT then
  4769. * first check the ACK bit
  4770. * If the ACK bit is set
  4771. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4772. * a reset (unless the RST bit is set, if so drop
  4773. * the segment and return)"
  4774. *
  4775. * We do not send data with SYN, so that RFC-correct
  4776. * test reduces to:
  4777. */
  4778. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  4779. goto reset_and_undo;
  4780. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4781. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4782. tcp_time_stamp)) {
  4783. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4784. goto reset_and_undo;
  4785. }
  4786. /* Now ACK is acceptable.
  4787. *
  4788. * "If the RST bit is set
  4789. * If the ACK was acceptable then signal the user "error:
  4790. * connection reset", drop the segment, enter CLOSED state,
  4791. * delete TCB, and return."
  4792. */
  4793. if (th->rst) {
  4794. tcp_reset(sk);
  4795. goto discard;
  4796. }
  4797. /* rfc793:
  4798. * "fifth, if neither of the SYN or RST bits is set then
  4799. * drop the segment and return."
  4800. *
  4801. * See note below!
  4802. * --ANK(990513)
  4803. */
  4804. if (!th->syn)
  4805. goto discard_and_undo;
  4806. /* rfc793:
  4807. * "If the SYN bit is on ...
  4808. * are acceptable then ...
  4809. * (our SYN has been ACKed), change the connection
  4810. * state to ESTABLISHED..."
  4811. */
  4812. TCP_ECN_rcv_synack(tp, th);
  4813. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4814. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4815. /* Ok.. it's good. Set up sequence numbers and
  4816. * move to established.
  4817. */
  4818. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4819. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4820. /* RFC1323: The window in SYN & SYN/ACK segments is
  4821. * never scaled.
  4822. */
  4823. tp->snd_wnd = ntohs(th->window);
  4824. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4825. if (!tp->rx_opt.wscale_ok) {
  4826. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4827. tp->window_clamp = min(tp->window_clamp, 65535U);
  4828. }
  4829. if (tp->rx_opt.saw_tstamp) {
  4830. tp->rx_opt.tstamp_ok = 1;
  4831. tp->tcp_header_len =
  4832. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4833. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4834. tcp_store_ts_recent(tp);
  4835. } else {
  4836. tp->tcp_header_len = sizeof(struct tcphdr);
  4837. }
  4838. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4839. tcp_enable_fack(tp);
  4840. tcp_mtup_init(sk);
  4841. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4842. tcp_initialize_rcv_mss(sk);
  4843. /* Remember, tcp_poll() does not lock socket!
  4844. * Change state from SYN-SENT only after copied_seq
  4845. * is initialized. */
  4846. tp->copied_seq = tp->rcv_nxt;
  4847. if (cvp != NULL &&
  4848. cvp->cookie_pair_size > 0 &&
  4849. tp->rx_opt.cookie_plus > 0) {
  4850. int cookie_size = tp->rx_opt.cookie_plus
  4851. - TCPOLEN_COOKIE_BASE;
  4852. int cookie_pair_size = cookie_size
  4853. + cvp->cookie_desired;
  4854. /* A cookie extension option was sent and returned.
  4855. * Note that each incoming SYNACK replaces the
  4856. * Responder cookie. The initial exchange is most
  4857. * fragile, as protection against spoofing relies
  4858. * entirely upon the sequence and timestamp (above).
  4859. * This replacement strategy allows the correct pair to
  4860. * pass through, while any others will be filtered via
  4861. * Responder verification later.
  4862. */
  4863. if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
  4864. memcpy(&cvp->cookie_pair[cvp->cookie_desired],
  4865. hash_location, cookie_size);
  4866. cvp->cookie_pair_size = cookie_pair_size;
  4867. }
  4868. }
  4869. smp_mb();
  4870. tcp_set_state(sk, TCP_ESTABLISHED);
  4871. security_inet_conn_established(sk, skb);
  4872. /* Make sure socket is routed, for correct metrics. */
  4873. icsk->icsk_af_ops->rebuild_header(sk);
  4874. tcp_init_metrics(sk);
  4875. tcp_init_congestion_control(sk);
  4876. /* Prevent spurious tcp_cwnd_restart() on first data
  4877. * packet.
  4878. */
  4879. tp->lsndtime = tcp_time_stamp;
  4880. tcp_init_buffer_space(sk);
  4881. if (sock_flag(sk, SOCK_KEEPOPEN))
  4882. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4883. if (!tp->rx_opt.snd_wscale)
  4884. __tcp_fast_path_on(tp, tp->snd_wnd);
  4885. else
  4886. tp->pred_flags = 0;
  4887. if (!sock_flag(sk, SOCK_DEAD)) {
  4888. sk->sk_state_change(sk);
  4889. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4890. }
  4891. if (sk->sk_write_pending ||
  4892. icsk->icsk_accept_queue.rskq_defer_accept ||
  4893. icsk->icsk_ack.pingpong) {
  4894. /* Save one ACK. Data will be ready after
  4895. * several ticks, if write_pending is set.
  4896. *
  4897. * It may be deleted, but with this feature tcpdumps
  4898. * look so _wonderfully_ clever, that I was not able
  4899. * to stand against the temptation 8) --ANK
  4900. */
  4901. inet_csk_schedule_ack(sk);
  4902. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4903. icsk->icsk_ack.ato = TCP_ATO_MIN;
  4904. tcp_incr_quickack(sk);
  4905. tcp_enter_quickack_mode(sk);
  4906. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4907. TCP_DELACK_MAX, TCP_RTO_MAX);
  4908. discard:
  4909. __kfree_skb(skb);
  4910. return 0;
  4911. } else {
  4912. tcp_send_ack(sk);
  4913. }
  4914. return -1;
  4915. }
  4916. /* No ACK in the segment */
  4917. if (th->rst) {
  4918. /* rfc793:
  4919. * "If the RST bit is set
  4920. *
  4921. * Otherwise (no ACK) drop the segment and return."
  4922. */
  4923. goto discard_and_undo;
  4924. }
  4925. /* PAWS check. */
  4926. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4927. tcp_paws_reject(&tp->rx_opt, 0))
  4928. goto discard_and_undo;
  4929. if (th->syn) {
  4930. /* We see SYN without ACK. It is attempt of
  4931. * simultaneous connect with crossed SYNs.
  4932. * Particularly, it can be connect to self.
  4933. */
  4934. tcp_set_state(sk, TCP_SYN_RECV);
  4935. if (tp->rx_opt.saw_tstamp) {
  4936. tp->rx_opt.tstamp_ok = 1;
  4937. tcp_store_ts_recent(tp);
  4938. tp->tcp_header_len =
  4939. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4940. } else {
  4941. tp->tcp_header_len = sizeof(struct tcphdr);
  4942. }
  4943. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4944. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4945. /* RFC1323: The window in SYN & SYN/ACK segments is
  4946. * never scaled.
  4947. */
  4948. tp->snd_wnd = ntohs(th->window);
  4949. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4950. tp->max_window = tp->snd_wnd;
  4951. TCP_ECN_rcv_syn(tp, th);
  4952. tcp_mtup_init(sk);
  4953. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4954. tcp_initialize_rcv_mss(sk);
  4955. tcp_send_synack(sk);
  4956. #if 0
  4957. /* Note, we could accept data and URG from this segment.
  4958. * There are no obstacles to make this.
  4959. *
  4960. * However, if we ignore data in ACKless segments sometimes,
  4961. * we have no reasons to accept it sometimes.
  4962. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4963. * is not flawless. So, discard packet for sanity.
  4964. * Uncomment this return to process the data.
  4965. */
  4966. return -1;
  4967. #else
  4968. goto discard;
  4969. #endif
  4970. }
  4971. /* "fifth, if neither of the SYN or RST bits is set then
  4972. * drop the segment and return."
  4973. */
  4974. discard_and_undo:
  4975. tcp_clear_options(&tp->rx_opt);
  4976. tp->rx_opt.mss_clamp = saved_clamp;
  4977. goto discard;
  4978. reset_and_undo:
  4979. tcp_clear_options(&tp->rx_opt);
  4980. tp->rx_opt.mss_clamp = saved_clamp;
  4981. return 1;
  4982. }
  4983. /*
  4984. * This function implements the receiving procedure of RFC 793 for
  4985. * all states except ESTABLISHED and TIME_WAIT.
  4986. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4987. * address independent.
  4988. */
  4989. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4990. struct tcphdr *th, unsigned len)
  4991. {
  4992. struct tcp_sock *tp = tcp_sk(sk);
  4993. struct inet_connection_sock *icsk = inet_csk(sk);
  4994. int queued = 0;
  4995. int res;
  4996. tp->rx_opt.saw_tstamp = 0;
  4997. switch (sk->sk_state) {
  4998. case TCP_CLOSE:
  4999. goto discard;
  5000. case TCP_LISTEN:
  5001. if (th->ack)
  5002. return 1;
  5003. if (th->rst)
  5004. goto discard;
  5005. if (th->syn) {
  5006. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5007. return 1;
  5008. /* Now we have several options: In theory there is
  5009. * nothing else in the frame. KA9Q has an option to
  5010. * send data with the syn, BSD accepts data with the
  5011. * syn up to the [to be] advertised window and
  5012. * Solaris 2.1 gives you a protocol error. For now
  5013. * we just ignore it, that fits the spec precisely
  5014. * and avoids incompatibilities. It would be nice in
  5015. * future to drop through and process the data.
  5016. *
  5017. * Now that TTCP is starting to be used we ought to
  5018. * queue this data.
  5019. * But, this leaves one open to an easy denial of
  5020. * service attack, and SYN cookies can't defend
  5021. * against this problem. So, we drop the data
  5022. * in the interest of security over speed unless
  5023. * it's still in use.
  5024. */
  5025. kfree_skb(skb);
  5026. return 0;
  5027. }
  5028. goto discard;
  5029. case TCP_SYN_SENT:
  5030. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  5031. if (queued >= 0)
  5032. return queued;
  5033. /* Do step6 onward by hand. */
  5034. tcp_urg(sk, skb, th);
  5035. __kfree_skb(skb);
  5036. tcp_data_snd_check(sk);
  5037. return 0;
  5038. }
  5039. res = tcp_validate_incoming(sk, skb, th, 0);
  5040. if (res <= 0)
  5041. return -res;
  5042. /* step 5: check the ACK field */
  5043. if (th->ack) {
  5044. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
  5045. switch (sk->sk_state) {
  5046. case TCP_SYN_RECV:
  5047. if (acceptable) {
  5048. tp->copied_seq = tp->rcv_nxt;
  5049. smp_mb();
  5050. tcp_set_state(sk, TCP_ESTABLISHED);
  5051. sk->sk_state_change(sk);
  5052. /* Note, that this wakeup is only for marginal
  5053. * crossed SYN case. Passively open sockets
  5054. * are not waked up, because sk->sk_sleep ==
  5055. * NULL and sk->sk_socket == NULL.
  5056. */
  5057. if (sk->sk_socket)
  5058. sk_wake_async(sk,
  5059. SOCK_WAKE_IO, POLL_OUT);
  5060. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5061. tp->snd_wnd = ntohs(th->window) <<
  5062. tp->rx_opt.snd_wscale;
  5063. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5064. if (tp->rx_opt.tstamp_ok)
  5065. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5066. /* Make sure socket is routed, for
  5067. * correct metrics.
  5068. */
  5069. icsk->icsk_af_ops->rebuild_header(sk);
  5070. tcp_init_metrics(sk);
  5071. tcp_init_congestion_control(sk);
  5072. /* Prevent spurious tcp_cwnd_restart() on
  5073. * first data packet.
  5074. */
  5075. tp->lsndtime = tcp_time_stamp;
  5076. tcp_mtup_init(sk);
  5077. tcp_initialize_rcv_mss(sk);
  5078. tcp_init_buffer_space(sk);
  5079. tcp_fast_path_on(tp);
  5080. } else {
  5081. return 1;
  5082. }
  5083. break;
  5084. case TCP_FIN_WAIT1:
  5085. if (tp->snd_una == tp->write_seq) {
  5086. tcp_set_state(sk, TCP_FIN_WAIT2);
  5087. sk->sk_shutdown |= SEND_SHUTDOWN;
  5088. dst_confirm(__sk_dst_get(sk));
  5089. if (!sock_flag(sk, SOCK_DEAD))
  5090. /* Wake up lingering close() */
  5091. sk->sk_state_change(sk);
  5092. else {
  5093. int tmo;
  5094. if (tp->linger2 < 0 ||
  5095. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5096. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5097. tcp_done(sk);
  5098. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5099. return 1;
  5100. }
  5101. tmo = tcp_fin_time(sk);
  5102. if (tmo > TCP_TIMEWAIT_LEN) {
  5103. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5104. } else if (th->fin || sock_owned_by_user(sk)) {
  5105. /* Bad case. We could lose such FIN otherwise.
  5106. * It is not a big problem, but it looks confusing
  5107. * and not so rare event. We still can lose it now,
  5108. * if it spins in bh_lock_sock(), but it is really
  5109. * marginal case.
  5110. */
  5111. inet_csk_reset_keepalive_timer(sk, tmo);
  5112. } else {
  5113. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5114. goto discard;
  5115. }
  5116. }
  5117. }
  5118. break;
  5119. case TCP_CLOSING:
  5120. if (tp->snd_una == tp->write_seq) {
  5121. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5122. goto discard;
  5123. }
  5124. break;
  5125. case TCP_LAST_ACK:
  5126. if (tp->snd_una == tp->write_seq) {
  5127. tcp_update_metrics(sk);
  5128. tcp_done(sk);
  5129. goto discard;
  5130. }
  5131. break;
  5132. }
  5133. } else
  5134. goto discard;
  5135. /* step 6: check the URG bit */
  5136. tcp_urg(sk, skb, th);
  5137. /* step 7: process the segment text */
  5138. switch (sk->sk_state) {
  5139. case TCP_CLOSE_WAIT:
  5140. case TCP_CLOSING:
  5141. case TCP_LAST_ACK:
  5142. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5143. break;
  5144. case TCP_FIN_WAIT1:
  5145. case TCP_FIN_WAIT2:
  5146. /* RFC 793 says to queue data in these states,
  5147. * RFC 1122 says we MUST send a reset.
  5148. * BSD 4.4 also does reset.
  5149. */
  5150. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5151. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5152. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5153. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5154. tcp_reset(sk);
  5155. return 1;
  5156. }
  5157. }
  5158. /* Fall through */
  5159. case TCP_ESTABLISHED:
  5160. tcp_data_queue(sk, skb);
  5161. queued = 1;
  5162. break;
  5163. }
  5164. /* tcp_data could move socket to TIME-WAIT */
  5165. if (sk->sk_state != TCP_CLOSE) {
  5166. tcp_data_snd_check(sk);
  5167. tcp_ack_snd_check(sk);
  5168. }
  5169. if (!queued) {
  5170. discard:
  5171. __kfree_skb(skb);
  5172. }
  5173. return 0;
  5174. }
  5175. EXPORT_SYMBOL(tcp_rcv_state_process);