process_32.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. *
  4. * Pentium III FXSR, SSE support
  5. * Gareth Hughes <gareth@valinux.com>, May 2000
  6. */
  7. /*
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <stdarg.h>
  11. #include <linux/cpu.h>
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/fs.h>
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/elfcore.h>
  18. #include <linux/smp.h>
  19. #include <linux/stddef.h>
  20. #include <linux/slab.h>
  21. #include <linux/vmalloc.h>
  22. #include <linux/user.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/utsname.h>
  25. #include <linux/delay.h>
  26. #include <linux/reboot.h>
  27. #include <linux/init.h>
  28. #include <linux/mc146818rtc.h>
  29. #include <linux/module.h>
  30. #include <linux/kallsyms.h>
  31. #include <linux/ptrace.h>
  32. #include <linux/random.h>
  33. #include <linux/personality.h>
  34. #include <linux/tick.h>
  35. #include <linux/percpu.h>
  36. #include <linux/prctl.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/system.h>
  40. #include <asm/io.h>
  41. #include <asm/ldt.h>
  42. #include <asm/processor.h>
  43. #include <asm/i387.h>
  44. #include <asm/desc.h>
  45. #ifdef CONFIG_MATH_EMULATION
  46. #include <asm/math_emu.h>
  47. #endif
  48. #include <linux/err.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/cpu.h>
  51. #include <asm/kdebug.h>
  52. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  53. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  54. EXPORT_PER_CPU_SYMBOL(current_task);
  55. DEFINE_PER_CPU(int, cpu_number);
  56. EXPORT_PER_CPU_SYMBOL(cpu_number);
  57. /*
  58. * Return saved PC of a blocked thread.
  59. */
  60. unsigned long thread_saved_pc(struct task_struct *tsk)
  61. {
  62. return ((unsigned long *)tsk->thread.sp)[3];
  63. }
  64. /*
  65. * The idle thread. There's no useful work to be
  66. * done, so just try to conserve power and have a
  67. * low exit latency (ie sit in a loop waiting for
  68. * somebody to say that they'd like to reschedule)
  69. */
  70. void cpu_idle(void)
  71. {
  72. int cpu = smp_processor_id();
  73. current_thread_info()->status |= TS_POLLING;
  74. /* endless idle loop with no priority at all */
  75. while (1) {
  76. tick_nohz_stop_sched_tick(1);
  77. while (!need_resched()) {
  78. check_pgt_cache();
  79. rmb();
  80. if (rcu_pending(cpu))
  81. rcu_check_callbacks(cpu, 0);
  82. if (cpu_is_offline(cpu))
  83. play_dead();
  84. local_irq_disable();
  85. __get_cpu_var(irq_stat).idle_timestamp = jiffies;
  86. /* Don't trace irqs off for idle */
  87. stop_critical_timings();
  88. pm_idle();
  89. start_critical_timings();
  90. }
  91. tick_nohz_restart_sched_tick();
  92. preempt_enable_no_resched();
  93. schedule();
  94. preempt_disable();
  95. }
  96. }
  97. void __show_registers(struct pt_regs *regs, int all)
  98. {
  99. unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  100. unsigned long d0, d1, d2, d3, d6, d7;
  101. unsigned long sp;
  102. unsigned short ss, gs;
  103. if (user_mode_vm(regs)) {
  104. sp = regs->sp;
  105. ss = regs->ss & 0xffff;
  106. savesegment(gs, gs);
  107. } else {
  108. sp = (unsigned long) (&regs->sp);
  109. savesegment(ss, ss);
  110. savesegment(gs, gs);
  111. }
  112. printk("\n");
  113. printk("Pid: %d, comm: %s %s (%s %.*s)\n",
  114. task_pid_nr(current), current->comm,
  115. print_tainted(), init_utsname()->release,
  116. (int)strcspn(init_utsname()->version, " "),
  117. init_utsname()->version);
  118. printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
  119. (u16)regs->cs, regs->ip, regs->flags,
  120. smp_processor_id());
  121. print_symbol("EIP is at %s\n", regs->ip);
  122. printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  123. regs->ax, regs->bx, regs->cx, regs->dx);
  124. printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
  125. regs->si, regs->di, regs->bp, sp);
  126. printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
  127. (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
  128. if (!all)
  129. return;
  130. cr0 = read_cr0();
  131. cr2 = read_cr2();
  132. cr3 = read_cr3();
  133. cr4 = read_cr4_safe();
  134. printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
  135. cr0, cr2, cr3, cr4);
  136. get_debugreg(d0, 0);
  137. get_debugreg(d1, 1);
  138. get_debugreg(d2, 2);
  139. get_debugreg(d3, 3);
  140. printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
  141. d0, d1, d2, d3);
  142. get_debugreg(d6, 6);
  143. get_debugreg(d7, 7);
  144. printk("DR6: %08lx DR7: %08lx\n",
  145. d6, d7);
  146. }
  147. void show_regs(struct pt_regs *regs)
  148. {
  149. __show_registers(regs, 1);
  150. show_trace(NULL, regs, &regs->sp, regs->bp);
  151. }
  152. /*
  153. * This gets run with %bx containing the
  154. * function to call, and %dx containing
  155. * the "args".
  156. */
  157. extern void kernel_thread_helper(void);
  158. /*
  159. * Create a kernel thread
  160. */
  161. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  162. {
  163. struct pt_regs regs;
  164. memset(&regs, 0, sizeof(regs));
  165. regs.bx = (unsigned long) fn;
  166. regs.dx = (unsigned long) arg;
  167. regs.ds = __USER_DS;
  168. regs.es = __USER_DS;
  169. regs.fs = __KERNEL_PERCPU;
  170. regs.orig_ax = -1;
  171. regs.ip = (unsigned long) kernel_thread_helper;
  172. regs.cs = __KERNEL_CS | get_kernel_rpl();
  173. regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
  174. /* Ok, create the new process.. */
  175. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  176. }
  177. EXPORT_SYMBOL(kernel_thread);
  178. /*
  179. * Free current thread data structures etc..
  180. */
  181. void exit_thread(void)
  182. {
  183. /* The process may have allocated an io port bitmap... nuke it. */
  184. if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
  185. struct task_struct *tsk = current;
  186. struct thread_struct *t = &tsk->thread;
  187. int cpu = get_cpu();
  188. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  189. kfree(t->io_bitmap_ptr);
  190. t->io_bitmap_ptr = NULL;
  191. clear_thread_flag(TIF_IO_BITMAP);
  192. /*
  193. * Careful, clear this in the TSS too:
  194. */
  195. memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
  196. t->io_bitmap_max = 0;
  197. tss->io_bitmap_owner = NULL;
  198. tss->io_bitmap_max = 0;
  199. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  200. put_cpu();
  201. }
  202. }
  203. void flush_thread(void)
  204. {
  205. struct task_struct *tsk = current;
  206. tsk->thread.debugreg0 = 0;
  207. tsk->thread.debugreg1 = 0;
  208. tsk->thread.debugreg2 = 0;
  209. tsk->thread.debugreg3 = 0;
  210. tsk->thread.debugreg6 = 0;
  211. tsk->thread.debugreg7 = 0;
  212. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  213. clear_tsk_thread_flag(tsk, TIF_DEBUG);
  214. /*
  215. * Forget coprocessor state..
  216. */
  217. tsk->fpu_counter = 0;
  218. clear_fpu(tsk);
  219. clear_used_math();
  220. }
  221. void release_thread(struct task_struct *dead_task)
  222. {
  223. BUG_ON(dead_task->mm);
  224. release_vm86_irqs(dead_task);
  225. }
  226. /*
  227. * This gets called before we allocate a new thread and copy
  228. * the current task into it.
  229. */
  230. void prepare_to_copy(struct task_struct *tsk)
  231. {
  232. unlazy_fpu(tsk);
  233. }
  234. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  235. unsigned long unused,
  236. struct task_struct * p, struct pt_regs * regs)
  237. {
  238. struct pt_regs * childregs;
  239. struct task_struct *tsk;
  240. int err;
  241. childregs = task_pt_regs(p);
  242. *childregs = *regs;
  243. childregs->ax = 0;
  244. childregs->sp = sp;
  245. p->thread.sp = (unsigned long) childregs;
  246. p->thread.sp0 = (unsigned long) (childregs+1);
  247. p->thread.ip = (unsigned long) ret_from_fork;
  248. savesegment(gs, p->thread.gs);
  249. tsk = current;
  250. if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
  251. p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
  252. IO_BITMAP_BYTES, GFP_KERNEL);
  253. if (!p->thread.io_bitmap_ptr) {
  254. p->thread.io_bitmap_max = 0;
  255. return -ENOMEM;
  256. }
  257. set_tsk_thread_flag(p, TIF_IO_BITMAP);
  258. }
  259. err = 0;
  260. /*
  261. * Set a new TLS for the child thread?
  262. */
  263. if (clone_flags & CLONE_SETTLS)
  264. err = do_set_thread_area(p, -1,
  265. (struct user_desc __user *)childregs->si, 0);
  266. if (err && p->thread.io_bitmap_ptr) {
  267. kfree(p->thread.io_bitmap_ptr);
  268. p->thread.io_bitmap_max = 0;
  269. }
  270. return err;
  271. }
  272. void
  273. start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
  274. {
  275. __asm__("movl %0, %%gs" :: "r"(0));
  276. regs->fs = 0;
  277. set_fs(USER_DS);
  278. regs->ds = __USER_DS;
  279. regs->es = __USER_DS;
  280. regs->ss = __USER_DS;
  281. regs->cs = __USER_CS;
  282. regs->ip = new_ip;
  283. regs->sp = new_sp;
  284. /*
  285. * Free the old FP and other extended state
  286. */
  287. free_thread_xstate(current);
  288. }
  289. EXPORT_SYMBOL_GPL(start_thread);
  290. static void hard_disable_TSC(void)
  291. {
  292. write_cr4(read_cr4() | X86_CR4_TSD);
  293. }
  294. void disable_TSC(void)
  295. {
  296. preempt_disable();
  297. if (!test_and_set_thread_flag(TIF_NOTSC))
  298. /*
  299. * Must flip the CPU state synchronously with
  300. * TIF_NOTSC in the current running context.
  301. */
  302. hard_disable_TSC();
  303. preempt_enable();
  304. }
  305. static void hard_enable_TSC(void)
  306. {
  307. write_cr4(read_cr4() & ~X86_CR4_TSD);
  308. }
  309. static void enable_TSC(void)
  310. {
  311. preempt_disable();
  312. if (test_and_clear_thread_flag(TIF_NOTSC))
  313. /*
  314. * Must flip the CPU state synchronously with
  315. * TIF_NOTSC in the current running context.
  316. */
  317. hard_enable_TSC();
  318. preempt_enable();
  319. }
  320. int get_tsc_mode(unsigned long adr)
  321. {
  322. unsigned int val;
  323. if (test_thread_flag(TIF_NOTSC))
  324. val = PR_TSC_SIGSEGV;
  325. else
  326. val = PR_TSC_ENABLE;
  327. return put_user(val, (unsigned int __user *)adr);
  328. }
  329. int set_tsc_mode(unsigned int val)
  330. {
  331. if (val == PR_TSC_SIGSEGV)
  332. disable_TSC();
  333. else if (val == PR_TSC_ENABLE)
  334. enable_TSC();
  335. else
  336. return -EINVAL;
  337. return 0;
  338. }
  339. static noinline void
  340. __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  341. struct tss_struct *tss)
  342. {
  343. struct thread_struct *prev, *next;
  344. unsigned long debugctl;
  345. prev = &prev_p->thread;
  346. next = &next_p->thread;
  347. debugctl = prev->debugctlmsr;
  348. if (next->ds_area_msr != prev->ds_area_msr) {
  349. /* we clear debugctl to make sure DS
  350. * is not in use when we change it */
  351. debugctl = 0;
  352. update_debugctlmsr(0);
  353. wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
  354. }
  355. if (next->debugctlmsr != debugctl)
  356. update_debugctlmsr(next->debugctlmsr);
  357. if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
  358. set_debugreg(next->debugreg0, 0);
  359. set_debugreg(next->debugreg1, 1);
  360. set_debugreg(next->debugreg2, 2);
  361. set_debugreg(next->debugreg3, 3);
  362. /* no 4 and 5 */
  363. set_debugreg(next->debugreg6, 6);
  364. set_debugreg(next->debugreg7, 7);
  365. }
  366. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  367. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  368. /* prev and next are different */
  369. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  370. hard_disable_TSC();
  371. else
  372. hard_enable_TSC();
  373. }
  374. #ifdef X86_BTS
  375. if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
  376. ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
  377. if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
  378. ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
  379. #endif
  380. if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  381. /*
  382. * Disable the bitmap via an invalid offset. We still cache
  383. * the previous bitmap owner and the IO bitmap contents:
  384. */
  385. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  386. return;
  387. }
  388. if (likely(next == tss->io_bitmap_owner)) {
  389. /*
  390. * Previous owner of the bitmap (hence the bitmap content)
  391. * matches the next task, we dont have to do anything but
  392. * to set a valid offset in the TSS:
  393. */
  394. tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
  395. return;
  396. }
  397. /*
  398. * Lazy TSS's I/O bitmap copy. We set an invalid offset here
  399. * and we let the task to get a GPF in case an I/O instruction
  400. * is performed. The handler of the GPF will verify that the
  401. * faulting task has a valid I/O bitmap and, it true, does the
  402. * real copy and restart the instruction. This will save us
  403. * redundant copies when the currently switched task does not
  404. * perform any I/O during its timeslice.
  405. */
  406. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
  407. }
  408. /*
  409. * switch_to(x,yn) should switch tasks from x to y.
  410. *
  411. * We fsave/fwait so that an exception goes off at the right time
  412. * (as a call from the fsave or fwait in effect) rather than to
  413. * the wrong process. Lazy FP saving no longer makes any sense
  414. * with modern CPU's, and this simplifies a lot of things (SMP
  415. * and UP become the same).
  416. *
  417. * NOTE! We used to use the x86 hardware context switching. The
  418. * reason for not using it any more becomes apparent when you
  419. * try to recover gracefully from saved state that is no longer
  420. * valid (stale segment register values in particular). With the
  421. * hardware task-switch, there is no way to fix up bad state in
  422. * a reasonable manner.
  423. *
  424. * The fact that Intel documents the hardware task-switching to
  425. * be slow is a fairly red herring - this code is not noticeably
  426. * faster. However, there _is_ some room for improvement here,
  427. * so the performance issues may eventually be a valid point.
  428. * More important, however, is the fact that this allows us much
  429. * more flexibility.
  430. *
  431. * The return value (in %ax) will be the "prev" task after
  432. * the task-switch, and shows up in ret_from_fork in entry.S,
  433. * for example.
  434. */
  435. struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
  436. {
  437. struct thread_struct *prev = &prev_p->thread,
  438. *next = &next_p->thread;
  439. int cpu = smp_processor_id();
  440. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  441. /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
  442. __unlazy_fpu(prev_p);
  443. /* we're going to use this soon, after a few expensive things */
  444. if (next_p->fpu_counter > 5)
  445. prefetch(next->xstate);
  446. /*
  447. * Reload esp0.
  448. */
  449. load_sp0(tss, next);
  450. /*
  451. * Save away %gs. No need to save %fs, as it was saved on the
  452. * stack on entry. No need to save %es and %ds, as those are
  453. * always kernel segments while inside the kernel. Doing this
  454. * before setting the new TLS descriptors avoids the situation
  455. * where we temporarily have non-reloadable segments in %fs
  456. * and %gs. This could be an issue if the NMI handler ever
  457. * used %fs or %gs (it does not today), or if the kernel is
  458. * running inside of a hypervisor layer.
  459. */
  460. savesegment(gs, prev->gs);
  461. /*
  462. * Load the per-thread Thread-Local Storage descriptor.
  463. */
  464. load_TLS(next, cpu);
  465. /*
  466. * Restore IOPL if needed. In normal use, the flags restore
  467. * in the switch assembly will handle this. But if the kernel
  468. * is running virtualized at a non-zero CPL, the popf will
  469. * not restore flags, so it must be done in a separate step.
  470. */
  471. if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
  472. set_iopl_mask(next->iopl);
  473. /*
  474. * Now maybe handle debug registers and/or IO bitmaps
  475. */
  476. if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
  477. task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
  478. __switch_to_xtra(prev_p, next_p, tss);
  479. /*
  480. * Leave lazy mode, flushing any hypercalls made here.
  481. * This must be done before restoring TLS segments so
  482. * the GDT and LDT are properly updated, and must be
  483. * done before math_state_restore, so the TS bit is up
  484. * to date.
  485. */
  486. arch_leave_lazy_cpu_mode();
  487. /* If the task has used fpu the last 5 timeslices, just do a full
  488. * restore of the math state immediately to avoid the trap; the
  489. * chances of needing FPU soon are obviously high now
  490. *
  491. * tsk_used_math() checks prevent calling math_state_restore(),
  492. * which can sleep in the case of !tsk_used_math()
  493. */
  494. if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
  495. math_state_restore();
  496. /*
  497. * Restore %gs if needed (which is common)
  498. */
  499. if (prev->gs | next->gs)
  500. loadsegment(gs, next->gs);
  501. x86_write_percpu(current_task, next_p);
  502. return prev_p;
  503. }
  504. asmlinkage int sys_fork(struct pt_regs regs)
  505. {
  506. return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
  507. }
  508. asmlinkage int sys_clone(struct pt_regs regs)
  509. {
  510. unsigned long clone_flags;
  511. unsigned long newsp;
  512. int __user *parent_tidptr, *child_tidptr;
  513. clone_flags = regs.bx;
  514. newsp = regs.cx;
  515. parent_tidptr = (int __user *)regs.dx;
  516. child_tidptr = (int __user *)regs.di;
  517. if (!newsp)
  518. newsp = regs.sp;
  519. return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
  520. }
  521. /*
  522. * This is trivial, and on the face of it looks like it
  523. * could equally well be done in user mode.
  524. *
  525. * Not so, for quite unobvious reasons - register pressure.
  526. * In user mode vfork() cannot have a stack frame, and if
  527. * done by calling the "clone()" system call directly, you
  528. * do not have enough call-clobbered registers to hold all
  529. * the information you need.
  530. */
  531. asmlinkage int sys_vfork(struct pt_regs regs)
  532. {
  533. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
  534. }
  535. /*
  536. * sys_execve() executes a new program.
  537. */
  538. asmlinkage int sys_execve(struct pt_regs regs)
  539. {
  540. int error;
  541. char * filename;
  542. filename = getname((char __user *) regs.bx);
  543. error = PTR_ERR(filename);
  544. if (IS_ERR(filename))
  545. goto out;
  546. error = do_execve(filename,
  547. (char __user * __user *) regs.cx,
  548. (char __user * __user *) regs.dx,
  549. &regs);
  550. if (error == 0) {
  551. /* Make sure we don't return using sysenter.. */
  552. set_thread_flag(TIF_IRET);
  553. }
  554. putname(filename);
  555. out:
  556. return error;
  557. }
  558. #define top_esp (THREAD_SIZE - sizeof(unsigned long))
  559. #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
  560. unsigned long get_wchan(struct task_struct *p)
  561. {
  562. unsigned long bp, sp, ip;
  563. unsigned long stack_page;
  564. int count = 0;
  565. if (!p || p == current || p->state == TASK_RUNNING)
  566. return 0;
  567. stack_page = (unsigned long)task_stack_page(p);
  568. sp = p->thread.sp;
  569. if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
  570. return 0;
  571. /* include/asm-i386/system.h:switch_to() pushes bp last. */
  572. bp = *(unsigned long *) sp;
  573. do {
  574. if (bp < stack_page || bp > top_ebp+stack_page)
  575. return 0;
  576. ip = *(unsigned long *) (bp+4);
  577. if (!in_sched_functions(ip))
  578. return ip;
  579. bp = *(unsigned long *) bp;
  580. } while (count++ < 16);
  581. return 0;
  582. }
  583. unsigned long arch_align_stack(unsigned long sp)
  584. {
  585. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  586. sp -= get_random_int() % 8192;
  587. return sp & ~0xf;
  588. }
  589. unsigned long arch_randomize_brk(struct mm_struct *mm)
  590. {
  591. unsigned long range_end = mm->brk + 0x02000000;
  592. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  593. }