skbuff.h 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/bug.h>
  20. #include <linux/cache.h>
  21. #include <linux/atomic.h>
  22. #include <asm/types.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/net.h>
  25. #include <linux/textsearch.h>
  26. #include <net/checksum.h>
  27. #include <linux/rcupdate.h>
  28. #include <linux/dmaengine.h>
  29. #include <linux/hrtimer.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/netdev_features.h>
  32. /* Don't change this without changing skb_csum_unnecessary! */
  33. #define CHECKSUM_NONE 0
  34. #define CHECKSUM_UNNECESSARY 1
  35. #define CHECKSUM_COMPLETE 2
  36. #define CHECKSUM_PARTIAL 3
  37. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  38. ~(SMP_CACHE_BYTES - 1))
  39. #define SKB_WITH_OVERHEAD(X) \
  40. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  41. #define SKB_MAX_ORDER(X, ORDER) \
  42. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  43. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  44. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  45. /* return minimum truesize of one skb containing X bytes of data */
  46. #define SKB_TRUESIZE(X) ((X) + \
  47. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  48. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  49. /* A. Checksumming of received packets by device.
  50. *
  51. * NONE: device failed to checksum this packet.
  52. * skb->csum is undefined.
  53. *
  54. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  55. * skb->csum is undefined.
  56. * It is bad option, but, unfortunately, many of vendors do this.
  57. * Apparently with secret goal to sell you new device, when you
  58. * will add new protocol to your host. F.e. IPv6. 8)
  59. *
  60. * COMPLETE: the most generic way. Device supplied checksum of _all_
  61. * the packet as seen by netif_rx in skb->csum.
  62. * NOTE: Even if device supports only some protocols, but
  63. * is able to produce some skb->csum, it MUST use COMPLETE,
  64. * not UNNECESSARY.
  65. *
  66. * PARTIAL: identical to the case for output below. This may occur
  67. * on a packet received directly from another Linux OS, e.g.,
  68. * a virtualised Linux kernel on the same host. The packet can
  69. * be treated in the same way as UNNECESSARY except that on
  70. * output (i.e., forwarding) the checksum must be filled in
  71. * by the OS or the hardware.
  72. *
  73. * B. Checksumming on output.
  74. *
  75. * NONE: skb is checksummed by protocol or csum is not required.
  76. *
  77. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  78. * from skb->csum_start to the end and to record the checksum
  79. * at skb->csum_start + skb->csum_offset.
  80. *
  81. * Device must show its capabilities in dev->features, set
  82. * at device setup time.
  83. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  84. * everything.
  85. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  86. * TCP/UDP over IPv4. Sigh. Vendors like this
  87. * way by an unknown reason. Though, see comment above
  88. * about CHECKSUM_UNNECESSARY. 8)
  89. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  90. *
  91. * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
  92. * that do not want net to perform the checksum calculation should use
  93. * this flag in their outgoing skbs.
  94. * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
  95. * offload. Correspondingly, the FCoE protocol driver
  96. * stack should use CHECKSUM_UNNECESSARY.
  97. *
  98. * Any questions? No questions, good. --ANK
  99. */
  100. struct net_device;
  101. struct scatterlist;
  102. struct pipe_inode_info;
  103. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  104. struct nf_conntrack {
  105. atomic_t use;
  106. };
  107. #endif
  108. #ifdef CONFIG_BRIDGE_NETFILTER
  109. struct nf_bridge_info {
  110. atomic_t use;
  111. struct net_device *physindev;
  112. struct net_device *physoutdev;
  113. unsigned int mask;
  114. unsigned long data[32 / sizeof(unsigned long)];
  115. };
  116. #endif
  117. struct sk_buff_head {
  118. /* These two members must be first. */
  119. struct sk_buff *next;
  120. struct sk_buff *prev;
  121. __u32 qlen;
  122. spinlock_t lock;
  123. };
  124. struct sk_buff;
  125. /* To allow 64K frame to be packed as single skb without frag_list we
  126. * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
  127. * buffers which do not start on a page boundary.
  128. *
  129. * Since GRO uses frags we allocate at least 16 regardless of page
  130. * size.
  131. */
  132. #if (65536/PAGE_SIZE + 1) < 16
  133. #define MAX_SKB_FRAGS 16UL
  134. #else
  135. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
  136. #endif
  137. typedef struct skb_frag_struct skb_frag_t;
  138. struct skb_frag_struct {
  139. struct {
  140. struct page *p;
  141. } page;
  142. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  143. __u32 page_offset;
  144. __u32 size;
  145. #else
  146. __u16 page_offset;
  147. __u16 size;
  148. #endif
  149. };
  150. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  151. {
  152. return frag->size;
  153. }
  154. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  155. {
  156. frag->size = size;
  157. }
  158. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  159. {
  160. frag->size += delta;
  161. }
  162. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  163. {
  164. frag->size -= delta;
  165. }
  166. #define HAVE_HW_TIME_STAMP
  167. /**
  168. * struct skb_shared_hwtstamps - hardware time stamps
  169. * @hwtstamp: hardware time stamp transformed into duration
  170. * since arbitrary point in time
  171. * @syststamp: hwtstamp transformed to system time base
  172. *
  173. * Software time stamps generated by ktime_get_real() are stored in
  174. * skb->tstamp. The relation between the different kinds of time
  175. * stamps is as follows:
  176. *
  177. * syststamp and tstamp can be compared against each other in
  178. * arbitrary combinations. The accuracy of a
  179. * syststamp/tstamp/"syststamp from other device" comparison is
  180. * limited by the accuracy of the transformation into system time
  181. * base. This depends on the device driver and its underlying
  182. * hardware.
  183. *
  184. * hwtstamps can only be compared against other hwtstamps from
  185. * the same device.
  186. *
  187. * This structure is attached to packets as part of the
  188. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  189. */
  190. struct skb_shared_hwtstamps {
  191. ktime_t hwtstamp;
  192. ktime_t syststamp;
  193. };
  194. /* Definitions for tx_flags in struct skb_shared_info */
  195. enum {
  196. /* generate hardware time stamp */
  197. SKBTX_HW_TSTAMP = 1 << 0,
  198. /* generate software time stamp */
  199. SKBTX_SW_TSTAMP = 1 << 1,
  200. /* device driver is going to provide hardware time stamp */
  201. SKBTX_IN_PROGRESS = 1 << 2,
  202. /* ensure the originating sk reference is available on driver level */
  203. SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
  204. /* device driver supports TX zero-copy buffers */
  205. SKBTX_DEV_ZEROCOPY = 1 << 4,
  206. /* generate wifi status information (where possible) */
  207. SKBTX_WIFI_STATUS = 1 << 5,
  208. };
  209. /*
  210. * The callback notifies userspace to release buffers when skb DMA is done in
  211. * lower device, the skb last reference should be 0 when calling this.
  212. * The desc is used to track userspace buffer index.
  213. */
  214. struct ubuf_info {
  215. void (*callback)(void *);
  216. void *arg;
  217. unsigned long desc;
  218. };
  219. /* This data is invariant across clones and lives at
  220. * the end of the header data, ie. at skb->end.
  221. */
  222. struct skb_shared_info {
  223. unsigned char nr_frags;
  224. __u8 tx_flags;
  225. unsigned short gso_size;
  226. /* Warning: this field is not always filled in (UFO)! */
  227. unsigned short gso_segs;
  228. unsigned short gso_type;
  229. struct sk_buff *frag_list;
  230. struct skb_shared_hwtstamps hwtstamps;
  231. __be32 ip6_frag_id;
  232. /*
  233. * Warning : all fields before dataref are cleared in __alloc_skb()
  234. */
  235. atomic_t dataref;
  236. /* Intermediate layers must ensure that destructor_arg
  237. * remains valid until skb destructor */
  238. void * destructor_arg;
  239. /* must be last field, see pskb_expand_head() */
  240. skb_frag_t frags[MAX_SKB_FRAGS];
  241. };
  242. /* We divide dataref into two halves. The higher 16 bits hold references
  243. * to the payload part of skb->data. The lower 16 bits hold references to
  244. * the entire skb->data. A clone of a headerless skb holds the length of
  245. * the header in skb->hdr_len.
  246. *
  247. * All users must obey the rule that the skb->data reference count must be
  248. * greater than or equal to the payload reference count.
  249. *
  250. * Holding a reference to the payload part means that the user does not
  251. * care about modifications to the header part of skb->data.
  252. */
  253. #define SKB_DATAREF_SHIFT 16
  254. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  255. enum {
  256. SKB_FCLONE_UNAVAILABLE,
  257. SKB_FCLONE_ORIG,
  258. SKB_FCLONE_CLONE,
  259. };
  260. enum {
  261. SKB_GSO_TCPV4 = 1 << 0,
  262. SKB_GSO_UDP = 1 << 1,
  263. /* This indicates the skb is from an untrusted source. */
  264. SKB_GSO_DODGY = 1 << 2,
  265. /* This indicates the tcp segment has CWR set. */
  266. SKB_GSO_TCP_ECN = 1 << 3,
  267. SKB_GSO_TCPV6 = 1 << 4,
  268. SKB_GSO_FCOE = 1 << 5,
  269. };
  270. #if BITS_PER_LONG > 32
  271. #define NET_SKBUFF_DATA_USES_OFFSET 1
  272. #endif
  273. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  274. typedef unsigned int sk_buff_data_t;
  275. #else
  276. typedef unsigned char *sk_buff_data_t;
  277. #endif
  278. #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
  279. defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
  280. #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
  281. #endif
  282. /**
  283. * struct sk_buff - socket buffer
  284. * @next: Next buffer in list
  285. * @prev: Previous buffer in list
  286. * @tstamp: Time we arrived
  287. * @sk: Socket we are owned by
  288. * @dev: Device we arrived on/are leaving by
  289. * @cb: Control buffer. Free for use by every layer. Put private vars here
  290. * @_skb_refdst: destination entry (with norefcount bit)
  291. * @sp: the security path, used for xfrm
  292. * @len: Length of actual data
  293. * @data_len: Data length
  294. * @mac_len: Length of link layer header
  295. * @hdr_len: writable header length of cloned skb
  296. * @csum: Checksum (must include start/offset pair)
  297. * @csum_start: Offset from skb->head where checksumming should start
  298. * @csum_offset: Offset from csum_start where checksum should be stored
  299. * @priority: Packet queueing priority
  300. * @local_df: allow local fragmentation
  301. * @cloned: Head may be cloned (check refcnt to be sure)
  302. * @ip_summed: Driver fed us an IP checksum
  303. * @nohdr: Payload reference only, must not modify header
  304. * @nfctinfo: Relationship of this skb to the connection
  305. * @pkt_type: Packet class
  306. * @fclone: skbuff clone status
  307. * @ipvs_property: skbuff is owned by ipvs
  308. * @peeked: this packet has been seen already, so stats have been
  309. * done for it, don't do them again
  310. * @nf_trace: netfilter packet trace flag
  311. * @protocol: Packet protocol from driver
  312. * @destructor: Destruct function
  313. * @nfct: Associated connection, if any
  314. * @nfct_reasm: netfilter conntrack re-assembly pointer
  315. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  316. * @skb_iif: ifindex of device we arrived on
  317. * @tc_index: Traffic control index
  318. * @tc_verd: traffic control verdict
  319. * @rxhash: the packet hash computed on receive
  320. * @queue_mapping: Queue mapping for multiqueue devices
  321. * @ndisc_nodetype: router type (from link layer)
  322. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  323. * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
  324. * ports.
  325. * @wifi_acked_valid: wifi_acked was set
  326. * @wifi_acked: whether frame was acked on wifi or not
  327. * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
  328. * @dma_cookie: a cookie to one of several possible DMA operations
  329. * done by skb DMA functions
  330. * @secmark: security marking
  331. * @mark: Generic packet mark
  332. * @dropcount: total number of sk_receive_queue overflows
  333. * @vlan_tci: vlan tag control information
  334. * @transport_header: Transport layer header
  335. * @network_header: Network layer header
  336. * @mac_header: Link layer header
  337. * @tail: Tail pointer
  338. * @end: End pointer
  339. * @head: Head of buffer
  340. * @data: Data head pointer
  341. * @truesize: Buffer size
  342. * @users: User count - see {datagram,tcp}.c
  343. */
  344. struct sk_buff {
  345. /* These two members must be first. */
  346. struct sk_buff *next;
  347. struct sk_buff *prev;
  348. ktime_t tstamp;
  349. struct sock *sk;
  350. struct net_device *dev;
  351. /*
  352. * This is the control buffer. It is free to use for every
  353. * layer. Please put your private variables there. If you
  354. * want to keep them across layers you have to do a skb_clone()
  355. * first. This is owned by whoever has the skb queued ATM.
  356. */
  357. char cb[48] __aligned(8);
  358. unsigned long _skb_refdst;
  359. #ifdef CONFIG_XFRM
  360. struct sec_path *sp;
  361. #endif
  362. unsigned int len,
  363. data_len;
  364. __u16 mac_len,
  365. hdr_len;
  366. union {
  367. __wsum csum;
  368. struct {
  369. __u16 csum_start;
  370. __u16 csum_offset;
  371. };
  372. };
  373. __u32 priority;
  374. kmemcheck_bitfield_begin(flags1);
  375. __u8 local_df:1,
  376. cloned:1,
  377. ip_summed:2,
  378. nohdr:1,
  379. nfctinfo:3;
  380. __u8 pkt_type:3,
  381. fclone:2,
  382. ipvs_property:1,
  383. peeked:1,
  384. nf_trace:1;
  385. kmemcheck_bitfield_end(flags1);
  386. __be16 protocol;
  387. void (*destructor)(struct sk_buff *skb);
  388. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  389. struct nf_conntrack *nfct;
  390. #endif
  391. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  392. struct sk_buff *nfct_reasm;
  393. #endif
  394. #ifdef CONFIG_BRIDGE_NETFILTER
  395. struct nf_bridge_info *nf_bridge;
  396. #endif
  397. int skb_iif;
  398. __u32 rxhash;
  399. __u16 vlan_tci;
  400. #ifdef CONFIG_NET_SCHED
  401. __u16 tc_index; /* traffic control index */
  402. #ifdef CONFIG_NET_CLS_ACT
  403. __u16 tc_verd; /* traffic control verdict */
  404. #endif
  405. #endif
  406. __u16 queue_mapping;
  407. kmemcheck_bitfield_begin(flags2);
  408. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  409. __u8 ndisc_nodetype:2;
  410. #endif
  411. __u8 ooo_okay:1;
  412. __u8 l4_rxhash:1;
  413. __u8 wifi_acked_valid:1;
  414. __u8 wifi_acked:1;
  415. __u8 no_fcs:1;
  416. /* 9/11 bit hole (depending on ndisc_nodetype presence) */
  417. kmemcheck_bitfield_end(flags2);
  418. #ifdef CONFIG_NET_DMA
  419. dma_cookie_t dma_cookie;
  420. #endif
  421. #ifdef CONFIG_NETWORK_SECMARK
  422. __u32 secmark;
  423. #endif
  424. union {
  425. __u32 mark;
  426. __u32 dropcount;
  427. __u32 avail_size;
  428. };
  429. sk_buff_data_t transport_header;
  430. sk_buff_data_t network_header;
  431. sk_buff_data_t mac_header;
  432. /* These elements must be at the end, see alloc_skb() for details. */
  433. sk_buff_data_t tail;
  434. sk_buff_data_t end;
  435. unsigned char *head,
  436. *data;
  437. unsigned int truesize;
  438. atomic_t users;
  439. };
  440. #ifdef __KERNEL__
  441. /*
  442. * Handling routines are only of interest to the kernel
  443. */
  444. #include <linux/slab.h>
  445. /*
  446. * skb might have a dst pointer attached, refcounted or not.
  447. * _skb_refdst low order bit is set if refcount was _not_ taken
  448. */
  449. #define SKB_DST_NOREF 1UL
  450. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  451. /**
  452. * skb_dst - returns skb dst_entry
  453. * @skb: buffer
  454. *
  455. * Returns skb dst_entry, regardless of reference taken or not.
  456. */
  457. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  458. {
  459. /* If refdst was not refcounted, check we still are in a
  460. * rcu_read_lock section
  461. */
  462. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  463. !rcu_read_lock_held() &&
  464. !rcu_read_lock_bh_held());
  465. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  466. }
  467. /**
  468. * skb_dst_set - sets skb dst
  469. * @skb: buffer
  470. * @dst: dst entry
  471. *
  472. * Sets skb dst, assuming a reference was taken on dst and should
  473. * be released by skb_dst_drop()
  474. */
  475. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  476. {
  477. skb->_skb_refdst = (unsigned long)dst;
  478. }
  479. extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
  480. /**
  481. * skb_dst_is_noref - Test if skb dst isn't refcounted
  482. * @skb: buffer
  483. */
  484. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  485. {
  486. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  487. }
  488. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  489. {
  490. return (struct rtable *)skb_dst(skb);
  491. }
  492. extern void kfree_skb(struct sk_buff *skb);
  493. extern void consume_skb(struct sk_buff *skb);
  494. extern void __kfree_skb(struct sk_buff *skb);
  495. extern struct sk_buff *__alloc_skb(unsigned int size,
  496. gfp_t priority, int fclone, int node);
  497. extern struct sk_buff *build_skb(void *data);
  498. static inline struct sk_buff *alloc_skb(unsigned int size,
  499. gfp_t priority)
  500. {
  501. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  502. }
  503. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  504. gfp_t priority)
  505. {
  506. return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
  507. }
  508. extern void skb_recycle(struct sk_buff *skb);
  509. extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
  510. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  511. extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  512. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  513. gfp_t priority);
  514. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  515. gfp_t priority);
  516. extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
  517. int headroom, gfp_t gfp_mask);
  518. extern int pskb_expand_head(struct sk_buff *skb,
  519. int nhead, int ntail,
  520. gfp_t gfp_mask);
  521. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  522. unsigned int headroom);
  523. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  524. int newheadroom, int newtailroom,
  525. gfp_t priority);
  526. extern int skb_to_sgvec(struct sk_buff *skb,
  527. struct scatterlist *sg, int offset,
  528. int len);
  529. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  530. struct sk_buff **trailer);
  531. extern int skb_pad(struct sk_buff *skb, int pad);
  532. #define dev_kfree_skb(a) consume_skb(a)
  533. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  534. int getfrag(void *from, char *to, int offset,
  535. int len,int odd, struct sk_buff *skb),
  536. void *from, int length);
  537. struct skb_seq_state {
  538. __u32 lower_offset;
  539. __u32 upper_offset;
  540. __u32 frag_idx;
  541. __u32 stepped_offset;
  542. struct sk_buff *root_skb;
  543. struct sk_buff *cur_skb;
  544. __u8 *frag_data;
  545. };
  546. extern void skb_prepare_seq_read(struct sk_buff *skb,
  547. unsigned int from, unsigned int to,
  548. struct skb_seq_state *st);
  549. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  550. struct skb_seq_state *st);
  551. extern void skb_abort_seq_read(struct skb_seq_state *st);
  552. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  553. unsigned int to, struct ts_config *config,
  554. struct ts_state *state);
  555. extern void __skb_get_rxhash(struct sk_buff *skb);
  556. static inline __u32 skb_get_rxhash(struct sk_buff *skb)
  557. {
  558. if (!skb->rxhash)
  559. __skb_get_rxhash(skb);
  560. return skb->rxhash;
  561. }
  562. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  563. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  564. {
  565. return skb->head + skb->end;
  566. }
  567. #else
  568. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  569. {
  570. return skb->end;
  571. }
  572. #endif
  573. /* Internal */
  574. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  575. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  576. {
  577. return &skb_shinfo(skb)->hwtstamps;
  578. }
  579. /**
  580. * skb_queue_empty - check if a queue is empty
  581. * @list: queue head
  582. *
  583. * Returns true if the queue is empty, false otherwise.
  584. */
  585. static inline int skb_queue_empty(const struct sk_buff_head *list)
  586. {
  587. return list->next == (struct sk_buff *)list;
  588. }
  589. /**
  590. * skb_queue_is_last - check if skb is the last entry in the queue
  591. * @list: queue head
  592. * @skb: buffer
  593. *
  594. * Returns true if @skb is the last buffer on the list.
  595. */
  596. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  597. const struct sk_buff *skb)
  598. {
  599. return skb->next == (struct sk_buff *)list;
  600. }
  601. /**
  602. * skb_queue_is_first - check if skb is the first entry in the queue
  603. * @list: queue head
  604. * @skb: buffer
  605. *
  606. * Returns true if @skb is the first buffer on the list.
  607. */
  608. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  609. const struct sk_buff *skb)
  610. {
  611. return skb->prev == (struct sk_buff *)list;
  612. }
  613. /**
  614. * skb_queue_next - return the next packet in the queue
  615. * @list: queue head
  616. * @skb: current buffer
  617. *
  618. * Return the next packet in @list after @skb. It is only valid to
  619. * call this if skb_queue_is_last() evaluates to false.
  620. */
  621. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  622. const struct sk_buff *skb)
  623. {
  624. /* This BUG_ON may seem severe, but if we just return then we
  625. * are going to dereference garbage.
  626. */
  627. BUG_ON(skb_queue_is_last(list, skb));
  628. return skb->next;
  629. }
  630. /**
  631. * skb_queue_prev - return the prev packet in the queue
  632. * @list: queue head
  633. * @skb: current buffer
  634. *
  635. * Return the prev packet in @list before @skb. It is only valid to
  636. * call this if skb_queue_is_first() evaluates to false.
  637. */
  638. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  639. const struct sk_buff *skb)
  640. {
  641. /* This BUG_ON may seem severe, but if we just return then we
  642. * are going to dereference garbage.
  643. */
  644. BUG_ON(skb_queue_is_first(list, skb));
  645. return skb->prev;
  646. }
  647. /**
  648. * skb_get - reference buffer
  649. * @skb: buffer to reference
  650. *
  651. * Makes another reference to a socket buffer and returns a pointer
  652. * to the buffer.
  653. */
  654. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  655. {
  656. atomic_inc(&skb->users);
  657. return skb;
  658. }
  659. /*
  660. * If users == 1, we are the only owner and are can avoid redundant
  661. * atomic change.
  662. */
  663. /**
  664. * skb_cloned - is the buffer a clone
  665. * @skb: buffer to check
  666. *
  667. * Returns true if the buffer was generated with skb_clone() and is
  668. * one of multiple shared copies of the buffer. Cloned buffers are
  669. * shared data so must not be written to under normal circumstances.
  670. */
  671. static inline int skb_cloned(const struct sk_buff *skb)
  672. {
  673. return skb->cloned &&
  674. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  675. }
  676. /**
  677. * skb_header_cloned - is the header a clone
  678. * @skb: buffer to check
  679. *
  680. * Returns true if modifying the header part of the buffer requires
  681. * the data to be copied.
  682. */
  683. static inline int skb_header_cloned(const struct sk_buff *skb)
  684. {
  685. int dataref;
  686. if (!skb->cloned)
  687. return 0;
  688. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  689. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  690. return dataref != 1;
  691. }
  692. /**
  693. * skb_header_release - release reference to header
  694. * @skb: buffer to operate on
  695. *
  696. * Drop a reference to the header part of the buffer. This is done
  697. * by acquiring a payload reference. You must not read from the header
  698. * part of skb->data after this.
  699. */
  700. static inline void skb_header_release(struct sk_buff *skb)
  701. {
  702. BUG_ON(skb->nohdr);
  703. skb->nohdr = 1;
  704. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  705. }
  706. /**
  707. * skb_shared - is the buffer shared
  708. * @skb: buffer to check
  709. *
  710. * Returns true if more than one person has a reference to this
  711. * buffer.
  712. */
  713. static inline int skb_shared(const struct sk_buff *skb)
  714. {
  715. return atomic_read(&skb->users) != 1;
  716. }
  717. /**
  718. * skb_share_check - check if buffer is shared and if so clone it
  719. * @skb: buffer to check
  720. * @pri: priority for memory allocation
  721. *
  722. * If the buffer is shared the buffer is cloned and the old copy
  723. * drops a reference. A new clone with a single reference is returned.
  724. * If the buffer is not shared the original buffer is returned. When
  725. * being called from interrupt status or with spinlocks held pri must
  726. * be GFP_ATOMIC.
  727. *
  728. * NULL is returned on a memory allocation failure.
  729. */
  730. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  731. gfp_t pri)
  732. {
  733. might_sleep_if(pri & __GFP_WAIT);
  734. if (skb_shared(skb)) {
  735. struct sk_buff *nskb = skb_clone(skb, pri);
  736. kfree_skb(skb);
  737. skb = nskb;
  738. }
  739. return skb;
  740. }
  741. /*
  742. * Copy shared buffers into a new sk_buff. We effectively do COW on
  743. * packets to handle cases where we have a local reader and forward
  744. * and a couple of other messy ones. The normal one is tcpdumping
  745. * a packet thats being forwarded.
  746. */
  747. /**
  748. * skb_unshare - make a copy of a shared buffer
  749. * @skb: buffer to check
  750. * @pri: priority for memory allocation
  751. *
  752. * If the socket buffer is a clone then this function creates a new
  753. * copy of the data, drops a reference count on the old copy and returns
  754. * the new copy with the reference count at 1. If the buffer is not a clone
  755. * the original buffer is returned. When called with a spinlock held or
  756. * from interrupt state @pri must be %GFP_ATOMIC
  757. *
  758. * %NULL is returned on a memory allocation failure.
  759. */
  760. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  761. gfp_t pri)
  762. {
  763. might_sleep_if(pri & __GFP_WAIT);
  764. if (skb_cloned(skb)) {
  765. struct sk_buff *nskb = skb_copy(skb, pri);
  766. kfree_skb(skb); /* Free our shared copy */
  767. skb = nskb;
  768. }
  769. return skb;
  770. }
  771. /**
  772. * skb_peek - peek at the head of an &sk_buff_head
  773. * @list_: list to peek at
  774. *
  775. * Peek an &sk_buff. Unlike most other operations you _MUST_
  776. * be careful with this one. A peek leaves the buffer on the
  777. * list and someone else may run off with it. You must hold
  778. * the appropriate locks or have a private queue to do this.
  779. *
  780. * Returns %NULL for an empty list or a pointer to the head element.
  781. * The reference count is not incremented and the reference is therefore
  782. * volatile. Use with caution.
  783. */
  784. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  785. {
  786. struct sk_buff *list = ((const struct sk_buff *)list_)->next;
  787. if (list == (struct sk_buff *)list_)
  788. list = NULL;
  789. return list;
  790. }
  791. /**
  792. * skb_peek_next - peek skb following the given one from a queue
  793. * @skb: skb to start from
  794. * @list_: list to peek at
  795. *
  796. * Returns %NULL when the end of the list is met or a pointer to the
  797. * next element. The reference count is not incremented and the
  798. * reference is therefore volatile. Use with caution.
  799. */
  800. static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
  801. const struct sk_buff_head *list_)
  802. {
  803. struct sk_buff *next = skb->next;
  804. if (next == (struct sk_buff *)list_)
  805. next = NULL;
  806. return next;
  807. }
  808. /**
  809. * skb_peek_tail - peek at the tail of an &sk_buff_head
  810. * @list_: list to peek at
  811. *
  812. * Peek an &sk_buff. Unlike most other operations you _MUST_
  813. * be careful with this one. A peek leaves the buffer on the
  814. * list and someone else may run off with it. You must hold
  815. * the appropriate locks or have a private queue to do this.
  816. *
  817. * Returns %NULL for an empty list or a pointer to the tail element.
  818. * The reference count is not incremented and the reference is therefore
  819. * volatile. Use with caution.
  820. */
  821. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  822. {
  823. struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
  824. if (list == (struct sk_buff *)list_)
  825. list = NULL;
  826. return list;
  827. }
  828. /**
  829. * skb_queue_len - get queue length
  830. * @list_: list to measure
  831. *
  832. * Return the length of an &sk_buff queue.
  833. */
  834. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  835. {
  836. return list_->qlen;
  837. }
  838. /**
  839. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  840. * @list: queue to initialize
  841. *
  842. * This initializes only the list and queue length aspects of
  843. * an sk_buff_head object. This allows to initialize the list
  844. * aspects of an sk_buff_head without reinitializing things like
  845. * the spinlock. It can also be used for on-stack sk_buff_head
  846. * objects where the spinlock is known to not be used.
  847. */
  848. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  849. {
  850. list->prev = list->next = (struct sk_buff *)list;
  851. list->qlen = 0;
  852. }
  853. /*
  854. * This function creates a split out lock class for each invocation;
  855. * this is needed for now since a whole lot of users of the skb-queue
  856. * infrastructure in drivers have different locking usage (in hardirq)
  857. * than the networking core (in softirq only). In the long run either the
  858. * network layer or drivers should need annotation to consolidate the
  859. * main types of usage into 3 classes.
  860. */
  861. static inline void skb_queue_head_init(struct sk_buff_head *list)
  862. {
  863. spin_lock_init(&list->lock);
  864. __skb_queue_head_init(list);
  865. }
  866. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  867. struct lock_class_key *class)
  868. {
  869. skb_queue_head_init(list);
  870. lockdep_set_class(&list->lock, class);
  871. }
  872. /*
  873. * Insert an sk_buff on a list.
  874. *
  875. * The "__skb_xxxx()" functions are the non-atomic ones that
  876. * can only be called with interrupts disabled.
  877. */
  878. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  879. static inline void __skb_insert(struct sk_buff *newsk,
  880. struct sk_buff *prev, struct sk_buff *next,
  881. struct sk_buff_head *list)
  882. {
  883. newsk->next = next;
  884. newsk->prev = prev;
  885. next->prev = prev->next = newsk;
  886. list->qlen++;
  887. }
  888. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  889. struct sk_buff *prev,
  890. struct sk_buff *next)
  891. {
  892. struct sk_buff *first = list->next;
  893. struct sk_buff *last = list->prev;
  894. first->prev = prev;
  895. prev->next = first;
  896. last->next = next;
  897. next->prev = last;
  898. }
  899. /**
  900. * skb_queue_splice - join two skb lists, this is designed for stacks
  901. * @list: the new list to add
  902. * @head: the place to add it in the first list
  903. */
  904. static inline void skb_queue_splice(const struct sk_buff_head *list,
  905. struct sk_buff_head *head)
  906. {
  907. if (!skb_queue_empty(list)) {
  908. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  909. head->qlen += list->qlen;
  910. }
  911. }
  912. /**
  913. * skb_queue_splice - join two skb lists and reinitialise the emptied list
  914. * @list: the new list to add
  915. * @head: the place to add it in the first list
  916. *
  917. * The list at @list is reinitialised
  918. */
  919. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  920. struct sk_buff_head *head)
  921. {
  922. if (!skb_queue_empty(list)) {
  923. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  924. head->qlen += list->qlen;
  925. __skb_queue_head_init(list);
  926. }
  927. }
  928. /**
  929. * skb_queue_splice_tail - join two skb lists, each list being a queue
  930. * @list: the new list to add
  931. * @head: the place to add it in the first list
  932. */
  933. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  934. struct sk_buff_head *head)
  935. {
  936. if (!skb_queue_empty(list)) {
  937. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  938. head->qlen += list->qlen;
  939. }
  940. }
  941. /**
  942. * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
  943. * @list: the new list to add
  944. * @head: the place to add it in the first list
  945. *
  946. * Each of the lists is a queue.
  947. * The list at @list is reinitialised
  948. */
  949. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  950. struct sk_buff_head *head)
  951. {
  952. if (!skb_queue_empty(list)) {
  953. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  954. head->qlen += list->qlen;
  955. __skb_queue_head_init(list);
  956. }
  957. }
  958. /**
  959. * __skb_queue_after - queue a buffer at the list head
  960. * @list: list to use
  961. * @prev: place after this buffer
  962. * @newsk: buffer to queue
  963. *
  964. * Queue a buffer int the middle of a list. This function takes no locks
  965. * and you must therefore hold required locks before calling it.
  966. *
  967. * A buffer cannot be placed on two lists at the same time.
  968. */
  969. static inline void __skb_queue_after(struct sk_buff_head *list,
  970. struct sk_buff *prev,
  971. struct sk_buff *newsk)
  972. {
  973. __skb_insert(newsk, prev, prev->next, list);
  974. }
  975. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  976. struct sk_buff_head *list);
  977. static inline void __skb_queue_before(struct sk_buff_head *list,
  978. struct sk_buff *next,
  979. struct sk_buff *newsk)
  980. {
  981. __skb_insert(newsk, next->prev, next, list);
  982. }
  983. /**
  984. * __skb_queue_head - queue a buffer at the list head
  985. * @list: list to use
  986. * @newsk: buffer to queue
  987. *
  988. * Queue a buffer at the start of a list. This function takes no locks
  989. * and you must therefore hold required locks before calling it.
  990. *
  991. * A buffer cannot be placed on two lists at the same time.
  992. */
  993. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  994. static inline void __skb_queue_head(struct sk_buff_head *list,
  995. struct sk_buff *newsk)
  996. {
  997. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  998. }
  999. /**
  1000. * __skb_queue_tail - queue a buffer at the list tail
  1001. * @list: list to use
  1002. * @newsk: buffer to queue
  1003. *
  1004. * Queue a buffer at the end of a list. This function takes no locks
  1005. * and you must therefore hold required locks before calling it.
  1006. *
  1007. * A buffer cannot be placed on two lists at the same time.
  1008. */
  1009. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  1010. static inline void __skb_queue_tail(struct sk_buff_head *list,
  1011. struct sk_buff *newsk)
  1012. {
  1013. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  1014. }
  1015. /*
  1016. * remove sk_buff from list. _Must_ be called atomically, and with
  1017. * the list known..
  1018. */
  1019. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  1020. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1021. {
  1022. struct sk_buff *next, *prev;
  1023. list->qlen--;
  1024. next = skb->next;
  1025. prev = skb->prev;
  1026. skb->next = skb->prev = NULL;
  1027. next->prev = prev;
  1028. prev->next = next;
  1029. }
  1030. /**
  1031. * __skb_dequeue - remove from the head of the queue
  1032. * @list: list to dequeue from
  1033. *
  1034. * Remove the head of the list. This function does not take any locks
  1035. * so must be used with appropriate locks held only. The head item is
  1036. * returned or %NULL if the list is empty.
  1037. */
  1038. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1039. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1040. {
  1041. struct sk_buff *skb = skb_peek(list);
  1042. if (skb)
  1043. __skb_unlink(skb, list);
  1044. return skb;
  1045. }
  1046. /**
  1047. * __skb_dequeue_tail - remove from the tail of the queue
  1048. * @list: list to dequeue from
  1049. *
  1050. * Remove the tail of the list. This function does not take any locks
  1051. * so must be used with appropriate locks held only. The tail item is
  1052. * returned or %NULL if the list is empty.
  1053. */
  1054. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1055. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1056. {
  1057. struct sk_buff *skb = skb_peek_tail(list);
  1058. if (skb)
  1059. __skb_unlink(skb, list);
  1060. return skb;
  1061. }
  1062. static inline bool skb_is_nonlinear(const struct sk_buff *skb)
  1063. {
  1064. return skb->data_len;
  1065. }
  1066. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1067. {
  1068. return skb->len - skb->data_len;
  1069. }
  1070. static inline int skb_pagelen(const struct sk_buff *skb)
  1071. {
  1072. int i, len = 0;
  1073. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1074. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1075. return len + skb_headlen(skb);
  1076. }
  1077. /**
  1078. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1079. * @skb: buffer containing fragment to be initialised
  1080. * @i: paged fragment index to initialise
  1081. * @page: the page to use for this fragment
  1082. * @off: the offset to the data with @page
  1083. * @size: the length of the data
  1084. *
  1085. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1086. * offset @off within @page.
  1087. *
  1088. * Does not take any additional reference on the fragment.
  1089. */
  1090. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1091. struct page *page, int off, int size)
  1092. {
  1093. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1094. frag->page.p = page;
  1095. frag->page_offset = off;
  1096. skb_frag_size_set(frag, size);
  1097. }
  1098. /**
  1099. * skb_fill_page_desc - initialise a paged fragment in an skb
  1100. * @skb: buffer containing fragment to be initialised
  1101. * @i: paged fragment index to initialise
  1102. * @page: the page to use for this fragment
  1103. * @off: the offset to the data with @page
  1104. * @size: the length of the data
  1105. *
  1106. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1107. * @skb to point to &size bytes at offset @off within @page. In
  1108. * addition updates @skb such that @i is the last fragment.
  1109. *
  1110. * Does not take any additional reference on the fragment.
  1111. */
  1112. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1113. struct page *page, int off, int size)
  1114. {
  1115. __skb_fill_page_desc(skb, i, page, off, size);
  1116. skb_shinfo(skb)->nr_frags = i + 1;
  1117. }
  1118. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  1119. int off, int size, unsigned int truesize);
  1120. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1121. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1122. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1123. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1124. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1125. {
  1126. return skb->head + skb->tail;
  1127. }
  1128. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1129. {
  1130. skb->tail = skb->data - skb->head;
  1131. }
  1132. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1133. {
  1134. skb_reset_tail_pointer(skb);
  1135. skb->tail += offset;
  1136. }
  1137. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1138. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1139. {
  1140. return skb->tail;
  1141. }
  1142. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1143. {
  1144. skb->tail = skb->data;
  1145. }
  1146. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1147. {
  1148. skb->tail = skb->data + offset;
  1149. }
  1150. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1151. /*
  1152. * Add data to an sk_buff
  1153. */
  1154. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1155. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1156. {
  1157. unsigned char *tmp = skb_tail_pointer(skb);
  1158. SKB_LINEAR_ASSERT(skb);
  1159. skb->tail += len;
  1160. skb->len += len;
  1161. return tmp;
  1162. }
  1163. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1164. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1165. {
  1166. skb->data -= len;
  1167. skb->len += len;
  1168. return skb->data;
  1169. }
  1170. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1171. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1172. {
  1173. skb->len -= len;
  1174. BUG_ON(skb->len < skb->data_len);
  1175. return skb->data += len;
  1176. }
  1177. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1178. {
  1179. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1180. }
  1181. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1182. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1183. {
  1184. if (len > skb_headlen(skb) &&
  1185. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1186. return NULL;
  1187. skb->len -= len;
  1188. return skb->data += len;
  1189. }
  1190. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1191. {
  1192. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1193. }
  1194. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1195. {
  1196. if (likely(len <= skb_headlen(skb)))
  1197. return 1;
  1198. if (unlikely(len > skb->len))
  1199. return 0;
  1200. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1201. }
  1202. /**
  1203. * skb_headroom - bytes at buffer head
  1204. * @skb: buffer to check
  1205. *
  1206. * Return the number of bytes of free space at the head of an &sk_buff.
  1207. */
  1208. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1209. {
  1210. return skb->data - skb->head;
  1211. }
  1212. /**
  1213. * skb_tailroom - bytes at buffer end
  1214. * @skb: buffer to check
  1215. *
  1216. * Return the number of bytes of free space at the tail of an sk_buff
  1217. */
  1218. static inline int skb_tailroom(const struct sk_buff *skb)
  1219. {
  1220. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1221. }
  1222. /**
  1223. * skb_availroom - bytes at buffer end
  1224. * @skb: buffer to check
  1225. *
  1226. * Return the number of bytes of free space at the tail of an sk_buff
  1227. * allocated by sk_stream_alloc()
  1228. */
  1229. static inline int skb_availroom(const struct sk_buff *skb)
  1230. {
  1231. return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len;
  1232. }
  1233. /**
  1234. * skb_reserve - adjust headroom
  1235. * @skb: buffer to alter
  1236. * @len: bytes to move
  1237. *
  1238. * Increase the headroom of an empty &sk_buff by reducing the tail
  1239. * room. This is only allowed for an empty buffer.
  1240. */
  1241. static inline void skb_reserve(struct sk_buff *skb, int len)
  1242. {
  1243. skb->data += len;
  1244. skb->tail += len;
  1245. }
  1246. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1247. {
  1248. skb->mac_len = skb->network_header - skb->mac_header;
  1249. }
  1250. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1251. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1252. {
  1253. return skb->head + skb->transport_header;
  1254. }
  1255. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1256. {
  1257. skb->transport_header = skb->data - skb->head;
  1258. }
  1259. static inline void skb_set_transport_header(struct sk_buff *skb,
  1260. const int offset)
  1261. {
  1262. skb_reset_transport_header(skb);
  1263. skb->transport_header += offset;
  1264. }
  1265. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1266. {
  1267. return skb->head + skb->network_header;
  1268. }
  1269. static inline void skb_reset_network_header(struct sk_buff *skb)
  1270. {
  1271. skb->network_header = skb->data - skb->head;
  1272. }
  1273. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1274. {
  1275. skb_reset_network_header(skb);
  1276. skb->network_header += offset;
  1277. }
  1278. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1279. {
  1280. return skb->head + skb->mac_header;
  1281. }
  1282. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1283. {
  1284. return skb->mac_header != ~0U;
  1285. }
  1286. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1287. {
  1288. skb->mac_header = skb->data - skb->head;
  1289. }
  1290. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1291. {
  1292. skb_reset_mac_header(skb);
  1293. skb->mac_header += offset;
  1294. }
  1295. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1296. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1297. {
  1298. return skb->transport_header;
  1299. }
  1300. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1301. {
  1302. skb->transport_header = skb->data;
  1303. }
  1304. static inline void skb_set_transport_header(struct sk_buff *skb,
  1305. const int offset)
  1306. {
  1307. skb->transport_header = skb->data + offset;
  1308. }
  1309. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1310. {
  1311. return skb->network_header;
  1312. }
  1313. static inline void skb_reset_network_header(struct sk_buff *skb)
  1314. {
  1315. skb->network_header = skb->data;
  1316. }
  1317. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1318. {
  1319. skb->network_header = skb->data + offset;
  1320. }
  1321. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1322. {
  1323. return skb->mac_header;
  1324. }
  1325. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1326. {
  1327. return skb->mac_header != NULL;
  1328. }
  1329. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1330. {
  1331. skb->mac_header = skb->data;
  1332. }
  1333. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1334. {
  1335. skb->mac_header = skb->data + offset;
  1336. }
  1337. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1338. static inline void skb_mac_header_rebuild(struct sk_buff *skb)
  1339. {
  1340. if (skb_mac_header_was_set(skb)) {
  1341. const unsigned char *old_mac = skb_mac_header(skb);
  1342. skb_set_mac_header(skb, -skb->mac_len);
  1343. memmove(skb_mac_header(skb), old_mac, skb->mac_len);
  1344. }
  1345. }
  1346. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1347. {
  1348. return skb->csum_start - skb_headroom(skb);
  1349. }
  1350. static inline int skb_transport_offset(const struct sk_buff *skb)
  1351. {
  1352. return skb_transport_header(skb) - skb->data;
  1353. }
  1354. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1355. {
  1356. return skb->transport_header - skb->network_header;
  1357. }
  1358. static inline int skb_network_offset(const struct sk_buff *skb)
  1359. {
  1360. return skb_network_header(skb) - skb->data;
  1361. }
  1362. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1363. {
  1364. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1365. }
  1366. /*
  1367. * CPUs often take a performance hit when accessing unaligned memory
  1368. * locations. The actual performance hit varies, it can be small if the
  1369. * hardware handles it or large if we have to take an exception and fix it
  1370. * in software.
  1371. *
  1372. * Since an ethernet header is 14 bytes network drivers often end up with
  1373. * the IP header at an unaligned offset. The IP header can be aligned by
  1374. * shifting the start of the packet by 2 bytes. Drivers should do this
  1375. * with:
  1376. *
  1377. * skb_reserve(skb, NET_IP_ALIGN);
  1378. *
  1379. * The downside to this alignment of the IP header is that the DMA is now
  1380. * unaligned. On some architectures the cost of an unaligned DMA is high
  1381. * and this cost outweighs the gains made by aligning the IP header.
  1382. *
  1383. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1384. * to be overridden.
  1385. */
  1386. #ifndef NET_IP_ALIGN
  1387. #define NET_IP_ALIGN 2
  1388. #endif
  1389. /*
  1390. * The networking layer reserves some headroom in skb data (via
  1391. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1392. * the header has to grow. In the default case, if the header has to grow
  1393. * 32 bytes or less we avoid the reallocation.
  1394. *
  1395. * Unfortunately this headroom changes the DMA alignment of the resulting
  1396. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1397. * on some architectures. An architecture can override this value,
  1398. * perhaps setting it to a cacheline in size (since that will maintain
  1399. * cacheline alignment of the DMA). It must be a power of 2.
  1400. *
  1401. * Various parts of the networking layer expect at least 32 bytes of
  1402. * headroom, you should not reduce this.
  1403. *
  1404. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1405. * to reduce average number of cache lines per packet.
  1406. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1407. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1408. */
  1409. #ifndef NET_SKB_PAD
  1410. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1411. #endif
  1412. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1413. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1414. {
  1415. if (unlikely(skb_is_nonlinear(skb))) {
  1416. WARN_ON(1);
  1417. return;
  1418. }
  1419. skb->len = len;
  1420. skb_set_tail_pointer(skb, len);
  1421. }
  1422. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1423. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1424. {
  1425. if (skb->data_len)
  1426. return ___pskb_trim(skb, len);
  1427. __skb_trim(skb, len);
  1428. return 0;
  1429. }
  1430. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1431. {
  1432. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1433. }
  1434. /**
  1435. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1436. * @skb: buffer to alter
  1437. * @len: new length
  1438. *
  1439. * This is identical to pskb_trim except that the caller knows that
  1440. * the skb is not cloned so we should never get an error due to out-
  1441. * of-memory.
  1442. */
  1443. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1444. {
  1445. int err = pskb_trim(skb, len);
  1446. BUG_ON(err);
  1447. }
  1448. /**
  1449. * skb_orphan - orphan a buffer
  1450. * @skb: buffer to orphan
  1451. *
  1452. * If a buffer currently has an owner then we call the owner's
  1453. * destructor function and make the @skb unowned. The buffer continues
  1454. * to exist but is no longer charged to its former owner.
  1455. */
  1456. static inline void skb_orphan(struct sk_buff *skb)
  1457. {
  1458. if (skb->destructor)
  1459. skb->destructor(skb);
  1460. skb->destructor = NULL;
  1461. skb->sk = NULL;
  1462. }
  1463. /**
  1464. * __skb_queue_purge - empty a list
  1465. * @list: list to empty
  1466. *
  1467. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1468. * the list and one reference dropped. This function does not take the
  1469. * list lock and the caller must hold the relevant locks to use it.
  1470. */
  1471. extern void skb_queue_purge(struct sk_buff_head *list);
  1472. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1473. {
  1474. struct sk_buff *skb;
  1475. while ((skb = __skb_dequeue(list)) != NULL)
  1476. kfree_skb(skb);
  1477. }
  1478. /**
  1479. * __dev_alloc_skb - allocate an skbuff for receiving
  1480. * @length: length to allocate
  1481. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1482. *
  1483. * Allocate a new &sk_buff and assign it a usage count of one. The
  1484. * buffer has unspecified headroom built in. Users should allocate
  1485. * the headroom they think they need without accounting for the
  1486. * built in space. The built in space is used for optimisations.
  1487. *
  1488. * %NULL is returned if there is no free memory.
  1489. */
  1490. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1491. gfp_t gfp_mask)
  1492. {
  1493. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1494. if (likely(skb))
  1495. skb_reserve(skb, NET_SKB_PAD);
  1496. return skb;
  1497. }
  1498. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1499. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1500. unsigned int length, gfp_t gfp_mask);
  1501. /**
  1502. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1503. * @dev: network device to receive on
  1504. * @length: length to allocate
  1505. *
  1506. * Allocate a new &sk_buff and assign it a usage count of one. The
  1507. * buffer has unspecified headroom built in. Users should allocate
  1508. * the headroom they think they need without accounting for the
  1509. * built in space. The built in space is used for optimisations.
  1510. *
  1511. * %NULL is returned if there is no free memory. Although this function
  1512. * allocates memory it can be called from an interrupt.
  1513. */
  1514. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1515. unsigned int length)
  1516. {
  1517. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1518. }
  1519. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1520. unsigned int length, gfp_t gfp)
  1521. {
  1522. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1523. if (NET_IP_ALIGN && skb)
  1524. skb_reserve(skb, NET_IP_ALIGN);
  1525. return skb;
  1526. }
  1527. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1528. unsigned int length)
  1529. {
  1530. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1531. }
  1532. /**
  1533. * skb_frag_page - retrieve the page refered to by a paged fragment
  1534. * @frag: the paged fragment
  1535. *
  1536. * Returns the &struct page associated with @frag.
  1537. */
  1538. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1539. {
  1540. return frag->page.p;
  1541. }
  1542. /**
  1543. * __skb_frag_ref - take an addition reference on a paged fragment.
  1544. * @frag: the paged fragment
  1545. *
  1546. * Takes an additional reference on the paged fragment @frag.
  1547. */
  1548. static inline void __skb_frag_ref(skb_frag_t *frag)
  1549. {
  1550. get_page(skb_frag_page(frag));
  1551. }
  1552. /**
  1553. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1554. * @skb: the buffer
  1555. * @f: the fragment offset.
  1556. *
  1557. * Takes an additional reference on the @f'th paged fragment of @skb.
  1558. */
  1559. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1560. {
  1561. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1562. }
  1563. /**
  1564. * __skb_frag_unref - release a reference on a paged fragment.
  1565. * @frag: the paged fragment
  1566. *
  1567. * Releases a reference on the paged fragment @frag.
  1568. */
  1569. static inline void __skb_frag_unref(skb_frag_t *frag)
  1570. {
  1571. put_page(skb_frag_page(frag));
  1572. }
  1573. /**
  1574. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1575. * @skb: the buffer
  1576. * @f: the fragment offset
  1577. *
  1578. * Releases a reference on the @f'th paged fragment of @skb.
  1579. */
  1580. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1581. {
  1582. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1583. }
  1584. /**
  1585. * skb_frag_address - gets the address of the data contained in a paged fragment
  1586. * @frag: the paged fragment buffer
  1587. *
  1588. * Returns the address of the data within @frag. The page must already
  1589. * be mapped.
  1590. */
  1591. static inline void *skb_frag_address(const skb_frag_t *frag)
  1592. {
  1593. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1594. }
  1595. /**
  1596. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1597. * @frag: the paged fragment buffer
  1598. *
  1599. * Returns the address of the data within @frag. Checks that the page
  1600. * is mapped and returns %NULL otherwise.
  1601. */
  1602. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1603. {
  1604. void *ptr = page_address(skb_frag_page(frag));
  1605. if (unlikely(!ptr))
  1606. return NULL;
  1607. return ptr + frag->page_offset;
  1608. }
  1609. /**
  1610. * __skb_frag_set_page - sets the page contained in a paged fragment
  1611. * @frag: the paged fragment
  1612. * @page: the page to set
  1613. *
  1614. * Sets the fragment @frag to contain @page.
  1615. */
  1616. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1617. {
  1618. frag->page.p = page;
  1619. }
  1620. /**
  1621. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1622. * @skb: the buffer
  1623. * @f: the fragment offset
  1624. * @page: the page to set
  1625. *
  1626. * Sets the @f'th fragment of @skb to contain @page.
  1627. */
  1628. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1629. struct page *page)
  1630. {
  1631. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1632. }
  1633. /**
  1634. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1635. * @dev: the device to map the fragment to
  1636. * @frag: the paged fragment to map
  1637. * @offset: the offset within the fragment (starting at the
  1638. * fragment's own offset)
  1639. * @size: the number of bytes to map
  1640. * @dir: the direction of the mapping (%PCI_DMA_*)
  1641. *
  1642. * Maps the page associated with @frag to @device.
  1643. */
  1644. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1645. const skb_frag_t *frag,
  1646. size_t offset, size_t size,
  1647. enum dma_data_direction dir)
  1648. {
  1649. return dma_map_page(dev, skb_frag_page(frag),
  1650. frag->page_offset + offset, size, dir);
  1651. }
  1652. static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
  1653. gfp_t gfp_mask)
  1654. {
  1655. return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
  1656. }
  1657. /**
  1658. * skb_clone_writable - is the header of a clone writable
  1659. * @skb: buffer to check
  1660. * @len: length up to which to write
  1661. *
  1662. * Returns true if modifying the header part of the cloned buffer
  1663. * does not requires the data to be copied.
  1664. */
  1665. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  1666. {
  1667. return !skb_header_cloned(skb) &&
  1668. skb_headroom(skb) + len <= skb->hdr_len;
  1669. }
  1670. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1671. int cloned)
  1672. {
  1673. int delta = 0;
  1674. if (headroom < NET_SKB_PAD)
  1675. headroom = NET_SKB_PAD;
  1676. if (headroom > skb_headroom(skb))
  1677. delta = headroom - skb_headroom(skb);
  1678. if (delta || cloned)
  1679. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1680. GFP_ATOMIC);
  1681. return 0;
  1682. }
  1683. /**
  1684. * skb_cow - copy header of skb when it is required
  1685. * @skb: buffer to cow
  1686. * @headroom: needed headroom
  1687. *
  1688. * If the skb passed lacks sufficient headroom or its data part
  1689. * is shared, data is reallocated. If reallocation fails, an error
  1690. * is returned and original skb is not changed.
  1691. *
  1692. * The result is skb with writable area skb->head...skb->tail
  1693. * and at least @headroom of space at head.
  1694. */
  1695. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1696. {
  1697. return __skb_cow(skb, headroom, skb_cloned(skb));
  1698. }
  1699. /**
  1700. * skb_cow_head - skb_cow but only making the head writable
  1701. * @skb: buffer to cow
  1702. * @headroom: needed headroom
  1703. *
  1704. * This function is identical to skb_cow except that we replace the
  1705. * skb_cloned check by skb_header_cloned. It should be used when
  1706. * you only need to push on some header and do not need to modify
  1707. * the data.
  1708. */
  1709. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1710. {
  1711. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1712. }
  1713. /**
  1714. * skb_padto - pad an skbuff up to a minimal size
  1715. * @skb: buffer to pad
  1716. * @len: minimal length
  1717. *
  1718. * Pads up a buffer to ensure the trailing bytes exist and are
  1719. * blanked. If the buffer already contains sufficient data it
  1720. * is untouched. Otherwise it is extended. Returns zero on
  1721. * success. The skb is freed on error.
  1722. */
  1723. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1724. {
  1725. unsigned int size = skb->len;
  1726. if (likely(size >= len))
  1727. return 0;
  1728. return skb_pad(skb, len - size);
  1729. }
  1730. static inline int skb_add_data(struct sk_buff *skb,
  1731. char __user *from, int copy)
  1732. {
  1733. const int off = skb->len;
  1734. if (skb->ip_summed == CHECKSUM_NONE) {
  1735. int err = 0;
  1736. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1737. copy, 0, &err);
  1738. if (!err) {
  1739. skb->csum = csum_block_add(skb->csum, csum, off);
  1740. return 0;
  1741. }
  1742. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1743. return 0;
  1744. __skb_trim(skb, off);
  1745. return -EFAULT;
  1746. }
  1747. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1748. const struct page *page, int off)
  1749. {
  1750. if (i) {
  1751. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1752. return page == skb_frag_page(frag) &&
  1753. off == frag->page_offset + skb_frag_size(frag);
  1754. }
  1755. return 0;
  1756. }
  1757. static inline int __skb_linearize(struct sk_buff *skb)
  1758. {
  1759. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1760. }
  1761. /**
  1762. * skb_linearize - convert paged skb to linear one
  1763. * @skb: buffer to linarize
  1764. *
  1765. * If there is no free memory -ENOMEM is returned, otherwise zero
  1766. * is returned and the old skb data released.
  1767. */
  1768. static inline int skb_linearize(struct sk_buff *skb)
  1769. {
  1770. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1771. }
  1772. /**
  1773. * skb_linearize_cow - make sure skb is linear and writable
  1774. * @skb: buffer to process
  1775. *
  1776. * If there is no free memory -ENOMEM is returned, otherwise zero
  1777. * is returned and the old skb data released.
  1778. */
  1779. static inline int skb_linearize_cow(struct sk_buff *skb)
  1780. {
  1781. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1782. __skb_linearize(skb) : 0;
  1783. }
  1784. /**
  1785. * skb_postpull_rcsum - update checksum for received skb after pull
  1786. * @skb: buffer to update
  1787. * @start: start of data before pull
  1788. * @len: length of data pulled
  1789. *
  1790. * After doing a pull on a received packet, you need to call this to
  1791. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1792. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1793. */
  1794. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1795. const void *start, unsigned int len)
  1796. {
  1797. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1798. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1799. }
  1800. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1801. /**
  1802. * pskb_trim_rcsum - trim received skb and update checksum
  1803. * @skb: buffer to trim
  1804. * @len: new length
  1805. *
  1806. * This is exactly the same as pskb_trim except that it ensures the
  1807. * checksum of received packets are still valid after the operation.
  1808. */
  1809. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1810. {
  1811. if (likely(len >= skb->len))
  1812. return 0;
  1813. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1814. skb->ip_summed = CHECKSUM_NONE;
  1815. return __pskb_trim(skb, len);
  1816. }
  1817. #define skb_queue_walk(queue, skb) \
  1818. for (skb = (queue)->next; \
  1819. skb != (struct sk_buff *)(queue); \
  1820. skb = skb->next)
  1821. #define skb_queue_walk_safe(queue, skb, tmp) \
  1822. for (skb = (queue)->next, tmp = skb->next; \
  1823. skb != (struct sk_buff *)(queue); \
  1824. skb = tmp, tmp = skb->next)
  1825. #define skb_queue_walk_from(queue, skb) \
  1826. for (; skb != (struct sk_buff *)(queue); \
  1827. skb = skb->next)
  1828. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  1829. for (tmp = skb->next; \
  1830. skb != (struct sk_buff *)(queue); \
  1831. skb = tmp, tmp = skb->next)
  1832. #define skb_queue_reverse_walk(queue, skb) \
  1833. for (skb = (queue)->prev; \
  1834. skb != (struct sk_buff *)(queue); \
  1835. skb = skb->prev)
  1836. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  1837. for (skb = (queue)->prev, tmp = skb->prev; \
  1838. skb != (struct sk_buff *)(queue); \
  1839. skb = tmp, tmp = skb->prev)
  1840. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  1841. for (tmp = skb->prev; \
  1842. skb != (struct sk_buff *)(queue); \
  1843. skb = tmp, tmp = skb->prev)
  1844. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  1845. {
  1846. return skb_shinfo(skb)->frag_list != NULL;
  1847. }
  1848. static inline void skb_frag_list_init(struct sk_buff *skb)
  1849. {
  1850. skb_shinfo(skb)->frag_list = NULL;
  1851. }
  1852. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  1853. {
  1854. frag->next = skb_shinfo(skb)->frag_list;
  1855. skb_shinfo(skb)->frag_list = frag;
  1856. }
  1857. #define skb_walk_frags(skb, iter) \
  1858. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  1859. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1860. int *peeked, int *off, int *err);
  1861. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1862. int noblock, int *err);
  1863. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1864. struct poll_table_struct *wait);
  1865. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1866. int offset, struct iovec *to,
  1867. int size);
  1868. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1869. int hlen,
  1870. struct iovec *iov);
  1871. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  1872. int offset,
  1873. const struct iovec *from,
  1874. int from_offset,
  1875. int len);
  1876. extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
  1877. int offset,
  1878. const struct iovec *to,
  1879. int to_offset,
  1880. int size);
  1881. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1882. extern void skb_free_datagram_locked(struct sock *sk,
  1883. struct sk_buff *skb);
  1884. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1885. unsigned int flags);
  1886. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1887. int len, __wsum csum);
  1888. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1889. void *to, int len);
  1890. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1891. const void *from, int len);
  1892. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1893. int offset, u8 *to, int len,
  1894. __wsum csum);
  1895. extern int skb_splice_bits(struct sk_buff *skb,
  1896. unsigned int offset,
  1897. struct pipe_inode_info *pipe,
  1898. unsigned int len,
  1899. unsigned int flags);
  1900. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1901. extern void skb_split(struct sk_buff *skb,
  1902. struct sk_buff *skb1, const u32 len);
  1903. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  1904. int shiftlen);
  1905. extern struct sk_buff *skb_segment(struct sk_buff *skb,
  1906. netdev_features_t features);
  1907. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1908. int len, void *buffer)
  1909. {
  1910. int hlen = skb_headlen(skb);
  1911. if (hlen - offset >= len)
  1912. return skb->data + offset;
  1913. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1914. return NULL;
  1915. return buffer;
  1916. }
  1917. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1918. void *to,
  1919. const unsigned int len)
  1920. {
  1921. memcpy(to, skb->data, len);
  1922. }
  1923. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1924. const int offset, void *to,
  1925. const unsigned int len)
  1926. {
  1927. memcpy(to, skb->data + offset, len);
  1928. }
  1929. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1930. const void *from,
  1931. const unsigned int len)
  1932. {
  1933. memcpy(skb->data, from, len);
  1934. }
  1935. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1936. const int offset,
  1937. const void *from,
  1938. const unsigned int len)
  1939. {
  1940. memcpy(skb->data + offset, from, len);
  1941. }
  1942. extern void skb_init(void);
  1943. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  1944. {
  1945. return skb->tstamp;
  1946. }
  1947. /**
  1948. * skb_get_timestamp - get timestamp from a skb
  1949. * @skb: skb to get stamp from
  1950. * @stamp: pointer to struct timeval to store stamp in
  1951. *
  1952. * Timestamps are stored in the skb as offsets to a base timestamp.
  1953. * This function converts the offset back to a struct timeval and stores
  1954. * it in stamp.
  1955. */
  1956. static inline void skb_get_timestamp(const struct sk_buff *skb,
  1957. struct timeval *stamp)
  1958. {
  1959. *stamp = ktime_to_timeval(skb->tstamp);
  1960. }
  1961. static inline void skb_get_timestampns(const struct sk_buff *skb,
  1962. struct timespec *stamp)
  1963. {
  1964. *stamp = ktime_to_timespec(skb->tstamp);
  1965. }
  1966. static inline void __net_timestamp(struct sk_buff *skb)
  1967. {
  1968. skb->tstamp = ktime_get_real();
  1969. }
  1970. static inline ktime_t net_timedelta(ktime_t t)
  1971. {
  1972. return ktime_sub(ktime_get_real(), t);
  1973. }
  1974. static inline ktime_t net_invalid_timestamp(void)
  1975. {
  1976. return ktime_set(0, 0);
  1977. }
  1978. extern void skb_timestamping_init(void);
  1979. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  1980. extern void skb_clone_tx_timestamp(struct sk_buff *skb);
  1981. extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
  1982. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  1983. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  1984. {
  1985. }
  1986. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  1987. {
  1988. return false;
  1989. }
  1990. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  1991. /**
  1992. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  1993. *
  1994. * PHY drivers may accept clones of transmitted packets for
  1995. * timestamping via their phy_driver.txtstamp method. These drivers
  1996. * must call this function to return the skb back to the stack, with
  1997. * or without a timestamp.
  1998. *
  1999. * @skb: clone of the the original outgoing packet
  2000. * @hwtstamps: hardware time stamps, may be NULL if not available
  2001. *
  2002. */
  2003. void skb_complete_tx_timestamp(struct sk_buff *skb,
  2004. struct skb_shared_hwtstamps *hwtstamps);
  2005. /**
  2006. * skb_tstamp_tx - queue clone of skb with send time stamps
  2007. * @orig_skb: the original outgoing packet
  2008. * @hwtstamps: hardware time stamps, may be NULL if not available
  2009. *
  2010. * If the skb has a socket associated, then this function clones the
  2011. * skb (thus sharing the actual data and optional structures), stores
  2012. * the optional hardware time stamping information (if non NULL) or
  2013. * generates a software time stamp (otherwise), then queues the clone
  2014. * to the error queue of the socket. Errors are silently ignored.
  2015. */
  2016. extern void skb_tstamp_tx(struct sk_buff *orig_skb,
  2017. struct skb_shared_hwtstamps *hwtstamps);
  2018. static inline void sw_tx_timestamp(struct sk_buff *skb)
  2019. {
  2020. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  2021. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  2022. skb_tstamp_tx(skb, NULL);
  2023. }
  2024. /**
  2025. * skb_tx_timestamp() - Driver hook for transmit timestamping
  2026. *
  2027. * Ethernet MAC Drivers should call this function in their hard_xmit()
  2028. * function immediately before giving the sk_buff to the MAC hardware.
  2029. *
  2030. * @skb: A socket buffer.
  2031. */
  2032. static inline void skb_tx_timestamp(struct sk_buff *skb)
  2033. {
  2034. skb_clone_tx_timestamp(skb);
  2035. sw_tx_timestamp(skb);
  2036. }
  2037. /**
  2038. * skb_complete_wifi_ack - deliver skb with wifi status
  2039. *
  2040. * @skb: the original outgoing packet
  2041. * @acked: ack status
  2042. *
  2043. */
  2044. void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
  2045. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  2046. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  2047. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  2048. {
  2049. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  2050. }
  2051. /**
  2052. * skb_checksum_complete - Calculate checksum of an entire packet
  2053. * @skb: packet to process
  2054. *
  2055. * This function calculates the checksum over the entire packet plus
  2056. * the value of skb->csum. The latter can be used to supply the
  2057. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2058. * checksum.
  2059. *
  2060. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2061. * this function can be used to verify that checksum on received
  2062. * packets. In that case the function should return zero if the
  2063. * checksum is correct. In particular, this function will return zero
  2064. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2065. * hardware has already verified the correctness of the checksum.
  2066. */
  2067. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2068. {
  2069. return skb_csum_unnecessary(skb) ?
  2070. 0 : __skb_checksum_complete(skb);
  2071. }
  2072. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2073. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2074. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2075. {
  2076. if (nfct && atomic_dec_and_test(&nfct->use))
  2077. nf_conntrack_destroy(nfct);
  2078. }
  2079. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2080. {
  2081. if (nfct)
  2082. atomic_inc(&nfct->use);
  2083. }
  2084. #endif
  2085. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2086. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  2087. {
  2088. if (skb)
  2089. atomic_inc(&skb->users);
  2090. }
  2091. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  2092. {
  2093. if (skb)
  2094. kfree_skb(skb);
  2095. }
  2096. #endif
  2097. #ifdef CONFIG_BRIDGE_NETFILTER
  2098. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2099. {
  2100. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2101. kfree(nf_bridge);
  2102. }
  2103. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2104. {
  2105. if (nf_bridge)
  2106. atomic_inc(&nf_bridge->use);
  2107. }
  2108. #endif /* CONFIG_BRIDGE_NETFILTER */
  2109. static inline void nf_reset(struct sk_buff *skb)
  2110. {
  2111. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2112. nf_conntrack_put(skb->nfct);
  2113. skb->nfct = NULL;
  2114. #endif
  2115. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2116. nf_conntrack_put_reasm(skb->nfct_reasm);
  2117. skb->nfct_reasm = NULL;
  2118. #endif
  2119. #ifdef CONFIG_BRIDGE_NETFILTER
  2120. nf_bridge_put(skb->nf_bridge);
  2121. skb->nf_bridge = NULL;
  2122. #endif
  2123. }
  2124. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2125. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2126. {
  2127. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2128. dst->nfct = src->nfct;
  2129. nf_conntrack_get(src->nfct);
  2130. dst->nfctinfo = src->nfctinfo;
  2131. #endif
  2132. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2133. dst->nfct_reasm = src->nfct_reasm;
  2134. nf_conntrack_get_reasm(src->nfct_reasm);
  2135. #endif
  2136. #ifdef CONFIG_BRIDGE_NETFILTER
  2137. dst->nf_bridge = src->nf_bridge;
  2138. nf_bridge_get(src->nf_bridge);
  2139. #endif
  2140. }
  2141. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2142. {
  2143. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2144. nf_conntrack_put(dst->nfct);
  2145. #endif
  2146. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2147. nf_conntrack_put_reasm(dst->nfct_reasm);
  2148. #endif
  2149. #ifdef CONFIG_BRIDGE_NETFILTER
  2150. nf_bridge_put(dst->nf_bridge);
  2151. #endif
  2152. __nf_copy(dst, src);
  2153. }
  2154. #ifdef CONFIG_NETWORK_SECMARK
  2155. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2156. {
  2157. to->secmark = from->secmark;
  2158. }
  2159. static inline void skb_init_secmark(struct sk_buff *skb)
  2160. {
  2161. skb->secmark = 0;
  2162. }
  2163. #else
  2164. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2165. { }
  2166. static inline void skb_init_secmark(struct sk_buff *skb)
  2167. { }
  2168. #endif
  2169. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2170. {
  2171. skb->queue_mapping = queue_mapping;
  2172. }
  2173. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2174. {
  2175. return skb->queue_mapping;
  2176. }
  2177. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2178. {
  2179. to->queue_mapping = from->queue_mapping;
  2180. }
  2181. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2182. {
  2183. skb->queue_mapping = rx_queue + 1;
  2184. }
  2185. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2186. {
  2187. return skb->queue_mapping - 1;
  2188. }
  2189. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2190. {
  2191. return skb->queue_mapping != 0;
  2192. }
  2193. extern u16 __skb_tx_hash(const struct net_device *dev,
  2194. const struct sk_buff *skb,
  2195. unsigned int num_tx_queues);
  2196. #ifdef CONFIG_XFRM
  2197. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2198. {
  2199. return skb->sp;
  2200. }
  2201. #else
  2202. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2203. {
  2204. return NULL;
  2205. }
  2206. #endif
  2207. static inline bool skb_is_gso(const struct sk_buff *skb)
  2208. {
  2209. return skb_shinfo(skb)->gso_size;
  2210. }
  2211. static inline bool skb_is_gso_v6(const struct sk_buff *skb)
  2212. {
  2213. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2214. }
  2215. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2216. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2217. {
  2218. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2219. * wanted then gso_type will be set. */
  2220. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  2221. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2222. unlikely(shinfo->gso_type == 0)) {
  2223. __skb_warn_lro_forwarding(skb);
  2224. return true;
  2225. }
  2226. return false;
  2227. }
  2228. static inline void skb_forward_csum(struct sk_buff *skb)
  2229. {
  2230. /* Unfortunately we don't support this one. Any brave souls? */
  2231. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2232. skb->ip_summed = CHECKSUM_NONE;
  2233. }
  2234. /**
  2235. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2236. * @skb: skb to check
  2237. *
  2238. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2239. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2240. * use this helper, to document places where we make this assertion.
  2241. */
  2242. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  2243. {
  2244. #ifdef DEBUG
  2245. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2246. #endif
  2247. }
  2248. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2249. static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
  2250. {
  2251. if (irqs_disabled())
  2252. return false;
  2253. if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
  2254. return false;
  2255. if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
  2256. return false;
  2257. skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
  2258. if (skb_end_pointer(skb) - skb->head < skb_size)
  2259. return false;
  2260. if (skb_shared(skb) || skb_cloned(skb))
  2261. return false;
  2262. return true;
  2263. }
  2264. #endif /* __KERNEL__ */
  2265. #endif /* _LINUX_SKBUFF_H */