pci_sabre.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856
  1. /* pci_sabre.c: Sabre specific PCI controller support.
  2. *
  3. * Copyright (C) 1997, 1998, 1999, 2007 David S. Miller (davem@davemloft.net)
  4. * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
  5. * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/types.h>
  9. #include <linux/pci.h>
  10. #include <linux/init.h>
  11. #include <linux/slab.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/of_device.h>
  14. #include <asm/apb.h>
  15. #include <asm/iommu.h>
  16. #include <asm/irq.h>
  17. #include <asm/prom.h>
  18. #include "pci_impl.h"
  19. #include "iommu_common.h"
  20. #include "psycho_common.h"
  21. #define DRIVER_NAME "sabre"
  22. #define PFX DRIVER_NAME ": "
  23. /* All SABRE registers are 64-bits. The following accessor
  24. * routines are how they are accessed. The REG parameter
  25. * is a physical address.
  26. */
  27. #define sabre_read(__reg) \
  28. ({ u64 __ret; \
  29. __asm__ __volatile__("ldxa [%1] %2, %0" \
  30. : "=r" (__ret) \
  31. : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
  32. : "memory"); \
  33. __ret; \
  34. })
  35. #define sabre_write(__reg, __val) \
  36. __asm__ __volatile__("stxa %0, [%1] %2" \
  37. : /* no outputs */ \
  38. : "r" (__val), "r" (__reg), \
  39. "i" (ASI_PHYS_BYPASS_EC_E) \
  40. : "memory")
  41. /* SABRE PCI controller register offsets and definitions. */
  42. #define SABRE_UE_AFSR 0x0030UL
  43. #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
  44. #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
  45. #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
  46. #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
  47. #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
  48. #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
  49. #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
  50. #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
  51. #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
  52. #define SABRE_UECE_AFAR 0x0038UL
  53. #define SABRE_CE_AFSR 0x0040UL
  54. #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
  55. #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
  56. #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
  57. #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
  58. #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
  59. #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
  60. #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
  61. #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
  62. #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
  63. #define SABRE_IOMMU_CONTROL 0x0200UL
  64. #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
  65. #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
  66. #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
  67. #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
  68. #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
  69. #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
  70. #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
  71. #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
  72. #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
  73. #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
  74. #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
  75. #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
  76. #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
  77. #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
  78. #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
  79. #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
  80. #define SABRE_IOMMU_TSBBASE 0x0208UL
  81. #define SABRE_IOMMU_FLUSH 0x0210UL
  82. #define SABRE_IMAP_A_SLOT0 0x0c00UL
  83. #define SABRE_IMAP_B_SLOT0 0x0c20UL
  84. #define SABRE_IMAP_SCSI 0x1000UL
  85. #define SABRE_IMAP_ETH 0x1008UL
  86. #define SABRE_IMAP_BPP 0x1010UL
  87. #define SABRE_IMAP_AU_REC 0x1018UL
  88. #define SABRE_IMAP_AU_PLAY 0x1020UL
  89. #define SABRE_IMAP_PFAIL 0x1028UL
  90. #define SABRE_IMAP_KMS 0x1030UL
  91. #define SABRE_IMAP_FLPY 0x1038UL
  92. #define SABRE_IMAP_SHW 0x1040UL
  93. #define SABRE_IMAP_KBD 0x1048UL
  94. #define SABRE_IMAP_MS 0x1050UL
  95. #define SABRE_IMAP_SER 0x1058UL
  96. #define SABRE_IMAP_UE 0x1070UL
  97. #define SABRE_IMAP_CE 0x1078UL
  98. #define SABRE_IMAP_PCIERR 0x1080UL
  99. #define SABRE_IMAP_GFX 0x1098UL
  100. #define SABRE_IMAP_EUPA 0x10a0UL
  101. #define SABRE_ICLR_A_SLOT0 0x1400UL
  102. #define SABRE_ICLR_B_SLOT0 0x1480UL
  103. #define SABRE_ICLR_SCSI 0x1800UL
  104. #define SABRE_ICLR_ETH 0x1808UL
  105. #define SABRE_ICLR_BPP 0x1810UL
  106. #define SABRE_ICLR_AU_REC 0x1818UL
  107. #define SABRE_ICLR_AU_PLAY 0x1820UL
  108. #define SABRE_ICLR_PFAIL 0x1828UL
  109. #define SABRE_ICLR_KMS 0x1830UL
  110. #define SABRE_ICLR_FLPY 0x1838UL
  111. #define SABRE_ICLR_SHW 0x1840UL
  112. #define SABRE_ICLR_KBD 0x1848UL
  113. #define SABRE_ICLR_MS 0x1850UL
  114. #define SABRE_ICLR_SER 0x1858UL
  115. #define SABRE_ICLR_UE 0x1870UL
  116. #define SABRE_ICLR_CE 0x1878UL
  117. #define SABRE_ICLR_PCIERR 0x1880UL
  118. #define SABRE_WRSYNC 0x1c20UL
  119. #define SABRE_PCICTRL 0x2000UL
  120. #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
  121. #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
  122. #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
  123. #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
  124. #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
  125. #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
  126. #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
  127. #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
  128. #define SABRE_PIOAFSR 0x2010UL
  129. #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
  130. #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
  131. #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
  132. #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
  133. #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
  134. #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
  135. #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
  136. #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
  137. #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
  138. #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
  139. #define SABRE_PIOAFAR 0x2018UL
  140. #define SABRE_PCIDIAG 0x2020UL
  141. #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
  142. #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
  143. #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
  144. #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
  145. #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
  146. #define SABRE_PCITASR 0x2028UL
  147. #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
  148. #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
  149. #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
  150. #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
  151. #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
  152. #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
  153. #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
  154. #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
  155. #define SABRE_PIOBUF_DIAG 0x5000UL
  156. #define SABRE_DMABUF_DIAGLO 0x5100UL
  157. #define SABRE_DMABUF_DIAGHI 0x51c0UL
  158. #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
  159. #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
  160. #define SABRE_IOMMU_VADIAG 0xa400UL
  161. #define SABRE_IOMMU_TCDIAG 0xa408UL
  162. #define SABRE_IOMMU_TAG 0xa580UL
  163. #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
  164. #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
  165. #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
  166. #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
  167. #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
  168. #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
  169. #define SABRE_IOMMU_DATA 0xa600UL
  170. #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
  171. #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
  172. #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
  173. #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
  174. #define SABRE_PCI_IRQSTATE 0xa800UL
  175. #define SABRE_OBIO_IRQSTATE 0xa808UL
  176. #define SABRE_FFBCFG 0xf000UL
  177. #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
  178. #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
  179. #define SABRE_MCCTRL0 0xf010UL
  180. #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
  181. #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
  182. #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
  183. #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
  184. #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
  185. #define SABRE_MCCTRL1 0xf018UL
  186. #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
  187. #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
  188. #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
  189. #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
  190. #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
  191. #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
  192. #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
  193. #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
  194. #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
  195. #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
  196. #define SABRE_RESETCTRL 0xf020UL
  197. #define SABRE_CONFIGSPACE 0x001000000UL
  198. #define SABRE_IOSPACE 0x002000000UL
  199. #define SABRE_IOSPACE_SIZE 0x000ffffffUL
  200. #define SABRE_MEMSPACE 0x100000000UL
  201. #define SABRE_MEMSPACE_SIZE 0x07fffffffUL
  202. static int hummingbird_p;
  203. static struct pci_bus *sabre_root_bus;
  204. /* SABRE error handling support. */
  205. static void sabre_check_iommu_error(struct pci_pbm_info *pbm,
  206. unsigned long afsr,
  207. unsigned long afar)
  208. {
  209. struct iommu *iommu = pbm->iommu;
  210. unsigned long iommu_tag[16];
  211. unsigned long iommu_data[16];
  212. unsigned long flags;
  213. u64 control;
  214. int i;
  215. spin_lock_irqsave(&iommu->lock, flags);
  216. control = sabre_read(iommu->iommu_control);
  217. if (control & SABRE_IOMMUCTRL_ERR) {
  218. char *type_string;
  219. /* Clear the error encountered bit.
  220. * NOTE: On Sabre this is write 1 to clear,
  221. * which is different from Psycho.
  222. */
  223. sabre_write(iommu->iommu_control, control);
  224. switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
  225. case 1:
  226. type_string = "Invalid Error";
  227. break;
  228. case 3:
  229. type_string = "ECC Error";
  230. break;
  231. default:
  232. type_string = "Unknown";
  233. break;
  234. };
  235. printk("%s: IOMMU Error, type[%s]\n",
  236. pbm->name, type_string);
  237. /* Enter diagnostic mode and probe for error'd
  238. * entries in the IOTLB.
  239. */
  240. control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
  241. sabre_write(iommu->iommu_control,
  242. (control | SABRE_IOMMUCTRL_DENAB));
  243. for (i = 0; i < 16; i++) {
  244. unsigned long base = pbm->controller_regs;
  245. iommu_tag[i] =
  246. sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
  247. iommu_data[i] =
  248. sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
  249. sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
  250. sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
  251. }
  252. sabre_write(iommu->iommu_control, control);
  253. for (i = 0; i < 16; i++) {
  254. unsigned long tag, data;
  255. tag = iommu_tag[i];
  256. if (!(tag & SABRE_IOMMUTAG_ERR))
  257. continue;
  258. data = iommu_data[i];
  259. switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
  260. case 1:
  261. type_string = "Invalid Error";
  262. break;
  263. case 3:
  264. type_string = "ECC Error";
  265. break;
  266. default:
  267. type_string = "Unknown";
  268. break;
  269. };
  270. printk("%s: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
  271. pbm->name, i, tag, type_string,
  272. ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
  273. ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
  274. ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
  275. printk("%s: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
  276. pbm->name, i, data,
  277. ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
  278. ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
  279. ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
  280. ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
  281. }
  282. }
  283. spin_unlock_irqrestore(&iommu->lock, flags);
  284. }
  285. static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
  286. {
  287. struct pci_pbm_info *pbm = dev_id;
  288. unsigned long afsr_reg = pbm->controller_regs + SABRE_UE_AFSR;
  289. unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
  290. unsigned long afsr, afar, error_bits;
  291. int reported;
  292. /* Latch uncorrectable error status. */
  293. afar = sabre_read(afar_reg);
  294. afsr = sabre_read(afsr_reg);
  295. /* Clear the primary/secondary error status bits. */
  296. error_bits = afsr &
  297. (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
  298. SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
  299. SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
  300. if (!error_bits)
  301. return IRQ_NONE;
  302. sabre_write(afsr_reg, error_bits);
  303. /* Log the error. */
  304. printk("%s: Uncorrectable Error, primary error type[%s%s]\n",
  305. pbm->name,
  306. ((error_bits & SABRE_UEAFSR_PDRD) ?
  307. "DMA Read" :
  308. ((error_bits & SABRE_UEAFSR_PDWR) ?
  309. "DMA Write" : "???")),
  310. ((error_bits & SABRE_UEAFSR_PDTE) ?
  311. ":Translation Error" : ""));
  312. printk("%s: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
  313. pbm->name,
  314. (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
  315. (afsr & SABRE_UEAFSR_OFF) >> 29UL,
  316. ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
  317. printk("%s: UE AFAR [%016lx]\n", pbm->name, afar);
  318. printk("%s: UE Secondary errors [", pbm->name);
  319. reported = 0;
  320. if (afsr & SABRE_UEAFSR_SDRD) {
  321. reported++;
  322. printk("(DMA Read)");
  323. }
  324. if (afsr & SABRE_UEAFSR_SDWR) {
  325. reported++;
  326. printk("(DMA Write)");
  327. }
  328. if (afsr & SABRE_UEAFSR_SDTE) {
  329. reported++;
  330. printk("(Translation Error)");
  331. }
  332. if (!reported)
  333. printk("(none)");
  334. printk("]\n");
  335. /* Interrogate IOMMU for error status. */
  336. sabre_check_iommu_error(pbm, afsr, afar);
  337. return IRQ_HANDLED;
  338. }
  339. static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
  340. {
  341. struct pci_pbm_info *pbm = dev_id;
  342. unsigned long afsr_reg = pbm->controller_regs + SABRE_CE_AFSR;
  343. unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
  344. unsigned long afsr, afar, error_bits;
  345. int reported;
  346. /* Latch error status. */
  347. afar = sabre_read(afar_reg);
  348. afsr = sabre_read(afsr_reg);
  349. /* Clear primary/secondary error status bits. */
  350. error_bits = afsr &
  351. (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
  352. SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
  353. if (!error_bits)
  354. return IRQ_NONE;
  355. sabre_write(afsr_reg, error_bits);
  356. /* Log the error. */
  357. printk("%s: Correctable Error, primary error type[%s]\n",
  358. pbm->name,
  359. ((error_bits & SABRE_CEAFSR_PDRD) ?
  360. "DMA Read" :
  361. ((error_bits & SABRE_CEAFSR_PDWR) ?
  362. "DMA Write" : "???")));
  363. /* XXX Use syndrome and afar to print out module string just like
  364. * XXX UDB CE trap handler does... -DaveM
  365. */
  366. printk("%s: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
  367. "was_block(%d)\n",
  368. pbm->name,
  369. (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
  370. (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
  371. (afsr & SABRE_CEAFSR_OFF) >> 29UL,
  372. ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
  373. printk("%s: CE AFAR [%016lx]\n", pbm->name, afar);
  374. printk("%s: CE Secondary errors [", pbm->name);
  375. reported = 0;
  376. if (afsr & SABRE_CEAFSR_SDRD) {
  377. reported++;
  378. printk("(DMA Read)");
  379. }
  380. if (afsr & SABRE_CEAFSR_SDWR) {
  381. reported++;
  382. printk("(DMA Write)");
  383. }
  384. if (!reported)
  385. printk("(none)");
  386. printk("]\n");
  387. return IRQ_HANDLED;
  388. }
  389. static irqreturn_t sabre_pcierr_intr_other(struct pci_pbm_info *pbm)
  390. {
  391. unsigned long csr_reg, csr, csr_error_bits;
  392. irqreturn_t ret = IRQ_NONE;
  393. u16 stat;
  394. csr_reg = pbm->controller_regs + SABRE_PCICTRL;
  395. csr = sabre_read(csr_reg);
  396. csr_error_bits =
  397. csr & SABRE_PCICTRL_SERR;
  398. if (csr_error_bits) {
  399. /* Clear the errors. */
  400. sabre_write(csr_reg, csr);
  401. /* Log 'em. */
  402. if (csr_error_bits & SABRE_PCICTRL_SERR)
  403. printk("%s: PCI SERR signal asserted.\n",
  404. pbm->name);
  405. ret = IRQ_HANDLED;
  406. }
  407. pci_bus_read_config_word(sabre_root_bus, 0,
  408. PCI_STATUS, &stat);
  409. if (stat & (PCI_STATUS_PARITY |
  410. PCI_STATUS_SIG_TARGET_ABORT |
  411. PCI_STATUS_REC_TARGET_ABORT |
  412. PCI_STATUS_REC_MASTER_ABORT |
  413. PCI_STATUS_SIG_SYSTEM_ERROR)) {
  414. printk("%s: PCI bus error, PCI_STATUS[%04x]\n",
  415. pbm->name, stat);
  416. pci_bus_write_config_word(sabre_root_bus, 0,
  417. PCI_STATUS, 0xffff);
  418. ret = IRQ_HANDLED;
  419. }
  420. return ret;
  421. }
  422. static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id)
  423. {
  424. struct pci_pbm_info *pbm = dev_id;
  425. unsigned long afsr_reg, afar_reg;
  426. unsigned long afsr, afar, error_bits;
  427. int reported;
  428. afsr_reg = pbm->controller_regs + SABRE_PIOAFSR;
  429. afar_reg = pbm->controller_regs + SABRE_PIOAFAR;
  430. /* Latch error status. */
  431. afar = sabre_read(afar_reg);
  432. afsr = sabre_read(afsr_reg);
  433. /* Clear primary/secondary error status bits. */
  434. error_bits = afsr &
  435. (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
  436. SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
  437. SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
  438. SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
  439. if (!error_bits)
  440. return sabre_pcierr_intr_other(pbm);
  441. sabre_write(afsr_reg, error_bits);
  442. /* Log the error. */
  443. printk("%s: PCI Error, primary error type[%s]\n",
  444. pbm->name,
  445. (((error_bits & SABRE_PIOAFSR_PMA) ?
  446. "Master Abort" :
  447. ((error_bits & SABRE_PIOAFSR_PTA) ?
  448. "Target Abort" :
  449. ((error_bits & SABRE_PIOAFSR_PRTRY) ?
  450. "Excessive Retries" :
  451. ((error_bits & SABRE_PIOAFSR_PPERR) ?
  452. "Parity Error" : "???"))))));
  453. printk("%s: bytemask[%04lx] was_block(%d)\n",
  454. pbm->name,
  455. (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
  456. (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
  457. printk("%s: PCI AFAR [%016lx]\n", pbm->name, afar);
  458. printk("%s: PCI Secondary errors [", pbm->name);
  459. reported = 0;
  460. if (afsr & SABRE_PIOAFSR_SMA) {
  461. reported++;
  462. printk("(Master Abort)");
  463. }
  464. if (afsr & SABRE_PIOAFSR_STA) {
  465. reported++;
  466. printk("(Target Abort)");
  467. }
  468. if (afsr & SABRE_PIOAFSR_SRTRY) {
  469. reported++;
  470. printk("(Excessive Retries)");
  471. }
  472. if (afsr & SABRE_PIOAFSR_SPERR) {
  473. reported++;
  474. printk("(Parity Error)");
  475. }
  476. if (!reported)
  477. printk("(none)");
  478. printk("]\n");
  479. /* For the error types shown, scan both PCI buses for devices
  480. * which have logged that error type.
  481. */
  482. /* If we see a Target Abort, this could be the result of an
  483. * IOMMU translation error of some sort. It is extremely
  484. * useful to log this information as usually it indicates
  485. * a bug in the IOMMU support code or a PCI device driver.
  486. */
  487. if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
  488. sabre_check_iommu_error(pbm, afsr, afar);
  489. pci_scan_for_target_abort(pbm, pbm->pci_bus);
  490. }
  491. if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA))
  492. pci_scan_for_master_abort(pbm, pbm->pci_bus);
  493. /* For excessive retries, SABRE/PBM will abort the device
  494. * and there is no way to specifically check for excessive
  495. * retries in the config space status registers. So what
  496. * we hope is that we'll catch it via the master/target
  497. * abort events.
  498. */
  499. if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR))
  500. pci_scan_for_parity_error(pbm, pbm->pci_bus);
  501. return IRQ_HANDLED;
  502. }
  503. static void sabre_register_error_handlers(struct pci_pbm_info *pbm)
  504. {
  505. struct device_node *dp = pbm->op->node;
  506. struct of_device *op;
  507. unsigned long base = pbm->controller_regs;
  508. u64 tmp;
  509. int err;
  510. if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
  511. dp = dp->parent;
  512. op = of_find_device_by_node(dp);
  513. if (!op)
  514. return;
  515. /* Sabre/Hummingbird IRQ property layout is:
  516. * 0: PCI ERR
  517. * 1: UE ERR
  518. * 2: CE ERR
  519. * 3: POWER FAIL
  520. */
  521. if (op->num_irqs < 4)
  522. return;
  523. /* We clear the error bits in the appropriate AFSR before
  524. * registering the handler so that we don't get spurious
  525. * interrupts.
  526. */
  527. sabre_write(base + SABRE_UE_AFSR,
  528. (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
  529. SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
  530. SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
  531. err = request_irq(op->irqs[1], sabre_ue_intr, 0, "SABRE_UE", pbm);
  532. if (err)
  533. printk(KERN_WARNING "%s: Couldn't register UE, err=%d.\n",
  534. pbm->name, err);
  535. sabre_write(base + SABRE_CE_AFSR,
  536. (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
  537. SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
  538. err = request_irq(op->irqs[2], sabre_ce_intr, 0, "SABRE_CE", pbm);
  539. if (err)
  540. printk(KERN_WARNING "%s: Couldn't register CE, err=%d.\n",
  541. pbm->name, err);
  542. err = request_irq(op->irqs[0], sabre_pcierr_intr, 0,
  543. "SABRE_PCIERR", pbm);
  544. if (err)
  545. printk(KERN_WARNING "%s: Couldn't register PCIERR, err=%d.\n",
  546. pbm->name, err);
  547. tmp = sabre_read(base + SABRE_PCICTRL);
  548. tmp |= SABRE_PCICTRL_ERREN;
  549. sabre_write(base + SABRE_PCICTRL, tmp);
  550. }
  551. static void apb_init(struct pci_bus *sabre_bus)
  552. {
  553. struct pci_dev *pdev;
  554. list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
  555. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  556. pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
  557. u16 word16;
  558. pci_read_config_word(pdev, PCI_COMMAND, &word16);
  559. word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
  560. PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
  561. PCI_COMMAND_IO;
  562. pci_write_config_word(pdev, PCI_COMMAND, word16);
  563. /* Status register bits are "write 1 to clear". */
  564. pci_write_config_word(pdev, PCI_STATUS, 0xffff);
  565. pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff);
  566. /* Use a primary/seconday latency timer value
  567. * of 64.
  568. */
  569. pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
  570. pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
  571. /* Enable reporting/forwarding of master aborts,
  572. * parity, and SERR.
  573. */
  574. pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL,
  575. (PCI_BRIDGE_CTL_PARITY |
  576. PCI_BRIDGE_CTL_SERR |
  577. PCI_BRIDGE_CTL_MASTER_ABORT));
  578. }
  579. }
  580. }
  581. static void __init sabre_scan_bus(struct pci_pbm_info *pbm,
  582. struct device *parent)
  583. {
  584. static int once;
  585. /* The APB bridge speaks to the Sabre host PCI bridge
  586. * at 66Mhz, but the front side of APB runs at 33Mhz
  587. * for both segments.
  588. *
  589. * Hummingbird systems do not use APB, so they run
  590. * at 66MHZ.
  591. */
  592. if (hummingbird_p)
  593. pbm->is_66mhz_capable = 1;
  594. else
  595. pbm->is_66mhz_capable = 0;
  596. /* This driver has not been verified to handle
  597. * multiple SABREs yet, so trap this.
  598. *
  599. * Also note that the SABRE host bridge is hardwired
  600. * to live at bus 0.
  601. */
  602. if (once != 0) {
  603. printk(KERN_ERR PFX "Multiple controllers unsupported.\n");
  604. return;
  605. }
  606. once++;
  607. pbm->pci_bus = pci_scan_one_pbm(pbm, parent);
  608. if (!pbm->pci_bus)
  609. return;
  610. sabre_root_bus = pbm->pci_bus;
  611. apb_init(pbm->pci_bus);
  612. sabre_register_error_handlers(pbm);
  613. }
  614. static void __init sabre_pbm_init(struct pci_pbm_info *pbm,
  615. struct of_device *op)
  616. {
  617. struct device_node *dp = op->node;
  618. pbm->name = dp->full_name;
  619. printk("%s: SABRE PCI Bus Module\n", pbm->name);
  620. pbm->numa_node = -1;
  621. pbm->pci_ops = &sun4u_pci_ops;
  622. pbm->config_space_reg_bits = 8;
  623. pbm->index = pci_num_pbms++;
  624. pbm->chip_type = PBM_CHIP_TYPE_SABRE;
  625. pbm->op = op;
  626. pci_get_pbm_props(pbm);
  627. pci_determine_mem_io_space(pbm);
  628. sabre_scan_bus(pbm, &op->dev);
  629. }
  630. static int __devinit sabre_probe(struct of_device *op,
  631. const struct of_device_id *match)
  632. {
  633. const struct linux_prom64_registers *pr_regs;
  634. struct device_node *dp = op->node;
  635. struct pci_pbm_info *pbm;
  636. u32 upa_portid, dma_mask;
  637. struct iommu *iommu;
  638. int tsbsize, err;
  639. const u32 *vdma;
  640. u64 clear_irq;
  641. hummingbird_p = (match->data != NULL);
  642. if (!hummingbird_p) {
  643. struct device_node *cpu_dp;
  644. /* Of course, Sun has to encode things a thousand
  645. * different ways, inconsistently.
  646. */
  647. for_each_node_by_type(cpu_dp, "cpu") {
  648. if (!strcmp(cpu_dp->name, "SUNW,UltraSPARC-IIe"))
  649. hummingbird_p = 1;
  650. }
  651. }
  652. err = -ENOMEM;
  653. pbm = kzalloc(sizeof(*pbm), GFP_KERNEL);
  654. if (!pbm) {
  655. printk(KERN_ERR PFX "Cannot allocate pci_pbm_info.\n");
  656. goto out_err;
  657. }
  658. iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
  659. if (!iommu) {
  660. printk(KERN_ERR PFX "Cannot allocate PBM iommu.\n");
  661. goto out_free_controller;
  662. }
  663. pbm->iommu = iommu;
  664. upa_portid = of_getintprop_default(dp, "upa-portid", 0xff);
  665. pbm->portid = upa_portid;
  666. /*
  667. * Map in SABRE register set and report the presence of this SABRE.
  668. */
  669. pr_regs = of_get_property(dp, "reg", NULL);
  670. err = -ENODEV;
  671. if (!pr_regs) {
  672. printk(KERN_ERR PFX "No reg property\n");
  673. goto out_free_iommu;
  674. }
  675. /*
  676. * First REG in property is base of entire SABRE register space.
  677. */
  678. pbm->controller_regs = pr_regs[0].phys_addr;
  679. /* Clear interrupts */
  680. /* PCI first */
  681. for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
  682. sabre_write(pbm->controller_regs + clear_irq, 0x0UL);
  683. /* Then OBIO */
  684. for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
  685. sabre_write(pbm->controller_regs + clear_irq, 0x0UL);
  686. /* Error interrupts are enabled later after the bus scan. */
  687. sabre_write(pbm->controller_regs + SABRE_PCICTRL,
  688. (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
  689. SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
  690. /* Now map in PCI config space for entire SABRE. */
  691. pbm->config_space = pbm->controller_regs + SABRE_CONFIGSPACE;
  692. vdma = of_get_property(dp, "virtual-dma", NULL);
  693. if (!vdma) {
  694. printk(KERN_ERR PFX "No virtual-dma property\n");
  695. goto out_free_iommu;
  696. }
  697. dma_mask = vdma[0];
  698. switch(vdma[1]) {
  699. case 0x20000000:
  700. dma_mask |= 0x1fffffff;
  701. tsbsize = 64;
  702. break;
  703. case 0x40000000:
  704. dma_mask |= 0x3fffffff;
  705. tsbsize = 128;
  706. break;
  707. case 0x80000000:
  708. dma_mask |= 0x7fffffff;
  709. tsbsize = 128;
  710. break;
  711. default:
  712. printk(KERN_ERR PFX "Strange virtual-dma size.\n");
  713. goto out_free_iommu;
  714. }
  715. err = psycho_iommu_init(pbm, tsbsize, vdma[0], dma_mask, SABRE_WRSYNC);
  716. if (err)
  717. goto out_free_iommu;
  718. /*
  719. * Look for APB underneath.
  720. */
  721. sabre_pbm_init(pbm, op);
  722. pbm->next = pci_pbm_root;
  723. pci_pbm_root = pbm;
  724. dev_set_drvdata(&op->dev, pbm);
  725. return 0;
  726. out_free_iommu:
  727. kfree(pbm->iommu);
  728. out_free_controller:
  729. kfree(pbm);
  730. out_err:
  731. return err;
  732. }
  733. static struct of_device_id __initdata sabre_match[] = {
  734. {
  735. .name = "pci",
  736. .compatible = "pci108e,a001",
  737. .data = (void *) 1,
  738. },
  739. {
  740. .name = "pci",
  741. .compatible = "pci108e,a000",
  742. },
  743. {},
  744. };
  745. static struct of_platform_driver sabre_driver = {
  746. .name = DRIVER_NAME,
  747. .match_table = sabre_match,
  748. .probe = sabre_probe,
  749. };
  750. static int __init sabre_init(void)
  751. {
  752. return of_register_driver(&sabre_driver, &of_bus_type);
  753. }
  754. subsys_initcall(sabre_init);