perf_counter.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232
  1. /*
  2. * Performance counter x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. *
  10. * For licencing details see kernel-base/COPYING
  11. */
  12. #include <linux/perf_counter.h>
  13. #include <linux/capability.h>
  14. #include <linux/notifier.h>
  15. #include <linux/hardirq.h>
  16. #include <linux/kprobes.h>
  17. #include <linux/module.h>
  18. #include <linux/kdebug.h>
  19. #include <linux/sched.h>
  20. #include <linux/uaccess.h>
  21. #include <asm/apic.h>
  22. #include <asm/stacktrace.h>
  23. #include <asm/nmi.h>
  24. static u64 perf_counter_mask __read_mostly;
  25. struct cpu_hw_counters {
  26. struct perf_counter *counters[X86_PMC_IDX_MAX];
  27. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  28. unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  29. unsigned long interrupts;
  30. int enabled;
  31. };
  32. /*
  33. * struct x86_pmu - generic x86 pmu
  34. */
  35. struct x86_pmu {
  36. const char *name;
  37. int version;
  38. int (*handle_irq)(struct pt_regs *);
  39. void (*disable_all)(void);
  40. void (*enable_all)(void);
  41. void (*enable)(struct hw_perf_counter *, int);
  42. void (*disable)(struct hw_perf_counter *, int);
  43. unsigned eventsel;
  44. unsigned perfctr;
  45. u64 (*event_map)(int);
  46. u64 (*raw_event)(u64);
  47. int max_events;
  48. int num_counters;
  49. int num_counters_fixed;
  50. int counter_bits;
  51. u64 counter_mask;
  52. u64 max_period;
  53. u64 intel_ctrl;
  54. };
  55. static struct x86_pmu x86_pmu __read_mostly;
  56. static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
  57. .enabled = 1,
  58. };
  59. /*
  60. * Intel PerfMon v3. Used on Core2 and later.
  61. */
  62. static const u64 intel_perfmon_event_map[] =
  63. {
  64. [PERF_COUNT_CPU_CYCLES] = 0x003c,
  65. [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
  66. [PERF_COUNT_CACHE_REFERENCES] = 0x4f2e,
  67. [PERF_COUNT_CACHE_MISSES] = 0x412e,
  68. [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
  69. [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
  70. [PERF_COUNT_BUS_CYCLES] = 0x013c,
  71. };
  72. static u64 intel_pmu_event_map(int event)
  73. {
  74. return intel_perfmon_event_map[event];
  75. }
  76. static u64 intel_pmu_raw_event(u64 event)
  77. {
  78. #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
  79. #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
  80. #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
  81. #define CORE_EVNTSEL_INV_MASK 0x00800000ULL
  82. #define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL
  83. #define CORE_EVNTSEL_MASK \
  84. (CORE_EVNTSEL_EVENT_MASK | \
  85. CORE_EVNTSEL_UNIT_MASK | \
  86. CORE_EVNTSEL_EDGE_MASK | \
  87. CORE_EVNTSEL_INV_MASK | \
  88. CORE_EVNTSEL_COUNTER_MASK)
  89. return event & CORE_EVNTSEL_MASK;
  90. }
  91. /*
  92. * AMD Performance Monitor K7 and later.
  93. */
  94. static const u64 amd_perfmon_event_map[] =
  95. {
  96. [PERF_COUNT_CPU_CYCLES] = 0x0076,
  97. [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
  98. [PERF_COUNT_CACHE_REFERENCES] = 0x0080,
  99. [PERF_COUNT_CACHE_MISSES] = 0x0081,
  100. [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
  101. [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
  102. };
  103. static u64 amd_pmu_event_map(int event)
  104. {
  105. return amd_perfmon_event_map[event];
  106. }
  107. static u64 amd_pmu_raw_event(u64 event)
  108. {
  109. #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
  110. #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
  111. #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
  112. #define K7_EVNTSEL_INV_MASK 0x000800000ULL
  113. #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
  114. #define K7_EVNTSEL_MASK \
  115. (K7_EVNTSEL_EVENT_MASK | \
  116. K7_EVNTSEL_UNIT_MASK | \
  117. K7_EVNTSEL_EDGE_MASK | \
  118. K7_EVNTSEL_INV_MASK | \
  119. K7_EVNTSEL_COUNTER_MASK)
  120. return event & K7_EVNTSEL_MASK;
  121. }
  122. /*
  123. * Propagate counter elapsed time into the generic counter.
  124. * Can only be executed on the CPU where the counter is active.
  125. * Returns the delta events processed.
  126. */
  127. static u64
  128. x86_perf_counter_update(struct perf_counter *counter,
  129. struct hw_perf_counter *hwc, int idx)
  130. {
  131. int shift = 64 - x86_pmu.counter_bits;
  132. u64 prev_raw_count, new_raw_count;
  133. s64 delta;
  134. /*
  135. * Careful: an NMI might modify the previous counter value.
  136. *
  137. * Our tactic to handle this is to first atomically read and
  138. * exchange a new raw count - then add that new-prev delta
  139. * count to the generic counter atomically:
  140. */
  141. again:
  142. prev_raw_count = atomic64_read(&hwc->prev_count);
  143. rdmsrl(hwc->counter_base + idx, new_raw_count);
  144. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  145. new_raw_count) != prev_raw_count)
  146. goto again;
  147. /*
  148. * Now we have the new raw value and have updated the prev
  149. * timestamp already. We can now calculate the elapsed delta
  150. * (counter-)time and add that to the generic counter.
  151. *
  152. * Careful, not all hw sign-extends above the physical width
  153. * of the count.
  154. */
  155. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  156. delta >>= shift;
  157. atomic64_add(delta, &counter->count);
  158. atomic64_sub(delta, &hwc->period_left);
  159. return new_raw_count;
  160. }
  161. static atomic_t active_counters;
  162. static DEFINE_MUTEX(pmc_reserve_mutex);
  163. static bool reserve_pmc_hardware(void)
  164. {
  165. int i;
  166. if (nmi_watchdog == NMI_LOCAL_APIC)
  167. disable_lapic_nmi_watchdog();
  168. for (i = 0; i < x86_pmu.num_counters; i++) {
  169. if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
  170. goto perfctr_fail;
  171. }
  172. for (i = 0; i < x86_pmu.num_counters; i++) {
  173. if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
  174. goto eventsel_fail;
  175. }
  176. return true;
  177. eventsel_fail:
  178. for (i--; i >= 0; i--)
  179. release_evntsel_nmi(x86_pmu.eventsel + i);
  180. i = x86_pmu.num_counters;
  181. perfctr_fail:
  182. for (i--; i >= 0; i--)
  183. release_perfctr_nmi(x86_pmu.perfctr + i);
  184. if (nmi_watchdog == NMI_LOCAL_APIC)
  185. enable_lapic_nmi_watchdog();
  186. return false;
  187. }
  188. static void release_pmc_hardware(void)
  189. {
  190. int i;
  191. for (i = 0; i < x86_pmu.num_counters; i++) {
  192. release_perfctr_nmi(x86_pmu.perfctr + i);
  193. release_evntsel_nmi(x86_pmu.eventsel + i);
  194. }
  195. if (nmi_watchdog == NMI_LOCAL_APIC)
  196. enable_lapic_nmi_watchdog();
  197. }
  198. static void hw_perf_counter_destroy(struct perf_counter *counter)
  199. {
  200. if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
  201. release_pmc_hardware();
  202. mutex_unlock(&pmc_reserve_mutex);
  203. }
  204. }
  205. static inline int x86_pmu_initialized(void)
  206. {
  207. return x86_pmu.handle_irq != NULL;
  208. }
  209. /*
  210. * Setup the hardware configuration for a given attr_type
  211. */
  212. static int __hw_perf_counter_init(struct perf_counter *counter)
  213. {
  214. struct perf_counter_attr *attr = &counter->attr;
  215. struct hw_perf_counter *hwc = &counter->hw;
  216. int err;
  217. if (!x86_pmu_initialized())
  218. return -ENODEV;
  219. err = 0;
  220. if (!atomic_inc_not_zero(&active_counters)) {
  221. mutex_lock(&pmc_reserve_mutex);
  222. if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
  223. err = -EBUSY;
  224. else
  225. atomic_inc(&active_counters);
  226. mutex_unlock(&pmc_reserve_mutex);
  227. }
  228. if (err)
  229. return err;
  230. /*
  231. * Generate PMC IRQs:
  232. * (keep 'enabled' bit clear for now)
  233. */
  234. hwc->config = ARCH_PERFMON_EVENTSEL_INT;
  235. /*
  236. * Count user and OS events unless requested not to.
  237. */
  238. if (!attr->exclude_user)
  239. hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
  240. if (!attr->exclude_kernel)
  241. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  242. if (!hwc->sample_period)
  243. hwc->sample_period = x86_pmu.max_period;
  244. atomic64_set(&hwc->period_left, hwc->sample_period);
  245. /*
  246. * Raw event type provide the config in the event structure
  247. */
  248. if (attr->type == PERF_TYPE_RAW) {
  249. hwc->config |= x86_pmu.raw_event(attr->config);
  250. } else {
  251. if (attr->config >= x86_pmu.max_events)
  252. return -EINVAL;
  253. /*
  254. * The generic map:
  255. */
  256. hwc->config |= x86_pmu.event_map(attr->config);
  257. }
  258. counter->destroy = hw_perf_counter_destroy;
  259. return 0;
  260. }
  261. static void intel_pmu_disable_all(void)
  262. {
  263. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  264. }
  265. static void amd_pmu_disable_all(void)
  266. {
  267. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  268. int idx;
  269. if (!cpuc->enabled)
  270. return;
  271. cpuc->enabled = 0;
  272. /*
  273. * ensure we write the disable before we start disabling the
  274. * counters proper, so that amd_pmu_enable_counter() does the
  275. * right thing.
  276. */
  277. barrier();
  278. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  279. u64 val;
  280. if (!test_bit(idx, cpuc->active_mask))
  281. continue;
  282. rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
  283. if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
  284. continue;
  285. val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
  286. wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
  287. }
  288. }
  289. void hw_perf_disable(void)
  290. {
  291. if (!x86_pmu_initialized())
  292. return;
  293. return x86_pmu.disable_all();
  294. }
  295. static void intel_pmu_enable_all(void)
  296. {
  297. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
  298. }
  299. static void amd_pmu_enable_all(void)
  300. {
  301. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  302. int idx;
  303. if (cpuc->enabled)
  304. return;
  305. cpuc->enabled = 1;
  306. barrier();
  307. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  308. u64 val;
  309. if (!test_bit(idx, cpuc->active_mask))
  310. continue;
  311. rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
  312. if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
  313. continue;
  314. val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
  315. wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
  316. }
  317. }
  318. void hw_perf_enable(void)
  319. {
  320. if (!x86_pmu_initialized())
  321. return;
  322. x86_pmu.enable_all();
  323. }
  324. static inline u64 intel_pmu_get_status(void)
  325. {
  326. u64 status;
  327. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  328. return status;
  329. }
  330. static inline void intel_pmu_ack_status(u64 ack)
  331. {
  332. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  333. }
  334. static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  335. {
  336. int err;
  337. err = checking_wrmsrl(hwc->config_base + idx,
  338. hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
  339. }
  340. static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  341. {
  342. int err;
  343. err = checking_wrmsrl(hwc->config_base + idx,
  344. hwc->config);
  345. }
  346. static inline void
  347. intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
  348. {
  349. int idx = __idx - X86_PMC_IDX_FIXED;
  350. u64 ctrl_val, mask;
  351. int err;
  352. mask = 0xfULL << (idx * 4);
  353. rdmsrl(hwc->config_base, ctrl_val);
  354. ctrl_val &= ~mask;
  355. err = checking_wrmsrl(hwc->config_base, ctrl_val);
  356. }
  357. static inline void
  358. intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  359. {
  360. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  361. intel_pmu_disable_fixed(hwc, idx);
  362. return;
  363. }
  364. x86_pmu_disable_counter(hwc, idx);
  365. }
  366. static inline void
  367. amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  368. {
  369. x86_pmu_disable_counter(hwc, idx);
  370. }
  371. static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
  372. /*
  373. * Set the next IRQ period, based on the hwc->period_left value.
  374. * To be called with the counter disabled in hw:
  375. */
  376. static int
  377. x86_perf_counter_set_period(struct perf_counter *counter,
  378. struct hw_perf_counter *hwc, int idx)
  379. {
  380. s64 left = atomic64_read(&hwc->period_left);
  381. s64 period = hwc->sample_period;
  382. int err, ret = 0;
  383. /*
  384. * If we are way outside a reasoable range then just skip forward:
  385. */
  386. if (unlikely(left <= -period)) {
  387. left = period;
  388. atomic64_set(&hwc->period_left, left);
  389. ret = 1;
  390. }
  391. if (unlikely(left <= 0)) {
  392. left += period;
  393. atomic64_set(&hwc->period_left, left);
  394. ret = 1;
  395. }
  396. /*
  397. * Quirk: certain CPUs dont like it if just 1 event is left:
  398. */
  399. if (unlikely(left < 2))
  400. left = 2;
  401. if (left > x86_pmu.max_period)
  402. left = x86_pmu.max_period;
  403. per_cpu(prev_left[idx], smp_processor_id()) = left;
  404. /*
  405. * The hw counter starts counting from this counter offset,
  406. * mark it to be able to extra future deltas:
  407. */
  408. atomic64_set(&hwc->prev_count, (u64)-left);
  409. err = checking_wrmsrl(hwc->counter_base + idx,
  410. (u64)(-left) & x86_pmu.counter_mask);
  411. return ret;
  412. }
  413. static inline void
  414. intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
  415. {
  416. int idx = __idx - X86_PMC_IDX_FIXED;
  417. u64 ctrl_val, bits, mask;
  418. int err;
  419. /*
  420. * Enable IRQ generation (0x8),
  421. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  422. * if requested:
  423. */
  424. bits = 0x8ULL;
  425. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  426. bits |= 0x2;
  427. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  428. bits |= 0x1;
  429. bits <<= (idx * 4);
  430. mask = 0xfULL << (idx * 4);
  431. rdmsrl(hwc->config_base, ctrl_val);
  432. ctrl_val &= ~mask;
  433. ctrl_val |= bits;
  434. err = checking_wrmsrl(hwc->config_base, ctrl_val);
  435. }
  436. static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  437. {
  438. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  439. intel_pmu_enable_fixed(hwc, idx);
  440. return;
  441. }
  442. x86_pmu_enable_counter(hwc, idx);
  443. }
  444. static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  445. {
  446. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  447. if (cpuc->enabled)
  448. x86_pmu_enable_counter(hwc, idx);
  449. else
  450. x86_pmu_disable_counter(hwc, idx);
  451. }
  452. static int
  453. fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
  454. {
  455. unsigned int event;
  456. if (!x86_pmu.num_counters_fixed)
  457. return -1;
  458. event = hwc->config & ARCH_PERFMON_EVENT_MASK;
  459. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_INSTRUCTIONS)))
  460. return X86_PMC_IDX_FIXED_INSTRUCTIONS;
  461. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_CPU_CYCLES)))
  462. return X86_PMC_IDX_FIXED_CPU_CYCLES;
  463. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_BUS_CYCLES)))
  464. return X86_PMC_IDX_FIXED_BUS_CYCLES;
  465. return -1;
  466. }
  467. /*
  468. * Find a PMC slot for the freshly enabled / scheduled in counter:
  469. */
  470. static int x86_pmu_enable(struct perf_counter *counter)
  471. {
  472. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  473. struct hw_perf_counter *hwc = &counter->hw;
  474. int idx;
  475. idx = fixed_mode_idx(counter, hwc);
  476. if (idx >= 0) {
  477. /*
  478. * Try to get the fixed counter, if that is already taken
  479. * then try to get a generic counter:
  480. */
  481. if (test_and_set_bit(idx, cpuc->used_mask))
  482. goto try_generic;
  483. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  484. /*
  485. * We set it so that counter_base + idx in wrmsr/rdmsr maps to
  486. * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
  487. */
  488. hwc->counter_base =
  489. MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
  490. hwc->idx = idx;
  491. } else {
  492. idx = hwc->idx;
  493. /* Try to get the previous generic counter again */
  494. if (test_and_set_bit(idx, cpuc->used_mask)) {
  495. try_generic:
  496. idx = find_first_zero_bit(cpuc->used_mask,
  497. x86_pmu.num_counters);
  498. if (idx == x86_pmu.num_counters)
  499. return -EAGAIN;
  500. set_bit(idx, cpuc->used_mask);
  501. hwc->idx = idx;
  502. }
  503. hwc->config_base = x86_pmu.eventsel;
  504. hwc->counter_base = x86_pmu.perfctr;
  505. }
  506. perf_counters_lapic_init();
  507. x86_pmu.disable(hwc, idx);
  508. cpuc->counters[idx] = counter;
  509. set_bit(idx, cpuc->active_mask);
  510. x86_perf_counter_set_period(counter, hwc, idx);
  511. x86_pmu.enable(hwc, idx);
  512. return 0;
  513. }
  514. static void x86_pmu_unthrottle(struct perf_counter *counter)
  515. {
  516. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  517. struct hw_perf_counter *hwc = &counter->hw;
  518. if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
  519. cpuc->counters[hwc->idx] != counter))
  520. return;
  521. x86_pmu.enable(hwc, hwc->idx);
  522. }
  523. void perf_counter_print_debug(void)
  524. {
  525. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  526. struct cpu_hw_counters *cpuc;
  527. unsigned long flags;
  528. int cpu, idx;
  529. if (!x86_pmu.num_counters)
  530. return;
  531. local_irq_save(flags);
  532. cpu = smp_processor_id();
  533. cpuc = &per_cpu(cpu_hw_counters, cpu);
  534. if (x86_pmu.version >= 2) {
  535. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  536. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  537. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  538. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  539. pr_info("\n");
  540. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  541. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  542. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  543. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  544. }
  545. pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
  546. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  547. rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
  548. rdmsrl(x86_pmu.perfctr + idx, pmc_count);
  549. prev_left = per_cpu(prev_left[idx], cpu);
  550. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  551. cpu, idx, pmc_ctrl);
  552. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  553. cpu, idx, pmc_count);
  554. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  555. cpu, idx, prev_left);
  556. }
  557. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
  558. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  559. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  560. cpu, idx, pmc_count);
  561. }
  562. local_irq_restore(flags);
  563. }
  564. static void x86_pmu_disable(struct perf_counter *counter)
  565. {
  566. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  567. struct hw_perf_counter *hwc = &counter->hw;
  568. int idx = hwc->idx;
  569. /*
  570. * Must be done before we disable, otherwise the nmi handler
  571. * could reenable again:
  572. */
  573. clear_bit(idx, cpuc->active_mask);
  574. x86_pmu.disable(hwc, idx);
  575. /*
  576. * Make sure the cleared pointer becomes visible before we
  577. * (potentially) free the counter:
  578. */
  579. barrier();
  580. /*
  581. * Drain the remaining delta count out of a counter
  582. * that we are disabling:
  583. */
  584. x86_perf_counter_update(counter, hwc, idx);
  585. cpuc->counters[idx] = NULL;
  586. clear_bit(idx, cpuc->used_mask);
  587. }
  588. /*
  589. * Save and restart an expired counter. Called by NMI contexts,
  590. * so it has to be careful about preempting normal counter ops:
  591. */
  592. static int intel_pmu_save_and_restart(struct perf_counter *counter)
  593. {
  594. struct hw_perf_counter *hwc = &counter->hw;
  595. int idx = hwc->idx;
  596. int ret;
  597. x86_perf_counter_update(counter, hwc, idx);
  598. ret = x86_perf_counter_set_period(counter, hwc, idx);
  599. if (counter->state == PERF_COUNTER_STATE_ACTIVE)
  600. intel_pmu_enable_counter(hwc, idx);
  601. return ret;
  602. }
  603. static void intel_pmu_reset(void)
  604. {
  605. unsigned long flags;
  606. int idx;
  607. if (!x86_pmu.num_counters)
  608. return;
  609. local_irq_save(flags);
  610. printk("clearing PMU state on CPU#%d\n", smp_processor_id());
  611. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  612. checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
  613. checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
  614. }
  615. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
  616. checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
  617. }
  618. local_irq_restore(flags);
  619. }
  620. /*
  621. * This handler is triggered by the local APIC, so the APIC IRQ handling
  622. * rules apply:
  623. */
  624. static int intel_pmu_handle_irq(struct pt_regs *regs)
  625. {
  626. struct cpu_hw_counters *cpuc;
  627. struct cpu_hw_counters;
  628. int bit, cpu, loops;
  629. u64 ack, status;
  630. cpu = smp_processor_id();
  631. cpuc = &per_cpu(cpu_hw_counters, cpu);
  632. perf_disable();
  633. status = intel_pmu_get_status();
  634. if (!status) {
  635. perf_enable();
  636. return 0;
  637. }
  638. loops = 0;
  639. again:
  640. if (++loops > 100) {
  641. WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
  642. perf_counter_print_debug();
  643. intel_pmu_reset();
  644. perf_enable();
  645. return 1;
  646. }
  647. inc_irq_stat(apic_perf_irqs);
  648. ack = status;
  649. for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  650. struct perf_counter *counter = cpuc->counters[bit];
  651. clear_bit(bit, (unsigned long *) &status);
  652. if (!test_bit(bit, cpuc->active_mask))
  653. continue;
  654. if (!intel_pmu_save_and_restart(counter))
  655. continue;
  656. if (perf_counter_overflow(counter, 1, regs, 0))
  657. intel_pmu_disable_counter(&counter->hw, bit);
  658. }
  659. intel_pmu_ack_status(ack);
  660. /*
  661. * Repeat if there is more work to be done:
  662. */
  663. status = intel_pmu_get_status();
  664. if (status)
  665. goto again;
  666. perf_enable();
  667. return 1;
  668. }
  669. static int amd_pmu_handle_irq(struct pt_regs *regs)
  670. {
  671. int cpu, idx, handled = 0;
  672. struct cpu_hw_counters *cpuc;
  673. struct perf_counter *counter;
  674. struct hw_perf_counter *hwc;
  675. u64 val;
  676. cpu = smp_processor_id();
  677. cpuc = &per_cpu(cpu_hw_counters, cpu);
  678. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  679. if (!test_bit(idx, cpuc->active_mask))
  680. continue;
  681. counter = cpuc->counters[idx];
  682. hwc = &counter->hw;
  683. val = x86_perf_counter_update(counter, hwc, idx);
  684. if (val & (1ULL << (x86_pmu.counter_bits - 1)))
  685. continue;
  686. /* counter overflow */
  687. handled = 1;
  688. inc_irq_stat(apic_perf_irqs);
  689. if (!x86_perf_counter_set_period(counter, hwc, idx))
  690. continue;
  691. if (perf_counter_overflow(counter, 1, regs, 0))
  692. amd_pmu_disable_counter(hwc, idx);
  693. }
  694. return handled;
  695. }
  696. void smp_perf_pending_interrupt(struct pt_regs *regs)
  697. {
  698. irq_enter();
  699. ack_APIC_irq();
  700. inc_irq_stat(apic_pending_irqs);
  701. perf_counter_do_pending();
  702. irq_exit();
  703. }
  704. void set_perf_counter_pending(void)
  705. {
  706. apic->send_IPI_self(LOCAL_PENDING_VECTOR);
  707. }
  708. void perf_counters_lapic_init(void)
  709. {
  710. if (!x86_pmu_initialized())
  711. return;
  712. /*
  713. * Always use NMI for PMU
  714. */
  715. apic_write(APIC_LVTPC, APIC_DM_NMI);
  716. }
  717. static int __kprobes
  718. perf_counter_nmi_handler(struct notifier_block *self,
  719. unsigned long cmd, void *__args)
  720. {
  721. struct die_args *args = __args;
  722. struct pt_regs *regs;
  723. if (!atomic_read(&active_counters))
  724. return NOTIFY_DONE;
  725. switch (cmd) {
  726. case DIE_NMI:
  727. case DIE_NMI_IPI:
  728. break;
  729. default:
  730. return NOTIFY_DONE;
  731. }
  732. regs = args->regs;
  733. apic_write(APIC_LVTPC, APIC_DM_NMI);
  734. /*
  735. * Can't rely on the handled return value to say it was our NMI, two
  736. * counters could trigger 'simultaneously' raising two back-to-back NMIs.
  737. *
  738. * If the first NMI handles both, the latter will be empty and daze
  739. * the CPU.
  740. */
  741. x86_pmu.handle_irq(regs);
  742. return NOTIFY_STOP;
  743. }
  744. static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
  745. .notifier_call = perf_counter_nmi_handler,
  746. .next = NULL,
  747. .priority = 1
  748. };
  749. static struct x86_pmu intel_pmu = {
  750. .name = "Intel",
  751. .handle_irq = intel_pmu_handle_irq,
  752. .disable_all = intel_pmu_disable_all,
  753. .enable_all = intel_pmu_enable_all,
  754. .enable = intel_pmu_enable_counter,
  755. .disable = intel_pmu_disable_counter,
  756. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  757. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  758. .event_map = intel_pmu_event_map,
  759. .raw_event = intel_pmu_raw_event,
  760. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  761. /*
  762. * Intel PMCs cannot be accessed sanely above 32 bit width,
  763. * so we install an artificial 1<<31 period regardless of
  764. * the generic counter period:
  765. */
  766. .max_period = (1ULL << 31) - 1,
  767. };
  768. static struct x86_pmu amd_pmu = {
  769. .name = "AMD",
  770. .handle_irq = amd_pmu_handle_irq,
  771. .disable_all = amd_pmu_disable_all,
  772. .enable_all = amd_pmu_enable_all,
  773. .enable = amd_pmu_enable_counter,
  774. .disable = amd_pmu_disable_counter,
  775. .eventsel = MSR_K7_EVNTSEL0,
  776. .perfctr = MSR_K7_PERFCTR0,
  777. .event_map = amd_pmu_event_map,
  778. .raw_event = amd_pmu_raw_event,
  779. .max_events = ARRAY_SIZE(amd_perfmon_event_map),
  780. .num_counters = 4,
  781. .counter_bits = 48,
  782. .counter_mask = (1ULL << 48) - 1,
  783. /* use highest bit to detect overflow */
  784. .max_period = (1ULL << 47) - 1,
  785. };
  786. static int intel_pmu_init(void)
  787. {
  788. union cpuid10_edx edx;
  789. union cpuid10_eax eax;
  790. unsigned int unused;
  791. unsigned int ebx;
  792. int version;
  793. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
  794. return -ENODEV;
  795. /*
  796. * Check whether the Architectural PerfMon supports
  797. * Branch Misses Retired Event or not.
  798. */
  799. cpuid(10, &eax.full, &ebx, &unused, &edx.full);
  800. if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
  801. return -ENODEV;
  802. version = eax.split.version_id;
  803. if (version < 2)
  804. return -ENODEV;
  805. x86_pmu = intel_pmu;
  806. x86_pmu.version = version;
  807. x86_pmu.num_counters = eax.split.num_counters;
  808. /*
  809. * Quirk: v2 perfmon does not report fixed-purpose counters, so
  810. * assume at least 3 counters:
  811. */
  812. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  813. x86_pmu.counter_bits = eax.split.bit_width;
  814. x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
  815. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
  816. return 0;
  817. }
  818. static int amd_pmu_init(void)
  819. {
  820. x86_pmu = amd_pmu;
  821. return 0;
  822. }
  823. void __init init_hw_perf_counters(void)
  824. {
  825. int err;
  826. switch (boot_cpu_data.x86_vendor) {
  827. case X86_VENDOR_INTEL:
  828. err = intel_pmu_init();
  829. break;
  830. case X86_VENDOR_AMD:
  831. err = amd_pmu_init();
  832. break;
  833. default:
  834. return;
  835. }
  836. if (err != 0)
  837. return;
  838. pr_info("%s Performance Monitoring support detected.\n", x86_pmu.name);
  839. pr_info("... version: %d\n", x86_pmu.version);
  840. pr_info("... bit width: %d\n", x86_pmu.counter_bits);
  841. pr_info("... num counters: %d\n", x86_pmu.num_counters);
  842. if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
  843. x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
  844. WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
  845. x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
  846. }
  847. perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
  848. perf_max_counters = x86_pmu.num_counters;
  849. pr_info("... value mask: %016Lx\n", x86_pmu.counter_mask);
  850. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  851. if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
  852. x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
  853. WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
  854. x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
  855. }
  856. pr_info("... fixed counters: %d\n", x86_pmu.num_counters_fixed);
  857. perf_counter_mask |=
  858. ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
  859. pr_info("... counter mask: %016Lx\n", perf_counter_mask);
  860. perf_counters_lapic_init();
  861. register_die_notifier(&perf_counter_nmi_notifier);
  862. }
  863. static inline void x86_pmu_read(struct perf_counter *counter)
  864. {
  865. x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
  866. }
  867. static const struct pmu pmu = {
  868. .enable = x86_pmu_enable,
  869. .disable = x86_pmu_disable,
  870. .read = x86_pmu_read,
  871. .unthrottle = x86_pmu_unthrottle,
  872. };
  873. const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
  874. {
  875. int err;
  876. err = __hw_perf_counter_init(counter);
  877. if (err)
  878. return ERR_PTR(err);
  879. return &pmu;
  880. }
  881. /*
  882. * callchain support
  883. */
  884. static inline
  885. void callchain_store(struct perf_callchain_entry *entry, unsigned long ip)
  886. {
  887. if (entry->nr < MAX_STACK_DEPTH)
  888. entry->ip[entry->nr++] = ip;
  889. }
  890. static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
  891. static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
  892. static void
  893. backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
  894. {
  895. /* Ignore warnings */
  896. }
  897. static void backtrace_warning(void *data, char *msg)
  898. {
  899. /* Ignore warnings */
  900. }
  901. static int backtrace_stack(void *data, char *name)
  902. {
  903. /* Don't bother with IRQ stacks for now */
  904. return -1;
  905. }
  906. static void backtrace_address(void *data, unsigned long addr, int reliable)
  907. {
  908. struct perf_callchain_entry *entry = data;
  909. if (reliable)
  910. callchain_store(entry, addr);
  911. }
  912. static const struct stacktrace_ops backtrace_ops = {
  913. .warning = backtrace_warning,
  914. .warning_symbol = backtrace_warning_symbol,
  915. .stack = backtrace_stack,
  916. .address = backtrace_address,
  917. };
  918. static void
  919. perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
  920. {
  921. unsigned long bp;
  922. char *stack;
  923. int nr = entry->nr;
  924. callchain_store(entry, instruction_pointer(regs));
  925. stack = ((char *)regs + sizeof(struct pt_regs));
  926. #ifdef CONFIG_FRAME_POINTER
  927. bp = frame_pointer(regs);
  928. #else
  929. bp = 0;
  930. #endif
  931. dump_trace(NULL, regs, (void *)stack, bp, &backtrace_ops, entry);
  932. entry->kernel = entry->nr - nr;
  933. }
  934. struct stack_frame {
  935. const void __user *next_fp;
  936. unsigned long return_address;
  937. };
  938. static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
  939. {
  940. int ret;
  941. if (!access_ok(VERIFY_READ, fp, sizeof(*frame)))
  942. return 0;
  943. ret = 1;
  944. pagefault_disable();
  945. if (__copy_from_user_inatomic(frame, fp, sizeof(*frame)))
  946. ret = 0;
  947. pagefault_enable();
  948. return ret;
  949. }
  950. static void
  951. perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
  952. {
  953. struct stack_frame frame;
  954. const void __user *fp;
  955. int nr = entry->nr;
  956. regs = (struct pt_regs *)current->thread.sp0 - 1;
  957. fp = (void __user *)regs->bp;
  958. callchain_store(entry, regs->ip);
  959. while (entry->nr < MAX_STACK_DEPTH) {
  960. frame.next_fp = NULL;
  961. frame.return_address = 0;
  962. if (!copy_stack_frame(fp, &frame))
  963. break;
  964. if ((unsigned long)fp < user_stack_pointer(regs))
  965. break;
  966. callchain_store(entry, frame.return_address);
  967. fp = frame.next_fp;
  968. }
  969. entry->user = entry->nr - nr;
  970. }
  971. static void
  972. perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
  973. {
  974. int is_user;
  975. if (!regs)
  976. return;
  977. is_user = user_mode(regs);
  978. if (!current || current->pid == 0)
  979. return;
  980. if (is_user && current->state != TASK_RUNNING)
  981. return;
  982. if (!is_user)
  983. perf_callchain_kernel(regs, entry);
  984. if (current->mm)
  985. perf_callchain_user(regs, entry);
  986. }
  987. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  988. {
  989. struct perf_callchain_entry *entry;
  990. if (in_nmi())
  991. entry = &__get_cpu_var(nmi_entry);
  992. else
  993. entry = &__get_cpu_var(irq_entry);
  994. entry->nr = 0;
  995. entry->hv = 0;
  996. entry->kernel = 0;
  997. entry->user = 0;
  998. perf_do_callchain(regs, entry);
  999. return entry;
  1000. }