intel_dp.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_RECEIVER_CAP_SIZE 0xf
  38. #define DP_LINK_STATUS_SIZE 6
  39. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  40. #define DP_LINK_CONFIGURATION_SIZE 9
  41. struct intel_dp {
  42. struct intel_encoder base;
  43. uint32_t output_reg;
  44. uint32_t DP;
  45. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  46. bool has_audio;
  47. int force_audio;
  48. uint32_t color_range;
  49. int dpms_mode;
  50. uint8_t link_bw;
  51. uint8_t lane_count;
  52. uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
  53. struct i2c_adapter adapter;
  54. struct i2c_algo_dp_aux_data algo;
  55. bool is_pch_edp;
  56. uint8_t train_set[4];
  57. uint8_t link_status[DP_LINK_STATUS_SIZE];
  58. int panel_power_up_delay;
  59. int panel_power_down_delay;
  60. int panel_power_cycle_delay;
  61. int backlight_on_delay;
  62. int backlight_off_delay;
  63. struct drm_display_mode *panel_fixed_mode; /* for eDP */
  64. struct delayed_work panel_vdd_work;
  65. bool want_panel_vdd;
  66. unsigned long panel_off_jiffies;
  67. };
  68. /**
  69. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  70. * @intel_dp: DP struct
  71. *
  72. * If a CPU or PCH DP output is attached to an eDP panel, this function
  73. * will return true, and false otherwise.
  74. */
  75. static bool is_edp(struct intel_dp *intel_dp)
  76. {
  77. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  78. }
  79. /**
  80. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  81. * @intel_dp: DP struct
  82. *
  83. * Returns true if the given DP struct corresponds to a PCH DP port attached
  84. * to an eDP panel, false otherwise. Helpful for determining whether we
  85. * may need FDI resources for a given DP output or not.
  86. */
  87. static bool is_pch_edp(struct intel_dp *intel_dp)
  88. {
  89. return intel_dp->is_pch_edp;
  90. }
  91. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  92. {
  93. return container_of(encoder, struct intel_dp, base.base);
  94. }
  95. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  96. {
  97. return container_of(intel_attached_encoder(connector),
  98. struct intel_dp, base);
  99. }
  100. /**
  101. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  102. * @encoder: DRM encoder
  103. *
  104. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  105. * by intel_display.c.
  106. */
  107. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  108. {
  109. struct intel_dp *intel_dp;
  110. if (!encoder)
  111. return false;
  112. intel_dp = enc_to_intel_dp(encoder);
  113. return is_pch_edp(intel_dp);
  114. }
  115. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  116. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  117. static void intel_dp_link_down(struct intel_dp *intel_dp);
  118. void
  119. intel_edp_link_config(struct intel_encoder *intel_encoder,
  120. int *lane_num, int *link_bw)
  121. {
  122. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  123. *lane_num = intel_dp->lane_count;
  124. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  125. *link_bw = 162000;
  126. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  127. *link_bw = 270000;
  128. }
  129. static int
  130. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  131. {
  132. int max_lane_count = 4;
  133. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
  134. max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
  135. switch (max_lane_count) {
  136. case 1: case 2: case 4:
  137. break;
  138. default:
  139. max_lane_count = 4;
  140. }
  141. }
  142. return max_lane_count;
  143. }
  144. static int
  145. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  146. {
  147. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  148. switch (max_link_bw) {
  149. case DP_LINK_BW_1_62:
  150. case DP_LINK_BW_2_7:
  151. break;
  152. default:
  153. max_link_bw = DP_LINK_BW_1_62;
  154. break;
  155. }
  156. return max_link_bw;
  157. }
  158. static int
  159. intel_dp_link_clock(uint8_t link_bw)
  160. {
  161. if (link_bw == DP_LINK_BW_2_7)
  162. return 270000;
  163. else
  164. return 162000;
  165. }
  166. /*
  167. * The units on the numbers in the next two are... bizarre. Examples will
  168. * make it clearer; this one parallels an example in the eDP spec.
  169. *
  170. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  171. *
  172. * 270000 * 1 * 8 / 10 == 216000
  173. *
  174. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  175. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  176. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  177. * 119000. At 18bpp that's 2142000 kilobits per second.
  178. *
  179. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  180. * get the result in decakilobits instead of kilobits.
  181. */
  182. static int
  183. intel_dp_link_required(struct intel_dp *intel_dp, int pixel_clock)
  184. {
  185. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  186. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  187. int bpp = 24;
  188. if (intel_crtc)
  189. bpp = intel_crtc->bpp;
  190. return (pixel_clock * bpp + 9) / 10;
  191. }
  192. static int
  193. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  194. {
  195. return (max_link_clock * max_lanes * 8) / 10;
  196. }
  197. static int
  198. intel_dp_mode_valid(struct drm_connector *connector,
  199. struct drm_display_mode *mode)
  200. {
  201. struct intel_dp *intel_dp = intel_attached_dp(connector);
  202. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  203. int max_lanes = intel_dp_max_lane_count(intel_dp);
  204. if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
  205. if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
  206. return MODE_PANEL;
  207. if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
  208. return MODE_PANEL;
  209. }
  210. if (intel_dp_link_required(intel_dp, mode->clock)
  211. > intel_dp_max_data_rate(max_link_clock, max_lanes))
  212. return MODE_CLOCK_HIGH;
  213. if (mode->clock < 10000)
  214. return MODE_CLOCK_LOW;
  215. return MODE_OK;
  216. }
  217. static uint32_t
  218. pack_aux(uint8_t *src, int src_bytes)
  219. {
  220. int i;
  221. uint32_t v = 0;
  222. if (src_bytes > 4)
  223. src_bytes = 4;
  224. for (i = 0; i < src_bytes; i++)
  225. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  226. return v;
  227. }
  228. static void
  229. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  230. {
  231. int i;
  232. if (dst_bytes > 4)
  233. dst_bytes = 4;
  234. for (i = 0; i < dst_bytes; i++)
  235. dst[i] = src >> ((3-i) * 8);
  236. }
  237. /* hrawclock is 1/4 the FSB frequency */
  238. static int
  239. intel_hrawclk(struct drm_device *dev)
  240. {
  241. struct drm_i915_private *dev_priv = dev->dev_private;
  242. uint32_t clkcfg;
  243. clkcfg = I915_READ(CLKCFG);
  244. switch (clkcfg & CLKCFG_FSB_MASK) {
  245. case CLKCFG_FSB_400:
  246. return 100;
  247. case CLKCFG_FSB_533:
  248. return 133;
  249. case CLKCFG_FSB_667:
  250. return 166;
  251. case CLKCFG_FSB_800:
  252. return 200;
  253. case CLKCFG_FSB_1067:
  254. return 266;
  255. case CLKCFG_FSB_1333:
  256. return 333;
  257. /* these two are just a guess; one of them might be right */
  258. case CLKCFG_FSB_1600:
  259. case CLKCFG_FSB_1600_ALT:
  260. return 400;
  261. default:
  262. return 133;
  263. }
  264. }
  265. static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
  266. {
  267. struct drm_device *dev = intel_dp->base.base.dev;
  268. struct drm_i915_private *dev_priv = dev->dev_private;
  269. return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
  270. }
  271. static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
  272. {
  273. struct drm_device *dev = intel_dp->base.base.dev;
  274. struct drm_i915_private *dev_priv = dev->dev_private;
  275. return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
  276. }
  277. static void
  278. intel_dp_check_edp(struct intel_dp *intel_dp)
  279. {
  280. struct drm_device *dev = intel_dp->base.base.dev;
  281. struct drm_i915_private *dev_priv = dev->dev_private;
  282. if (!is_edp(intel_dp))
  283. return;
  284. if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
  285. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  286. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  287. I915_READ(PCH_PP_STATUS),
  288. I915_READ(PCH_PP_CONTROL));
  289. }
  290. }
  291. static int
  292. intel_dp_aux_ch(struct intel_dp *intel_dp,
  293. uint8_t *send, int send_bytes,
  294. uint8_t *recv, int recv_size)
  295. {
  296. uint32_t output_reg = intel_dp->output_reg;
  297. struct drm_device *dev = intel_dp->base.base.dev;
  298. struct drm_i915_private *dev_priv = dev->dev_private;
  299. uint32_t ch_ctl = output_reg + 0x10;
  300. uint32_t ch_data = ch_ctl + 4;
  301. int i;
  302. int recv_bytes;
  303. uint32_t status;
  304. uint32_t aux_clock_divider;
  305. int try, precharge;
  306. intel_dp_check_edp(intel_dp);
  307. /* The clock divider is based off the hrawclk,
  308. * and would like to run at 2MHz. So, take the
  309. * hrawclk value and divide by 2 and use that
  310. *
  311. * Note that PCH attached eDP panels should use a 125MHz input
  312. * clock divider.
  313. */
  314. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  315. if (IS_GEN6(dev))
  316. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  317. else
  318. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  319. } else if (HAS_PCH_SPLIT(dev))
  320. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  321. else
  322. aux_clock_divider = intel_hrawclk(dev) / 2;
  323. if (IS_GEN6(dev))
  324. precharge = 3;
  325. else
  326. precharge = 5;
  327. /* Try to wait for any previous AUX channel activity */
  328. for (try = 0; try < 3; try++) {
  329. status = I915_READ(ch_ctl);
  330. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  331. break;
  332. msleep(1);
  333. }
  334. if (try == 3) {
  335. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  336. I915_READ(ch_ctl));
  337. return -EBUSY;
  338. }
  339. /* Must try at least 3 times according to DP spec */
  340. for (try = 0; try < 5; try++) {
  341. /* Load the send data into the aux channel data registers */
  342. for (i = 0; i < send_bytes; i += 4)
  343. I915_WRITE(ch_data + i,
  344. pack_aux(send + i, send_bytes - i));
  345. /* Send the command and wait for it to complete */
  346. I915_WRITE(ch_ctl,
  347. DP_AUX_CH_CTL_SEND_BUSY |
  348. DP_AUX_CH_CTL_TIME_OUT_400us |
  349. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  350. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  351. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  352. DP_AUX_CH_CTL_DONE |
  353. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  354. DP_AUX_CH_CTL_RECEIVE_ERROR);
  355. for (;;) {
  356. status = I915_READ(ch_ctl);
  357. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  358. break;
  359. udelay(100);
  360. }
  361. /* Clear done status and any errors */
  362. I915_WRITE(ch_ctl,
  363. status |
  364. DP_AUX_CH_CTL_DONE |
  365. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  366. DP_AUX_CH_CTL_RECEIVE_ERROR);
  367. if (status & DP_AUX_CH_CTL_DONE)
  368. break;
  369. }
  370. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  371. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  372. return -EBUSY;
  373. }
  374. /* Check for timeout or receive error.
  375. * Timeouts occur when the sink is not connected
  376. */
  377. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  378. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  379. return -EIO;
  380. }
  381. /* Timeouts occur when the device isn't connected, so they're
  382. * "normal" -- don't fill the kernel log with these */
  383. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  384. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  385. return -ETIMEDOUT;
  386. }
  387. /* Unload any bytes sent back from the other side */
  388. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  389. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  390. if (recv_bytes > recv_size)
  391. recv_bytes = recv_size;
  392. for (i = 0; i < recv_bytes; i += 4)
  393. unpack_aux(I915_READ(ch_data + i),
  394. recv + i, recv_bytes - i);
  395. return recv_bytes;
  396. }
  397. /* Write data to the aux channel in native mode */
  398. static int
  399. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  400. uint16_t address, uint8_t *send, int send_bytes)
  401. {
  402. int ret;
  403. uint8_t msg[20];
  404. int msg_bytes;
  405. uint8_t ack;
  406. intel_dp_check_edp(intel_dp);
  407. if (send_bytes > 16)
  408. return -1;
  409. msg[0] = AUX_NATIVE_WRITE << 4;
  410. msg[1] = address >> 8;
  411. msg[2] = address & 0xff;
  412. msg[3] = send_bytes - 1;
  413. memcpy(&msg[4], send, send_bytes);
  414. msg_bytes = send_bytes + 4;
  415. for (;;) {
  416. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  417. if (ret < 0)
  418. return ret;
  419. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  420. break;
  421. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  422. udelay(100);
  423. else
  424. return -EIO;
  425. }
  426. return send_bytes;
  427. }
  428. /* Write a single byte to the aux channel in native mode */
  429. static int
  430. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  431. uint16_t address, uint8_t byte)
  432. {
  433. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  434. }
  435. /* read bytes from a native aux channel */
  436. static int
  437. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  438. uint16_t address, uint8_t *recv, int recv_bytes)
  439. {
  440. uint8_t msg[4];
  441. int msg_bytes;
  442. uint8_t reply[20];
  443. int reply_bytes;
  444. uint8_t ack;
  445. int ret;
  446. intel_dp_check_edp(intel_dp);
  447. msg[0] = AUX_NATIVE_READ << 4;
  448. msg[1] = address >> 8;
  449. msg[2] = address & 0xff;
  450. msg[3] = recv_bytes - 1;
  451. msg_bytes = 4;
  452. reply_bytes = recv_bytes + 1;
  453. for (;;) {
  454. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  455. reply, reply_bytes);
  456. if (ret == 0)
  457. return -EPROTO;
  458. if (ret < 0)
  459. return ret;
  460. ack = reply[0];
  461. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  462. memcpy(recv, reply + 1, ret - 1);
  463. return ret - 1;
  464. }
  465. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  466. udelay(100);
  467. else
  468. return -EIO;
  469. }
  470. }
  471. static int
  472. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  473. uint8_t write_byte, uint8_t *read_byte)
  474. {
  475. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  476. struct intel_dp *intel_dp = container_of(adapter,
  477. struct intel_dp,
  478. adapter);
  479. uint16_t address = algo_data->address;
  480. uint8_t msg[5];
  481. uint8_t reply[2];
  482. unsigned retry;
  483. int msg_bytes;
  484. int reply_bytes;
  485. int ret;
  486. intel_dp_check_edp(intel_dp);
  487. /* Set up the command byte */
  488. if (mode & MODE_I2C_READ)
  489. msg[0] = AUX_I2C_READ << 4;
  490. else
  491. msg[0] = AUX_I2C_WRITE << 4;
  492. if (!(mode & MODE_I2C_STOP))
  493. msg[0] |= AUX_I2C_MOT << 4;
  494. msg[1] = address >> 8;
  495. msg[2] = address;
  496. switch (mode) {
  497. case MODE_I2C_WRITE:
  498. msg[3] = 0;
  499. msg[4] = write_byte;
  500. msg_bytes = 5;
  501. reply_bytes = 1;
  502. break;
  503. case MODE_I2C_READ:
  504. msg[3] = 0;
  505. msg_bytes = 4;
  506. reply_bytes = 2;
  507. break;
  508. default:
  509. msg_bytes = 3;
  510. reply_bytes = 1;
  511. break;
  512. }
  513. for (retry = 0; retry < 5; retry++) {
  514. ret = intel_dp_aux_ch(intel_dp,
  515. msg, msg_bytes,
  516. reply, reply_bytes);
  517. if (ret < 0) {
  518. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  519. return ret;
  520. }
  521. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  522. case AUX_NATIVE_REPLY_ACK:
  523. /* I2C-over-AUX Reply field is only valid
  524. * when paired with AUX ACK.
  525. */
  526. break;
  527. case AUX_NATIVE_REPLY_NACK:
  528. DRM_DEBUG_KMS("aux_ch native nack\n");
  529. return -EREMOTEIO;
  530. case AUX_NATIVE_REPLY_DEFER:
  531. udelay(100);
  532. continue;
  533. default:
  534. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  535. reply[0]);
  536. return -EREMOTEIO;
  537. }
  538. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  539. case AUX_I2C_REPLY_ACK:
  540. if (mode == MODE_I2C_READ) {
  541. *read_byte = reply[1];
  542. }
  543. return reply_bytes - 1;
  544. case AUX_I2C_REPLY_NACK:
  545. DRM_DEBUG_KMS("aux_i2c nack\n");
  546. return -EREMOTEIO;
  547. case AUX_I2C_REPLY_DEFER:
  548. DRM_DEBUG_KMS("aux_i2c defer\n");
  549. udelay(100);
  550. break;
  551. default:
  552. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  553. return -EREMOTEIO;
  554. }
  555. }
  556. DRM_ERROR("too many retries, giving up\n");
  557. return -EREMOTEIO;
  558. }
  559. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
  560. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
  561. static int
  562. intel_dp_i2c_init(struct intel_dp *intel_dp,
  563. struct intel_connector *intel_connector, const char *name)
  564. {
  565. int ret;
  566. DRM_DEBUG_KMS("i2c_init %s\n", name);
  567. intel_dp->algo.running = false;
  568. intel_dp->algo.address = 0;
  569. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  570. memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
  571. intel_dp->adapter.owner = THIS_MODULE;
  572. intel_dp->adapter.class = I2C_CLASS_DDC;
  573. strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  574. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  575. intel_dp->adapter.algo_data = &intel_dp->algo;
  576. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  577. ironlake_edp_panel_vdd_on(intel_dp);
  578. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  579. ironlake_edp_panel_vdd_off(intel_dp, false);
  580. return ret;
  581. }
  582. static bool
  583. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  584. struct drm_display_mode *adjusted_mode)
  585. {
  586. struct drm_device *dev = encoder->dev;
  587. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  588. int lane_count, clock;
  589. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  590. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  591. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  592. if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
  593. intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
  594. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  595. mode, adjusted_mode);
  596. /*
  597. * the mode->clock is used to calculate the Data&Link M/N
  598. * of the pipe. For the eDP the fixed clock should be used.
  599. */
  600. mode->clock = intel_dp->panel_fixed_mode->clock;
  601. }
  602. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  603. for (clock = 0; clock <= max_clock; clock++) {
  604. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  605. if (intel_dp_link_required(intel_dp, mode->clock)
  606. <= link_avail) {
  607. intel_dp->link_bw = bws[clock];
  608. intel_dp->lane_count = lane_count;
  609. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  610. DRM_DEBUG_KMS("Display port link bw %02x lane "
  611. "count %d clock %d\n",
  612. intel_dp->link_bw, intel_dp->lane_count,
  613. adjusted_mode->clock);
  614. return true;
  615. }
  616. }
  617. }
  618. return false;
  619. }
  620. struct intel_dp_m_n {
  621. uint32_t tu;
  622. uint32_t gmch_m;
  623. uint32_t gmch_n;
  624. uint32_t link_m;
  625. uint32_t link_n;
  626. };
  627. static void
  628. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  629. {
  630. while (*num > 0xffffff || *den > 0xffffff) {
  631. *num >>= 1;
  632. *den >>= 1;
  633. }
  634. }
  635. static void
  636. intel_dp_compute_m_n(int bpp,
  637. int nlanes,
  638. int pixel_clock,
  639. int link_clock,
  640. struct intel_dp_m_n *m_n)
  641. {
  642. m_n->tu = 64;
  643. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  644. m_n->gmch_n = link_clock * nlanes;
  645. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  646. m_n->link_m = pixel_clock;
  647. m_n->link_n = link_clock;
  648. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  649. }
  650. void
  651. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  652. struct drm_display_mode *adjusted_mode)
  653. {
  654. struct drm_device *dev = crtc->dev;
  655. struct drm_mode_config *mode_config = &dev->mode_config;
  656. struct drm_encoder *encoder;
  657. struct drm_i915_private *dev_priv = dev->dev_private;
  658. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  659. int lane_count = 4;
  660. struct intel_dp_m_n m_n;
  661. int pipe = intel_crtc->pipe;
  662. /*
  663. * Find the lane count in the intel_encoder private
  664. */
  665. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  666. struct intel_dp *intel_dp;
  667. if (encoder->crtc != crtc)
  668. continue;
  669. intel_dp = enc_to_intel_dp(encoder);
  670. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  671. lane_count = intel_dp->lane_count;
  672. break;
  673. } else if (is_edp(intel_dp)) {
  674. lane_count = dev_priv->edp.lanes;
  675. break;
  676. }
  677. }
  678. /*
  679. * Compute the GMCH and Link ratios. The '3' here is
  680. * the number of bytes_per_pixel post-LUT, which we always
  681. * set up for 8-bits of R/G/B, or 3 bytes total.
  682. */
  683. intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
  684. mode->clock, adjusted_mode->clock, &m_n);
  685. if (HAS_PCH_SPLIT(dev)) {
  686. I915_WRITE(TRANSDATA_M1(pipe),
  687. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  688. m_n.gmch_m);
  689. I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
  690. I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
  691. I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
  692. } else {
  693. I915_WRITE(PIPE_GMCH_DATA_M(pipe),
  694. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  695. m_n.gmch_m);
  696. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  697. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  698. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  699. }
  700. }
  701. static void ironlake_edp_pll_on(struct drm_encoder *encoder);
  702. static void ironlake_edp_pll_off(struct drm_encoder *encoder);
  703. static void
  704. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  705. struct drm_display_mode *adjusted_mode)
  706. {
  707. struct drm_device *dev = encoder->dev;
  708. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  709. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  710. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  711. /* Turn on the eDP PLL if needed */
  712. if (is_edp(intel_dp)) {
  713. if (!is_pch_edp(intel_dp))
  714. ironlake_edp_pll_on(encoder);
  715. else
  716. ironlake_edp_pll_off(encoder);
  717. }
  718. intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  719. intel_dp->DP |= intel_dp->color_range;
  720. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  721. intel_dp->DP |= DP_SYNC_HS_HIGH;
  722. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  723. intel_dp->DP |= DP_SYNC_VS_HIGH;
  724. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  725. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  726. else
  727. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  728. switch (intel_dp->lane_count) {
  729. case 1:
  730. intel_dp->DP |= DP_PORT_WIDTH_1;
  731. break;
  732. case 2:
  733. intel_dp->DP |= DP_PORT_WIDTH_2;
  734. break;
  735. case 4:
  736. intel_dp->DP |= DP_PORT_WIDTH_4;
  737. break;
  738. }
  739. if (intel_dp->has_audio) {
  740. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  741. pipe_name(intel_crtc->pipe));
  742. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  743. intel_write_eld(encoder, adjusted_mode);
  744. }
  745. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  746. intel_dp->link_configuration[0] = intel_dp->link_bw;
  747. intel_dp->link_configuration[1] = intel_dp->lane_count;
  748. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  749. /*
  750. * Check for DPCD version > 1.1 and enhanced framing support
  751. */
  752. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  753. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  754. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  755. intel_dp->DP |= DP_ENHANCED_FRAMING;
  756. }
  757. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  758. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  759. intel_dp->DP |= DP_PIPEB_SELECT;
  760. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  761. /* don't miss out required setting for eDP */
  762. intel_dp->DP |= DP_PLL_ENABLE;
  763. if (adjusted_mode->clock < 200000)
  764. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  765. else
  766. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  767. }
  768. }
  769. static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
  770. {
  771. unsigned long off_time;
  772. unsigned long delay;
  773. DRM_DEBUG_KMS("Wait for panel power off time\n");
  774. if (ironlake_edp_have_panel_power(intel_dp) ||
  775. ironlake_edp_have_panel_vdd(intel_dp))
  776. {
  777. DRM_DEBUG_KMS("Panel still on, no delay needed\n");
  778. return;
  779. }
  780. off_time = intel_dp->panel_off_jiffies + msecs_to_jiffies(intel_dp->panel_power_down_delay);
  781. if (time_after(jiffies, off_time)) {
  782. DRM_DEBUG_KMS("Time already passed");
  783. return;
  784. }
  785. delay = jiffies_to_msecs(off_time - jiffies);
  786. if (delay > intel_dp->panel_power_down_delay)
  787. delay = intel_dp->panel_power_down_delay;
  788. DRM_DEBUG_KMS("Waiting an additional %ld ms\n", delay);
  789. msleep(delay);
  790. }
  791. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  792. {
  793. struct drm_device *dev = intel_dp->base.base.dev;
  794. struct drm_i915_private *dev_priv = dev->dev_private;
  795. u32 pp;
  796. if (!is_edp(intel_dp))
  797. return;
  798. DRM_DEBUG_KMS("Turn eDP VDD on\n");
  799. WARN(intel_dp->want_panel_vdd,
  800. "eDP VDD already requested on\n");
  801. intel_dp->want_panel_vdd = true;
  802. if (ironlake_edp_have_panel_vdd(intel_dp)) {
  803. DRM_DEBUG_KMS("eDP VDD already on\n");
  804. return;
  805. }
  806. ironlake_wait_panel_off(intel_dp);
  807. pp = I915_READ(PCH_PP_CONTROL);
  808. pp &= ~PANEL_UNLOCK_MASK;
  809. pp |= PANEL_UNLOCK_REGS;
  810. pp |= EDP_FORCE_VDD;
  811. I915_WRITE(PCH_PP_CONTROL, pp);
  812. POSTING_READ(PCH_PP_CONTROL);
  813. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  814. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  815. /*
  816. * If the panel wasn't on, delay before accessing aux channel
  817. */
  818. if (!ironlake_edp_have_panel_power(intel_dp)) {
  819. DRM_DEBUG_KMS("eDP was not running\n");
  820. msleep(intel_dp->panel_power_up_delay);
  821. }
  822. }
  823. static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
  824. {
  825. struct drm_device *dev = intel_dp->base.base.dev;
  826. struct drm_i915_private *dev_priv = dev->dev_private;
  827. u32 pp;
  828. if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
  829. pp = I915_READ(PCH_PP_CONTROL);
  830. pp &= ~PANEL_UNLOCK_MASK;
  831. pp |= PANEL_UNLOCK_REGS;
  832. pp &= ~EDP_FORCE_VDD;
  833. I915_WRITE(PCH_PP_CONTROL, pp);
  834. POSTING_READ(PCH_PP_CONTROL);
  835. /* Make sure sequencer is idle before allowing subsequent activity */
  836. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  837. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  838. intel_dp->panel_off_jiffies = jiffies;
  839. }
  840. }
  841. static void ironlake_panel_vdd_work(struct work_struct *__work)
  842. {
  843. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  844. struct intel_dp, panel_vdd_work);
  845. struct drm_device *dev = intel_dp->base.base.dev;
  846. mutex_lock(&dev->struct_mutex);
  847. ironlake_panel_vdd_off_sync(intel_dp);
  848. mutex_unlock(&dev->struct_mutex);
  849. }
  850. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  851. {
  852. if (!is_edp(intel_dp))
  853. return;
  854. DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
  855. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  856. intel_dp->want_panel_vdd = false;
  857. if (sync) {
  858. ironlake_panel_vdd_off_sync(intel_dp);
  859. } else {
  860. /*
  861. * Queue the timer to fire a long
  862. * time from now (relative to the power down delay)
  863. * to keep the panel power up across a sequence of operations
  864. */
  865. schedule_delayed_work(&intel_dp->panel_vdd_work,
  866. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  867. }
  868. }
  869. /* Returns true if the panel was already on when called */
  870. static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
  871. {
  872. struct drm_device *dev = intel_dp->base.base.dev;
  873. struct drm_i915_private *dev_priv = dev->dev_private;
  874. u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
  875. if (!is_edp(intel_dp))
  876. return;
  877. if (ironlake_edp_have_panel_power(intel_dp))
  878. return;
  879. ironlake_wait_panel_off(intel_dp);
  880. pp = I915_READ(PCH_PP_CONTROL);
  881. pp &= ~PANEL_UNLOCK_MASK;
  882. pp |= PANEL_UNLOCK_REGS;
  883. if (IS_GEN5(dev)) {
  884. /* ILK workaround: disable reset around power sequence */
  885. pp &= ~PANEL_POWER_RESET;
  886. I915_WRITE(PCH_PP_CONTROL, pp);
  887. POSTING_READ(PCH_PP_CONTROL);
  888. }
  889. pp |= POWER_TARGET_ON;
  890. I915_WRITE(PCH_PP_CONTROL, pp);
  891. POSTING_READ(PCH_PP_CONTROL);
  892. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
  893. 5000))
  894. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  895. I915_READ(PCH_PP_STATUS));
  896. if (IS_GEN5(dev)) {
  897. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  898. I915_WRITE(PCH_PP_CONTROL, pp);
  899. POSTING_READ(PCH_PP_CONTROL);
  900. }
  901. }
  902. static void ironlake_edp_panel_off(struct drm_encoder *encoder)
  903. {
  904. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  905. struct drm_device *dev = encoder->dev;
  906. struct drm_i915_private *dev_priv = dev->dev_private;
  907. u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
  908. PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
  909. if (!is_edp(intel_dp))
  910. return;
  911. pp = I915_READ(PCH_PP_CONTROL);
  912. pp &= ~PANEL_UNLOCK_MASK;
  913. pp |= PANEL_UNLOCK_REGS;
  914. if (IS_GEN5(dev)) {
  915. /* ILK workaround: disable reset around power sequence */
  916. pp &= ~PANEL_POWER_RESET;
  917. I915_WRITE(PCH_PP_CONTROL, pp);
  918. POSTING_READ(PCH_PP_CONTROL);
  919. }
  920. intel_dp->panel_off_jiffies = jiffies;
  921. if (IS_GEN5(dev)) {
  922. pp &= ~POWER_TARGET_ON;
  923. I915_WRITE(PCH_PP_CONTROL, pp);
  924. POSTING_READ(PCH_PP_CONTROL);
  925. pp &= ~POWER_TARGET_ON;
  926. I915_WRITE(PCH_PP_CONTROL, pp);
  927. POSTING_READ(PCH_PP_CONTROL);
  928. msleep(intel_dp->panel_power_cycle_delay);
  929. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
  930. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  931. I915_READ(PCH_PP_STATUS));
  932. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  933. I915_WRITE(PCH_PP_CONTROL, pp);
  934. POSTING_READ(PCH_PP_CONTROL);
  935. }
  936. }
  937. static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
  938. {
  939. struct drm_device *dev = intel_dp->base.base.dev;
  940. struct drm_i915_private *dev_priv = dev->dev_private;
  941. u32 pp;
  942. if (!is_edp(intel_dp))
  943. return;
  944. DRM_DEBUG_KMS("\n");
  945. /*
  946. * If we enable the backlight right away following a panel power
  947. * on, we may see slight flicker as the panel syncs with the eDP
  948. * link. So delay a bit to make sure the image is solid before
  949. * allowing it to appear.
  950. */
  951. msleep(intel_dp->backlight_on_delay);
  952. pp = I915_READ(PCH_PP_CONTROL);
  953. pp &= ~PANEL_UNLOCK_MASK;
  954. pp |= PANEL_UNLOCK_REGS;
  955. pp |= EDP_BLC_ENABLE;
  956. I915_WRITE(PCH_PP_CONTROL, pp);
  957. POSTING_READ(PCH_PP_CONTROL);
  958. }
  959. static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
  960. {
  961. struct drm_device *dev = intel_dp->base.base.dev;
  962. struct drm_i915_private *dev_priv = dev->dev_private;
  963. u32 pp;
  964. if (!is_edp(intel_dp))
  965. return;
  966. DRM_DEBUG_KMS("\n");
  967. pp = I915_READ(PCH_PP_CONTROL);
  968. pp &= ~PANEL_UNLOCK_MASK;
  969. pp |= PANEL_UNLOCK_REGS;
  970. pp &= ~EDP_BLC_ENABLE;
  971. I915_WRITE(PCH_PP_CONTROL, pp);
  972. POSTING_READ(PCH_PP_CONTROL);
  973. msleep(intel_dp->backlight_off_delay);
  974. }
  975. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  976. {
  977. struct drm_device *dev = encoder->dev;
  978. struct drm_i915_private *dev_priv = dev->dev_private;
  979. u32 dpa_ctl;
  980. DRM_DEBUG_KMS("\n");
  981. dpa_ctl = I915_READ(DP_A);
  982. dpa_ctl |= DP_PLL_ENABLE;
  983. I915_WRITE(DP_A, dpa_ctl);
  984. POSTING_READ(DP_A);
  985. udelay(200);
  986. }
  987. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  988. {
  989. struct drm_device *dev = encoder->dev;
  990. struct drm_i915_private *dev_priv = dev->dev_private;
  991. u32 dpa_ctl;
  992. dpa_ctl = I915_READ(DP_A);
  993. dpa_ctl &= ~DP_PLL_ENABLE;
  994. I915_WRITE(DP_A, dpa_ctl);
  995. POSTING_READ(DP_A);
  996. udelay(200);
  997. }
  998. /* If the sink supports it, try to set the power state appropriately */
  999. static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1000. {
  1001. int ret, i;
  1002. /* Should have a valid DPCD by this point */
  1003. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1004. return;
  1005. if (mode != DRM_MODE_DPMS_ON) {
  1006. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  1007. DP_SET_POWER_D3);
  1008. if (ret != 1)
  1009. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1010. } else {
  1011. /*
  1012. * When turning on, we need to retry for 1ms to give the sink
  1013. * time to wake up.
  1014. */
  1015. for (i = 0; i < 3; i++) {
  1016. ret = intel_dp_aux_native_write_1(intel_dp,
  1017. DP_SET_POWER,
  1018. DP_SET_POWER_D0);
  1019. if (ret == 1)
  1020. break;
  1021. msleep(1);
  1022. }
  1023. }
  1024. }
  1025. static void intel_dp_prepare(struct drm_encoder *encoder)
  1026. {
  1027. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1028. /* Wake up the sink first */
  1029. ironlake_edp_panel_vdd_on(intel_dp);
  1030. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1031. ironlake_edp_panel_vdd_off(intel_dp, false);
  1032. /* Make sure the panel is off before trying to
  1033. * change the mode
  1034. */
  1035. ironlake_edp_backlight_off(intel_dp);
  1036. intel_dp_link_down(intel_dp);
  1037. ironlake_edp_panel_off(encoder);
  1038. }
  1039. static void intel_dp_commit(struct drm_encoder *encoder)
  1040. {
  1041. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1042. struct drm_device *dev = encoder->dev;
  1043. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1044. ironlake_edp_panel_vdd_on(intel_dp);
  1045. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1046. intel_dp_start_link_train(intel_dp);
  1047. ironlake_edp_panel_on(intel_dp);
  1048. ironlake_edp_panel_vdd_off(intel_dp, true);
  1049. intel_dp_complete_link_train(intel_dp);
  1050. ironlake_edp_backlight_on(intel_dp);
  1051. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1052. if (HAS_PCH_CPT(dev))
  1053. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  1054. }
  1055. static void
  1056. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  1057. {
  1058. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1059. struct drm_device *dev = encoder->dev;
  1060. struct drm_i915_private *dev_priv = dev->dev_private;
  1061. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1062. if (mode != DRM_MODE_DPMS_ON) {
  1063. ironlake_edp_panel_vdd_on(intel_dp);
  1064. if (is_edp(intel_dp))
  1065. ironlake_edp_backlight_off(intel_dp);
  1066. intel_dp_sink_dpms(intel_dp, mode);
  1067. intel_dp_link_down(intel_dp);
  1068. ironlake_edp_panel_off(encoder);
  1069. if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
  1070. ironlake_edp_pll_off(encoder);
  1071. ironlake_edp_panel_vdd_off(intel_dp, false);
  1072. } else {
  1073. ironlake_edp_panel_vdd_on(intel_dp);
  1074. intel_dp_sink_dpms(intel_dp, mode);
  1075. if (!(dp_reg & DP_PORT_EN)) {
  1076. intel_dp_start_link_train(intel_dp);
  1077. ironlake_edp_panel_on(intel_dp);
  1078. ironlake_edp_panel_vdd_off(intel_dp, true);
  1079. intel_dp_complete_link_train(intel_dp);
  1080. ironlake_edp_backlight_on(intel_dp);
  1081. } else
  1082. ironlake_edp_panel_vdd_off(intel_dp, false);
  1083. ironlake_edp_backlight_on(intel_dp);
  1084. }
  1085. intel_dp->dpms_mode = mode;
  1086. }
  1087. /*
  1088. * Native read with retry for link status and receiver capability reads for
  1089. * cases where the sink may still be asleep.
  1090. */
  1091. static bool
  1092. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  1093. uint8_t *recv, int recv_bytes)
  1094. {
  1095. int ret, i;
  1096. /*
  1097. * Sinks are *supposed* to come up within 1ms from an off state,
  1098. * but we're also supposed to retry 3 times per the spec.
  1099. */
  1100. for (i = 0; i < 3; i++) {
  1101. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  1102. recv_bytes);
  1103. if (ret == recv_bytes)
  1104. return true;
  1105. msleep(1);
  1106. }
  1107. return false;
  1108. }
  1109. /*
  1110. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1111. * link status information
  1112. */
  1113. static bool
  1114. intel_dp_get_link_status(struct intel_dp *intel_dp)
  1115. {
  1116. return intel_dp_aux_native_read_retry(intel_dp,
  1117. DP_LANE0_1_STATUS,
  1118. intel_dp->link_status,
  1119. DP_LINK_STATUS_SIZE);
  1120. }
  1121. static uint8_t
  1122. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1123. int r)
  1124. {
  1125. return link_status[r - DP_LANE0_1_STATUS];
  1126. }
  1127. static uint8_t
  1128. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1129. int lane)
  1130. {
  1131. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  1132. int s = ((lane & 1) ?
  1133. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  1134. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  1135. uint8_t l = intel_dp_link_status(link_status, i);
  1136. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  1137. }
  1138. static uint8_t
  1139. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1140. int lane)
  1141. {
  1142. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  1143. int s = ((lane & 1) ?
  1144. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  1145. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  1146. uint8_t l = intel_dp_link_status(link_status, i);
  1147. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  1148. }
  1149. #if 0
  1150. static char *voltage_names[] = {
  1151. "0.4V", "0.6V", "0.8V", "1.2V"
  1152. };
  1153. static char *pre_emph_names[] = {
  1154. "0dB", "3.5dB", "6dB", "9.5dB"
  1155. };
  1156. static char *link_train_names[] = {
  1157. "pattern 1", "pattern 2", "idle", "off"
  1158. };
  1159. #endif
  1160. /*
  1161. * These are source-specific values; current Intel hardware supports
  1162. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1163. */
  1164. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  1165. static uint8_t
  1166. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  1167. {
  1168. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1169. case DP_TRAIN_VOLTAGE_SWING_400:
  1170. return DP_TRAIN_PRE_EMPHASIS_6;
  1171. case DP_TRAIN_VOLTAGE_SWING_600:
  1172. return DP_TRAIN_PRE_EMPHASIS_6;
  1173. case DP_TRAIN_VOLTAGE_SWING_800:
  1174. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1175. case DP_TRAIN_VOLTAGE_SWING_1200:
  1176. default:
  1177. return DP_TRAIN_PRE_EMPHASIS_0;
  1178. }
  1179. }
  1180. static void
  1181. intel_get_adjust_train(struct intel_dp *intel_dp)
  1182. {
  1183. uint8_t v = 0;
  1184. uint8_t p = 0;
  1185. int lane;
  1186. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1187. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  1188. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  1189. if (this_v > v)
  1190. v = this_v;
  1191. if (this_p > p)
  1192. p = this_p;
  1193. }
  1194. if (v >= I830_DP_VOLTAGE_MAX)
  1195. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  1196. if (p >= intel_dp_pre_emphasis_max(v))
  1197. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1198. for (lane = 0; lane < 4; lane++)
  1199. intel_dp->train_set[lane] = v | p;
  1200. }
  1201. static uint32_t
  1202. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  1203. {
  1204. uint32_t signal_levels = 0;
  1205. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1206. case DP_TRAIN_VOLTAGE_SWING_400:
  1207. default:
  1208. signal_levels |= DP_VOLTAGE_0_4;
  1209. break;
  1210. case DP_TRAIN_VOLTAGE_SWING_600:
  1211. signal_levels |= DP_VOLTAGE_0_6;
  1212. break;
  1213. case DP_TRAIN_VOLTAGE_SWING_800:
  1214. signal_levels |= DP_VOLTAGE_0_8;
  1215. break;
  1216. case DP_TRAIN_VOLTAGE_SWING_1200:
  1217. signal_levels |= DP_VOLTAGE_1_2;
  1218. break;
  1219. }
  1220. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1221. case DP_TRAIN_PRE_EMPHASIS_0:
  1222. default:
  1223. signal_levels |= DP_PRE_EMPHASIS_0;
  1224. break;
  1225. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1226. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1227. break;
  1228. case DP_TRAIN_PRE_EMPHASIS_6:
  1229. signal_levels |= DP_PRE_EMPHASIS_6;
  1230. break;
  1231. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1232. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1233. break;
  1234. }
  1235. return signal_levels;
  1236. }
  1237. /* Gen6's DP voltage swing and pre-emphasis control */
  1238. static uint32_t
  1239. intel_gen6_edp_signal_levels(uint8_t train_set)
  1240. {
  1241. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1242. DP_TRAIN_PRE_EMPHASIS_MASK);
  1243. switch (signal_levels) {
  1244. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1245. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1246. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1247. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1248. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1249. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1250. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1251. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1252. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1253. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1254. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1255. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1256. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1257. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1258. default:
  1259. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1260. "0x%x\n", signal_levels);
  1261. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1262. }
  1263. }
  1264. static uint8_t
  1265. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1266. int lane)
  1267. {
  1268. int i = DP_LANE0_1_STATUS + (lane >> 1);
  1269. int s = (lane & 1) * 4;
  1270. uint8_t l = intel_dp_link_status(link_status, i);
  1271. return (l >> s) & 0xf;
  1272. }
  1273. /* Check for clock recovery is done on all channels */
  1274. static bool
  1275. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1276. {
  1277. int lane;
  1278. uint8_t lane_status;
  1279. for (lane = 0; lane < lane_count; lane++) {
  1280. lane_status = intel_get_lane_status(link_status, lane);
  1281. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1282. return false;
  1283. }
  1284. return true;
  1285. }
  1286. /* Check to see if channel eq is done on all channels */
  1287. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1288. DP_LANE_CHANNEL_EQ_DONE|\
  1289. DP_LANE_SYMBOL_LOCKED)
  1290. static bool
  1291. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1292. {
  1293. uint8_t lane_align;
  1294. uint8_t lane_status;
  1295. int lane;
  1296. lane_align = intel_dp_link_status(intel_dp->link_status,
  1297. DP_LANE_ALIGN_STATUS_UPDATED);
  1298. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1299. return false;
  1300. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1301. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1302. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1303. return false;
  1304. }
  1305. return true;
  1306. }
  1307. static bool
  1308. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1309. uint32_t dp_reg_value,
  1310. uint8_t dp_train_pat)
  1311. {
  1312. struct drm_device *dev = intel_dp->base.base.dev;
  1313. struct drm_i915_private *dev_priv = dev->dev_private;
  1314. int ret;
  1315. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1316. POSTING_READ(intel_dp->output_reg);
  1317. intel_dp_aux_native_write_1(intel_dp,
  1318. DP_TRAINING_PATTERN_SET,
  1319. dp_train_pat);
  1320. ret = intel_dp_aux_native_write(intel_dp,
  1321. DP_TRAINING_LANE0_SET,
  1322. intel_dp->train_set, 4);
  1323. if (ret != 4)
  1324. return false;
  1325. return true;
  1326. }
  1327. /* Enable corresponding port and start training pattern 1 */
  1328. static void
  1329. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1330. {
  1331. struct drm_device *dev = intel_dp->base.base.dev;
  1332. struct drm_i915_private *dev_priv = dev->dev_private;
  1333. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1334. int i;
  1335. uint8_t voltage;
  1336. bool clock_recovery = false;
  1337. int tries;
  1338. u32 reg;
  1339. uint32_t DP = intel_dp->DP;
  1340. /*
  1341. * On CPT we have to enable the port in training pattern 1, which
  1342. * will happen below in intel_dp_set_link_train. Otherwise, enable
  1343. * the port and wait for it to become active.
  1344. */
  1345. if (!HAS_PCH_CPT(dev)) {
  1346. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1347. POSTING_READ(intel_dp->output_reg);
  1348. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1349. }
  1350. /* Write the link configuration data */
  1351. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1352. intel_dp->link_configuration,
  1353. DP_LINK_CONFIGURATION_SIZE);
  1354. DP |= DP_PORT_EN;
  1355. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1356. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1357. else
  1358. DP &= ~DP_LINK_TRAIN_MASK;
  1359. memset(intel_dp->train_set, 0, 4);
  1360. voltage = 0xff;
  1361. tries = 0;
  1362. clock_recovery = false;
  1363. for (;;) {
  1364. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1365. uint32_t signal_levels;
  1366. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1367. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1368. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1369. } else {
  1370. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1371. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1372. }
  1373. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1374. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1375. else
  1376. reg = DP | DP_LINK_TRAIN_PAT_1;
  1377. if (!intel_dp_set_link_train(intel_dp, reg,
  1378. DP_TRAINING_PATTERN_1 |
  1379. DP_LINK_SCRAMBLING_DISABLE))
  1380. break;
  1381. /* Set training pattern 1 */
  1382. udelay(100);
  1383. if (!intel_dp_get_link_status(intel_dp))
  1384. break;
  1385. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1386. clock_recovery = true;
  1387. break;
  1388. }
  1389. /* Check to see if we've tried the max voltage */
  1390. for (i = 0; i < intel_dp->lane_count; i++)
  1391. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1392. break;
  1393. if (i == intel_dp->lane_count)
  1394. break;
  1395. /* Check to see if we've tried the same voltage 5 times */
  1396. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1397. ++tries;
  1398. if (tries == 5)
  1399. break;
  1400. } else
  1401. tries = 0;
  1402. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1403. /* Compute new intel_dp->train_set as requested by target */
  1404. intel_get_adjust_train(intel_dp);
  1405. }
  1406. intel_dp->DP = DP;
  1407. }
  1408. static void
  1409. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1410. {
  1411. struct drm_device *dev = intel_dp->base.base.dev;
  1412. struct drm_i915_private *dev_priv = dev->dev_private;
  1413. bool channel_eq = false;
  1414. int tries, cr_tries;
  1415. u32 reg;
  1416. uint32_t DP = intel_dp->DP;
  1417. /* channel equalization */
  1418. tries = 0;
  1419. cr_tries = 0;
  1420. channel_eq = false;
  1421. for (;;) {
  1422. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1423. uint32_t signal_levels;
  1424. if (cr_tries > 5) {
  1425. DRM_ERROR("failed to train DP, aborting\n");
  1426. intel_dp_link_down(intel_dp);
  1427. break;
  1428. }
  1429. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1430. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1431. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1432. } else {
  1433. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1434. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1435. }
  1436. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1437. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1438. else
  1439. reg = DP | DP_LINK_TRAIN_PAT_2;
  1440. /* channel eq pattern */
  1441. if (!intel_dp_set_link_train(intel_dp, reg,
  1442. DP_TRAINING_PATTERN_2 |
  1443. DP_LINK_SCRAMBLING_DISABLE))
  1444. break;
  1445. udelay(400);
  1446. if (!intel_dp_get_link_status(intel_dp))
  1447. break;
  1448. /* Make sure clock is still ok */
  1449. if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1450. intel_dp_start_link_train(intel_dp);
  1451. cr_tries++;
  1452. continue;
  1453. }
  1454. if (intel_channel_eq_ok(intel_dp)) {
  1455. channel_eq = true;
  1456. break;
  1457. }
  1458. /* Try 5 times, then try clock recovery if that fails */
  1459. if (tries > 5) {
  1460. intel_dp_link_down(intel_dp);
  1461. intel_dp_start_link_train(intel_dp);
  1462. tries = 0;
  1463. cr_tries++;
  1464. continue;
  1465. }
  1466. /* Compute new intel_dp->train_set as requested by target */
  1467. intel_get_adjust_train(intel_dp);
  1468. ++tries;
  1469. }
  1470. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1471. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1472. else
  1473. reg = DP | DP_LINK_TRAIN_OFF;
  1474. I915_WRITE(intel_dp->output_reg, reg);
  1475. POSTING_READ(intel_dp->output_reg);
  1476. intel_dp_aux_native_write_1(intel_dp,
  1477. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1478. }
  1479. static void
  1480. intel_dp_link_down(struct intel_dp *intel_dp)
  1481. {
  1482. struct drm_device *dev = intel_dp->base.base.dev;
  1483. struct drm_i915_private *dev_priv = dev->dev_private;
  1484. uint32_t DP = intel_dp->DP;
  1485. if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
  1486. return;
  1487. DRM_DEBUG_KMS("\n");
  1488. if (is_edp(intel_dp)) {
  1489. DP &= ~DP_PLL_ENABLE;
  1490. I915_WRITE(intel_dp->output_reg, DP);
  1491. POSTING_READ(intel_dp->output_reg);
  1492. udelay(100);
  1493. }
  1494. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
  1495. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1496. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1497. } else {
  1498. DP &= ~DP_LINK_TRAIN_MASK;
  1499. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1500. }
  1501. POSTING_READ(intel_dp->output_reg);
  1502. msleep(17);
  1503. if (is_edp(intel_dp))
  1504. DP |= DP_LINK_TRAIN_OFF;
  1505. if (!HAS_PCH_CPT(dev) &&
  1506. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1507. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1508. /* Hardware workaround: leaving our transcoder select
  1509. * set to transcoder B while it's off will prevent the
  1510. * corresponding HDMI output on transcoder A.
  1511. *
  1512. * Combine this with another hardware workaround:
  1513. * transcoder select bit can only be cleared while the
  1514. * port is enabled.
  1515. */
  1516. DP &= ~DP_PIPEB_SELECT;
  1517. I915_WRITE(intel_dp->output_reg, DP);
  1518. /* Changes to enable or select take place the vblank
  1519. * after being written.
  1520. */
  1521. if (crtc == NULL) {
  1522. /* We can arrive here never having been attached
  1523. * to a CRTC, for instance, due to inheriting
  1524. * random state from the BIOS.
  1525. *
  1526. * If the pipe is not running, play safe and
  1527. * wait for the clocks to stabilise before
  1528. * continuing.
  1529. */
  1530. POSTING_READ(intel_dp->output_reg);
  1531. msleep(50);
  1532. } else
  1533. intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
  1534. }
  1535. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1536. POSTING_READ(intel_dp->output_reg);
  1537. msleep(intel_dp->panel_power_down_delay);
  1538. }
  1539. static bool
  1540. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  1541. {
  1542. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  1543. sizeof(intel_dp->dpcd)) &&
  1544. (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
  1545. return true;
  1546. }
  1547. return false;
  1548. }
  1549. /*
  1550. * According to DP spec
  1551. * 5.1.2:
  1552. * 1. Read DPCD
  1553. * 2. Configure link according to Receiver Capabilities
  1554. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1555. * 4. Check link status on receipt of hot-plug interrupt
  1556. */
  1557. static void
  1558. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1559. {
  1560. if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
  1561. return;
  1562. if (!intel_dp->base.base.crtc)
  1563. return;
  1564. /* Try to read receiver status if the link appears to be up */
  1565. if (!intel_dp_get_link_status(intel_dp)) {
  1566. intel_dp_link_down(intel_dp);
  1567. return;
  1568. }
  1569. /* Now read the DPCD to see if it's actually running */
  1570. if (!intel_dp_get_dpcd(intel_dp)) {
  1571. intel_dp_link_down(intel_dp);
  1572. return;
  1573. }
  1574. if (!intel_channel_eq_ok(intel_dp)) {
  1575. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  1576. drm_get_encoder_name(&intel_dp->base.base));
  1577. intel_dp_start_link_train(intel_dp);
  1578. intel_dp_complete_link_train(intel_dp);
  1579. }
  1580. }
  1581. static enum drm_connector_status
  1582. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  1583. {
  1584. if (intel_dp_get_dpcd(intel_dp))
  1585. return connector_status_connected;
  1586. return connector_status_disconnected;
  1587. }
  1588. static enum drm_connector_status
  1589. ironlake_dp_detect(struct intel_dp *intel_dp)
  1590. {
  1591. enum drm_connector_status status;
  1592. /* Can't disconnect eDP, but you can close the lid... */
  1593. if (is_edp(intel_dp)) {
  1594. status = intel_panel_detect(intel_dp->base.base.dev);
  1595. if (status == connector_status_unknown)
  1596. status = connector_status_connected;
  1597. return status;
  1598. }
  1599. return intel_dp_detect_dpcd(intel_dp);
  1600. }
  1601. static enum drm_connector_status
  1602. g4x_dp_detect(struct intel_dp *intel_dp)
  1603. {
  1604. struct drm_device *dev = intel_dp->base.base.dev;
  1605. struct drm_i915_private *dev_priv = dev->dev_private;
  1606. uint32_t temp, bit;
  1607. switch (intel_dp->output_reg) {
  1608. case DP_B:
  1609. bit = DPB_HOTPLUG_INT_STATUS;
  1610. break;
  1611. case DP_C:
  1612. bit = DPC_HOTPLUG_INT_STATUS;
  1613. break;
  1614. case DP_D:
  1615. bit = DPD_HOTPLUG_INT_STATUS;
  1616. break;
  1617. default:
  1618. return connector_status_unknown;
  1619. }
  1620. temp = I915_READ(PORT_HOTPLUG_STAT);
  1621. if ((temp & bit) == 0)
  1622. return connector_status_disconnected;
  1623. return intel_dp_detect_dpcd(intel_dp);
  1624. }
  1625. static struct edid *
  1626. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  1627. {
  1628. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1629. struct edid *edid;
  1630. ironlake_edp_panel_vdd_on(intel_dp);
  1631. edid = drm_get_edid(connector, adapter);
  1632. ironlake_edp_panel_vdd_off(intel_dp, false);
  1633. return edid;
  1634. }
  1635. static int
  1636. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  1637. {
  1638. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1639. int ret;
  1640. ironlake_edp_panel_vdd_on(intel_dp);
  1641. ret = intel_ddc_get_modes(connector, adapter);
  1642. ironlake_edp_panel_vdd_off(intel_dp, false);
  1643. return ret;
  1644. }
  1645. /**
  1646. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1647. *
  1648. * \return true if DP port is connected.
  1649. * \return false if DP port is disconnected.
  1650. */
  1651. static enum drm_connector_status
  1652. intel_dp_detect(struct drm_connector *connector, bool force)
  1653. {
  1654. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1655. struct drm_device *dev = intel_dp->base.base.dev;
  1656. enum drm_connector_status status;
  1657. struct edid *edid = NULL;
  1658. intel_dp->has_audio = false;
  1659. if (HAS_PCH_SPLIT(dev))
  1660. status = ironlake_dp_detect(intel_dp);
  1661. else
  1662. status = g4x_dp_detect(intel_dp);
  1663. DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
  1664. intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
  1665. intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
  1666. intel_dp->dpcd[6], intel_dp->dpcd[7]);
  1667. if (status != connector_status_connected)
  1668. return status;
  1669. if (intel_dp->force_audio) {
  1670. intel_dp->has_audio = intel_dp->force_audio > 0;
  1671. } else {
  1672. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  1673. if (edid) {
  1674. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  1675. connector->display_info.raw_edid = NULL;
  1676. kfree(edid);
  1677. }
  1678. }
  1679. return connector_status_connected;
  1680. }
  1681. static int intel_dp_get_modes(struct drm_connector *connector)
  1682. {
  1683. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1684. struct drm_device *dev = intel_dp->base.base.dev;
  1685. struct drm_i915_private *dev_priv = dev->dev_private;
  1686. int ret;
  1687. /* We should parse the EDID data and find out if it has an audio sink
  1688. */
  1689. ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
  1690. if (ret) {
  1691. if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
  1692. struct drm_display_mode *newmode;
  1693. list_for_each_entry(newmode, &connector->probed_modes,
  1694. head) {
  1695. if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
  1696. intel_dp->panel_fixed_mode =
  1697. drm_mode_duplicate(dev, newmode);
  1698. break;
  1699. }
  1700. }
  1701. }
  1702. return ret;
  1703. }
  1704. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1705. if (is_edp(intel_dp)) {
  1706. /* initialize panel mode from VBT if available for eDP */
  1707. if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
  1708. intel_dp->panel_fixed_mode =
  1709. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1710. if (intel_dp->panel_fixed_mode) {
  1711. intel_dp->panel_fixed_mode->type |=
  1712. DRM_MODE_TYPE_PREFERRED;
  1713. }
  1714. }
  1715. if (intel_dp->panel_fixed_mode) {
  1716. struct drm_display_mode *mode;
  1717. mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
  1718. drm_mode_probed_add(connector, mode);
  1719. return 1;
  1720. }
  1721. }
  1722. return 0;
  1723. }
  1724. static bool
  1725. intel_dp_detect_audio(struct drm_connector *connector)
  1726. {
  1727. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1728. struct edid *edid;
  1729. bool has_audio = false;
  1730. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  1731. if (edid) {
  1732. has_audio = drm_detect_monitor_audio(edid);
  1733. connector->display_info.raw_edid = NULL;
  1734. kfree(edid);
  1735. }
  1736. return has_audio;
  1737. }
  1738. static int
  1739. intel_dp_set_property(struct drm_connector *connector,
  1740. struct drm_property *property,
  1741. uint64_t val)
  1742. {
  1743. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  1744. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1745. int ret;
  1746. ret = drm_connector_property_set_value(connector, property, val);
  1747. if (ret)
  1748. return ret;
  1749. if (property == dev_priv->force_audio_property) {
  1750. int i = val;
  1751. bool has_audio;
  1752. if (i == intel_dp->force_audio)
  1753. return 0;
  1754. intel_dp->force_audio = i;
  1755. if (i == 0)
  1756. has_audio = intel_dp_detect_audio(connector);
  1757. else
  1758. has_audio = i > 0;
  1759. if (has_audio == intel_dp->has_audio)
  1760. return 0;
  1761. intel_dp->has_audio = has_audio;
  1762. goto done;
  1763. }
  1764. if (property == dev_priv->broadcast_rgb_property) {
  1765. if (val == !!intel_dp->color_range)
  1766. return 0;
  1767. intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
  1768. goto done;
  1769. }
  1770. return -EINVAL;
  1771. done:
  1772. if (intel_dp->base.base.crtc) {
  1773. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1774. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  1775. crtc->x, crtc->y,
  1776. crtc->fb);
  1777. }
  1778. return 0;
  1779. }
  1780. static void
  1781. intel_dp_destroy(struct drm_connector *connector)
  1782. {
  1783. struct drm_device *dev = connector->dev;
  1784. if (intel_dpd_is_edp(dev))
  1785. intel_panel_destroy_backlight(dev);
  1786. drm_sysfs_connector_remove(connector);
  1787. drm_connector_cleanup(connector);
  1788. kfree(connector);
  1789. }
  1790. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1791. {
  1792. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1793. i2c_del_adapter(&intel_dp->adapter);
  1794. drm_encoder_cleanup(encoder);
  1795. if (is_edp(intel_dp)) {
  1796. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  1797. ironlake_panel_vdd_off_sync(intel_dp);
  1798. }
  1799. kfree(intel_dp);
  1800. }
  1801. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1802. .dpms = intel_dp_dpms,
  1803. .mode_fixup = intel_dp_mode_fixup,
  1804. .prepare = intel_dp_prepare,
  1805. .mode_set = intel_dp_mode_set,
  1806. .commit = intel_dp_commit,
  1807. };
  1808. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1809. .dpms = drm_helper_connector_dpms,
  1810. .detect = intel_dp_detect,
  1811. .fill_modes = drm_helper_probe_single_connector_modes,
  1812. .set_property = intel_dp_set_property,
  1813. .destroy = intel_dp_destroy,
  1814. };
  1815. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1816. .get_modes = intel_dp_get_modes,
  1817. .mode_valid = intel_dp_mode_valid,
  1818. .best_encoder = intel_best_encoder,
  1819. };
  1820. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1821. .destroy = intel_dp_encoder_destroy,
  1822. };
  1823. static void
  1824. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1825. {
  1826. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1827. intel_dp_check_link_status(intel_dp);
  1828. }
  1829. /* Return which DP Port should be selected for Transcoder DP control */
  1830. int
  1831. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  1832. {
  1833. struct drm_device *dev = crtc->dev;
  1834. struct drm_mode_config *mode_config = &dev->mode_config;
  1835. struct drm_encoder *encoder;
  1836. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1837. struct intel_dp *intel_dp;
  1838. if (encoder->crtc != crtc)
  1839. continue;
  1840. intel_dp = enc_to_intel_dp(encoder);
  1841. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1842. return intel_dp->output_reg;
  1843. }
  1844. return -1;
  1845. }
  1846. /* check the VBT to see whether the eDP is on DP-D port */
  1847. bool intel_dpd_is_edp(struct drm_device *dev)
  1848. {
  1849. struct drm_i915_private *dev_priv = dev->dev_private;
  1850. struct child_device_config *p_child;
  1851. int i;
  1852. if (!dev_priv->child_dev_num)
  1853. return false;
  1854. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1855. p_child = dev_priv->child_dev + i;
  1856. if (p_child->dvo_port == PORT_IDPD &&
  1857. p_child->device_type == DEVICE_TYPE_eDP)
  1858. return true;
  1859. }
  1860. return false;
  1861. }
  1862. static void
  1863. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  1864. {
  1865. intel_attach_force_audio_property(connector);
  1866. intel_attach_broadcast_rgb_property(connector);
  1867. }
  1868. void
  1869. intel_dp_init(struct drm_device *dev, int output_reg)
  1870. {
  1871. struct drm_i915_private *dev_priv = dev->dev_private;
  1872. struct drm_connector *connector;
  1873. struct intel_dp *intel_dp;
  1874. struct intel_encoder *intel_encoder;
  1875. struct intel_connector *intel_connector;
  1876. const char *name = NULL;
  1877. int type;
  1878. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1879. if (!intel_dp)
  1880. return;
  1881. intel_dp->output_reg = output_reg;
  1882. intel_dp->dpms_mode = -1;
  1883. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1884. if (!intel_connector) {
  1885. kfree(intel_dp);
  1886. return;
  1887. }
  1888. intel_encoder = &intel_dp->base;
  1889. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1890. if (intel_dpd_is_edp(dev))
  1891. intel_dp->is_pch_edp = true;
  1892. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  1893. type = DRM_MODE_CONNECTOR_eDP;
  1894. intel_encoder->type = INTEL_OUTPUT_EDP;
  1895. } else {
  1896. type = DRM_MODE_CONNECTOR_DisplayPort;
  1897. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1898. }
  1899. connector = &intel_connector->base;
  1900. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1901. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1902. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1903. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1904. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1905. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1906. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1907. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1908. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1909. if (is_edp(intel_dp)) {
  1910. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1911. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  1912. ironlake_panel_vdd_work);
  1913. }
  1914. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1915. connector->interlace_allowed = true;
  1916. connector->doublescan_allowed = 0;
  1917. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  1918. DRM_MODE_ENCODER_TMDS);
  1919. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  1920. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1921. drm_sysfs_connector_add(connector);
  1922. /* Set up the DDC bus. */
  1923. switch (output_reg) {
  1924. case DP_A:
  1925. name = "DPDDC-A";
  1926. break;
  1927. case DP_B:
  1928. case PCH_DP_B:
  1929. dev_priv->hotplug_supported_mask |=
  1930. HDMIB_HOTPLUG_INT_STATUS;
  1931. name = "DPDDC-B";
  1932. break;
  1933. case DP_C:
  1934. case PCH_DP_C:
  1935. dev_priv->hotplug_supported_mask |=
  1936. HDMIC_HOTPLUG_INT_STATUS;
  1937. name = "DPDDC-C";
  1938. break;
  1939. case DP_D:
  1940. case PCH_DP_D:
  1941. dev_priv->hotplug_supported_mask |=
  1942. HDMID_HOTPLUG_INT_STATUS;
  1943. name = "DPDDC-D";
  1944. break;
  1945. }
  1946. /* Cache some DPCD data in the eDP case */
  1947. if (is_edp(intel_dp)) {
  1948. bool ret;
  1949. struct edp_power_seq cur, vbt;
  1950. u32 pp_on, pp_off, pp_div;
  1951. pp_on = I915_READ(PCH_PP_ON_DELAYS);
  1952. pp_off = I915_READ(PCH_PP_OFF_DELAYS);
  1953. pp_div = I915_READ(PCH_PP_DIVISOR);
  1954. /* Pull timing values out of registers */
  1955. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  1956. PANEL_POWER_UP_DELAY_SHIFT;
  1957. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  1958. PANEL_LIGHT_ON_DELAY_SHIFT;
  1959. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  1960. PANEL_LIGHT_OFF_DELAY_SHIFT;
  1961. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  1962. PANEL_POWER_DOWN_DELAY_SHIFT;
  1963. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  1964. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  1965. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  1966. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  1967. vbt = dev_priv->edp.pps;
  1968. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  1969. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  1970. #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
  1971. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  1972. intel_dp->backlight_on_delay = get_delay(t8);
  1973. intel_dp->backlight_off_delay = get_delay(t9);
  1974. intel_dp->panel_power_down_delay = get_delay(t10);
  1975. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  1976. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  1977. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  1978. intel_dp->panel_power_cycle_delay);
  1979. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  1980. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  1981. intel_dp->panel_off_jiffies = jiffies - intel_dp->panel_power_down_delay;
  1982. ironlake_edp_panel_vdd_on(intel_dp);
  1983. ret = intel_dp_get_dpcd(intel_dp);
  1984. ironlake_edp_panel_vdd_off(intel_dp, false);
  1985. if (ret) {
  1986. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  1987. dev_priv->no_aux_handshake =
  1988. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  1989. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  1990. } else {
  1991. /* if this fails, presume the device is a ghost */
  1992. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  1993. intel_dp_encoder_destroy(&intel_dp->base.base);
  1994. intel_dp_destroy(&intel_connector->base);
  1995. return;
  1996. }
  1997. }
  1998. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1999. intel_encoder->hot_plug = intel_dp_hot_plug;
  2000. if (is_edp(intel_dp)) {
  2001. dev_priv->int_edp_connector = connector;
  2002. intel_panel_setup_backlight(dev);
  2003. }
  2004. intel_dp_add_properties(intel_dp, connector);
  2005. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  2006. * 0xd. Failure to do so will result in spurious interrupts being
  2007. * generated on the port when a cable is not attached.
  2008. */
  2009. if (IS_G4X(dev) && !IS_GM45(dev)) {
  2010. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  2011. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  2012. }
  2013. }