memory.c 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/module.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <asm/io.h>
  56. #include <asm/pgalloc.h>
  57. #include <asm/uaccess.h>
  58. #include <asm/tlb.h>
  59. #include <asm/tlbflush.h>
  60. #include <asm/pgtable.h>
  61. #include "internal.h"
  62. #ifndef CONFIG_NEED_MULTIPLE_NODES
  63. /* use the per-pgdat data instead for discontigmem - mbligh */
  64. unsigned long max_mapnr;
  65. struct page *mem_map;
  66. EXPORT_SYMBOL(max_mapnr);
  67. EXPORT_SYMBOL(mem_map);
  68. #endif
  69. unsigned long num_physpages;
  70. /*
  71. * A number of key systems in x86 including ioremap() rely on the assumption
  72. * that high_memory defines the upper bound on direct map memory, then end
  73. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  74. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  75. * and ZONE_HIGHMEM.
  76. */
  77. void * high_memory;
  78. EXPORT_SYMBOL(num_physpages);
  79. EXPORT_SYMBOL(high_memory);
  80. /*
  81. * Randomize the address space (stacks, mmaps, brk, etc.).
  82. *
  83. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  84. * as ancient (libc5 based) binaries can segfault. )
  85. */
  86. int randomize_va_space __read_mostly =
  87. #ifdef CONFIG_COMPAT_BRK
  88. 1;
  89. #else
  90. 2;
  91. #endif
  92. static int __init disable_randmaps(char *s)
  93. {
  94. randomize_va_space = 0;
  95. return 1;
  96. }
  97. __setup("norandmaps", disable_randmaps);
  98. unsigned long zero_pfn __read_mostly;
  99. unsigned long highest_memmap_pfn __read_mostly;
  100. /*
  101. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  102. */
  103. static int __init init_zero_pfn(void)
  104. {
  105. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  106. return 0;
  107. }
  108. core_initcall(init_zero_pfn);
  109. #if defined(SPLIT_RSS_COUNTING)
  110. static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
  111. {
  112. int i;
  113. for (i = 0; i < NR_MM_COUNTERS; i++) {
  114. if (task->rss_stat.count[i]) {
  115. add_mm_counter(mm, i, task->rss_stat.count[i]);
  116. task->rss_stat.count[i] = 0;
  117. }
  118. }
  119. task->rss_stat.events = 0;
  120. }
  121. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  122. {
  123. struct task_struct *task = current;
  124. if (likely(task->mm == mm))
  125. task->rss_stat.count[member] += val;
  126. else
  127. add_mm_counter(mm, member, val);
  128. }
  129. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  130. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  131. /* sync counter once per 64 page faults */
  132. #define TASK_RSS_EVENTS_THRESH (64)
  133. static void check_sync_rss_stat(struct task_struct *task)
  134. {
  135. if (unlikely(task != current))
  136. return;
  137. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  138. __sync_task_rss_stat(task, task->mm);
  139. }
  140. unsigned long get_mm_counter(struct mm_struct *mm, int member)
  141. {
  142. long val = 0;
  143. /*
  144. * Don't use task->mm here...for avoiding to use task_get_mm()..
  145. * The caller must guarantee task->mm is not invalid.
  146. */
  147. val = atomic_long_read(&mm->rss_stat.count[member]);
  148. /*
  149. * counter is updated in asynchronous manner and may go to minus.
  150. * But it's never be expected number for users.
  151. */
  152. if (val < 0)
  153. return 0;
  154. return (unsigned long)val;
  155. }
  156. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  157. {
  158. __sync_task_rss_stat(task, mm);
  159. }
  160. #else
  161. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  162. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  163. static void check_sync_rss_stat(struct task_struct *task)
  164. {
  165. }
  166. #endif
  167. /*
  168. * If a p?d_bad entry is found while walking page tables, report
  169. * the error, before resetting entry to p?d_none. Usually (but
  170. * very seldom) called out from the p?d_none_or_clear_bad macros.
  171. */
  172. void pgd_clear_bad(pgd_t *pgd)
  173. {
  174. pgd_ERROR(*pgd);
  175. pgd_clear(pgd);
  176. }
  177. void pud_clear_bad(pud_t *pud)
  178. {
  179. pud_ERROR(*pud);
  180. pud_clear(pud);
  181. }
  182. void pmd_clear_bad(pmd_t *pmd)
  183. {
  184. pmd_ERROR(*pmd);
  185. pmd_clear(pmd);
  186. }
  187. /*
  188. * Note: this doesn't free the actual pages themselves. That
  189. * has been handled earlier when unmapping all the memory regions.
  190. */
  191. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  192. unsigned long addr)
  193. {
  194. pgtable_t token = pmd_pgtable(*pmd);
  195. pmd_clear(pmd);
  196. pte_free_tlb(tlb, token, addr);
  197. tlb->mm->nr_ptes--;
  198. }
  199. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  200. unsigned long addr, unsigned long end,
  201. unsigned long floor, unsigned long ceiling)
  202. {
  203. pmd_t *pmd;
  204. unsigned long next;
  205. unsigned long start;
  206. start = addr;
  207. pmd = pmd_offset(pud, addr);
  208. do {
  209. next = pmd_addr_end(addr, end);
  210. if (pmd_none_or_clear_bad(pmd))
  211. continue;
  212. free_pte_range(tlb, pmd, addr);
  213. } while (pmd++, addr = next, addr != end);
  214. start &= PUD_MASK;
  215. if (start < floor)
  216. return;
  217. if (ceiling) {
  218. ceiling &= PUD_MASK;
  219. if (!ceiling)
  220. return;
  221. }
  222. if (end - 1 > ceiling - 1)
  223. return;
  224. pmd = pmd_offset(pud, start);
  225. pud_clear(pud);
  226. pmd_free_tlb(tlb, pmd, start);
  227. }
  228. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  229. unsigned long addr, unsigned long end,
  230. unsigned long floor, unsigned long ceiling)
  231. {
  232. pud_t *pud;
  233. unsigned long next;
  234. unsigned long start;
  235. start = addr;
  236. pud = pud_offset(pgd, addr);
  237. do {
  238. next = pud_addr_end(addr, end);
  239. if (pud_none_or_clear_bad(pud))
  240. continue;
  241. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  242. } while (pud++, addr = next, addr != end);
  243. start &= PGDIR_MASK;
  244. if (start < floor)
  245. return;
  246. if (ceiling) {
  247. ceiling &= PGDIR_MASK;
  248. if (!ceiling)
  249. return;
  250. }
  251. if (end - 1 > ceiling - 1)
  252. return;
  253. pud = pud_offset(pgd, start);
  254. pgd_clear(pgd);
  255. pud_free_tlb(tlb, pud, start);
  256. }
  257. /*
  258. * This function frees user-level page tables of a process.
  259. *
  260. * Must be called with pagetable lock held.
  261. */
  262. void free_pgd_range(struct mmu_gather *tlb,
  263. unsigned long addr, unsigned long end,
  264. unsigned long floor, unsigned long ceiling)
  265. {
  266. pgd_t *pgd;
  267. unsigned long next;
  268. /*
  269. * The next few lines have given us lots of grief...
  270. *
  271. * Why are we testing PMD* at this top level? Because often
  272. * there will be no work to do at all, and we'd prefer not to
  273. * go all the way down to the bottom just to discover that.
  274. *
  275. * Why all these "- 1"s? Because 0 represents both the bottom
  276. * of the address space and the top of it (using -1 for the
  277. * top wouldn't help much: the masks would do the wrong thing).
  278. * The rule is that addr 0 and floor 0 refer to the bottom of
  279. * the address space, but end 0 and ceiling 0 refer to the top
  280. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  281. * that end 0 case should be mythical).
  282. *
  283. * Wherever addr is brought up or ceiling brought down, we must
  284. * be careful to reject "the opposite 0" before it confuses the
  285. * subsequent tests. But what about where end is brought down
  286. * by PMD_SIZE below? no, end can't go down to 0 there.
  287. *
  288. * Whereas we round start (addr) and ceiling down, by different
  289. * masks at different levels, in order to test whether a table
  290. * now has no other vmas using it, so can be freed, we don't
  291. * bother to round floor or end up - the tests don't need that.
  292. */
  293. addr &= PMD_MASK;
  294. if (addr < floor) {
  295. addr += PMD_SIZE;
  296. if (!addr)
  297. return;
  298. }
  299. if (ceiling) {
  300. ceiling &= PMD_MASK;
  301. if (!ceiling)
  302. return;
  303. }
  304. if (end - 1 > ceiling - 1)
  305. end -= PMD_SIZE;
  306. if (addr > end - 1)
  307. return;
  308. pgd = pgd_offset(tlb->mm, addr);
  309. do {
  310. next = pgd_addr_end(addr, end);
  311. if (pgd_none_or_clear_bad(pgd))
  312. continue;
  313. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  314. } while (pgd++, addr = next, addr != end);
  315. }
  316. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  317. unsigned long floor, unsigned long ceiling)
  318. {
  319. while (vma) {
  320. struct vm_area_struct *next = vma->vm_next;
  321. unsigned long addr = vma->vm_start;
  322. /*
  323. * Hide vma from rmap and truncate_pagecache before freeing
  324. * pgtables
  325. */
  326. unlink_anon_vmas(vma);
  327. unlink_file_vma(vma);
  328. if (is_vm_hugetlb_page(vma)) {
  329. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  330. floor, next? next->vm_start: ceiling);
  331. } else {
  332. /*
  333. * Optimization: gather nearby vmas into one call down
  334. */
  335. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  336. && !is_vm_hugetlb_page(next)) {
  337. vma = next;
  338. next = vma->vm_next;
  339. unlink_anon_vmas(vma);
  340. unlink_file_vma(vma);
  341. }
  342. free_pgd_range(tlb, addr, vma->vm_end,
  343. floor, next? next->vm_start: ceiling);
  344. }
  345. vma = next;
  346. }
  347. }
  348. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  349. pmd_t *pmd, unsigned long address)
  350. {
  351. pgtable_t new = pte_alloc_one(mm, address);
  352. int wait_split_huge_page;
  353. if (!new)
  354. return -ENOMEM;
  355. /*
  356. * Ensure all pte setup (eg. pte page lock and page clearing) are
  357. * visible before the pte is made visible to other CPUs by being
  358. * put into page tables.
  359. *
  360. * The other side of the story is the pointer chasing in the page
  361. * table walking code (when walking the page table without locking;
  362. * ie. most of the time). Fortunately, these data accesses consist
  363. * of a chain of data-dependent loads, meaning most CPUs (alpha
  364. * being the notable exception) will already guarantee loads are
  365. * seen in-order. See the alpha page table accessors for the
  366. * smp_read_barrier_depends() barriers in page table walking code.
  367. */
  368. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  369. spin_lock(&mm->page_table_lock);
  370. wait_split_huge_page = 0;
  371. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  372. mm->nr_ptes++;
  373. pmd_populate(mm, pmd, new);
  374. new = NULL;
  375. } else if (unlikely(pmd_trans_splitting(*pmd)))
  376. wait_split_huge_page = 1;
  377. spin_unlock(&mm->page_table_lock);
  378. if (new)
  379. pte_free(mm, new);
  380. if (wait_split_huge_page)
  381. wait_split_huge_page(vma->anon_vma, pmd);
  382. return 0;
  383. }
  384. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  385. {
  386. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  387. if (!new)
  388. return -ENOMEM;
  389. smp_wmb(); /* See comment in __pte_alloc */
  390. spin_lock(&init_mm.page_table_lock);
  391. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  392. pmd_populate_kernel(&init_mm, pmd, new);
  393. new = NULL;
  394. } else
  395. VM_BUG_ON(pmd_trans_splitting(*pmd));
  396. spin_unlock(&init_mm.page_table_lock);
  397. if (new)
  398. pte_free_kernel(&init_mm, new);
  399. return 0;
  400. }
  401. static inline void init_rss_vec(int *rss)
  402. {
  403. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  404. }
  405. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  406. {
  407. int i;
  408. if (current->mm == mm)
  409. sync_mm_rss(current, mm);
  410. for (i = 0; i < NR_MM_COUNTERS; i++)
  411. if (rss[i])
  412. add_mm_counter(mm, i, rss[i]);
  413. }
  414. /*
  415. * This function is called to print an error when a bad pte
  416. * is found. For example, we might have a PFN-mapped pte in
  417. * a region that doesn't allow it.
  418. *
  419. * The calling function must still handle the error.
  420. */
  421. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  422. pte_t pte, struct page *page)
  423. {
  424. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  425. pud_t *pud = pud_offset(pgd, addr);
  426. pmd_t *pmd = pmd_offset(pud, addr);
  427. struct address_space *mapping;
  428. pgoff_t index;
  429. static unsigned long resume;
  430. static unsigned long nr_shown;
  431. static unsigned long nr_unshown;
  432. /*
  433. * Allow a burst of 60 reports, then keep quiet for that minute;
  434. * or allow a steady drip of one report per second.
  435. */
  436. if (nr_shown == 60) {
  437. if (time_before(jiffies, resume)) {
  438. nr_unshown++;
  439. return;
  440. }
  441. if (nr_unshown) {
  442. printk(KERN_ALERT
  443. "BUG: Bad page map: %lu messages suppressed\n",
  444. nr_unshown);
  445. nr_unshown = 0;
  446. }
  447. nr_shown = 0;
  448. }
  449. if (nr_shown++ == 0)
  450. resume = jiffies + 60 * HZ;
  451. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  452. index = linear_page_index(vma, addr);
  453. printk(KERN_ALERT
  454. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  455. current->comm,
  456. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  457. if (page)
  458. dump_page(page);
  459. printk(KERN_ALERT
  460. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  461. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  462. /*
  463. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  464. */
  465. if (vma->vm_ops)
  466. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  467. (unsigned long)vma->vm_ops->fault);
  468. if (vma->vm_file && vma->vm_file->f_op)
  469. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  470. (unsigned long)vma->vm_file->f_op->mmap);
  471. dump_stack();
  472. add_taint(TAINT_BAD_PAGE);
  473. }
  474. static inline int is_cow_mapping(unsigned int flags)
  475. {
  476. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  477. }
  478. #ifndef is_zero_pfn
  479. static inline int is_zero_pfn(unsigned long pfn)
  480. {
  481. return pfn == zero_pfn;
  482. }
  483. #endif
  484. #ifndef my_zero_pfn
  485. static inline unsigned long my_zero_pfn(unsigned long addr)
  486. {
  487. return zero_pfn;
  488. }
  489. #endif
  490. /*
  491. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  492. *
  493. * "Special" mappings do not wish to be associated with a "struct page" (either
  494. * it doesn't exist, or it exists but they don't want to touch it). In this
  495. * case, NULL is returned here. "Normal" mappings do have a struct page.
  496. *
  497. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  498. * pte bit, in which case this function is trivial. Secondly, an architecture
  499. * may not have a spare pte bit, which requires a more complicated scheme,
  500. * described below.
  501. *
  502. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  503. * special mapping (even if there are underlying and valid "struct pages").
  504. * COWed pages of a VM_PFNMAP are always normal.
  505. *
  506. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  507. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  508. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  509. * mapping will always honor the rule
  510. *
  511. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  512. *
  513. * And for normal mappings this is false.
  514. *
  515. * This restricts such mappings to be a linear translation from virtual address
  516. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  517. * as the vma is not a COW mapping; in that case, we know that all ptes are
  518. * special (because none can have been COWed).
  519. *
  520. *
  521. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  522. *
  523. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  524. * page" backing, however the difference is that _all_ pages with a struct
  525. * page (that is, those where pfn_valid is true) are refcounted and considered
  526. * normal pages by the VM. The disadvantage is that pages are refcounted
  527. * (which can be slower and simply not an option for some PFNMAP users). The
  528. * advantage is that we don't have to follow the strict linearity rule of
  529. * PFNMAP mappings in order to support COWable mappings.
  530. *
  531. */
  532. #ifdef __HAVE_ARCH_PTE_SPECIAL
  533. # define HAVE_PTE_SPECIAL 1
  534. #else
  535. # define HAVE_PTE_SPECIAL 0
  536. #endif
  537. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  538. pte_t pte)
  539. {
  540. unsigned long pfn = pte_pfn(pte);
  541. if (HAVE_PTE_SPECIAL) {
  542. if (likely(!pte_special(pte)))
  543. goto check_pfn;
  544. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  545. return NULL;
  546. if (!is_zero_pfn(pfn))
  547. print_bad_pte(vma, addr, pte, NULL);
  548. return NULL;
  549. }
  550. /* !HAVE_PTE_SPECIAL case follows: */
  551. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  552. if (vma->vm_flags & VM_MIXEDMAP) {
  553. if (!pfn_valid(pfn))
  554. return NULL;
  555. goto out;
  556. } else {
  557. unsigned long off;
  558. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  559. if (pfn == vma->vm_pgoff + off)
  560. return NULL;
  561. if (!is_cow_mapping(vma->vm_flags))
  562. return NULL;
  563. }
  564. }
  565. if (is_zero_pfn(pfn))
  566. return NULL;
  567. check_pfn:
  568. if (unlikely(pfn > highest_memmap_pfn)) {
  569. print_bad_pte(vma, addr, pte, NULL);
  570. return NULL;
  571. }
  572. /*
  573. * NOTE! We still have PageReserved() pages in the page tables.
  574. * eg. VDSO mappings can cause them to exist.
  575. */
  576. out:
  577. return pfn_to_page(pfn);
  578. }
  579. /*
  580. * copy one vm_area from one task to the other. Assumes the page tables
  581. * already present in the new task to be cleared in the whole range
  582. * covered by this vma.
  583. */
  584. static inline unsigned long
  585. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  586. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  587. unsigned long addr, int *rss)
  588. {
  589. unsigned long vm_flags = vma->vm_flags;
  590. pte_t pte = *src_pte;
  591. struct page *page;
  592. /* pte contains position in swap or file, so copy. */
  593. if (unlikely(!pte_present(pte))) {
  594. if (!pte_file(pte)) {
  595. swp_entry_t entry = pte_to_swp_entry(pte);
  596. if (swap_duplicate(entry) < 0)
  597. return entry.val;
  598. /* make sure dst_mm is on swapoff's mmlist. */
  599. if (unlikely(list_empty(&dst_mm->mmlist))) {
  600. spin_lock(&mmlist_lock);
  601. if (list_empty(&dst_mm->mmlist))
  602. list_add(&dst_mm->mmlist,
  603. &src_mm->mmlist);
  604. spin_unlock(&mmlist_lock);
  605. }
  606. if (likely(!non_swap_entry(entry)))
  607. rss[MM_SWAPENTS]++;
  608. else if (is_write_migration_entry(entry) &&
  609. is_cow_mapping(vm_flags)) {
  610. /*
  611. * COW mappings require pages in both parent
  612. * and child to be set to read.
  613. */
  614. make_migration_entry_read(&entry);
  615. pte = swp_entry_to_pte(entry);
  616. set_pte_at(src_mm, addr, src_pte, pte);
  617. }
  618. }
  619. goto out_set_pte;
  620. }
  621. /*
  622. * If it's a COW mapping, write protect it both
  623. * in the parent and the child
  624. */
  625. if (is_cow_mapping(vm_flags)) {
  626. ptep_set_wrprotect(src_mm, addr, src_pte);
  627. pte = pte_wrprotect(pte);
  628. }
  629. /*
  630. * If it's a shared mapping, mark it clean in
  631. * the child
  632. */
  633. if (vm_flags & VM_SHARED)
  634. pte = pte_mkclean(pte);
  635. pte = pte_mkold(pte);
  636. page = vm_normal_page(vma, addr, pte);
  637. if (page) {
  638. get_page(page);
  639. page_dup_rmap(page);
  640. if (PageAnon(page))
  641. rss[MM_ANONPAGES]++;
  642. else
  643. rss[MM_FILEPAGES]++;
  644. }
  645. out_set_pte:
  646. set_pte_at(dst_mm, addr, dst_pte, pte);
  647. return 0;
  648. }
  649. int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  650. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  651. unsigned long addr, unsigned long end)
  652. {
  653. pte_t *orig_src_pte, *orig_dst_pte;
  654. pte_t *src_pte, *dst_pte;
  655. spinlock_t *src_ptl, *dst_ptl;
  656. int progress = 0;
  657. int rss[NR_MM_COUNTERS];
  658. swp_entry_t entry = (swp_entry_t){0};
  659. again:
  660. init_rss_vec(rss);
  661. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  662. if (!dst_pte)
  663. return -ENOMEM;
  664. src_pte = pte_offset_map(src_pmd, addr);
  665. src_ptl = pte_lockptr(src_mm, src_pmd);
  666. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  667. orig_src_pte = src_pte;
  668. orig_dst_pte = dst_pte;
  669. arch_enter_lazy_mmu_mode();
  670. do {
  671. /*
  672. * We are holding two locks at this point - either of them
  673. * could generate latencies in another task on another CPU.
  674. */
  675. if (progress >= 32) {
  676. progress = 0;
  677. if (need_resched() ||
  678. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  679. break;
  680. }
  681. if (pte_none(*src_pte)) {
  682. progress++;
  683. continue;
  684. }
  685. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  686. vma, addr, rss);
  687. if (entry.val)
  688. break;
  689. progress += 8;
  690. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  691. arch_leave_lazy_mmu_mode();
  692. spin_unlock(src_ptl);
  693. pte_unmap(orig_src_pte);
  694. add_mm_rss_vec(dst_mm, rss);
  695. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  696. cond_resched();
  697. if (entry.val) {
  698. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  699. return -ENOMEM;
  700. progress = 0;
  701. }
  702. if (addr != end)
  703. goto again;
  704. return 0;
  705. }
  706. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  707. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  708. unsigned long addr, unsigned long end)
  709. {
  710. pmd_t *src_pmd, *dst_pmd;
  711. unsigned long next;
  712. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  713. if (!dst_pmd)
  714. return -ENOMEM;
  715. src_pmd = pmd_offset(src_pud, addr);
  716. do {
  717. next = pmd_addr_end(addr, end);
  718. if (pmd_trans_huge(*src_pmd)) {
  719. int err;
  720. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  721. err = copy_huge_pmd(dst_mm, src_mm,
  722. dst_pmd, src_pmd, addr, vma);
  723. if (err == -ENOMEM)
  724. return -ENOMEM;
  725. if (!err)
  726. continue;
  727. /* fall through */
  728. }
  729. if (pmd_none_or_clear_bad(src_pmd))
  730. continue;
  731. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  732. vma, addr, next))
  733. return -ENOMEM;
  734. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  735. return 0;
  736. }
  737. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  738. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  739. unsigned long addr, unsigned long end)
  740. {
  741. pud_t *src_pud, *dst_pud;
  742. unsigned long next;
  743. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  744. if (!dst_pud)
  745. return -ENOMEM;
  746. src_pud = pud_offset(src_pgd, addr);
  747. do {
  748. next = pud_addr_end(addr, end);
  749. if (pud_none_or_clear_bad(src_pud))
  750. continue;
  751. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  752. vma, addr, next))
  753. return -ENOMEM;
  754. } while (dst_pud++, src_pud++, addr = next, addr != end);
  755. return 0;
  756. }
  757. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  758. struct vm_area_struct *vma)
  759. {
  760. pgd_t *src_pgd, *dst_pgd;
  761. unsigned long next;
  762. unsigned long addr = vma->vm_start;
  763. unsigned long end = vma->vm_end;
  764. int ret;
  765. /*
  766. * Don't copy ptes where a page fault will fill them correctly.
  767. * Fork becomes much lighter when there are big shared or private
  768. * readonly mappings. The tradeoff is that copy_page_range is more
  769. * efficient than faulting.
  770. */
  771. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  772. if (!vma->anon_vma)
  773. return 0;
  774. }
  775. if (is_vm_hugetlb_page(vma))
  776. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  777. if (unlikely(is_pfn_mapping(vma))) {
  778. /*
  779. * We do not free on error cases below as remove_vma
  780. * gets called on error from higher level routine
  781. */
  782. ret = track_pfn_vma_copy(vma);
  783. if (ret)
  784. return ret;
  785. }
  786. /*
  787. * We need to invalidate the secondary MMU mappings only when
  788. * there could be a permission downgrade on the ptes of the
  789. * parent mm. And a permission downgrade will only happen if
  790. * is_cow_mapping() returns true.
  791. */
  792. if (is_cow_mapping(vma->vm_flags))
  793. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  794. ret = 0;
  795. dst_pgd = pgd_offset(dst_mm, addr);
  796. src_pgd = pgd_offset(src_mm, addr);
  797. do {
  798. next = pgd_addr_end(addr, end);
  799. if (pgd_none_or_clear_bad(src_pgd))
  800. continue;
  801. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  802. vma, addr, next))) {
  803. ret = -ENOMEM;
  804. break;
  805. }
  806. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  807. if (is_cow_mapping(vma->vm_flags))
  808. mmu_notifier_invalidate_range_end(src_mm,
  809. vma->vm_start, end);
  810. return ret;
  811. }
  812. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  813. struct vm_area_struct *vma, pmd_t *pmd,
  814. unsigned long addr, unsigned long end,
  815. long *zap_work, struct zap_details *details)
  816. {
  817. struct mm_struct *mm = tlb->mm;
  818. pte_t *pte;
  819. spinlock_t *ptl;
  820. int rss[NR_MM_COUNTERS];
  821. init_rss_vec(rss);
  822. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  823. arch_enter_lazy_mmu_mode();
  824. do {
  825. pte_t ptent = *pte;
  826. if (pte_none(ptent)) {
  827. (*zap_work)--;
  828. continue;
  829. }
  830. (*zap_work) -= PAGE_SIZE;
  831. if (pte_present(ptent)) {
  832. struct page *page;
  833. page = vm_normal_page(vma, addr, ptent);
  834. if (unlikely(details) && page) {
  835. /*
  836. * unmap_shared_mapping_pages() wants to
  837. * invalidate cache without truncating:
  838. * unmap shared but keep private pages.
  839. */
  840. if (details->check_mapping &&
  841. details->check_mapping != page->mapping)
  842. continue;
  843. /*
  844. * Each page->index must be checked when
  845. * invalidating or truncating nonlinear.
  846. */
  847. if (details->nonlinear_vma &&
  848. (page->index < details->first_index ||
  849. page->index > details->last_index))
  850. continue;
  851. }
  852. ptent = ptep_get_and_clear_full(mm, addr, pte,
  853. tlb->fullmm);
  854. tlb_remove_tlb_entry(tlb, pte, addr);
  855. if (unlikely(!page))
  856. continue;
  857. if (unlikely(details) && details->nonlinear_vma
  858. && linear_page_index(details->nonlinear_vma,
  859. addr) != page->index)
  860. set_pte_at(mm, addr, pte,
  861. pgoff_to_pte(page->index));
  862. if (PageAnon(page))
  863. rss[MM_ANONPAGES]--;
  864. else {
  865. if (pte_dirty(ptent))
  866. set_page_dirty(page);
  867. if (pte_young(ptent) &&
  868. likely(!VM_SequentialReadHint(vma)))
  869. mark_page_accessed(page);
  870. rss[MM_FILEPAGES]--;
  871. }
  872. page_remove_rmap(page);
  873. if (unlikely(page_mapcount(page) < 0))
  874. print_bad_pte(vma, addr, ptent, page);
  875. tlb_remove_page(tlb, page);
  876. continue;
  877. }
  878. /*
  879. * If details->check_mapping, we leave swap entries;
  880. * if details->nonlinear_vma, we leave file entries.
  881. */
  882. if (unlikely(details))
  883. continue;
  884. if (pte_file(ptent)) {
  885. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  886. print_bad_pte(vma, addr, ptent, NULL);
  887. } else {
  888. swp_entry_t entry = pte_to_swp_entry(ptent);
  889. if (!non_swap_entry(entry))
  890. rss[MM_SWAPENTS]--;
  891. if (unlikely(!free_swap_and_cache(entry)))
  892. print_bad_pte(vma, addr, ptent, NULL);
  893. }
  894. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  895. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  896. add_mm_rss_vec(mm, rss);
  897. arch_leave_lazy_mmu_mode();
  898. pte_unmap_unlock(pte - 1, ptl);
  899. return addr;
  900. }
  901. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  902. struct vm_area_struct *vma, pud_t *pud,
  903. unsigned long addr, unsigned long end,
  904. long *zap_work, struct zap_details *details)
  905. {
  906. pmd_t *pmd;
  907. unsigned long next;
  908. pmd = pmd_offset(pud, addr);
  909. do {
  910. next = pmd_addr_end(addr, end);
  911. if (pmd_trans_huge(*pmd)) {
  912. if (next-addr != HPAGE_PMD_SIZE) {
  913. VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
  914. split_huge_page_pmd(vma->vm_mm, pmd);
  915. } else if (zap_huge_pmd(tlb, vma, pmd)) {
  916. (*zap_work)--;
  917. continue;
  918. }
  919. /* fall through */
  920. }
  921. if (pmd_none_or_clear_bad(pmd)) {
  922. (*zap_work)--;
  923. continue;
  924. }
  925. next = zap_pte_range(tlb, vma, pmd, addr, next,
  926. zap_work, details);
  927. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  928. return addr;
  929. }
  930. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  931. struct vm_area_struct *vma, pgd_t *pgd,
  932. unsigned long addr, unsigned long end,
  933. long *zap_work, struct zap_details *details)
  934. {
  935. pud_t *pud;
  936. unsigned long next;
  937. pud = pud_offset(pgd, addr);
  938. do {
  939. next = pud_addr_end(addr, end);
  940. if (pud_none_or_clear_bad(pud)) {
  941. (*zap_work)--;
  942. continue;
  943. }
  944. next = zap_pmd_range(tlb, vma, pud, addr, next,
  945. zap_work, details);
  946. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  947. return addr;
  948. }
  949. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  950. struct vm_area_struct *vma,
  951. unsigned long addr, unsigned long end,
  952. long *zap_work, struct zap_details *details)
  953. {
  954. pgd_t *pgd;
  955. unsigned long next;
  956. if (details && !details->check_mapping && !details->nonlinear_vma)
  957. details = NULL;
  958. BUG_ON(addr >= end);
  959. mem_cgroup_uncharge_start();
  960. tlb_start_vma(tlb, vma);
  961. pgd = pgd_offset(vma->vm_mm, addr);
  962. do {
  963. next = pgd_addr_end(addr, end);
  964. if (pgd_none_or_clear_bad(pgd)) {
  965. (*zap_work)--;
  966. continue;
  967. }
  968. next = zap_pud_range(tlb, vma, pgd, addr, next,
  969. zap_work, details);
  970. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  971. tlb_end_vma(tlb, vma);
  972. mem_cgroup_uncharge_end();
  973. return addr;
  974. }
  975. #ifdef CONFIG_PREEMPT
  976. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  977. #else
  978. /* No preempt: go for improved straight-line efficiency */
  979. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  980. #endif
  981. /**
  982. * unmap_vmas - unmap a range of memory covered by a list of vma's
  983. * @tlbp: address of the caller's struct mmu_gather
  984. * @vma: the starting vma
  985. * @start_addr: virtual address at which to start unmapping
  986. * @end_addr: virtual address at which to end unmapping
  987. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  988. * @details: details of nonlinear truncation or shared cache invalidation
  989. *
  990. * Returns the end address of the unmapping (restart addr if interrupted).
  991. *
  992. * Unmap all pages in the vma list.
  993. *
  994. * We aim to not hold locks for too long (for scheduling latency reasons).
  995. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  996. * return the ending mmu_gather to the caller.
  997. *
  998. * Only addresses between `start' and `end' will be unmapped.
  999. *
  1000. * The VMA list must be sorted in ascending virtual address order.
  1001. *
  1002. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1003. * range after unmap_vmas() returns. So the only responsibility here is to
  1004. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1005. * drops the lock and schedules.
  1006. */
  1007. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  1008. struct vm_area_struct *vma, unsigned long start_addr,
  1009. unsigned long end_addr, unsigned long *nr_accounted,
  1010. struct zap_details *details)
  1011. {
  1012. long zap_work = ZAP_BLOCK_SIZE;
  1013. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  1014. int tlb_start_valid = 0;
  1015. unsigned long start = start_addr;
  1016. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  1017. int fullmm = (*tlbp)->fullmm;
  1018. struct mm_struct *mm = vma->vm_mm;
  1019. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1020. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  1021. unsigned long end;
  1022. start = max(vma->vm_start, start_addr);
  1023. if (start >= vma->vm_end)
  1024. continue;
  1025. end = min(vma->vm_end, end_addr);
  1026. if (end <= vma->vm_start)
  1027. continue;
  1028. if (vma->vm_flags & VM_ACCOUNT)
  1029. *nr_accounted += (end - start) >> PAGE_SHIFT;
  1030. if (unlikely(is_pfn_mapping(vma)))
  1031. untrack_pfn_vma(vma, 0, 0);
  1032. while (start != end) {
  1033. if (!tlb_start_valid) {
  1034. tlb_start = start;
  1035. tlb_start_valid = 1;
  1036. }
  1037. if (unlikely(is_vm_hugetlb_page(vma))) {
  1038. /*
  1039. * It is undesirable to test vma->vm_file as it
  1040. * should be non-null for valid hugetlb area.
  1041. * However, vm_file will be NULL in the error
  1042. * cleanup path of do_mmap_pgoff. When
  1043. * hugetlbfs ->mmap method fails,
  1044. * do_mmap_pgoff() nullifies vma->vm_file
  1045. * before calling this function to clean up.
  1046. * Since no pte has actually been setup, it is
  1047. * safe to do nothing in this case.
  1048. */
  1049. if (vma->vm_file) {
  1050. unmap_hugepage_range(vma, start, end, NULL);
  1051. zap_work -= (end - start) /
  1052. pages_per_huge_page(hstate_vma(vma));
  1053. }
  1054. start = end;
  1055. } else
  1056. start = unmap_page_range(*tlbp, vma,
  1057. start, end, &zap_work, details);
  1058. if (zap_work > 0) {
  1059. BUG_ON(start != end);
  1060. break;
  1061. }
  1062. tlb_finish_mmu(*tlbp, tlb_start, start);
  1063. if (need_resched() ||
  1064. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  1065. if (i_mmap_lock) {
  1066. *tlbp = NULL;
  1067. goto out;
  1068. }
  1069. cond_resched();
  1070. }
  1071. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  1072. tlb_start_valid = 0;
  1073. zap_work = ZAP_BLOCK_SIZE;
  1074. }
  1075. }
  1076. out:
  1077. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1078. return start; /* which is now the end (or restart) address */
  1079. }
  1080. /**
  1081. * zap_page_range - remove user pages in a given range
  1082. * @vma: vm_area_struct holding the applicable pages
  1083. * @address: starting address of pages to zap
  1084. * @size: number of bytes to zap
  1085. * @details: details of nonlinear truncation or shared cache invalidation
  1086. */
  1087. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1088. unsigned long size, struct zap_details *details)
  1089. {
  1090. struct mm_struct *mm = vma->vm_mm;
  1091. struct mmu_gather *tlb;
  1092. unsigned long end = address + size;
  1093. unsigned long nr_accounted = 0;
  1094. lru_add_drain();
  1095. tlb = tlb_gather_mmu(mm, 0);
  1096. update_hiwater_rss(mm);
  1097. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  1098. if (tlb)
  1099. tlb_finish_mmu(tlb, address, end);
  1100. return end;
  1101. }
  1102. /**
  1103. * zap_vma_ptes - remove ptes mapping the vma
  1104. * @vma: vm_area_struct holding ptes to be zapped
  1105. * @address: starting address of pages to zap
  1106. * @size: number of bytes to zap
  1107. *
  1108. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1109. *
  1110. * The entire address range must be fully contained within the vma.
  1111. *
  1112. * Returns 0 if successful.
  1113. */
  1114. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1115. unsigned long size)
  1116. {
  1117. if (address < vma->vm_start || address + size > vma->vm_end ||
  1118. !(vma->vm_flags & VM_PFNMAP))
  1119. return -1;
  1120. zap_page_range(vma, address, size, NULL);
  1121. return 0;
  1122. }
  1123. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1124. /**
  1125. * follow_page - look up a page descriptor from a user-virtual address
  1126. * @vma: vm_area_struct mapping @address
  1127. * @address: virtual address to look up
  1128. * @flags: flags modifying lookup behaviour
  1129. *
  1130. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1131. *
  1132. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1133. * an error pointer if there is a mapping to something not represented
  1134. * by a page descriptor (see also vm_normal_page()).
  1135. */
  1136. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1137. unsigned int flags)
  1138. {
  1139. pgd_t *pgd;
  1140. pud_t *pud;
  1141. pmd_t *pmd;
  1142. pte_t *ptep, pte;
  1143. spinlock_t *ptl;
  1144. struct page *page;
  1145. struct mm_struct *mm = vma->vm_mm;
  1146. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1147. if (!IS_ERR(page)) {
  1148. BUG_ON(flags & FOLL_GET);
  1149. goto out;
  1150. }
  1151. page = NULL;
  1152. pgd = pgd_offset(mm, address);
  1153. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1154. goto no_page_table;
  1155. pud = pud_offset(pgd, address);
  1156. if (pud_none(*pud))
  1157. goto no_page_table;
  1158. if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
  1159. BUG_ON(flags & FOLL_GET);
  1160. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1161. goto out;
  1162. }
  1163. if (unlikely(pud_bad(*pud)))
  1164. goto no_page_table;
  1165. pmd = pmd_offset(pud, address);
  1166. if (pmd_none(*pmd))
  1167. goto no_page_table;
  1168. if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
  1169. BUG_ON(flags & FOLL_GET);
  1170. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1171. goto out;
  1172. }
  1173. if (pmd_trans_huge(*pmd)) {
  1174. if (flags & FOLL_SPLIT) {
  1175. split_huge_page_pmd(mm, pmd);
  1176. goto split_fallthrough;
  1177. }
  1178. spin_lock(&mm->page_table_lock);
  1179. if (likely(pmd_trans_huge(*pmd))) {
  1180. if (unlikely(pmd_trans_splitting(*pmd))) {
  1181. spin_unlock(&mm->page_table_lock);
  1182. wait_split_huge_page(vma->anon_vma, pmd);
  1183. } else {
  1184. page = follow_trans_huge_pmd(mm, address,
  1185. pmd, flags);
  1186. spin_unlock(&mm->page_table_lock);
  1187. goto out;
  1188. }
  1189. } else
  1190. spin_unlock(&mm->page_table_lock);
  1191. /* fall through */
  1192. }
  1193. split_fallthrough:
  1194. if (unlikely(pmd_bad(*pmd)))
  1195. goto no_page_table;
  1196. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1197. pte = *ptep;
  1198. if (!pte_present(pte))
  1199. goto no_page;
  1200. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1201. goto unlock;
  1202. page = vm_normal_page(vma, address, pte);
  1203. if (unlikely(!page)) {
  1204. if ((flags & FOLL_DUMP) ||
  1205. !is_zero_pfn(pte_pfn(pte)))
  1206. goto bad_page;
  1207. page = pte_page(pte);
  1208. }
  1209. if (flags & FOLL_GET)
  1210. get_page(page);
  1211. if (flags & FOLL_TOUCH) {
  1212. if ((flags & FOLL_WRITE) &&
  1213. !pte_dirty(pte) && !PageDirty(page))
  1214. set_page_dirty(page);
  1215. /*
  1216. * pte_mkyoung() would be more correct here, but atomic care
  1217. * is needed to avoid losing the dirty bit: it is easier to use
  1218. * mark_page_accessed().
  1219. */
  1220. mark_page_accessed(page);
  1221. }
  1222. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1223. /*
  1224. * The preliminary mapping check is mainly to avoid the
  1225. * pointless overhead of lock_page on the ZERO_PAGE
  1226. * which might bounce very badly if there is contention.
  1227. *
  1228. * If the page is already locked, we don't need to
  1229. * handle it now - vmscan will handle it later if and
  1230. * when it attempts to reclaim the page.
  1231. */
  1232. if (page->mapping && trylock_page(page)) {
  1233. lru_add_drain(); /* push cached pages to LRU */
  1234. /*
  1235. * Because we lock page here and migration is
  1236. * blocked by the pte's page reference, we need
  1237. * only check for file-cache page truncation.
  1238. */
  1239. if (page->mapping)
  1240. mlock_vma_page(page);
  1241. unlock_page(page);
  1242. }
  1243. }
  1244. unlock:
  1245. pte_unmap_unlock(ptep, ptl);
  1246. out:
  1247. return page;
  1248. bad_page:
  1249. pte_unmap_unlock(ptep, ptl);
  1250. return ERR_PTR(-EFAULT);
  1251. no_page:
  1252. pte_unmap_unlock(ptep, ptl);
  1253. if (!pte_none(pte))
  1254. return page;
  1255. no_page_table:
  1256. /*
  1257. * When core dumping an enormous anonymous area that nobody
  1258. * has touched so far, we don't want to allocate unnecessary pages or
  1259. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1260. * then get_dump_page() will return NULL to leave a hole in the dump.
  1261. * But we can only make this optimization where a hole would surely
  1262. * be zero-filled if handle_mm_fault() actually did handle it.
  1263. */
  1264. if ((flags & FOLL_DUMP) &&
  1265. (!vma->vm_ops || !vma->vm_ops->fault))
  1266. return ERR_PTR(-EFAULT);
  1267. return page;
  1268. }
  1269. static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
  1270. {
  1271. return (vma->vm_flags & VM_GROWSDOWN) &&
  1272. (vma->vm_start == addr) &&
  1273. !vma_stack_continue(vma->vm_prev, addr);
  1274. }
  1275. /**
  1276. * __get_user_pages() - pin user pages in memory
  1277. * @tsk: task_struct of target task
  1278. * @mm: mm_struct of target mm
  1279. * @start: starting user address
  1280. * @nr_pages: number of pages from start to pin
  1281. * @gup_flags: flags modifying pin behaviour
  1282. * @pages: array that receives pointers to the pages pinned.
  1283. * Should be at least nr_pages long. Or NULL, if caller
  1284. * only intends to ensure the pages are faulted in.
  1285. * @vmas: array of pointers to vmas corresponding to each page.
  1286. * Or NULL if the caller does not require them.
  1287. * @nonblocking: whether waiting for disk IO or mmap_sem contention
  1288. *
  1289. * Returns number of pages pinned. This may be fewer than the number
  1290. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1291. * were pinned, returns -errno. Each page returned must be released
  1292. * with a put_page() call when it is finished with. vmas will only
  1293. * remain valid while mmap_sem is held.
  1294. *
  1295. * Must be called with mmap_sem held for read or write.
  1296. *
  1297. * __get_user_pages walks a process's page tables and takes a reference to
  1298. * each struct page that each user address corresponds to at a given
  1299. * instant. That is, it takes the page that would be accessed if a user
  1300. * thread accesses the given user virtual address at that instant.
  1301. *
  1302. * This does not guarantee that the page exists in the user mappings when
  1303. * __get_user_pages returns, and there may even be a completely different
  1304. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1305. * and subsequently re faulted). However it does guarantee that the page
  1306. * won't be freed completely. And mostly callers simply care that the page
  1307. * contains data that was valid *at some point in time*. Typically, an IO
  1308. * or similar operation cannot guarantee anything stronger anyway because
  1309. * locks can't be held over the syscall boundary.
  1310. *
  1311. * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
  1312. * the page is written to, set_page_dirty (or set_page_dirty_lock, as
  1313. * appropriate) must be called after the page is finished with, and
  1314. * before put_page is called.
  1315. *
  1316. * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
  1317. * or mmap_sem contention, and if waiting is needed to pin all pages,
  1318. * *@nonblocking will be set to 0.
  1319. *
  1320. * In most cases, get_user_pages or get_user_pages_fast should be used
  1321. * instead of __get_user_pages. __get_user_pages should be used only if
  1322. * you need some special @gup_flags.
  1323. */
  1324. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1325. unsigned long start, int nr_pages, unsigned int gup_flags,
  1326. struct page **pages, struct vm_area_struct **vmas,
  1327. int *nonblocking)
  1328. {
  1329. int i;
  1330. unsigned long vm_flags;
  1331. if (nr_pages <= 0)
  1332. return 0;
  1333. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1334. /*
  1335. * Require read or write permissions.
  1336. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1337. */
  1338. vm_flags = (gup_flags & FOLL_WRITE) ?
  1339. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1340. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1341. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1342. i = 0;
  1343. do {
  1344. struct vm_area_struct *vma;
  1345. vma = find_extend_vma(mm, start);
  1346. if (!vma && in_gate_area(mm, start)) {
  1347. unsigned long pg = start & PAGE_MASK;
  1348. pgd_t *pgd;
  1349. pud_t *pud;
  1350. pmd_t *pmd;
  1351. pte_t *pte;
  1352. /* user gate pages are read-only */
  1353. if (gup_flags & FOLL_WRITE)
  1354. return i ? : -EFAULT;
  1355. if (pg > TASK_SIZE)
  1356. pgd = pgd_offset_k(pg);
  1357. else
  1358. pgd = pgd_offset_gate(mm, pg);
  1359. BUG_ON(pgd_none(*pgd));
  1360. pud = pud_offset(pgd, pg);
  1361. BUG_ON(pud_none(*pud));
  1362. pmd = pmd_offset(pud, pg);
  1363. if (pmd_none(*pmd))
  1364. return i ? : -EFAULT;
  1365. VM_BUG_ON(pmd_trans_huge(*pmd));
  1366. pte = pte_offset_map(pmd, pg);
  1367. if (pte_none(*pte)) {
  1368. pte_unmap(pte);
  1369. return i ? : -EFAULT;
  1370. }
  1371. vma = get_gate_vma(mm);
  1372. if (pages) {
  1373. struct page *page;
  1374. page = vm_normal_page(vma, start, *pte);
  1375. if (!page) {
  1376. if (!(gup_flags & FOLL_DUMP) &&
  1377. is_zero_pfn(pte_pfn(*pte)))
  1378. page = pte_page(*pte);
  1379. else {
  1380. pte_unmap(pte);
  1381. return i ? : -EFAULT;
  1382. }
  1383. }
  1384. pages[i] = page;
  1385. get_page(page);
  1386. }
  1387. pte_unmap(pte);
  1388. goto next_page;
  1389. }
  1390. if (!vma ||
  1391. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1392. !(vm_flags & vma->vm_flags))
  1393. return i ? : -EFAULT;
  1394. if (is_vm_hugetlb_page(vma)) {
  1395. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1396. &start, &nr_pages, i, gup_flags);
  1397. continue;
  1398. }
  1399. /*
  1400. * For mlock, just skip the stack guard page.
  1401. */
  1402. if ((gup_flags & FOLL_MLOCK) && stack_guard_page(vma, start))
  1403. goto next_page;
  1404. do {
  1405. struct page *page;
  1406. unsigned int foll_flags = gup_flags;
  1407. /*
  1408. * If we have a pending SIGKILL, don't keep faulting
  1409. * pages and potentially allocating memory.
  1410. */
  1411. if (unlikely(fatal_signal_pending(current)))
  1412. return i ? i : -ERESTARTSYS;
  1413. cond_resched();
  1414. while (!(page = follow_page(vma, start, foll_flags))) {
  1415. int ret;
  1416. unsigned int fault_flags = 0;
  1417. if (foll_flags & FOLL_WRITE)
  1418. fault_flags |= FAULT_FLAG_WRITE;
  1419. if (nonblocking)
  1420. fault_flags |= FAULT_FLAG_ALLOW_RETRY;
  1421. if (foll_flags & FOLL_NOWAIT)
  1422. fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
  1423. ret = handle_mm_fault(mm, vma, start,
  1424. fault_flags);
  1425. if (ret & VM_FAULT_ERROR) {
  1426. if (ret & VM_FAULT_OOM)
  1427. return i ? i : -ENOMEM;
  1428. if (ret & (VM_FAULT_HWPOISON |
  1429. VM_FAULT_HWPOISON_LARGE)) {
  1430. if (i)
  1431. return i;
  1432. else if (gup_flags & FOLL_HWPOISON)
  1433. return -EHWPOISON;
  1434. else
  1435. return -EFAULT;
  1436. }
  1437. if (ret & VM_FAULT_SIGBUS)
  1438. return i ? i : -EFAULT;
  1439. BUG();
  1440. }
  1441. if (tsk) {
  1442. if (ret & VM_FAULT_MAJOR)
  1443. tsk->maj_flt++;
  1444. else
  1445. tsk->min_flt++;
  1446. }
  1447. if (ret & VM_FAULT_RETRY) {
  1448. if (nonblocking)
  1449. *nonblocking = 0;
  1450. return i;
  1451. }
  1452. /*
  1453. * The VM_FAULT_WRITE bit tells us that
  1454. * do_wp_page has broken COW when necessary,
  1455. * even if maybe_mkwrite decided not to set
  1456. * pte_write. We can thus safely do subsequent
  1457. * page lookups as if they were reads. But only
  1458. * do so when looping for pte_write is futile:
  1459. * in some cases userspace may also be wanting
  1460. * to write to the gotten user page, which a
  1461. * read fault here might prevent (a readonly
  1462. * page might get reCOWed by userspace write).
  1463. */
  1464. if ((ret & VM_FAULT_WRITE) &&
  1465. !(vma->vm_flags & VM_WRITE))
  1466. foll_flags &= ~FOLL_WRITE;
  1467. cond_resched();
  1468. }
  1469. if (IS_ERR(page))
  1470. return i ? i : PTR_ERR(page);
  1471. if (pages) {
  1472. pages[i] = page;
  1473. flush_anon_page(vma, page, start);
  1474. flush_dcache_page(page);
  1475. }
  1476. next_page:
  1477. if (vmas)
  1478. vmas[i] = vma;
  1479. i++;
  1480. start += PAGE_SIZE;
  1481. nr_pages--;
  1482. } while (nr_pages && start < vma->vm_end);
  1483. } while (nr_pages);
  1484. return i;
  1485. }
  1486. EXPORT_SYMBOL(__get_user_pages);
  1487. /**
  1488. * get_user_pages() - pin user pages in memory
  1489. * @tsk: the task_struct to use for page fault accounting, or
  1490. * NULL if faults are not to be recorded.
  1491. * @mm: mm_struct of target mm
  1492. * @start: starting user address
  1493. * @nr_pages: number of pages from start to pin
  1494. * @write: whether pages will be written to by the caller
  1495. * @force: whether to force write access even if user mapping is
  1496. * readonly. This will result in the page being COWed even
  1497. * in MAP_SHARED mappings. You do not want this.
  1498. * @pages: array that receives pointers to the pages pinned.
  1499. * Should be at least nr_pages long. Or NULL, if caller
  1500. * only intends to ensure the pages are faulted in.
  1501. * @vmas: array of pointers to vmas corresponding to each page.
  1502. * Or NULL if the caller does not require them.
  1503. *
  1504. * Returns number of pages pinned. This may be fewer than the number
  1505. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1506. * were pinned, returns -errno. Each page returned must be released
  1507. * with a put_page() call when it is finished with. vmas will only
  1508. * remain valid while mmap_sem is held.
  1509. *
  1510. * Must be called with mmap_sem held for read or write.
  1511. *
  1512. * get_user_pages walks a process's page tables and takes a reference to
  1513. * each struct page that each user address corresponds to at a given
  1514. * instant. That is, it takes the page that would be accessed if a user
  1515. * thread accesses the given user virtual address at that instant.
  1516. *
  1517. * This does not guarantee that the page exists in the user mappings when
  1518. * get_user_pages returns, and there may even be a completely different
  1519. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1520. * and subsequently re faulted). However it does guarantee that the page
  1521. * won't be freed completely. And mostly callers simply care that the page
  1522. * contains data that was valid *at some point in time*. Typically, an IO
  1523. * or similar operation cannot guarantee anything stronger anyway because
  1524. * locks can't be held over the syscall boundary.
  1525. *
  1526. * If write=0, the page must not be written to. If the page is written to,
  1527. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1528. * after the page is finished with, and before put_page is called.
  1529. *
  1530. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1531. * handle on the memory by some means other than accesses via the user virtual
  1532. * addresses. The pages may be submitted for DMA to devices or accessed via
  1533. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1534. * use the correct cache flushing APIs.
  1535. *
  1536. * See also get_user_pages_fast, for performance critical applications.
  1537. */
  1538. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1539. unsigned long start, int nr_pages, int write, int force,
  1540. struct page **pages, struct vm_area_struct **vmas)
  1541. {
  1542. int flags = FOLL_TOUCH;
  1543. if (pages)
  1544. flags |= FOLL_GET;
  1545. if (write)
  1546. flags |= FOLL_WRITE;
  1547. if (force)
  1548. flags |= FOLL_FORCE;
  1549. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
  1550. NULL);
  1551. }
  1552. EXPORT_SYMBOL(get_user_pages);
  1553. /**
  1554. * get_dump_page() - pin user page in memory while writing it to core dump
  1555. * @addr: user address
  1556. *
  1557. * Returns struct page pointer of user page pinned for dump,
  1558. * to be freed afterwards by page_cache_release() or put_page().
  1559. *
  1560. * Returns NULL on any kind of failure - a hole must then be inserted into
  1561. * the corefile, to preserve alignment with its headers; and also returns
  1562. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1563. * allowing a hole to be left in the corefile to save diskspace.
  1564. *
  1565. * Called without mmap_sem, but after all other threads have been killed.
  1566. */
  1567. #ifdef CONFIG_ELF_CORE
  1568. struct page *get_dump_page(unsigned long addr)
  1569. {
  1570. struct vm_area_struct *vma;
  1571. struct page *page;
  1572. if (__get_user_pages(current, current->mm, addr, 1,
  1573. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
  1574. NULL) < 1)
  1575. return NULL;
  1576. flush_cache_page(vma, addr, page_to_pfn(page));
  1577. return page;
  1578. }
  1579. #endif /* CONFIG_ELF_CORE */
  1580. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1581. spinlock_t **ptl)
  1582. {
  1583. pgd_t * pgd = pgd_offset(mm, addr);
  1584. pud_t * pud = pud_alloc(mm, pgd, addr);
  1585. if (pud) {
  1586. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1587. if (pmd) {
  1588. VM_BUG_ON(pmd_trans_huge(*pmd));
  1589. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1590. }
  1591. }
  1592. return NULL;
  1593. }
  1594. /*
  1595. * This is the old fallback for page remapping.
  1596. *
  1597. * For historical reasons, it only allows reserved pages. Only
  1598. * old drivers should use this, and they needed to mark their
  1599. * pages reserved for the old functions anyway.
  1600. */
  1601. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1602. struct page *page, pgprot_t prot)
  1603. {
  1604. struct mm_struct *mm = vma->vm_mm;
  1605. int retval;
  1606. pte_t *pte;
  1607. spinlock_t *ptl;
  1608. retval = -EINVAL;
  1609. if (PageAnon(page))
  1610. goto out;
  1611. retval = -ENOMEM;
  1612. flush_dcache_page(page);
  1613. pte = get_locked_pte(mm, addr, &ptl);
  1614. if (!pte)
  1615. goto out;
  1616. retval = -EBUSY;
  1617. if (!pte_none(*pte))
  1618. goto out_unlock;
  1619. /* Ok, finally just insert the thing.. */
  1620. get_page(page);
  1621. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1622. page_add_file_rmap(page);
  1623. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1624. retval = 0;
  1625. pte_unmap_unlock(pte, ptl);
  1626. return retval;
  1627. out_unlock:
  1628. pte_unmap_unlock(pte, ptl);
  1629. out:
  1630. return retval;
  1631. }
  1632. /**
  1633. * vm_insert_page - insert single page into user vma
  1634. * @vma: user vma to map to
  1635. * @addr: target user address of this page
  1636. * @page: source kernel page
  1637. *
  1638. * This allows drivers to insert individual pages they've allocated
  1639. * into a user vma.
  1640. *
  1641. * The page has to be a nice clean _individual_ kernel allocation.
  1642. * If you allocate a compound page, you need to have marked it as
  1643. * such (__GFP_COMP), or manually just split the page up yourself
  1644. * (see split_page()).
  1645. *
  1646. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1647. * took an arbitrary page protection parameter. This doesn't allow
  1648. * that. Your vma protection will have to be set up correctly, which
  1649. * means that if you want a shared writable mapping, you'd better
  1650. * ask for a shared writable mapping!
  1651. *
  1652. * The page does not need to be reserved.
  1653. */
  1654. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1655. struct page *page)
  1656. {
  1657. if (addr < vma->vm_start || addr >= vma->vm_end)
  1658. return -EFAULT;
  1659. if (!page_count(page))
  1660. return -EINVAL;
  1661. vma->vm_flags |= VM_INSERTPAGE;
  1662. return insert_page(vma, addr, page, vma->vm_page_prot);
  1663. }
  1664. EXPORT_SYMBOL(vm_insert_page);
  1665. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1666. unsigned long pfn, pgprot_t prot)
  1667. {
  1668. struct mm_struct *mm = vma->vm_mm;
  1669. int retval;
  1670. pte_t *pte, entry;
  1671. spinlock_t *ptl;
  1672. retval = -ENOMEM;
  1673. pte = get_locked_pte(mm, addr, &ptl);
  1674. if (!pte)
  1675. goto out;
  1676. retval = -EBUSY;
  1677. if (!pte_none(*pte))
  1678. goto out_unlock;
  1679. /* Ok, finally just insert the thing.. */
  1680. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1681. set_pte_at(mm, addr, pte, entry);
  1682. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1683. retval = 0;
  1684. out_unlock:
  1685. pte_unmap_unlock(pte, ptl);
  1686. out:
  1687. return retval;
  1688. }
  1689. /**
  1690. * vm_insert_pfn - insert single pfn into user vma
  1691. * @vma: user vma to map to
  1692. * @addr: target user address of this page
  1693. * @pfn: source kernel pfn
  1694. *
  1695. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1696. * they've allocated into a user vma. Same comments apply.
  1697. *
  1698. * This function should only be called from a vm_ops->fault handler, and
  1699. * in that case the handler should return NULL.
  1700. *
  1701. * vma cannot be a COW mapping.
  1702. *
  1703. * As this is called only for pages that do not currently exist, we
  1704. * do not need to flush old virtual caches or the TLB.
  1705. */
  1706. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1707. unsigned long pfn)
  1708. {
  1709. int ret;
  1710. pgprot_t pgprot = vma->vm_page_prot;
  1711. /*
  1712. * Technically, architectures with pte_special can avoid all these
  1713. * restrictions (same for remap_pfn_range). However we would like
  1714. * consistency in testing and feature parity among all, so we should
  1715. * try to keep these invariants in place for everybody.
  1716. */
  1717. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1718. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1719. (VM_PFNMAP|VM_MIXEDMAP));
  1720. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1721. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1722. if (addr < vma->vm_start || addr >= vma->vm_end)
  1723. return -EFAULT;
  1724. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1725. return -EINVAL;
  1726. ret = insert_pfn(vma, addr, pfn, pgprot);
  1727. if (ret)
  1728. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1729. return ret;
  1730. }
  1731. EXPORT_SYMBOL(vm_insert_pfn);
  1732. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1733. unsigned long pfn)
  1734. {
  1735. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1736. if (addr < vma->vm_start || addr >= vma->vm_end)
  1737. return -EFAULT;
  1738. /*
  1739. * If we don't have pte special, then we have to use the pfn_valid()
  1740. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1741. * refcount the page if pfn_valid is true (hence insert_page rather
  1742. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1743. * without pte special, it would there be refcounted as a normal page.
  1744. */
  1745. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1746. struct page *page;
  1747. page = pfn_to_page(pfn);
  1748. return insert_page(vma, addr, page, vma->vm_page_prot);
  1749. }
  1750. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1751. }
  1752. EXPORT_SYMBOL(vm_insert_mixed);
  1753. /*
  1754. * maps a range of physical memory into the requested pages. the old
  1755. * mappings are removed. any references to nonexistent pages results
  1756. * in null mappings (currently treated as "copy-on-access")
  1757. */
  1758. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1759. unsigned long addr, unsigned long end,
  1760. unsigned long pfn, pgprot_t prot)
  1761. {
  1762. pte_t *pte;
  1763. spinlock_t *ptl;
  1764. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1765. if (!pte)
  1766. return -ENOMEM;
  1767. arch_enter_lazy_mmu_mode();
  1768. do {
  1769. BUG_ON(!pte_none(*pte));
  1770. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1771. pfn++;
  1772. } while (pte++, addr += PAGE_SIZE, addr != end);
  1773. arch_leave_lazy_mmu_mode();
  1774. pte_unmap_unlock(pte - 1, ptl);
  1775. return 0;
  1776. }
  1777. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1778. unsigned long addr, unsigned long end,
  1779. unsigned long pfn, pgprot_t prot)
  1780. {
  1781. pmd_t *pmd;
  1782. unsigned long next;
  1783. pfn -= addr >> PAGE_SHIFT;
  1784. pmd = pmd_alloc(mm, pud, addr);
  1785. if (!pmd)
  1786. return -ENOMEM;
  1787. VM_BUG_ON(pmd_trans_huge(*pmd));
  1788. do {
  1789. next = pmd_addr_end(addr, end);
  1790. if (remap_pte_range(mm, pmd, addr, next,
  1791. pfn + (addr >> PAGE_SHIFT), prot))
  1792. return -ENOMEM;
  1793. } while (pmd++, addr = next, addr != end);
  1794. return 0;
  1795. }
  1796. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1797. unsigned long addr, unsigned long end,
  1798. unsigned long pfn, pgprot_t prot)
  1799. {
  1800. pud_t *pud;
  1801. unsigned long next;
  1802. pfn -= addr >> PAGE_SHIFT;
  1803. pud = pud_alloc(mm, pgd, addr);
  1804. if (!pud)
  1805. return -ENOMEM;
  1806. do {
  1807. next = pud_addr_end(addr, end);
  1808. if (remap_pmd_range(mm, pud, addr, next,
  1809. pfn + (addr >> PAGE_SHIFT), prot))
  1810. return -ENOMEM;
  1811. } while (pud++, addr = next, addr != end);
  1812. return 0;
  1813. }
  1814. /**
  1815. * remap_pfn_range - remap kernel memory to userspace
  1816. * @vma: user vma to map to
  1817. * @addr: target user address to start at
  1818. * @pfn: physical address of kernel memory
  1819. * @size: size of map area
  1820. * @prot: page protection flags for this mapping
  1821. *
  1822. * Note: this is only safe if the mm semaphore is held when called.
  1823. */
  1824. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1825. unsigned long pfn, unsigned long size, pgprot_t prot)
  1826. {
  1827. pgd_t *pgd;
  1828. unsigned long next;
  1829. unsigned long end = addr + PAGE_ALIGN(size);
  1830. struct mm_struct *mm = vma->vm_mm;
  1831. int err;
  1832. /*
  1833. * Physically remapped pages are special. Tell the
  1834. * rest of the world about it:
  1835. * VM_IO tells people not to look at these pages
  1836. * (accesses can have side effects).
  1837. * VM_RESERVED is specified all over the place, because
  1838. * in 2.4 it kept swapout's vma scan off this vma; but
  1839. * in 2.6 the LRU scan won't even find its pages, so this
  1840. * flag means no more than count its pages in reserved_vm,
  1841. * and omit it from core dump, even when VM_IO turned off.
  1842. * VM_PFNMAP tells the core MM that the base pages are just
  1843. * raw PFN mappings, and do not have a "struct page" associated
  1844. * with them.
  1845. *
  1846. * There's a horrible special case to handle copy-on-write
  1847. * behaviour that some programs depend on. We mark the "original"
  1848. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1849. */
  1850. if (addr == vma->vm_start && end == vma->vm_end) {
  1851. vma->vm_pgoff = pfn;
  1852. vma->vm_flags |= VM_PFN_AT_MMAP;
  1853. } else if (is_cow_mapping(vma->vm_flags))
  1854. return -EINVAL;
  1855. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1856. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1857. if (err) {
  1858. /*
  1859. * To indicate that track_pfn related cleanup is not
  1860. * needed from higher level routine calling unmap_vmas
  1861. */
  1862. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1863. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1864. return -EINVAL;
  1865. }
  1866. BUG_ON(addr >= end);
  1867. pfn -= addr >> PAGE_SHIFT;
  1868. pgd = pgd_offset(mm, addr);
  1869. flush_cache_range(vma, addr, end);
  1870. do {
  1871. next = pgd_addr_end(addr, end);
  1872. err = remap_pud_range(mm, pgd, addr, next,
  1873. pfn + (addr >> PAGE_SHIFT), prot);
  1874. if (err)
  1875. break;
  1876. } while (pgd++, addr = next, addr != end);
  1877. if (err)
  1878. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1879. return err;
  1880. }
  1881. EXPORT_SYMBOL(remap_pfn_range);
  1882. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1883. unsigned long addr, unsigned long end,
  1884. pte_fn_t fn, void *data)
  1885. {
  1886. pte_t *pte;
  1887. int err;
  1888. pgtable_t token;
  1889. spinlock_t *uninitialized_var(ptl);
  1890. pte = (mm == &init_mm) ?
  1891. pte_alloc_kernel(pmd, addr) :
  1892. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1893. if (!pte)
  1894. return -ENOMEM;
  1895. BUG_ON(pmd_huge(*pmd));
  1896. arch_enter_lazy_mmu_mode();
  1897. token = pmd_pgtable(*pmd);
  1898. do {
  1899. err = fn(pte++, token, addr, data);
  1900. if (err)
  1901. break;
  1902. } while (addr += PAGE_SIZE, addr != end);
  1903. arch_leave_lazy_mmu_mode();
  1904. if (mm != &init_mm)
  1905. pte_unmap_unlock(pte-1, ptl);
  1906. return err;
  1907. }
  1908. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1909. unsigned long addr, unsigned long end,
  1910. pte_fn_t fn, void *data)
  1911. {
  1912. pmd_t *pmd;
  1913. unsigned long next;
  1914. int err;
  1915. BUG_ON(pud_huge(*pud));
  1916. pmd = pmd_alloc(mm, pud, addr);
  1917. if (!pmd)
  1918. return -ENOMEM;
  1919. do {
  1920. next = pmd_addr_end(addr, end);
  1921. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1922. if (err)
  1923. break;
  1924. } while (pmd++, addr = next, addr != end);
  1925. return err;
  1926. }
  1927. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1928. unsigned long addr, unsigned long end,
  1929. pte_fn_t fn, void *data)
  1930. {
  1931. pud_t *pud;
  1932. unsigned long next;
  1933. int err;
  1934. pud = pud_alloc(mm, pgd, addr);
  1935. if (!pud)
  1936. return -ENOMEM;
  1937. do {
  1938. next = pud_addr_end(addr, end);
  1939. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1940. if (err)
  1941. break;
  1942. } while (pud++, addr = next, addr != end);
  1943. return err;
  1944. }
  1945. /*
  1946. * Scan a region of virtual memory, filling in page tables as necessary
  1947. * and calling a provided function on each leaf page table.
  1948. */
  1949. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1950. unsigned long size, pte_fn_t fn, void *data)
  1951. {
  1952. pgd_t *pgd;
  1953. unsigned long next;
  1954. unsigned long end = addr + size;
  1955. int err;
  1956. BUG_ON(addr >= end);
  1957. pgd = pgd_offset(mm, addr);
  1958. do {
  1959. next = pgd_addr_end(addr, end);
  1960. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1961. if (err)
  1962. break;
  1963. } while (pgd++, addr = next, addr != end);
  1964. return err;
  1965. }
  1966. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1967. /*
  1968. * handle_pte_fault chooses page fault handler according to an entry
  1969. * which was read non-atomically. Before making any commitment, on
  1970. * those architectures or configurations (e.g. i386 with PAE) which
  1971. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  1972. * must check under lock before unmapping the pte and proceeding
  1973. * (but do_wp_page is only called after already making such a check;
  1974. * and do_anonymous_page can safely check later on).
  1975. */
  1976. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1977. pte_t *page_table, pte_t orig_pte)
  1978. {
  1979. int same = 1;
  1980. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1981. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1982. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1983. spin_lock(ptl);
  1984. same = pte_same(*page_table, orig_pte);
  1985. spin_unlock(ptl);
  1986. }
  1987. #endif
  1988. pte_unmap(page_table);
  1989. return same;
  1990. }
  1991. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1992. {
  1993. /*
  1994. * If the source page was a PFN mapping, we don't have
  1995. * a "struct page" for it. We do a best-effort copy by
  1996. * just copying from the original user address. If that
  1997. * fails, we just zero-fill it. Live with it.
  1998. */
  1999. if (unlikely(!src)) {
  2000. void *kaddr = kmap_atomic(dst, KM_USER0);
  2001. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  2002. /*
  2003. * This really shouldn't fail, because the page is there
  2004. * in the page tables. But it might just be unreadable,
  2005. * in which case we just give up and fill the result with
  2006. * zeroes.
  2007. */
  2008. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  2009. clear_page(kaddr);
  2010. kunmap_atomic(kaddr, KM_USER0);
  2011. flush_dcache_page(dst);
  2012. } else
  2013. copy_user_highpage(dst, src, va, vma);
  2014. }
  2015. /*
  2016. * This routine handles present pages, when users try to write
  2017. * to a shared page. It is done by copying the page to a new address
  2018. * and decrementing the shared-page counter for the old page.
  2019. *
  2020. * Note that this routine assumes that the protection checks have been
  2021. * done by the caller (the low-level page fault routine in most cases).
  2022. * Thus we can safely just mark it writable once we've done any necessary
  2023. * COW.
  2024. *
  2025. * We also mark the page dirty at this point even though the page will
  2026. * change only once the write actually happens. This avoids a few races,
  2027. * and potentially makes it more efficient.
  2028. *
  2029. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2030. * but allow concurrent faults), with pte both mapped and locked.
  2031. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2032. */
  2033. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2034. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2035. spinlock_t *ptl, pte_t orig_pte)
  2036. __releases(ptl)
  2037. {
  2038. struct page *old_page, *new_page;
  2039. pte_t entry;
  2040. int ret = 0;
  2041. int page_mkwrite = 0;
  2042. struct page *dirty_page = NULL;
  2043. old_page = vm_normal_page(vma, address, orig_pte);
  2044. if (!old_page) {
  2045. /*
  2046. * VM_MIXEDMAP !pfn_valid() case
  2047. *
  2048. * We should not cow pages in a shared writeable mapping.
  2049. * Just mark the pages writable as we can't do any dirty
  2050. * accounting on raw pfn maps.
  2051. */
  2052. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2053. (VM_WRITE|VM_SHARED))
  2054. goto reuse;
  2055. goto gotten;
  2056. }
  2057. /*
  2058. * Take out anonymous pages first, anonymous shared vmas are
  2059. * not dirty accountable.
  2060. */
  2061. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2062. if (!trylock_page(old_page)) {
  2063. page_cache_get(old_page);
  2064. pte_unmap_unlock(page_table, ptl);
  2065. lock_page(old_page);
  2066. page_table = pte_offset_map_lock(mm, pmd, address,
  2067. &ptl);
  2068. if (!pte_same(*page_table, orig_pte)) {
  2069. unlock_page(old_page);
  2070. goto unlock;
  2071. }
  2072. page_cache_release(old_page);
  2073. }
  2074. if (reuse_swap_page(old_page)) {
  2075. /*
  2076. * The page is all ours. Move it to our anon_vma so
  2077. * the rmap code will not search our parent or siblings.
  2078. * Protected against the rmap code by the page lock.
  2079. */
  2080. page_move_anon_rmap(old_page, vma, address);
  2081. unlock_page(old_page);
  2082. goto reuse;
  2083. }
  2084. unlock_page(old_page);
  2085. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2086. (VM_WRITE|VM_SHARED))) {
  2087. /*
  2088. * Only catch write-faults on shared writable pages,
  2089. * read-only shared pages can get COWed by
  2090. * get_user_pages(.write=1, .force=1).
  2091. */
  2092. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2093. struct vm_fault vmf;
  2094. int tmp;
  2095. vmf.virtual_address = (void __user *)(address &
  2096. PAGE_MASK);
  2097. vmf.pgoff = old_page->index;
  2098. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2099. vmf.page = old_page;
  2100. /*
  2101. * Notify the address space that the page is about to
  2102. * become writable so that it can prohibit this or wait
  2103. * for the page to get into an appropriate state.
  2104. *
  2105. * We do this without the lock held, so that it can
  2106. * sleep if it needs to.
  2107. */
  2108. page_cache_get(old_page);
  2109. pte_unmap_unlock(page_table, ptl);
  2110. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2111. if (unlikely(tmp &
  2112. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2113. ret = tmp;
  2114. goto unwritable_page;
  2115. }
  2116. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2117. lock_page(old_page);
  2118. if (!old_page->mapping) {
  2119. ret = 0; /* retry the fault */
  2120. unlock_page(old_page);
  2121. goto unwritable_page;
  2122. }
  2123. } else
  2124. VM_BUG_ON(!PageLocked(old_page));
  2125. /*
  2126. * Since we dropped the lock we need to revalidate
  2127. * the PTE as someone else may have changed it. If
  2128. * they did, we just return, as we can count on the
  2129. * MMU to tell us if they didn't also make it writable.
  2130. */
  2131. page_table = pte_offset_map_lock(mm, pmd, address,
  2132. &ptl);
  2133. if (!pte_same(*page_table, orig_pte)) {
  2134. unlock_page(old_page);
  2135. goto unlock;
  2136. }
  2137. page_mkwrite = 1;
  2138. }
  2139. dirty_page = old_page;
  2140. get_page(dirty_page);
  2141. reuse:
  2142. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2143. entry = pte_mkyoung(orig_pte);
  2144. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2145. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2146. update_mmu_cache(vma, address, page_table);
  2147. pte_unmap_unlock(page_table, ptl);
  2148. ret |= VM_FAULT_WRITE;
  2149. if (!dirty_page)
  2150. return ret;
  2151. /*
  2152. * Yes, Virginia, this is actually required to prevent a race
  2153. * with clear_page_dirty_for_io() from clearing the page dirty
  2154. * bit after it clear all dirty ptes, but before a racing
  2155. * do_wp_page installs a dirty pte.
  2156. *
  2157. * __do_fault is protected similarly.
  2158. */
  2159. if (!page_mkwrite) {
  2160. wait_on_page_locked(dirty_page);
  2161. set_page_dirty_balance(dirty_page, page_mkwrite);
  2162. }
  2163. put_page(dirty_page);
  2164. if (page_mkwrite) {
  2165. struct address_space *mapping = dirty_page->mapping;
  2166. set_page_dirty(dirty_page);
  2167. unlock_page(dirty_page);
  2168. page_cache_release(dirty_page);
  2169. if (mapping) {
  2170. /*
  2171. * Some device drivers do not set page.mapping
  2172. * but still dirty their pages
  2173. */
  2174. balance_dirty_pages_ratelimited(mapping);
  2175. }
  2176. }
  2177. /* file_update_time outside page_lock */
  2178. if (vma->vm_file)
  2179. file_update_time(vma->vm_file);
  2180. return ret;
  2181. }
  2182. /*
  2183. * Ok, we need to copy. Oh, well..
  2184. */
  2185. page_cache_get(old_page);
  2186. gotten:
  2187. pte_unmap_unlock(page_table, ptl);
  2188. if (unlikely(anon_vma_prepare(vma)))
  2189. goto oom;
  2190. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2191. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2192. if (!new_page)
  2193. goto oom;
  2194. } else {
  2195. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2196. if (!new_page)
  2197. goto oom;
  2198. cow_user_page(new_page, old_page, address, vma);
  2199. }
  2200. __SetPageUptodate(new_page);
  2201. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2202. goto oom_free_new;
  2203. /*
  2204. * Re-check the pte - we dropped the lock
  2205. */
  2206. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2207. if (likely(pte_same(*page_table, orig_pte))) {
  2208. if (old_page) {
  2209. if (!PageAnon(old_page)) {
  2210. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2211. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2212. }
  2213. } else
  2214. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2215. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2216. entry = mk_pte(new_page, vma->vm_page_prot);
  2217. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2218. /*
  2219. * Clear the pte entry and flush it first, before updating the
  2220. * pte with the new entry. This will avoid a race condition
  2221. * seen in the presence of one thread doing SMC and another
  2222. * thread doing COW.
  2223. */
  2224. ptep_clear_flush(vma, address, page_table);
  2225. page_add_new_anon_rmap(new_page, vma, address);
  2226. /*
  2227. * We call the notify macro here because, when using secondary
  2228. * mmu page tables (such as kvm shadow page tables), we want the
  2229. * new page to be mapped directly into the secondary page table.
  2230. */
  2231. set_pte_at_notify(mm, address, page_table, entry);
  2232. update_mmu_cache(vma, address, page_table);
  2233. if (old_page) {
  2234. /*
  2235. * Only after switching the pte to the new page may
  2236. * we remove the mapcount here. Otherwise another
  2237. * process may come and find the rmap count decremented
  2238. * before the pte is switched to the new page, and
  2239. * "reuse" the old page writing into it while our pte
  2240. * here still points into it and can be read by other
  2241. * threads.
  2242. *
  2243. * The critical issue is to order this
  2244. * page_remove_rmap with the ptp_clear_flush above.
  2245. * Those stores are ordered by (if nothing else,)
  2246. * the barrier present in the atomic_add_negative
  2247. * in page_remove_rmap.
  2248. *
  2249. * Then the TLB flush in ptep_clear_flush ensures that
  2250. * no process can access the old page before the
  2251. * decremented mapcount is visible. And the old page
  2252. * cannot be reused until after the decremented
  2253. * mapcount is visible. So transitively, TLBs to
  2254. * old page will be flushed before it can be reused.
  2255. */
  2256. page_remove_rmap(old_page);
  2257. }
  2258. /* Free the old page.. */
  2259. new_page = old_page;
  2260. ret |= VM_FAULT_WRITE;
  2261. } else
  2262. mem_cgroup_uncharge_page(new_page);
  2263. if (new_page)
  2264. page_cache_release(new_page);
  2265. unlock:
  2266. pte_unmap_unlock(page_table, ptl);
  2267. if (old_page) {
  2268. /*
  2269. * Don't let another task, with possibly unlocked vma,
  2270. * keep the mlocked page.
  2271. */
  2272. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2273. lock_page(old_page); /* LRU manipulation */
  2274. munlock_vma_page(old_page);
  2275. unlock_page(old_page);
  2276. }
  2277. page_cache_release(old_page);
  2278. }
  2279. return ret;
  2280. oom_free_new:
  2281. page_cache_release(new_page);
  2282. oom:
  2283. if (old_page) {
  2284. if (page_mkwrite) {
  2285. unlock_page(old_page);
  2286. page_cache_release(old_page);
  2287. }
  2288. page_cache_release(old_page);
  2289. }
  2290. return VM_FAULT_OOM;
  2291. unwritable_page:
  2292. page_cache_release(old_page);
  2293. return ret;
  2294. }
  2295. /*
  2296. * Helper functions for unmap_mapping_range().
  2297. *
  2298. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2299. *
  2300. * We have to restart searching the prio_tree whenever we drop the lock,
  2301. * since the iterator is only valid while the lock is held, and anyway
  2302. * a later vma might be split and reinserted earlier while lock dropped.
  2303. *
  2304. * The list of nonlinear vmas could be handled more efficiently, using
  2305. * a placeholder, but handle it in the same way until a need is shown.
  2306. * It is important to search the prio_tree before nonlinear list: a vma
  2307. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2308. * while the lock is dropped; but never shifted from list to prio_tree.
  2309. *
  2310. * In order to make forward progress despite restarting the search,
  2311. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2312. * quickly skip it next time around. Since the prio_tree search only
  2313. * shows us those vmas affected by unmapping the range in question, we
  2314. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2315. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2316. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2317. * i_mmap_lock.
  2318. *
  2319. * In order to make forward progress despite repeatedly restarting some
  2320. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2321. * and restart from that address when we reach that vma again. It might
  2322. * have been split or merged, shrunk or extended, but never shifted: so
  2323. * restart_addr remains valid so long as it remains in the vma's range.
  2324. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2325. * values so we can save vma's restart_addr in its truncate_count field.
  2326. */
  2327. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2328. static void reset_vma_truncate_counts(struct address_space *mapping)
  2329. {
  2330. struct vm_area_struct *vma;
  2331. struct prio_tree_iter iter;
  2332. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2333. vma->vm_truncate_count = 0;
  2334. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2335. vma->vm_truncate_count = 0;
  2336. }
  2337. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2338. unsigned long start_addr, unsigned long end_addr,
  2339. struct zap_details *details)
  2340. {
  2341. unsigned long restart_addr;
  2342. int need_break;
  2343. /*
  2344. * files that support invalidating or truncating portions of the
  2345. * file from under mmaped areas must have their ->fault function
  2346. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2347. * This provides synchronisation against concurrent unmapping here.
  2348. */
  2349. again:
  2350. restart_addr = vma->vm_truncate_count;
  2351. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2352. start_addr = restart_addr;
  2353. if (start_addr >= end_addr) {
  2354. /* Top of vma has been split off since last time */
  2355. vma->vm_truncate_count = details->truncate_count;
  2356. return 0;
  2357. }
  2358. }
  2359. restart_addr = zap_page_range(vma, start_addr,
  2360. end_addr - start_addr, details);
  2361. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2362. if (restart_addr >= end_addr) {
  2363. /* We have now completed this vma: mark it so */
  2364. vma->vm_truncate_count = details->truncate_count;
  2365. if (!need_break)
  2366. return 0;
  2367. } else {
  2368. /* Note restart_addr in vma's truncate_count field */
  2369. vma->vm_truncate_count = restart_addr;
  2370. if (!need_break)
  2371. goto again;
  2372. }
  2373. spin_unlock(details->i_mmap_lock);
  2374. cond_resched();
  2375. spin_lock(details->i_mmap_lock);
  2376. return -EINTR;
  2377. }
  2378. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2379. struct zap_details *details)
  2380. {
  2381. struct vm_area_struct *vma;
  2382. struct prio_tree_iter iter;
  2383. pgoff_t vba, vea, zba, zea;
  2384. restart:
  2385. vma_prio_tree_foreach(vma, &iter, root,
  2386. details->first_index, details->last_index) {
  2387. /* Skip quickly over those we have already dealt with */
  2388. if (vma->vm_truncate_count == details->truncate_count)
  2389. continue;
  2390. vba = vma->vm_pgoff;
  2391. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2392. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2393. zba = details->first_index;
  2394. if (zba < vba)
  2395. zba = vba;
  2396. zea = details->last_index;
  2397. if (zea > vea)
  2398. zea = vea;
  2399. if (unmap_mapping_range_vma(vma,
  2400. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2401. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2402. details) < 0)
  2403. goto restart;
  2404. }
  2405. }
  2406. static inline void unmap_mapping_range_list(struct list_head *head,
  2407. struct zap_details *details)
  2408. {
  2409. struct vm_area_struct *vma;
  2410. /*
  2411. * In nonlinear VMAs there is no correspondence between virtual address
  2412. * offset and file offset. So we must perform an exhaustive search
  2413. * across *all* the pages in each nonlinear VMA, not just the pages
  2414. * whose virtual address lies outside the file truncation point.
  2415. */
  2416. restart:
  2417. list_for_each_entry(vma, head, shared.vm_set.list) {
  2418. /* Skip quickly over those we have already dealt with */
  2419. if (vma->vm_truncate_count == details->truncate_count)
  2420. continue;
  2421. details->nonlinear_vma = vma;
  2422. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2423. vma->vm_end, details) < 0)
  2424. goto restart;
  2425. }
  2426. }
  2427. /**
  2428. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2429. * @mapping: the address space containing mmaps to be unmapped.
  2430. * @holebegin: byte in first page to unmap, relative to the start of
  2431. * the underlying file. This will be rounded down to a PAGE_SIZE
  2432. * boundary. Note that this is different from truncate_pagecache(), which
  2433. * must keep the partial page. In contrast, we must get rid of
  2434. * partial pages.
  2435. * @holelen: size of prospective hole in bytes. This will be rounded
  2436. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2437. * end of the file.
  2438. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2439. * but 0 when invalidating pagecache, don't throw away private data.
  2440. */
  2441. void unmap_mapping_range(struct address_space *mapping,
  2442. loff_t const holebegin, loff_t const holelen, int even_cows)
  2443. {
  2444. struct zap_details details;
  2445. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2446. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2447. /* Check for overflow. */
  2448. if (sizeof(holelen) > sizeof(hlen)) {
  2449. long long holeend =
  2450. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2451. if (holeend & ~(long long)ULONG_MAX)
  2452. hlen = ULONG_MAX - hba + 1;
  2453. }
  2454. details.check_mapping = even_cows? NULL: mapping;
  2455. details.nonlinear_vma = NULL;
  2456. details.first_index = hba;
  2457. details.last_index = hba + hlen - 1;
  2458. if (details.last_index < details.first_index)
  2459. details.last_index = ULONG_MAX;
  2460. details.i_mmap_lock = &mapping->i_mmap_lock;
  2461. mutex_lock(&mapping->unmap_mutex);
  2462. spin_lock(&mapping->i_mmap_lock);
  2463. /* Protect against endless unmapping loops */
  2464. mapping->truncate_count++;
  2465. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2466. if (mapping->truncate_count == 0)
  2467. reset_vma_truncate_counts(mapping);
  2468. mapping->truncate_count++;
  2469. }
  2470. details.truncate_count = mapping->truncate_count;
  2471. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2472. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2473. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2474. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2475. spin_unlock(&mapping->i_mmap_lock);
  2476. mutex_unlock(&mapping->unmap_mutex);
  2477. }
  2478. EXPORT_SYMBOL(unmap_mapping_range);
  2479. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2480. {
  2481. struct address_space *mapping = inode->i_mapping;
  2482. /*
  2483. * If the underlying filesystem is not going to provide
  2484. * a way to truncate a range of blocks (punch a hole) -
  2485. * we should return failure right now.
  2486. */
  2487. if (!inode->i_op->truncate_range)
  2488. return -ENOSYS;
  2489. mutex_lock(&inode->i_mutex);
  2490. down_write(&inode->i_alloc_sem);
  2491. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2492. truncate_inode_pages_range(mapping, offset, end);
  2493. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2494. inode->i_op->truncate_range(inode, offset, end);
  2495. up_write(&inode->i_alloc_sem);
  2496. mutex_unlock(&inode->i_mutex);
  2497. return 0;
  2498. }
  2499. /*
  2500. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2501. * but allow concurrent faults), and pte mapped but not yet locked.
  2502. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2503. */
  2504. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2505. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2506. unsigned int flags, pte_t orig_pte)
  2507. {
  2508. spinlock_t *ptl;
  2509. struct page *page, *swapcache = NULL;
  2510. swp_entry_t entry;
  2511. pte_t pte;
  2512. int locked;
  2513. struct mem_cgroup *ptr;
  2514. int exclusive = 0;
  2515. int ret = 0;
  2516. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2517. goto out;
  2518. entry = pte_to_swp_entry(orig_pte);
  2519. if (unlikely(non_swap_entry(entry))) {
  2520. if (is_migration_entry(entry)) {
  2521. migration_entry_wait(mm, pmd, address);
  2522. } else if (is_hwpoison_entry(entry)) {
  2523. ret = VM_FAULT_HWPOISON;
  2524. } else {
  2525. print_bad_pte(vma, address, orig_pte, NULL);
  2526. ret = VM_FAULT_SIGBUS;
  2527. }
  2528. goto out;
  2529. }
  2530. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2531. page = lookup_swap_cache(entry);
  2532. if (!page) {
  2533. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2534. page = swapin_readahead(entry,
  2535. GFP_HIGHUSER_MOVABLE, vma, address);
  2536. if (!page) {
  2537. /*
  2538. * Back out if somebody else faulted in this pte
  2539. * while we released the pte lock.
  2540. */
  2541. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2542. if (likely(pte_same(*page_table, orig_pte)))
  2543. ret = VM_FAULT_OOM;
  2544. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2545. goto unlock;
  2546. }
  2547. /* Had to read the page from swap area: Major fault */
  2548. ret = VM_FAULT_MAJOR;
  2549. count_vm_event(PGMAJFAULT);
  2550. } else if (PageHWPoison(page)) {
  2551. /*
  2552. * hwpoisoned dirty swapcache pages are kept for killing
  2553. * owner processes (which may be unknown at hwpoison time)
  2554. */
  2555. ret = VM_FAULT_HWPOISON;
  2556. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2557. goto out_release;
  2558. }
  2559. locked = lock_page_or_retry(page, mm, flags);
  2560. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2561. if (!locked) {
  2562. ret |= VM_FAULT_RETRY;
  2563. goto out_release;
  2564. }
  2565. /*
  2566. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2567. * release the swapcache from under us. The page pin, and pte_same
  2568. * test below, are not enough to exclude that. Even if it is still
  2569. * swapcache, we need to check that the page's swap has not changed.
  2570. */
  2571. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2572. goto out_page;
  2573. if (ksm_might_need_to_copy(page, vma, address)) {
  2574. swapcache = page;
  2575. page = ksm_does_need_to_copy(page, vma, address);
  2576. if (unlikely(!page)) {
  2577. ret = VM_FAULT_OOM;
  2578. page = swapcache;
  2579. swapcache = NULL;
  2580. goto out_page;
  2581. }
  2582. }
  2583. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2584. ret = VM_FAULT_OOM;
  2585. goto out_page;
  2586. }
  2587. /*
  2588. * Back out if somebody else already faulted in this pte.
  2589. */
  2590. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2591. if (unlikely(!pte_same(*page_table, orig_pte)))
  2592. goto out_nomap;
  2593. if (unlikely(!PageUptodate(page))) {
  2594. ret = VM_FAULT_SIGBUS;
  2595. goto out_nomap;
  2596. }
  2597. /*
  2598. * The page isn't present yet, go ahead with the fault.
  2599. *
  2600. * Be careful about the sequence of operations here.
  2601. * To get its accounting right, reuse_swap_page() must be called
  2602. * while the page is counted on swap but not yet in mapcount i.e.
  2603. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2604. * must be called after the swap_free(), or it will never succeed.
  2605. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2606. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2607. * in page->private. In this case, a record in swap_cgroup is silently
  2608. * discarded at swap_free().
  2609. */
  2610. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2611. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2612. pte = mk_pte(page, vma->vm_page_prot);
  2613. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2614. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2615. flags &= ~FAULT_FLAG_WRITE;
  2616. ret |= VM_FAULT_WRITE;
  2617. exclusive = 1;
  2618. }
  2619. flush_icache_page(vma, page);
  2620. set_pte_at(mm, address, page_table, pte);
  2621. do_page_add_anon_rmap(page, vma, address, exclusive);
  2622. /* It's better to call commit-charge after rmap is established */
  2623. mem_cgroup_commit_charge_swapin(page, ptr);
  2624. swap_free(entry);
  2625. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2626. try_to_free_swap(page);
  2627. unlock_page(page);
  2628. if (swapcache) {
  2629. /*
  2630. * Hold the lock to avoid the swap entry to be reused
  2631. * until we take the PT lock for the pte_same() check
  2632. * (to avoid false positives from pte_same). For
  2633. * further safety release the lock after the swap_free
  2634. * so that the swap count won't change under a
  2635. * parallel locked swapcache.
  2636. */
  2637. unlock_page(swapcache);
  2638. page_cache_release(swapcache);
  2639. }
  2640. if (flags & FAULT_FLAG_WRITE) {
  2641. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2642. if (ret & VM_FAULT_ERROR)
  2643. ret &= VM_FAULT_ERROR;
  2644. goto out;
  2645. }
  2646. /* No need to invalidate - it was non-present before */
  2647. update_mmu_cache(vma, address, page_table);
  2648. unlock:
  2649. pte_unmap_unlock(page_table, ptl);
  2650. out:
  2651. return ret;
  2652. out_nomap:
  2653. mem_cgroup_cancel_charge_swapin(ptr);
  2654. pte_unmap_unlock(page_table, ptl);
  2655. out_page:
  2656. unlock_page(page);
  2657. out_release:
  2658. page_cache_release(page);
  2659. if (swapcache) {
  2660. unlock_page(swapcache);
  2661. page_cache_release(swapcache);
  2662. }
  2663. return ret;
  2664. }
  2665. /*
  2666. * This is like a special single-page "expand_{down|up}wards()",
  2667. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2668. * doesn't hit another vma.
  2669. */
  2670. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2671. {
  2672. address &= PAGE_MASK;
  2673. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2674. struct vm_area_struct *prev = vma->vm_prev;
  2675. /*
  2676. * Is there a mapping abutting this one below?
  2677. *
  2678. * That's only ok if it's the same stack mapping
  2679. * that has gotten split..
  2680. */
  2681. if (prev && prev->vm_end == address)
  2682. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2683. expand_stack(vma, address - PAGE_SIZE);
  2684. }
  2685. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2686. struct vm_area_struct *next = vma->vm_next;
  2687. /* As VM_GROWSDOWN but s/below/above/ */
  2688. if (next && next->vm_start == address + PAGE_SIZE)
  2689. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2690. expand_upwards(vma, address + PAGE_SIZE);
  2691. }
  2692. return 0;
  2693. }
  2694. /*
  2695. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2696. * but allow concurrent faults), and pte mapped but not yet locked.
  2697. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2698. */
  2699. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2700. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2701. unsigned int flags)
  2702. {
  2703. struct page *page;
  2704. spinlock_t *ptl;
  2705. pte_t entry;
  2706. pte_unmap(page_table);
  2707. /* Check if we need to add a guard page to the stack */
  2708. if (check_stack_guard_page(vma, address) < 0)
  2709. return VM_FAULT_SIGBUS;
  2710. /* Use the zero-page for reads */
  2711. if (!(flags & FAULT_FLAG_WRITE)) {
  2712. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2713. vma->vm_page_prot));
  2714. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2715. if (!pte_none(*page_table))
  2716. goto unlock;
  2717. goto setpte;
  2718. }
  2719. /* Allocate our own private page. */
  2720. if (unlikely(anon_vma_prepare(vma)))
  2721. goto oom;
  2722. page = alloc_zeroed_user_highpage_movable(vma, address);
  2723. if (!page)
  2724. goto oom;
  2725. __SetPageUptodate(page);
  2726. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2727. goto oom_free_page;
  2728. entry = mk_pte(page, vma->vm_page_prot);
  2729. if (vma->vm_flags & VM_WRITE)
  2730. entry = pte_mkwrite(pte_mkdirty(entry));
  2731. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2732. if (!pte_none(*page_table))
  2733. goto release;
  2734. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2735. page_add_new_anon_rmap(page, vma, address);
  2736. setpte:
  2737. set_pte_at(mm, address, page_table, entry);
  2738. /* No need to invalidate - it was non-present before */
  2739. update_mmu_cache(vma, address, page_table);
  2740. unlock:
  2741. pte_unmap_unlock(page_table, ptl);
  2742. return 0;
  2743. release:
  2744. mem_cgroup_uncharge_page(page);
  2745. page_cache_release(page);
  2746. goto unlock;
  2747. oom_free_page:
  2748. page_cache_release(page);
  2749. oom:
  2750. return VM_FAULT_OOM;
  2751. }
  2752. /*
  2753. * __do_fault() tries to create a new page mapping. It aggressively
  2754. * tries to share with existing pages, but makes a separate copy if
  2755. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2756. * the next page fault.
  2757. *
  2758. * As this is called only for pages that do not currently exist, we
  2759. * do not need to flush old virtual caches or the TLB.
  2760. *
  2761. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2762. * but allow concurrent faults), and pte neither mapped nor locked.
  2763. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2764. */
  2765. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2766. unsigned long address, pmd_t *pmd,
  2767. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2768. {
  2769. pte_t *page_table;
  2770. spinlock_t *ptl;
  2771. struct page *page;
  2772. pte_t entry;
  2773. int anon = 0;
  2774. int charged = 0;
  2775. struct page *dirty_page = NULL;
  2776. struct vm_fault vmf;
  2777. int ret;
  2778. int page_mkwrite = 0;
  2779. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2780. vmf.pgoff = pgoff;
  2781. vmf.flags = flags;
  2782. vmf.page = NULL;
  2783. ret = vma->vm_ops->fault(vma, &vmf);
  2784. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
  2785. VM_FAULT_RETRY)))
  2786. return ret;
  2787. if (unlikely(PageHWPoison(vmf.page))) {
  2788. if (ret & VM_FAULT_LOCKED)
  2789. unlock_page(vmf.page);
  2790. return VM_FAULT_HWPOISON;
  2791. }
  2792. /*
  2793. * For consistency in subsequent calls, make the faulted page always
  2794. * locked.
  2795. */
  2796. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2797. lock_page(vmf.page);
  2798. else
  2799. VM_BUG_ON(!PageLocked(vmf.page));
  2800. /*
  2801. * Should we do an early C-O-W break?
  2802. */
  2803. page = vmf.page;
  2804. if (flags & FAULT_FLAG_WRITE) {
  2805. if (!(vma->vm_flags & VM_SHARED)) {
  2806. anon = 1;
  2807. if (unlikely(anon_vma_prepare(vma))) {
  2808. ret = VM_FAULT_OOM;
  2809. goto out;
  2810. }
  2811. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2812. vma, address);
  2813. if (!page) {
  2814. ret = VM_FAULT_OOM;
  2815. goto out;
  2816. }
  2817. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2818. ret = VM_FAULT_OOM;
  2819. page_cache_release(page);
  2820. goto out;
  2821. }
  2822. charged = 1;
  2823. copy_user_highpage(page, vmf.page, address, vma);
  2824. __SetPageUptodate(page);
  2825. } else {
  2826. /*
  2827. * If the page will be shareable, see if the backing
  2828. * address space wants to know that the page is about
  2829. * to become writable
  2830. */
  2831. if (vma->vm_ops->page_mkwrite) {
  2832. int tmp;
  2833. unlock_page(page);
  2834. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2835. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2836. if (unlikely(tmp &
  2837. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2838. ret = tmp;
  2839. goto unwritable_page;
  2840. }
  2841. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2842. lock_page(page);
  2843. if (!page->mapping) {
  2844. ret = 0; /* retry the fault */
  2845. unlock_page(page);
  2846. goto unwritable_page;
  2847. }
  2848. } else
  2849. VM_BUG_ON(!PageLocked(page));
  2850. page_mkwrite = 1;
  2851. }
  2852. }
  2853. }
  2854. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2855. /*
  2856. * This silly early PAGE_DIRTY setting removes a race
  2857. * due to the bad i386 page protection. But it's valid
  2858. * for other architectures too.
  2859. *
  2860. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2861. * an exclusive copy of the page, or this is a shared mapping,
  2862. * so we can make it writable and dirty to avoid having to
  2863. * handle that later.
  2864. */
  2865. /* Only go through if we didn't race with anybody else... */
  2866. if (likely(pte_same(*page_table, orig_pte))) {
  2867. flush_icache_page(vma, page);
  2868. entry = mk_pte(page, vma->vm_page_prot);
  2869. if (flags & FAULT_FLAG_WRITE)
  2870. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2871. if (anon) {
  2872. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2873. page_add_new_anon_rmap(page, vma, address);
  2874. } else {
  2875. inc_mm_counter_fast(mm, MM_FILEPAGES);
  2876. page_add_file_rmap(page);
  2877. if (flags & FAULT_FLAG_WRITE) {
  2878. dirty_page = page;
  2879. get_page(dirty_page);
  2880. }
  2881. }
  2882. set_pte_at(mm, address, page_table, entry);
  2883. /* no need to invalidate: a not-present page won't be cached */
  2884. update_mmu_cache(vma, address, page_table);
  2885. } else {
  2886. if (charged)
  2887. mem_cgroup_uncharge_page(page);
  2888. if (anon)
  2889. page_cache_release(page);
  2890. else
  2891. anon = 1; /* no anon but release faulted_page */
  2892. }
  2893. pte_unmap_unlock(page_table, ptl);
  2894. out:
  2895. if (dirty_page) {
  2896. struct address_space *mapping = page->mapping;
  2897. if (set_page_dirty(dirty_page))
  2898. page_mkwrite = 1;
  2899. unlock_page(dirty_page);
  2900. put_page(dirty_page);
  2901. if (page_mkwrite && mapping) {
  2902. /*
  2903. * Some device drivers do not set page.mapping but still
  2904. * dirty their pages
  2905. */
  2906. balance_dirty_pages_ratelimited(mapping);
  2907. }
  2908. /* file_update_time outside page_lock */
  2909. if (vma->vm_file)
  2910. file_update_time(vma->vm_file);
  2911. } else {
  2912. unlock_page(vmf.page);
  2913. if (anon)
  2914. page_cache_release(vmf.page);
  2915. }
  2916. return ret;
  2917. unwritable_page:
  2918. page_cache_release(page);
  2919. return ret;
  2920. }
  2921. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2922. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2923. unsigned int flags, pte_t orig_pte)
  2924. {
  2925. pgoff_t pgoff = (((address & PAGE_MASK)
  2926. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2927. pte_unmap(page_table);
  2928. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2929. }
  2930. /*
  2931. * Fault of a previously existing named mapping. Repopulate the pte
  2932. * from the encoded file_pte if possible. This enables swappable
  2933. * nonlinear vmas.
  2934. *
  2935. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2936. * but allow concurrent faults), and pte mapped but not yet locked.
  2937. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2938. */
  2939. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2940. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2941. unsigned int flags, pte_t orig_pte)
  2942. {
  2943. pgoff_t pgoff;
  2944. flags |= FAULT_FLAG_NONLINEAR;
  2945. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2946. return 0;
  2947. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2948. /*
  2949. * Page table corrupted: show pte and kill process.
  2950. */
  2951. print_bad_pte(vma, address, orig_pte, NULL);
  2952. return VM_FAULT_SIGBUS;
  2953. }
  2954. pgoff = pte_to_pgoff(orig_pte);
  2955. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2956. }
  2957. /*
  2958. * These routines also need to handle stuff like marking pages dirty
  2959. * and/or accessed for architectures that don't do it in hardware (most
  2960. * RISC architectures). The early dirtying is also good on the i386.
  2961. *
  2962. * There is also a hook called "update_mmu_cache()" that architectures
  2963. * with external mmu caches can use to update those (ie the Sparc or
  2964. * PowerPC hashed page tables that act as extended TLBs).
  2965. *
  2966. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2967. * but allow concurrent faults), and pte mapped but not yet locked.
  2968. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2969. */
  2970. int handle_pte_fault(struct mm_struct *mm,
  2971. struct vm_area_struct *vma, unsigned long address,
  2972. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2973. {
  2974. pte_t entry;
  2975. spinlock_t *ptl;
  2976. entry = *pte;
  2977. if (!pte_present(entry)) {
  2978. if (pte_none(entry)) {
  2979. if (vma->vm_ops) {
  2980. if (likely(vma->vm_ops->fault))
  2981. return do_linear_fault(mm, vma, address,
  2982. pte, pmd, flags, entry);
  2983. }
  2984. return do_anonymous_page(mm, vma, address,
  2985. pte, pmd, flags);
  2986. }
  2987. if (pte_file(entry))
  2988. return do_nonlinear_fault(mm, vma, address,
  2989. pte, pmd, flags, entry);
  2990. return do_swap_page(mm, vma, address,
  2991. pte, pmd, flags, entry);
  2992. }
  2993. ptl = pte_lockptr(mm, pmd);
  2994. spin_lock(ptl);
  2995. if (unlikely(!pte_same(*pte, entry)))
  2996. goto unlock;
  2997. if (flags & FAULT_FLAG_WRITE) {
  2998. if (!pte_write(entry))
  2999. return do_wp_page(mm, vma, address,
  3000. pte, pmd, ptl, entry);
  3001. entry = pte_mkdirty(entry);
  3002. }
  3003. entry = pte_mkyoung(entry);
  3004. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  3005. update_mmu_cache(vma, address, pte);
  3006. } else {
  3007. /*
  3008. * This is needed only for protection faults but the arch code
  3009. * is not yet telling us if this is a protection fault or not.
  3010. * This still avoids useless tlb flushes for .text page faults
  3011. * with threads.
  3012. */
  3013. if (flags & FAULT_FLAG_WRITE)
  3014. flush_tlb_fix_spurious_fault(vma, address);
  3015. }
  3016. unlock:
  3017. pte_unmap_unlock(pte, ptl);
  3018. return 0;
  3019. }
  3020. /*
  3021. * By the time we get here, we already hold the mm semaphore
  3022. */
  3023. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3024. unsigned long address, unsigned int flags)
  3025. {
  3026. pgd_t *pgd;
  3027. pud_t *pud;
  3028. pmd_t *pmd;
  3029. pte_t *pte;
  3030. __set_current_state(TASK_RUNNING);
  3031. count_vm_event(PGFAULT);
  3032. /* do counter updates before entering really critical section. */
  3033. check_sync_rss_stat(current);
  3034. if (unlikely(is_vm_hugetlb_page(vma)))
  3035. return hugetlb_fault(mm, vma, address, flags);
  3036. pgd = pgd_offset(mm, address);
  3037. pud = pud_alloc(mm, pgd, address);
  3038. if (!pud)
  3039. return VM_FAULT_OOM;
  3040. pmd = pmd_alloc(mm, pud, address);
  3041. if (!pmd)
  3042. return VM_FAULT_OOM;
  3043. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3044. if (!vma->vm_ops)
  3045. return do_huge_pmd_anonymous_page(mm, vma, address,
  3046. pmd, flags);
  3047. } else {
  3048. pmd_t orig_pmd = *pmd;
  3049. barrier();
  3050. if (pmd_trans_huge(orig_pmd)) {
  3051. if (flags & FAULT_FLAG_WRITE &&
  3052. !pmd_write(orig_pmd) &&
  3053. !pmd_trans_splitting(orig_pmd))
  3054. return do_huge_pmd_wp_page(mm, vma, address,
  3055. pmd, orig_pmd);
  3056. return 0;
  3057. }
  3058. }
  3059. /*
  3060. * Use __pte_alloc instead of pte_alloc_map, because we can't
  3061. * run pte_offset_map on the pmd, if an huge pmd could
  3062. * materialize from under us from a different thread.
  3063. */
  3064. if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
  3065. return VM_FAULT_OOM;
  3066. /* if an huge pmd materialized from under us just retry later */
  3067. if (unlikely(pmd_trans_huge(*pmd)))
  3068. return 0;
  3069. /*
  3070. * A regular pmd is established and it can't morph into a huge pmd
  3071. * from under us anymore at this point because we hold the mmap_sem
  3072. * read mode and khugepaged takes it in write mode. So now it's
  3073. * safe to run pte_offset_map().
  3074. */
  3075. pte = pte_offset_map(pmd, address);
  3076. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3077. }
  3078. #ifndef __PAGETABLE_PUD_FOLDED
  3079. /*
  3080. * Allocate page upper directory.
  3081. * We've already handled the fast-path in-line.
  3082. */
  3083. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3084. {
  3085. pud_t *new = pud_alloc_one(mm, address);
  3086. if (!new)
  3087. return -ENOMEM;
  3088. smp_wmb(); /* See comment in __pte_alloc */
  3089. spin_lock(&mm->page_table_lock);
  3090. if (pgd_present(*pgd)) /* Another has populated it */
  3091. pud_free(mm, new);
  3092. else
  3093. pgd_populate(mm, pgd, new);
  3094. spin_unlock(&mm->page_table_lock);
  3095. return 0;
  3096. }
  3097. #endif /* __PAGETABLE_PUD_FOLDED */
  3098. #ifndef __PAGETABLE_PMD_FOLDED
  3099. /*
  3100. * Allocate page middle directory.
  3101. * We've already handled the fast-path in-line.
  3102. */
  3103. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3104. {
  3105. pmd_t *new = pmd_alloc_one(mm, address);
  3106. if (!new)
  3107. return -ENOMEM;
  3108. smp_wmb(); /* See comment in __pte_alloc */
  3109. spin_lock(&mm->page_table_lock);
  3110. #ifndef __ARCH_HAS_4LEVEL_HACK
  3111. if (pud_present(*pud)) /* Another has populated it */
  3112. pmd_free(mm, new);
  3113. else
  3114. pud_populate(mm, pud, new);
  3115. #else
  3116. if (pgd_present(*pud)) /* Another has populated it */
  3117. pmd_free(mm, new);
  3118. else
  3119. pgd_populate(mm, pud, new);
  3120. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3121. spin_unlock(&mm->page_table_lock);
  3122. return 0;
  3123. }
  3124. #endif /* __PAGETABLE_PMD_FOLDED */
  3125. int make_pages_present(unsigned long addr, unsigned long end)
  3126. {
  3127. int ret, len, write;
  3128. struct vm_area_struct * vma;
  3129. vma = find_vma(current->mm, addr);
  3130. if (!vma)
  3131. return -ENOMEM;
  3132. /*
  3133. * We want to touch writable mappings with a write fault in order
  3134. * to break COW, except for shared mappings because these don't COW
  3135. * and we would not want to dirty them for nothing.
  3136. */
  3137. write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
  3138. BUG_ON(addr >= end);
  3139. BUG_ON(end > vma->vm_end);
  3140. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  3141. ret = get_user_pages(current, current->mm, addr,
  3142. len, write, 0, NULL, NULL);
  3143. if (ret < 0)
  3144. return ret;
  3145. return ret == len ? 0 : -EFAULT;
  3146. }
  3147. #if !defined(__HAVE_ARCH_GATE_AREA)
  3148. #if defined(AT_SYSINFO_EHDR)
  3149. static struct vm_area_struct gate_vma;
  3150. static int __init gate_vma_init(void)
  3151. {
  3152. gate_vma.vm_mm = NULL;
  3153. gate_vma.vm_start = FIXADDR_USER_START;
  3154. gate_vma.vm_end = FIXADDR_USER_END;
  3155. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  3156. gate_vma.vm_page_prot = __P101;
  3157. /*
  3158. * Make sure the vDSO gets into every core dump.
  3159. * Dumping its contents makes post-mortem fully interpretable later
  3160. * without matching up the same kernel and hardware config to see
  3161. * what PC values meant.
  3162. */
  3163. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  3164. return 0;
  3165. }
  3166. __initcall(gate_vma_init);
  3167. #endif
  3168. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  3169. {
  3170. #ifdef AT_SYSINFO_EHDR
  3171. return &gate_vma;
  3172. #else
  3173. return NULL;
  3174. #endif
  3175. }
  3176. int in_gate_area_no_mm(unsigned long addr)
  3177. {
  3178. #ifdef AT_SYSINFO_EHDR
  3179. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  3180. return 1;
  3181. #endif
  3182. return 0;
  3183. }
  3184. #endif /* __HAVE_ARCH_GATE_AREA */
  3185. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3186. pte_t **ptepp, spinlock_t **ptlp)
  3187. {
  3188. pgd_t *pgd;
  3189. pud_t *pud;
  3190. pmd_t *pmd;
  3191. pte_t *ptep;
  3192. pgd = pgd_offset(mm, address);
  3193. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3194. goto out;
  3195. pud = pud_offset(pgd, address);
  3196. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3197. goto out;
  3198. pmd = pmd_offset(pud, address);
  3199. VM_BUG_ON(pmd_trans_huge(*pmd));
  3200. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3201. goto out;
  3202. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3203. if (pmd_huge(*pmd))
  3204. goto out;
  3205. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3206. if (!ptep)
  3207. goto out;
  3208. if (!pte_present(*ptep))
  3209. goto unlock;
  3210. *ptepp = ptep;
  3211. return 0;
  3212. unlock:
  3213. pte_unmap_unlock(ptep, *ptlp);
  3214. out:
  3215. return -EINVAL;
  3216. }
  3217. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3218. pte_t **ptepp, spinlock_t **ptlp)
  3219. {
  3220. int res;
  3221. /* (void) is needed to make gcc happy */
  3222. (void) __cond_lock(*ptlp,
  3223. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3224. return res;
  3225. }
  3226. /**
  3227. * follow_pfn - look up PFN at a user virtual address
  3228. * @vma: memory mapping
  3229. * @address: user virtual address
  3230. * @pfn: location to store found PFN
  3231. *
  3232. * Only IO mappings and raw PFN mappings are allowed.
  3233. *
  3234. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3235. */
  3236. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3237. unsigned long *pfn)
  3238. {
  3239. int ret = -EINVAL;
  3240. spinlock_t *ptl;
  3241. pte_t *ptep;
  3242. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3243. return ret;
  3244. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3245. if (ret)
  3246. return ret;
  3247. *pfn = pte_pfn(*ptep);
  3248. pte_unmap_unlock(ptep, ptl);
  3249. return 0;
  3250. }
  3251. EXPORT_SYMBOL(follow_pfn);
  3252. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3253. int follow_phys(struct vm_area_struct *vma,
  3254. unsigned long address, unsigned int flags,
  3255. unsigned long *prot, resource_size_t *phys)
  3256. {
  3257. int ret = -EINVAL;
  3258. pte_t *ptep, pte;
  3259. spinlock_t *ptl;
  3260. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3261. goto out;
  3262. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3263. goto out;
  3264. pte = *ptep;
  3265. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3266. goto unlock;
  3267. *prot = pgprot_val(pte_pgprot(pte));
  3268. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3269. ret = 0;
  3270. unlock:
  3271. pte_unmap_unlock(ptep, ptl);
  3272. out:
  3273. return ret;
  3274. }
  3275. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3276. void *buf, int len, int write)
  3277. {
  3278. resource_size_t phys_addr;
  3279. unsigned long prot = 0;
  3280. void __iomem *maddr;
  3281. int offset = addr & (PAGE_SIZE-1);
  3282. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3283. return -EINVAL;
  3284. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3285. if (write)
  3286. memcpy_toio(maddr + offset, buf, len);
  3287. else
  3288. memcpy_fromio(buf, maddr + offset, len);
  3289. iounmap(maddr);
  3290. return len;
  3291. }
  3292. #endif
  3293. /*
  3294. * Access another process' address space as given in mm. If non-NULL, use the
  3295. * given task for page fault accounting.
  3296. */
  3297. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3298. unsigned long addr, void *buf, int len, int write)
  3299. {
  3300. struct vm_area_struct *vma;
  3301. void *old_buf = buf;
  3302. down_read(&mm->mmap_sem);
  3303. /* ignore errors, just check how much was successfully transferred */
  3304. while (len) {
  3305. int bytes, ret, offset;
  3306. void *maddr;
  3307. struct page *page = NULL;
  3308. ret = get_user_pages(tsk, mm, addr, 1,
  3309. write, 1, &page, &vma);
  3310. if (ret <= 0) {
  3311. /*
  3312. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3313. * we can access using slightly different code.
  3314. */
  3315. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3316. vma = find_vma(mm, addr);
  3317. if (!vma || vma->vm_start > addr)
  3318. break;
  3319. if (vma->vm_ops && vma->vm_ops->access)
  3320. ret = vma->vm_ops->access(vma, addr, buf,
  3321. len, write);
  3322. if (ret <= 0)
  3323. #endif
  3324. break;
  3325. bytes = ret;
  3326. } else {
  3327. bytes = len;
  3328. offset = addr & (PAGE_SIZE-1);
  3329. if (bytes > PAGE_SIZE-offset)
  3330. bytes = PAGE_SIZE-offset;
  3331. maddr = kmap(page);
  3332. if (write) {
  3333. copy_to_user_page(vma, page, addr,
  3334. maddr + offset, buf, bytes);
  3335. set_page_dirty_lock(page);
  3336. } else {
  3337. copy_from_user_page(vma, page, addr,
  3338. buf, maddr + offset, bytes);
  3339. }
  3340. kunmap(page);
  3341. page_cache_release(page);
  3342. }
  3343. len -= bytes;
  3344. buf += bytes;
  3345. addr += bytes;
  3346. }
  3347. up_read(&mm->mmap_sem);
  3348. return buf - old_buf;
  3349. }
  3350. /**
  3351. * access_remote_vm - access another process' address space
  3352. * @mm: the mm_struct of the target address space
  3353. * @addr: start address to access
  3354. * @buf: source or destination buffer
  3355. * @len: number of bytes to transfer
  3356. * @write: whether the access is a write
  3357. *
  3358. * The caller must hold a reference on @mm.
  3359. */
  3360. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3361. void *buf, int len, int write)
  3362. {
  3363. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3364. }
  3365. /*
  3366. * Access another process' address space.
  3367. * Source/target buffer must be kernel space,
  3368. * Do not walk the page table directly, use get_user_pages
  3369. */
  3370. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3371. void *buf, int len, int write)
  3372. {
  3373. struct mm_struct *mm;
  3374. int ret;
  3375. mm = get_task_mm(tsk);
  3376. if (!mm)
  3377. return 0;
  3378. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3379. mmput(mm);
  3380. return ret;
  3381. }
  3382. /*
  3383. * Print the name of a VMA.
  3384. */
  3385. void print_vma_addr(char *prefix, unsigned long ip)
  3386. {
  3387. struct mm_struct *mm = current->mm;
  3388. struct vm_area_struct *vma;
  3389. /*
  3390. * Do not print if we are in atomic
  3391. * contexts (in exception stacks, etc.):
  3392. */
  3393. if (preempt_count())
  3394. return;
  3395. down_read(&mm->mmap_sem);
  3396. vma = find_vma(mm, ip);
  3397. if (vma && vma->vm_file) {
  3398. struct file *f = vma->vm_file;
  3399. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3400. if (buf) {
  3401. char *p, *s;
  3402. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3403. if (IS_ERR(p))
  3404. p = "?";
  3405. s = strrchr(p, '/');
  3406. if (s)
  3407. p = s+1;
  3408. printk("%s%s[%lx+%lx]", prefix, p,
  3409. vma->vm_start,
  3410. vma->vm_end - vma->vm_start);
  3411. free_page((unsigned long)buf);
  3412. }
  3413. }
  3414. up_read(&current->mm->mmap_sem);
  3415. }
  3416. #ifdef CONFIG_PROVE_LOCKING
  3417. void might_fault(void)
  3418. {
  3419. /*
  3420. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3421. * holding the mmap_sem, this is safe because kernel memory doesn't
  3422. * get paged out, therefore we'll never actually fault, and the
  3423. * below annotations will generate false positives.
  3424. */
  3425. if (segment_eq(get_fs(), KERNEL_DS))
  3426. return;
  3427. might_sleep();
  3428. /*
  3429. * it would be nicer only to annotate paths which are not under
  3430. * pagefault_disable, however that requires a larger audit and
  3431. * providing helpers like get_user_atomic.
  3432. */
  3433. if (!in_atomic() && current->mm)
  3434. might_lock_read(&current->mm->mmap_sem);
  3435. }
  3436. EXPORT_SYMBOL(might_fault);
  3437. #endif
  3438. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3439. static void clear_gigantic_page(struct page *page,
  3440. unsigned long addr,
  3441. unsigned int pages_per_huge_page)
  3442. {
  3443. int i;
  3444. struct page *p = page;
  3445. might_sleep();
  3446. for (i = 0; i < pages_per_huge_page;
  3447. i++, p = mem_map_next(p, page, i)) {
  3448. cond_resched();
  3449. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3450. }
  3451. }
  3452. void clear_huge_page(struct page *page,
  3453. unsigned long addr, unsigned int pages_per_huge_page)
  3454. {
  3455. int i;
  3456. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3457. clear_gigantic_page(page, addr, pages_per_huge_page);
  3458. return;
  3459. }
  3460. might_sleep();
  3461. for (i = 0; i < pages_per_huge_page; i++) {
  3462. cond_resched();
  3463. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3464. }
  3465. }
  3466. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3467. unsigned long addr,
  3468. struct vm_area_struct *vma,
  3469. unsigned int pages_per_huge_page)
  3470. {
  3471. int i;
  3472. struct page *dst_base = dst;
  3473. struct page *src_base = src;
  3474. for (i = 0; i < pages_per_huge_page; ) {
  3475. cond_resched();
  3476. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3477. i++;
  3478. dst = mem_map_next(dst, dst_base, i);
  3479. src = mem_map_next(src, src_base, i);
  3480. }
  3481. }
  3482. void copy_user_huge_page(struct page *dst, struct page *src,
  3483. unsigned long addr, struct vm_area_struct *vma,
  3484. unsigned int pages_per_huge_page)
  3485. {
  3486. int i;
  3487. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3488. copy_user_gigantic_page(dst, src, addr, vma,
  3489. pages_per_huge_page);
  3490. return;
  3491. }
  3492. might_sleep();
  3493. for (i = 0; i < pages_per_huge_page; i++) {
  3494. cond_resched();
  3495. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3496. }
  3497. }
  3498. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */