page_alloc.c 134 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/page_cgroup.h>
  47. #include <linux/debugobjects.h>
  48. #include <linux/kmemleak.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/div64.h>
  51. #include "internal.h"
  52. /*
  53. * Array of node states.
  54. */
  55. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  56. [N_POSSIBLE] = NODE_MASK_ALL,
  57. [N_ONLINE] = { { [0] = 1UL } },
  58. #ifndef CONFIG_NUMA
  59. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  60. #ifdef CONFIG_HIGHMEM
  61. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  62. #endif
  63. [N_CPU] = { { [0] = 1UL } },
  64. #endif /* NUMA */
  65. };
  66. EXPORT_SYMBOL(node_states);
  67. unsigned long totalram_pages __read_mostly;
  68. unsigned long totalreserve_pages __read_mostly;
  69. unsigned long highest_memmap_pfn __read_mostly;
  70. int percpu_pagelist_fraction;
  71. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  72. int pageblock_order __read_mostly;
  73. #endif
  74. static void __free_pages_ok(struct page *page, unsigned int order);
  75. /*
  76. * results with 256, 32 in the lowmem_reserve sysctl:
  77. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  78. * 1G machine -> (16M dma, 784M normal, 224M high)
  79. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  80. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  81. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  82. *
  83. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  84. * don't need any ZONE_NORMAL reservation
  85. */
  86. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  87. #ifdef CONFIG_ZONE_DMA
  88. 256,
  89. #endif
  90. #ifdef CONFIG_ZONE_DMA32
  91. 256,
  92. #endif
  93. #ifdef CONFIG_HIGHMEM
  94. 32,
  95. #endif
  96. 32,
  97. };
  98. EXPORT_SYMBOL(totalram_pages);
  99. static char * const zone_names[MAX_NR_ZONES] = {
  100. #ifdef CONFIG_ZONE_DMA
  101. "DMA",
  102. #endif
  103. #ifdef CONFIG_ZONE_DMA32
  104. "DMA32",
  105. #endif
  106. "Normal",
  107. #ifdef CONFIG_HIGHMEM
  108. "HighMem",
  109. #endif
  110. "Movable",
  111. };
  112. int min_free_kbytes = 1024;
  113. unsigned long __meminitdata nr_kernel_pages;
  114. unsigned long __meminitdata nr_all_pages;
  115. static unsigned long __meminitdata dma_reserve;
  116. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  117. /*
  118. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  119. * ranges of memory (RAM) that may be registered with add_active_range().
  120. * Ranges passed to add_active_range() will be merged if possible
  121. * so the number of times add_active_range() can be called is
  122. * related to the number of nodes and the number of holes
  123. */
  124. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  125. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  126. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  127. #else
  128. #if MAX_NUMNODES >= 32
  129. /* If there can be many nodes, allow up to 50 holes per node */
  130. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  131. #else
  132. /* By default, allow up to 256 distinct regions */
  133. #define MAX_ACTIVE_REGIONS 256
  134. #endif
  135. #endif
  136. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  137. static int __meminitdata nr_nodemap_entries;
  138. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  139. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  140. static unsigned long __initdata required_kernelcore;
  141. static unsigned long __initdata required_movablecore;
  142. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  143. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  144. int movable_zone;
  145. EXPORT_SYMBOL(movable_zone);
  146. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  147. #if MAX_NUMNODES > 1
  148. int nr_node_ids __read_mostly = MAX_NUMNODES;
  149. int nr_online_nodes __read_mostly = 1;
  150. EXPORT_SYMBOL(nr_node_ids);
  151. EXPORT_SYMBOL(nr_online_nodes);
  152. #endif
  153. int page_group_by_mobility_disabled __read_mostly;
  154. static void set_pageblock_migratetype(struct page *page, int migratetype)
  155. {
  156. if (unlikely(page_group_by_mobility_disabled))
  157. migratetype = MIGRATE_UNMOVABLE;
  158. set_pageblock_flags_group(page, (unsigned long)migratetype,
  159. PB_migrate, PB_migrate_end);
  160. }
  161. #ifdef CONFIG_DEBUG_VM
  162. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  163. {
  164. int ret = 0;
  165. unsigned seq;
  166. unsigned long pfn = page_to_pfn(page);
  167. do {
  168. seq = zone_span_seqbegin(zone);
  169. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  170. ret = 1;
  171. else if (pfn < zone->zone_start_pfn)
  172. ret = 1;
  173. } while (zone_span_seqretry(zone, seq));
  174. return ret;
  175. }
  176. static int page_is_consistent(struct zone *zone, struct page *page)
  177. {
  178. if (!pfn_valid_within(page_to_pfn(page)))
  179. return 0;
  180. if (zone != page_zone(page))
  181. return 0;
  182. return 1;
  183. }
  184. /*
  185. * Temporary debugging check for pages not lying within a given zone.
  186. */
  187. static int bad_range(struct zone *zone, struct page *page)
  188. {
  189. if (page_outside_zone_boundaries(zone, page))
  190. return 1;
  191. if (!page_is_consistent(zone, page))
  192. return 1;
  193. return 0;
  194. }
  195. #else
  196. static inline int bad_range(struct zone *zone, struct page *page)
  197. {
  198. return 0;
  199. }
  200. #endif
  201. static void bad_page(struct page *page)
  202. {
  203. static unsigned long resume;
  204. static unsigned long nr_shown;
  205. static unsigned long nr_unshown;
  206. /*
  207. * Allow a burst of 60 reports, then keep quiet for that minute;
  208. * or allow a steady drip of one report per second.
  209. */
  210. if (nr_shown == 60) {
  211. if (time_before(jiffies, resume)) {
  212. nr_unshown++;
  213. goto out;
  214. }
  215. if (nr_unshown) {
  216. printk(KERN_ALERT
  217. "BUG: Bad page state: %lu messages suppressed\n",
  218. nr_unshown);
  219. nr_unshown = 0;
  220. }
  221. nr_shown = 0;
  222. }
  223. if (nr_shown++ == 0)
  224. resume = jiffies + 60 * HZ;
  225. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  226. current->comm, page_to_pfn(page));
  227. printk(KERN_ALERT
  228. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  229. page, (void *)page->flags, page_count(page),
  230. page_mapcount(page), page->mapping, page->index);
  231. dump_stack();
  232. out:
  233. /* Leave bad fields for debug, except PageBuddy could make trouble */
  234. __ClearPageBuddy(page);
  235. add_taint(TAINT_BAD_PAGE);
  236. }
  237. /*
  238. * Higher-order pages are called "compound pages". They are structured thusly:
  239. *
  240. * The first PAGE_SIZE page is called the "head page".
  241. *
  242. * The remaining PAGE_SIZE pages are called "tail pages".
  243. *
  244. * All pages have PG_compound set. All pages have their ->private pointing at
  245. * the head page (even the head page has this).
  246. *
  247. * The first tail page's ->lru.next holds the address of the compound page's
  248. * put_page() function. Its ->lru.prev holds the order of allocation.
  249. * This usage means that zero-order pages may not be compound.
  250. */
  251. static void free_compound_page(struct page *page)
  252. {
  253. __free_pages_ok(page, compound_order(page));
  254. }
  255. void prep_compound_page(struct page *page, unsigned long order)
  256. {
  257. int i;
  258. int nr_pages = 1 << order;
  259. set_compound_page_dtor(page, free_compound_page);
  260. set_compound_order(page, order);
  261. __SetPageHead(page);
  262. for (i = 1; i < nr_pages; i++) {
  263. struct page *p = page + i;
  264. __SetPageTail(p);
  265. p->first_page = page;
  266. }
  267. }
  268. #ifdef CONFIG_HUGETLBFS
  269. void prep_compound_gigantic_page(struct page *page, unsigned long order)
  270. {
  271. int i;
  272. int nr_pages = 1 << order;
  273. struct page *p = page + 1;
  274. set_compound_page_dtor(page, free_compound_page);
  275. set_compound_order(page, order);
  276. __SetPageHead(page);
  277. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  278. __SetPageTail(p);
  279. p->first_page = page;
  280. }
  281. }
  282. #endif
  283. static int destroy_compound_page(struct page *page, unsigned long order)
  284. {
  285. int i;
  286. int nr_pages = 1 << order;
  287. int bad = 0;
  288. if (unlikely(compound_order(page) != order) ||
  289. unlikely(!PageHead(page))) {
  290. bad_page(page);
  291. bad++;
  292. }
  293. __ClearPageHead(page);
  294. for (i = 1; i < nr_pages; i++) {
  295. struct page *p = page + i;
  296. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  297. bad_page(page);
  298. bad++;
  299. }
  300. __ClearPageTail(p);
  301. }
  302. return bad;
  303. }
  304. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  305. {
  306. int i;
  307. /*
  308. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  309. * and __GFP_HIGHMEM from hard or soft interrupt context.
  310. */
  311. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  312. for (i = 0; i < (1 << order); i++)
  313. clear_highpage(page + i);
  314. }
  315. static inline void set_page_order(struct page *page, int order)
  316. {
  317. set_page_private(page, order);
  318. __SetPageBuddy(page);
  319. }
  320. static inline void rmv_page_order(struct page *page)
  321. {
  322. __ClearPageBuddy(page);
  323. set_page_private(page, 0);
  324. }
  325. /*
  326. * Locate the struct page for both the matching buddy in our
  327. * pair (buddy1) and the combined O(n+1) page they form (page).
  328. *
  329. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  330. * the following equation:
  331. * B2 = B1 ^ (1 << O)
  332. * For example, if the starting buddy (buddy2) is #8 its order
  333. * 1 buddy is #10:
  334. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  335. *
  336. * 2) Any buddy B will have an order O+1 parent P which
  337. * satisfies the following equation:
  338. * P = B & ~(1 << O)
  339. *
  340. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  341. */
  342. static inline struct page *
  343. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  344. {
  345. unsigned long buddy_idx = page_idx ^ (1 << order);
  346. return page + (buddy_idx - page_idx);
  347. }
  348. static inline unsigned long
  349. __find_combined_index(unsigned long page_idx, unsigned int order)
  350. {
  351. return (page_idx & ~(1 << order));
  352. }
  353. /*
  354. * This function checks whether a page is free && is the buddy
  355. * we can do coalesce a page and its buddy if
  356. * (a) the buddy is not in a hole &&
  357. * (b) the buddy is in the buddy system &&
  358. * (c) a page and its buddy have the same order &&
  359. * (d) a page and its buddy are in the same zone.
  360. *
  361. * For recording whether a page is in the buddy system, we use PG_buddy.
  362. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  363. *
  364. * For recording page's order, we use page_private(page).
  365. */
  366. static inline int page_is_buddy(struct page *page, struct page *buddy,
  367. int order)
  368. {
  369. if (!pfn_valid_within(page_to_pfn(buddy)))
  370. return 0;
  371. if (page_zone_id(page) != page_zone_id(buddy))
  372. return 0;
  373. if (PageBuddy(buddy) && page_order(buddy) == order) {
  374. VM_BUG_ON(page_count(buddy) != 0);
  375. return 1;
  376. }
  377. return 0;
  378. }
  379. /*
  380. * Freeing function for a buddy system allocator.
  381. *
  382. * The concept of a buddy system is to maintain direct-mapped table
  383. * (containing bit values) for memory blocks of various "orders".
  384. * The bottom level table contains the map for the smallest allocatable
  385. * units of memory (here, pages), and each level above it describes
  386. * pairs of units from the levels below, hence, "buddies".
  387. * At a high level, all that happens here is marking the table entry
  388. * at the bottom level available, and propagating the changes upward
  389. * as necessary, plus some accounting needed to play nicely with other
  390. * parts of the VM system.
  391. * At each level, we keep a list of pages, which are heads of continuous
  392. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  393. * order is recorded in page_private(page) field.
  394. * So when we are allocating or freeing one, we can derive the state of the
  395. * other. That is, if we allocate a small block, and both were
  396. * free, the remainder of the region must be split into blocks.
  397. * If a block is freed, and its buddy is also free, then this
  398. * triggers coalescing into a block of larger size.
  399. *
  400. * -- wli
  401. */
  402. static inline void __free_one_page(struct page *page,
  403. struct zone *zone, unsigned int order,
  404. int migratetype)
  405. {
  406. unsigned long page_idx;
  407. if (unlikely(PageCompound(page)))
  408. if (unlikely(destroy_compound_page(page, order)))
  409. return;
  410. VM_BUG_ON(migratetype == -1);
  411. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  412. VM_BUG_ON(page_idx & ((1 << order) - 1));
  413. VM_BUG_ON(bad_range(zone, page));
  414. while (order < MAX_ORDER-1) {
  415. unsigned long combined_idx;
  416. struct page *buddy;
  417. buddy = __page_find_buddy(page, page_idx, order);
  418. if (!page_is_buddy(page, buddy, order))
  419. break;
  420. /* Our buddy is free, merge with it and move up one order. */
  421. list_del(&buddy->lru);
  422. zone->free_area[order].nr_free--;
  423. rmv_page_order(buddy);
  424. combined_idx = __find_combined_index(page_idx, order);
  425. page = page + (combined_idx - page_idx);
  426. page_idx = combined_idx;
  427. order++;
  428. }
  429. set_page_order(page, order);
  430. list_add(&page->lru,
  431. &zone->free_area[order].free_list[migratetype]);
  432. zone->free_area[order].nr_free++;
  433. }
  434. #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
  435. /*
  436. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  437. * Page should not be on lru, so no need to fix that up.
  438. * free_pages_check() will verify...
  439. */
  440. static inline void free_page_mlock(struct page *page)
  441. {
  442. __ClearPageMlocked(page);
  443. __dec_zone_page_state(page, NR_MLOCK);
  444. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  445. }
  446. #else
  447. static void free_page_mlock(struct page *page) { }
  448. #endif
  449. static inline int free_pages_check(struct page *page)
  450. {
  451. if (unlikely(page_mapcount(page) |
  452. (page->mapping != NULL) |
  453. (atomic_read(&page->_count) != 0) |
  454. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  455. bad_page(page);
  456. return 1;
  457. }
  458. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  459. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  460. return 0;
  461. }
  462. /*
  463. * Frees a list of pages.
  464. * Assumes all pages on list are in same zone, and of same order.
  465. * count is the number of pages to free.
  466. *
  467. * If the zone was previously in an "all pages pinned" state then look to
  468. * see if this freeing clears that state.
  469. *
  470. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  471. * pinned" detection logic.
  472. */
  473. static void free_pages_bulk(struct zone *zone, int count,
  474. struct list_head *list, int order)
  475. {
  476. spin_lock(&zone->lock);
  477. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  478. zone->pages_scanned = 0;
  479. __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
  480. while (count--) {
  481. struct page *page;
  482. VM_BUG_ON(list_empty(list));
  483. page = list_entry(list->prev, struct page, lru);
  484. /* have to delete it as __free_one_page list manipulates */
  485. list_del(&page->lru);
  486. __free_one_page(page, zone, order, page_private(page));
  487. }
  488. spin_unlock(&zone->lock);
  489. }
  490. static void free_one_page(struct zone *zone, struct page *page, int order,
  491. int migratetype)
  492. {
  493. spin_lock(&zone->lock);
  494. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  495. zone->pages_scanned = 0;
  496. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  497. __free_one_page(page, zone, order, migratetype);
  498. spin_unlock(&zone->lock);
  499. }
  500. static void __free_pages_ok(struct page *page, unsigned int order)
  501. {
  502. unsigned long flags;
  503. int i;
  504. int bad = 0;
  505. int clearMlocked = PageMlocked(page);
  506. for (i = 0 ; i < (1 << order) ; ++i)
  507. bad += free_pages_check(page + i);
  508. if (bad)
  509. return;
  510. if (!PageHighMem(page)) {
  511. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  512. debug_check_no_obj_freed(page_address(page),
  513. PAGE_SIZE << order);
  514. }
  515. arch_free_page(page, order);
  516. kernel_map_pages(page, 1 << order, 0);
  517. local_irq_save(flags);
  518. if (unlikely(clearMlocked))
  519. free_page_mlock(page);
  520. __count_vm_events(PGFREE, 1 << order);
  521. free_one_page(page_zone(page), page, order,
  522. get_pageblock_migratetype(page));
  523. local_irq_restore(flags);
  524. }
  525. /*
  526. * permit the bootmem allocator to evade page validation on high-order frees
  527. */
  528. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  529. {
  530. if (order == 0) {
  531. __ClearPageReserved(page);
  532. set_page_count(page, 0);
  533. set_page_refcounted(page);
  534. __free_page(page);
  535. } else {
  536. int loop;
  537. prefetchw(page);
  538. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  539. struct page *p = &page[loop];
  540. if (loop + 1 < BITS_PER_LONG)
  541. prefetchw(p + 1);
  542. __ClearPageReserved(p);
  543. set_page_count(p, 0);
  544. }
  545. set_page_refcounted(page);
  546. __free_pages(page, order);
  547. }
  548. }
  549. /*
  550. * The order of subdivision here is critical for the IO subsystem.
  551. * Please do not alter this order without good reasons and regression
  552. * testing. Specifically, as large blocks of memory are subdivided,
  553. * the order in which smaller blocks are delivered depends on the order
  554. * they're subdivided in this function. This is the primary factor
  555. * influencing the order in which pages are delivered to the IO
  556. * subsystem according to empirical testing, and this is also justified
  557. * by considering the behavior of a buddy system containing a single
  558. * large block of memory acted on by a series of small allocations.
  559. * This behavior is a critical factor in sglist merging's success.
  560. *
  561. * -- wli
  562. */
  563. static inline void expand(struct zone *zone, struct page *page,
  564. int low, int high, struct free_area *area,
  565. int migratetype)
  566. {
  567. unsigned long size = 1 << high;
  568. while (high > low) {
  569. area--;
  570. high--;
  571. size >>= 1;
  572. VM_BUG_ON(bad_range(zone, &page[size]));
  573. list_add(&page[size].lru, &area->free_list[migratetype]);
  574. area->nr_free++;
  575. set_page_order(&page[size], high);
  576. }
  577. }
  578. /*
  579. * This page is about to be returned from the page allocator
  580. */
  581. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  582. {
  583. if (unlikely(page_mapcount(page) |
  584. (page->mapping != NULL) |
  585. (atomic_read(&page->_count) != 0) |
  586. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  587. bad_page(page);
  588. return 1;
  589. }
  590. set_page_private(page, 0);
  591. set_page_refcounted(page);
  592. arch_alloc_page(page, order);
  593. kernel_map_pages(page, 1 << order, 1);
  594. if (gfp_flags & __GFP_ZERO)
  595. prep_zero_page(page, order, gfp_flags);
  596. if (order && (gfp_flags & __GFP_COMP))
  597. prep_compound_page(page, order);
  598. return 0;
  599. }
  600. /*
  601. * Go through the free lists for the given migratetype and remove
  602. * the smallest available page from the freelists
  603. */
  604. static inline
  605. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  606. int migratetype)
  607. {
  608. unsigned int current_order;
  609. struct free_area * area;
  610. struct page *page;
  611. /* Find a page of the appropriate size in the preferred list */
  612. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  613. area = &(zone->free_area[current_order]);
  614. if (list_empty(&area->free_list[migratetype]))
  615. continue;
  616. page = list_entry(area->free_list[migratetype].next,
  617. struct page, lru);
  618. list_del(&page->lru);
  619. rmv_page_order(page);
  620. area->nr_free--;
  621. expand(zone, page, order, current_order, area, migratetype);
  622. return page;
  623. }
  624. return NULL;
  625. }
  626. /*
  627. * This array describes the order lists are fallen back to when
  628. * the free lists for the desirable migrate type are depleted
  629. */
  630. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  631. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  632. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  633. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  634. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  635. };
  636. /*
  637. * Move the free pages in a range to the free lists of the requested type.
  638. * Note that start_page and end_pages are not aligned on a pageblock
  639. * boundary. If alignment is required, use move_freepages_block()
  640. */
  641. static int move_freepages(struct zone *zone,
  642. struct page *start_page, struct page *end_page,
  643. int migratetype)
  644. {
  645. struct page *page;
  646. unsigned long order;
  647. int pages_moved = 0;
  648. #ifndef CONFIG_HOLES_IN_ZONE
  649. /*
  650. * page_zone is not safe to call in this context when
  651. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  652. * anyway as we check zone boundaries in move_freepages_block().
  653. * Remove at a later date when no bug reports exist related to
  654. * grouping pages by mobility
  655. */
  656. BUG_ON(page_zone(start_page) != page_zone(end_page));
  657. #endif
  658. for (page = start_page; page <= end_page;) {
  659. /* Make sure we are not inadvertently changing nodes */
  660. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  661. if (!pfn_valid_within(page_to_pfn(page))) {
  662. page++;
  663. continue;
  664. }
  665. if (!PageBuddy(page)) {
  666. page++;
  667. continue;
  668. }
  669. order = page_order(page);
  670. list_del(&page->lru);
  671. list_add(&page->lru,
  672. &zone->free_area[order].free_list[migratetype]);
  673. page += 1 << order;
  674. pages_moved += 1 << order;
  675. }
  676. return pages_moved;
  677. }
  678. static int move_freepages_block(struct zone *zone, struct page *page,
  679. int migratetype)
  680. {
  681. unsigned long start_pfn, end_pfn;
  682. struct page *start_page, *end_page;
  683. start_pfn = page_to_pfn(page);
  684. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  685. start_page = pfn_to_page(start_pfn);
  686. end_page = start_page + pageblock_nr_pages - 1;
  687. end_pfn = start_pfn + pageblock_nr_pages - 1;
  688. /* Do not cross zone boundaries */
  689. if (start_pfn < zone->zone_start_pfn)
  690. start_page = page;
  691. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  692. return 0;
  693. return move_freepages(zone, start_page, end_page, migratetype);
  694. }
  695. /* Remove an element from the buddy allocator from the fallback list */
  696. static inline struct page *
  697. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  698. {
  699. struct free_area * area;
  700. int current_order;
  701. struct page *page;
  702. int migratetype, i;
  703. /* Find the largest possible block of pages in the other list */
  704. for (current_order = MAX_ORDER-1; current_order >= order;
  705. --current_order) {
  706. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  707. migratetype = fallbacks[start_migratetype][i];
  708. /* MIGRATE_RESERVE handled later if necessary */
  709. if (migratetype == MIGRATE_RESERVE)
  710. continue;
  711. area = &(zone->free_area[current_order]);
  712. if (list_empty(&area->free_list[migratetype]))
  713. continue;
  714. page = list_entry(area->free_list[migratetype].next,
  715. struct page, lru);
  716. area->nr_free--;
  717. /*
  718. * If breaking a large block of pages, move all free
  719. * pages to the preferred allocation list. If falling
  720. * back for a reclaimable kernel allocation, be more
  721. * agressive about taking ownership of free pages
  722. */
  723. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  724. start_migratetype == MIGRATE_RECLAIMABLE) {
  725. unsigned long pages;
  726. pages = move_freepages_block(zone, page,
  727. start_migratetype);
  728. /* Claim the whole block if over half of it is free */
  729. if (pages >= (1 << (pageblock_order-1)))
  730. set_pageblock_migratetype(page,
  731. start_migratetype);
  732. migratetype = start_migratetype;
  733. }
  734. /* Remove the page from the freelists */
  735. list_del(&page->lru);
  736. rmv_page_order(page);
  737. if (current_order == pageblock_order)
  738. set_pageblock_migratetype(page,
  739. start_migratetype);
  740. expand(zone, page, order, current_order, area, migratetype);
  741. return page;
  742. }
  743. }
  744. return NULL;
  745. }
  746. /*
  747. * Do the hard work of removing an element from the buddy allocator.
  748. * Call me with the zone->lock already held.
  749. */
  750. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  751. int migratetype)
  752. {
  753. struct page *page;
  754. retry_reserve:
  755. page = __rmqueue_smallest(zone, order, migratetype);
  756. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  757. page = __rmqueue_fallback(zone, order, migratetype);
  758. /*
  759. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  760. * is used because __rmqueue_smallest is an inline function
  761. * and we want just one call site
  762. */
  763. if (!page) {
  764. migratetype = MIGRATE_RESERVE;
  765. goto retry_reserve;
  766. }
  767. }
  768. return page;
  769. }
  770. /*
  771. * Obtain a specified number of elements from the buddy allocator, all under
  772. * a single hold of the lock, for efficiency. Add them to the supplied list.
  773. * Returns the number of new pages which were placed at *list.
  774. */
  775. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  776. unsigned long count, struct list_head *list,
  777. int migratetype)
  778. {
  779. int i;
  780. spin_lock(&zone->lock);
  781. for (i = 0; i < count; ++i) {
  782. struct page *page = __rmqueue(zone, order, migratetype);
  783. if (unlikely(page == NULL))
  784. break;
  785. /*
  786. * Split buddy pages returned by expand() are received here
  787. * in physical page order. The page is added to the callers and
  788. * list and the list head then moves forward. From the callers
  789. * perspective, the linked list is ordered by page number in
  790. * some conditions. This is useful for IO devices that can
  791. * merge IO requests if the physical pages are ordered
  792. * properly.
  793. */
  794. list_add(&page->lru, list);
  795. set_page_private(page, migratetype);
  796. list = &page->lru;
  797. }
  798. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  799. spin_unlock(&zone->lock);
  800. return i;
  801. }
  802. #ifdef CONFIG_NUMA
  803. /*
  804. * Called from the vmstat counter updater to drain pagesets of this
  805. * currently executing processor on remote nodes after they have
  806. * expired.
  807. *
  808. * Note that this function must be called with the thread pinned to
  809. * a single processor.
  810. */
  811. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  812. {
  813. unsigned long flags;
  814. int to_drain;
  815. local_irq_save(flags);
  816. if (pcp->count >= pcp->batch)
  817. to_drain = pcp->batch;
  818. else
  819. to_drain = pcp->count;
  820. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  821. pcp->count -= to_drain;
  822. local_irq_restore(flags);
  823. }
  824. #endif
  825. /*
  826. * Drain pages of the indicated processor.
  827. *
  828. * The processor must either be the current processor and the
  829. * thread pinned to the current processor or a processor that
  830. * is not online.
  831. */
  832. static void drain_pages(unsigned int cpu)
  833. {
  834. unsigned long flags;
  835. struct zone *zone;
  836. for_each_populated_zone(zone) {
  837. struct per_cpu_pageset *pset;
  838. struct per_cpu_pages *pcp;
  839. pset = zone_pcp(zone, cpu);
  840. pcp = &pset->pcp;
  841. local_irq_save(flags);
  842. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  843. pcp->count = 0;
  844. local_irq_restore(flags);
  845. }
  846. }
  847. /*
  848. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  849. */
  850. void drain_local_pages(void *arg)
  851. {
  852. drain_pages(smp_processor_id());
  853. }
  854. /*
  855. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  856. */
  857. void drain_all_pages(void)
  858. {
  859. on_each_cpu(drain_local_pages, NULL, 1);
  860. }
  861. #ifdef CONFIG_HIBERNATION
  862. void mark_free_pages(struct zone *zone)
  863. {
  864. unsigned long pfn, max_zone_pfn;
  865. unsigned long flags;
  866. int order, t;
  867. struct list_head *curr;
  868. if (!zone->spanned_pages)
  869. return;
  870. spin_lock_irqsave(&zone->lock, flags);
  871. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  872. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  873. if (pfn_valid(pfn)) {
  874. struct page *page = pfn_to_page(pfn);
  875. if (!swsusp_page_is_forbidden(page))
  876. swsusp_unset_page_free(page);
  877. }
  878. for_each_migratetype_order(order, t) {
  879. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  880. unsigned long i;
  881. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  882. for (i = 0; i < (1UL << order); i++)
  883. swsusp_set_page_free(pfn_to_page(pfn + i));
  884. }
  885. }
  886. spin_unlock_irqrestore(&zone->lock, flags);
  887. }
  888. #endif /* CONFIG_PM */
  889. /*
  890. * Free a 0-order page
  891. */
  892. static void free_hot_cold_page(struct page *page, int cold)
  893. {
  894. struct zone *zone = page_zone(page);
  895. struct per_cpu_pages *pcp;
  896. unsigned long flags;
  897. int clearMlocked = PageMlocked(page);
  898. if (PageAnon(page))
  899. page->mapping = NULL;
  900. if (free_pages_check(page))
  901. return;
  902. if (!PageHighMem(page)) {
  903. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  904. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  905. }
  906. arch_free_page(page, 0);
  907. kernel_map_pages(page, 1, 0);
  908. pcp = &zone_pcp(zone, get_cpu())->pcp;
  909. set_page_private(page, get_pageblock_migratetype(page));
  910. local_irq_save(flags);
  911. if (unlikely(clearMlocked))
  912. free_page_mlock(page);
  913. __count_vm_event(PGFREE);
  914. if (cold)
  915. list_add_tail(&page->lru, &pcp->list);
  916. else
  917. list_add(&page->lru, &pcp->list);
  918. pcp->count++;
  919. if (pcp->count >= pcp->high) {
  920. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  921. pcp->count -= pcp->batch;
  922. }
  923. local_irq_restore(flags);
  924. put_cpu();
  925. }
  926. void free_hot_page(struct page *page)
  927. {
  928. free_hot_cold_page(page, 0);
  929. }
  930. void free_cold_page(struct page *page)
  931. {
  932. free_hot_cold_page(page, 1);
  933. }
  934. /*
  935. * split_page takes a non-compound higher-order page, and splits it into
  936. * n (1<<order) sub-pages: page[0..n]
  937. * Each sub-page must be freed individually.
  938. *
  939. * Note: this is probably too low level an operation for use in drivers.
  940. * Please consult with lkml before using this in your driver.
  941. */
  942. void split_page(struct page *page, unsigned int order)
  943. {
  944. int i;
  945. VM_BUG_ON(PageCompound(page));
  946. VM_BUG_ON(!page_count(page));
  947. for (i = 1; i < (1 << order); i++)
  948. set_page_refcounted(page + i);
  949. }
  950. /*
  951. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  952. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  953. * or two.
  954. */
  955. static inline
  956. struct page *buffered_rmqueue(struct zone *preferred_zone,
  957. struct zone *zone, int order, gfp_t gfp_flags,
  958. int migratetype)
  959. {
  960. unsigned long flags;
  961. struct page *page;
  962. int cold = !!(gfp_flags & __GFP_COLD);
  963. int cpu;
  964. again:
  965. cpu = get_cpu();
  966. if (likely(order == 0)) {
  967. struct per_cpu_pages *pcp;
  968. pcp = &zone_pcp(zone, cpu)->pcp;
  969. local_irq_save(flags);
  970. if (!pcp->count) {
  971. pcp->count = rmqueue_bulk(zone, 0,
  972. pcp->batch, &pcp->list, migratetype);
  973. if (unlikely(!pcp->count))
  974. goto failed;
  975. }
  976. /* Find a page of the appropriate migrate type */
  977. if (cold) {
  978. list_for_each_entry_reverse(page, &pcp->list, lru)
  979. if (page_private(page) == migratetype)
  980. break;
  981. } else {
  982. list_for_each_entry(page, &pcp->list, lru)
  983. if (page_private(page) == migratetype)
  984. break;
  985. }
  986. /* Allocate more to the pcp list if necessary */
  987. if (unlikely(&page->lru == &pcp->list)) {
  988. pcp->count += rmqueue_bulk(zone, 0,
  989. pcp->batch, &pcp->list, migratetype);
  990. page = list_entry(pcp->list.next, struct page, lru);
  991. }
  992. list_del(&page->lru);
  993. pcp->count--;
  994. } else {
  995. spin_lock_irqsave(&zone->lock, flags);
  996. page = __rmqueue(zone, order, migratetype);
  997. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  998. spin_unlock(&zone->lock);
  999. if (!page)
  1000. goto failed;
  1001. }
  1002. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1003. zone_statistics(preferred_zone, zone);
  1004. local_irq_restore(flags);
  1005. put_cpu();
  1006. VM_BUG_ON(bad_range(zone, page));
  1007. if (prep_new_page(page, order, gfp_flags))
  1008. goto again;
  1009. return page;
  1010. failed:
  1011. local_irq_restore(flags);
  1012. put_cpu();
  1013. return NULL;
  1014. }
  1015. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1016. #define ALLOC_WMARK_MIN WMARK_MIN
  1017. #define ALLOC_WMARK_LOW WMARK_LOW
  1018. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1019. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1020. /* Mask to get the watermark bits */
  1021. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1022. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1023. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1024. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1025. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1026. static struct fail_page_alloc_attr {
  1027. struct fault_attr attr;
  1028. u32 ignore_gfp_highmem;
  1029. u32 ignore_gfp_wait;
  1030. u32 min_order;
  1031. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1032. struct dentry *ignore_gfp_highmem_file;
  1033. struct dentry *ignore_gfp_wait_file;
  1034. struct dentry *min_order_file;
  1035. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1036. } fail_page_alloc = {
  1037. .attr = FAULT_ATTR_INITIALIZER,
  1038. .ignore_gfp_wait = 1,
  1039. .ignore_gfp_highmem = 1,
  1040. .min_order = 1,
  1041. };
  1042. static int __init setup_fail_page_alloc(char *str)
  1043. {
  1044. return setup_fault_attr(&fail_page_alloc.attr, str);
  1045. }
  1046. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1047. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1048. {
  1049. if (order < fail_page_alloc.min_order)
  1050. return 0;
  1051. if (gfp_mask & __GFP_NOFAIL)
  1052. return 0;
  1053. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1054. return 0;
  1055. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1056. return 0;
  1057. return should_fail(&fail_page_alloc.attr, 1 << order);
  1058. }
  1059. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1060. static int __init fail_page_alloc_debugfs(void)
  1061. {
  1062. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1063. struct dentry *dir;
  1064. int err;
  1065. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1066. "fail_page_alloc");
  1067. if (err)
  1068. return err;
  1069. dir = fail_page_alloc.attr.dentries.dir;
  1070. fail_page_alloc.ignore_gfp_wait_file =
  1071. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1072. &fail_page_alloc.ignore_gfp_wait);
  1073. fail_page_alloc.ignore_gfp_highmem_file =
  1074. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1075. &fail_page_alloc.ignore_gfp_highmem);
  1076. fail_page_alloc.min_order_file =
  1077. debugfs_create_u32("min-order", mode, dir,
  1078. &fail_page_alloc.min_order);
  1079. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1080. !fail_page_alloc.ignore_gfp_highmem_file ||
  1081. !fail_page_alloc.min_order_file) {
  1082. err = -ENOMEM;
  1083. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1084. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1085. debugfs_remove(fail_page_alloc.min_order_file);
  1086. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1087. }
  1088. return err;
  1089. }
  1090. late_initcall(fail_page_alloc_debugfs);
  1091. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1092. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1093. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1094. {
  1095. return 0;
  1096. }
  1097. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1098. /*
  1099. * Return 1 if free pages are above 'mark'. This takes into account the order
  1100. * of the allocation.
  1101. */
  1102. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1103. int classzone_idx, int alloc_flags)
  1104. {
  1105. /* free_pages my go negative - that's OK */
  1106. long min = mark;
  1107. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1108. int o;
  1109. if (alloc_flags & ALLOC_HIGH)
  1110. min -= min / 2;
  1111. if (alloc_flags & ALLOC_HARDER)
  1112. min -= min / 4;
  1113. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1114. return 0;
  1115. for (o = 0; o < order; o++) {
  1116. /* At the next order, this order's pages become unavailable */
  1117. free_pages -= z->free_area[o].nr_free << o;
  1118. /* Require fewer higher order pages to be free */
  1119. min >>= 1;
  1120. if (free_pages <= min)
  1121. return 0;
  1122. }
  1123. return 1;
  1124. }
  1125. #ifdef CONFIG_NUMA
  1126. /*
  1127. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1128. * skip over zones that are not allowed by the cpuset, or that have
  1129. * been recently (in last second) found to be nearly full. See further
  1130. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1131. * that have to skip over a lot of full or unallowed zones.
  1132. *
  1133. * If the zonelist cache is present in the passed in zonelist, then
  1134. * returns a pointer to the allowed node mask (either the current
  1135. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1136. *
  1137. * If the zonelist cache is not available for this zonelist, does
  1138. * nothing and returns NULL.
  1139. *
  1140. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1141. * a second since last zap'd) then we zap it out (clear its bits.)
  1142. *
  1143. * We hold off even calling zlc_setup, until after we've checked the
  1144. * first zone in the zonelist, on the theory that most allocations will
  1145. * be satisfied from that first zone, so best to examine that zone as
  1146. * quickly as we can.
  1147. */
  1148. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1149. {
  1150. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1151. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1152. zlc = zonelist->zlcache_ptr;
  1153. if (!zlc)
  1154. return NULL;
  1155. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1156. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1157. zlc->last_full_zap = jiffies;
  1158. }
  1159. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1160. &cpuset_current_mems_allowed :
  1161. &node_states[N_HIGH_MEMORY];
  1162. return allowednodes;
  1163. }
  1164. /*
  1165. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1166. * if it is worth looking at further for free memory:
  1167. * 1) Check that the zone isn't thought to be full (doesn't have its
  1168. * bit set in the zonelist_cache fullzones BITMAP).
  1169. * 2) Check that the zones node (obtained from the zonelist_cache
  1170. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1171. * Return true (non-zero) if zone is worth looking at further, or
  1172. * else return false (zero) if it is not.
  1173. *
  1174. * This check -ignores- the distinction between various watermarks,
  1175. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1176. * found to be full for any variation of these watermarks, it will
  1177. * be considered full for up to one second by all requests, unless
  1178. * we are so low on memory on all allowed nodes that we are forced
  1179. * into the second scan of the zonelist.
  1180. *
  1181. * In the second scan we ignore this zonelist cache and exactly
  1182. * apply the watermarks to all zones, even it is slower to do so.
  1183. * We are low on memory in the second scan, and should leave no stone
  1184. * unturned looking for a free page.
  1185. */
  1186. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1187. nodemask_t *allowednodes)
  1188. {
  1189. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1190. int i; /* index of *z in zonelist zones */
  1191. int n; /* node that zone *z is on */
  1192. zlc = zonelist->zlcache_ptr;
  1193. if (!zlc)
  1194. return 1;
  1195. i = z - zonelist->_zonerefs;
  1196. n = zlc->z_to_n[i];
  1197. /* This zone is worth trying if it is allowed but not full */
  1198. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1199. }
  1200. /*
  1201. * Given 'z' scanning a zonelist, set the corresponding bit in
  1202. * zlc->fullzones, so that subsequent attempts to allocate a page
  1203. * from that zone don't waste time re-examining it.
  1204. */
  1205. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1206. {
  1207. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1208. int i; /* index of *z in zonelist zones */
  1209. zlc = zonelist->zlcache_ptr;
  1210. if (!zlc)
  1211. return;
  1212. i = z - zonelist->_zonerefs;
  1213. set_bit(i, zlc->fullzones);
  1214. }
  1215. #else /* CONFIG_NUMA */
  1216. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1217. {
  1218. return NULL;
  1219. }
  1220. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1221. nodemask_t *allowednodes)
  1222. {
  1223. return 1;
  1224. }
  1225. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1226. {
  1227. }
  1228. #endif /* CONFIG_NUMA */
  1229. /*
  1230. * get_page_from_freelist goes through the zonelist trying to allocate
  1231. * a page.
  1232. */
  1233. static struct page *
  1234. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1235. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1236. struct zone *preferred_zone, int migratetype)
  1237. {
  1238. struct zoneref *z;
  1239. struct page *page = NULL;
  1240. int classzone_idx;
  1241. struct zone *zone;
  1242. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1243. int zlc_active = 0; /* set if using zonelist_cache */
  1244. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1245. classzone_idx = zone_idx(preferred_zone);
  1246. zonelist_scan:
  1247. /*
  1248. * Scan zonelist, looking for a zone with enough free.
  1249. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1250. */
  1251. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1252. high_zoneidx, nodemask) {
  1253. if (NUMA_BUILD && zlc_active &&
  1254. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1255. continue;
  1256. if ((alloc_flags & ALLOC_CPUSET) &&
  1257. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1258. goto try_next_zone;
  1259. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1260. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1261. unsigned long mark;
  1262. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1263. if (!zone_watermark_ok(zone, order, mark,
  1264. classzone_idx, alloc_flags)) {
  1265. if (!zone_reclaim_mode ||
  1266. !zone_reclaim(zone, gfp_mask, order))
  1267. goto this_zone_full;
  1268. }
  1269. }
  1270. page = buffered_rmqueue(preferred_zone, zone, order,
  1271. gfp_mask, migratetype);
  1272. if (page)
  1273. break;
  1274. this_zone_full:
  1275. if (NUMA_BUILD)
  1276. zlc_mark_zone_full(zonelist, z);
  1277. try_next_zone:
  1278. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1279. /*
  1280. * we do zlc_setup after the first zone is tried but only
  1281. * if there are multiple nodes make it worthwhile
  1282. */
  1283. allowednodes = zlc_setup(zonelist, alloc_flags);
  1284. zlc_active = 1;
  1285. did_zlc_setup = 1;
  1286. }
  1287. }
  1288. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1289. /* Disable zlc cache for second zonelist scan */
  1290. zlc_active = 0;
  1291. goto zonelist_scan;
  1292. }
  1293. return page;
  1294. }
  1295. static inline int
  1296. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1297. unsigned long pages_reclaimed)
  1298. {
  1299. /* Do not loop if specifically requested */
  1300. if (gfp_mask & __GFP_NORETRY)
  1301. return 0;
  1302. /*
  1303. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1304. * means __GFP_NOFAIL, but that may not be true in other
  1305. * implementations.
  1306. */
  1307. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1308. return 1;
  1309. /*
  1310. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1311. * specified, then we retry until we no longer reclaim any pages
  1312. * (above), or we've reclaimed an order of pages at least as
  1313. * large as the allocation's order. In both cases, if the
  1314. * allocation still fails, we stop retrying.
  1315. */
  1316. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1317. return 1;
  1318. /*
  1319. * Don't let big-order allocations loop unless the caller
  1320. * explicitly requests that.
  1321. */
  1322. if (gfp_mask & __GFP_NOFAIL)
  1323. return 1;
  1324. return 0;
  1325. }
  1326. static inline struct page *
  1327. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1328. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1329. nodemask_t *nodemask, struct zone *preferred_zone,
  1330. int migratetype)
  1331. {
  1332. struct page *page;
  1333. /* Acquire the OOM killer lock for the zones in zonelist */
  1334. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1335. schedule_timeout_uninterruptible(1);
  1336. return NULL;
  1337. }
  1338. /*
  1339. * Go through the zonelist yet one more time, keep very high watermark
  1340. * here, this is only to catch a parallel oom killing, we must fail if
  1341. * we're still under heavy pressure.
  1342. */
  1343. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1344. order, zonelist, high_zoneidx,
  1345. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1346. preferred_zone, migratetype);
  1347. if (page)
  1348. goto out;
  1349. /* The OOM killer will not help higher order allocs */
  1350. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1351. goto out;
  1352. /* Exhausted what can be done so it's blamo time */
  1353. out_of_memory(zonelist, gfp_mask, order);
  1354. out:
  1355. clear_zonelist_oom(zonelist, gfp_mask);
  1356. return page;
  1357. }
  1358. /* The really slow allocator path where we enter direct reclaim */
  1359. static inline struct page *
  1360. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1361. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1362. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1363. int migratetype, unsigned long *did_some_progress)
  1364. {
  1365. struct page *page = NULL;
  1366. struct reclaim_state reclaim_state;
  1367. struct task_struct *p = current;
  1368. cond_resched();
  1369. /* We now go into synchronous reclaim */
  1370. cpuset_memory_pressure_bump();
  1371. /*
  1372. * The task's cpuset might have expanded its set of allowable nodes
  1373. */
  1374. p->flags |= PF_MEMALLOC;
  1375. lockdep_set_current_reclaim_state(gfp_mask);
  1376. reclaim_state.reclaimed_slab = 0;
  1377. p->reclaim_state = &reclaim_state;
  1378. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1379. p->reclaim_state = NULL;
  1380. lockdep_clear_current_reclaim_state();
  1381. p->flags &= ~PF_MEMALLOC;
  1382. cond_resched();
  1383. if (order != 0)
  1384. drain_all_pages();
  1385. if (likely(*did_some_progress))
  1386. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1387. zonelist, high_zoneidx,
  1388. alloc_flags, preferred_zone,
  1389. migratetype);
  1390. return page;
  1391. }
  1392. /*
  1393. * This is called in the allocator slow-path if the allocation request is of
  1394. * sufficient urgency to ignore watermarks and take other desperate measures
  1395. */
  1396. static inline struct page *
  1397. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1398. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1399. nodemask_t *nodemask, struct zone *preferred_zone,
  1400. int migratetype)
  1401. {
  1402. struct page *page;
  1403. do {
  1404. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1405. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1406. preferred_zone, migratetype);
  1407. if (!page && gfp_mask & __GFP_NOFAIL)
  1408. congestion_wait(WRITE, HZ/50);
  1409. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1410. return page;
  1411. }
  1412. static inline
  1413. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1414. enum zone_type high_zoneidx)
  1415. {
  1416. struct zoneref *z;
  1417. struct zone *zone;
  1418. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1419. wakeup_kswapd(zone, order);
  1420. }
  1421. static inline int
  1422. gfp_to_alloc_flags(gfp_t gfp_mask)
  1423. {
  1424. struct task_struct *p = current;
  1425. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1426. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1427. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1428. BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
  1429. /*
  1430. * The caller may dip into page reserves a bit more if the caller
  1431. * cannot run direct reclaim, or if the caller has realtime scheduling
  1432. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1433. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1434. */
  1435. alloc_flags |= (gfp_mask & __GFP_HIGH);
  1436. if (!wait) {
  1437. alloc_flags |= ALLOC_HARDER;
  1438. /*
  1439. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1440. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1441. */
  1442. alloc_flags &= ~ALLOC_CPUSET;
  1443. } else if (unlikely(rt_task(p)))
  1444. alloc_flags |= ALLOC_HARDER;
  1445. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1446. if (!in_interrupt() &&
  1447. ((p->flags & PF_MEMALLOC) ||
  1448. unlikely(test_thread_flag(TIF_MEMDIE))))
  1449. alloc_flags |= ALLOC_NO_WATERMARKS;
  1450. }
  1451. return alloc_flags;
  1452. }
  1453. static inline struct page *
  1454. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1455. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1456. nodemask_t *nodemask, struct zone *preferred_zone,
  1457. int migratetype)
  1458. {
  1459. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1460. struct page *page = NULL;
  1461. int alloc_flags;
  1462. unsigned long pages_reclaimed = 0;
  1463. unsigned long did_some_progress;
  1464. struct task_struct *p = current;
  1465. /*
  1466. * In the slowpath, we sanity check order to avoid ever trying to
  1467. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1468. * be using allocators in order of preference for an area that is
  1469. * too large.
  1470. */
  1471. if (WARN_ON_ONCE(order >= MAX_ORDER))
  1472. return NULL;
  1473. /*
  1474. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1475. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1476. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1477. * using a larger set of nodes after it has established that the
  1478. * allowed per node queues are empty and that nodes are
  1479. * over allocated.
  1480. */
  1481. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1482. goto nopage;
  1483. wake_all_kswapd(order, zonelist, high_zoneidx);
  1484. /*
  1485. * OK, we're below the kswapd watermark and have kicked background
  1486. * reclaim. Now things get more complex, so set up alloc_flags according
  1487. * to how we want to proceed.
  1488. */
  1489. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1490. restart:
  1491. /* This is the last chance, in general, before the goto nopage. */
  1492. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1493. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1494. preferred_zone, migratetype);
  1495. if (page)
  1496. goto got_pg;
  1497. rebalance:
  1498. /* Allocate without watermarks if the context allows */
  1499. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1500. page = __alloc_pages_high_priority(gfp_mask, order,
  1501. zonelist, high_zoneidx, nodemask,
  1502. preferred_zone, migratetype);
  1503. if (page)
  1504. goto got_pg;
  1505. }
  1506. /* Atomic allocations - we can't balance anything */
  1507. if (!wait)
  1508. goto nopage;
  1509. /* Avoid recursion of direct reclaim */
  1510. if (p->flags & PF_MEMALLOC)
  1511. goto nopage;
  1512. /* Try direct reclaim and then allocating */
  1513. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1514. zonelist, high_zoneidx,
  1515. nodemask,
  1516. alloc_flags, preferred_zone,
  1517. migratetype, &did_some_progress);
  1518. if (page)
  1519. goto got_pg;
  1520. /*
  1521. * If we failed to make any progress reclaiming, then we are
  1522. * running out of options and have to consider going OOM
  1523. */
  1524. if (!did_some_progress) {
  1525. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1526. page = __alloc_pages_may_oom(gfp_mask, order,
  1527. zonelist, high_zoneidx,
  1528. nodemask, preferred_zone,
  1529. migratetype);
  1530. if (page)
  1531. goto got_pg;
  1532. /*
  1533. * The OOM killer does not trigger for high-order allocations
  1534. * but if no progress is being made, there are no other
  1535. * options and retrying is unlikely to help
  1536. */
  1537. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1538. goto nopage;
  1539. goto restart;
  1540. }
  1541. }
  1542. /* Check if we should retry the allocation */
  1543. pages_reclaimed += did_some_progress;
  1544. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1545. /* Wait for some write requests to complete then retry */
  1546. congestion_wait(WRITE, HZ/50);
  1547. goto rebalance;
  1548. }
  1549. nopage:
  1550. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1551. printk(KERN_WARNING "%s: page allocation failure."
  1552. " order:%d, mode:0x%x\n",
  1553. p->comm, order, gfp_mask);
  1554. dump_stack();
  1555. show_mem();
  1556. }
  1557. got_pg:
  1558. return page;
  1559. }
  1560. /*
  1561. * This is the 'heart' of the zoned buddy allocator.
  1562. */
  1563. struct page *
  1564. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1565. struct zonelist *zonelist, nodemask_t *nodemask)
  1566. {
  1567. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1568. struct zone *preferred_zone;
  1569. struct page *page;
  1570. int migratetype = allocflags_to_migratetype(gfp_mask);
  1571. lockdep_trace_alloc(gfp_mask);
  1572. might_sleep_if(gfp_mask & __GFP_WAIT);
  1573. if (should_fail_alloc_page(gfp_mask, order))
  1574. return NULL;
  1575. /*
  1576. * Check the zones suitable for the gfp_mask contain at least one
  1577. * valid zone. It's possible to have an empty zonelist as a result
  1578. * of GFP_THISNODE and a memoryless node
  1579. */
  1580. if (unlikely(!zonelist->_zonerefs->zone))
  1581. return NULL;
  1582. /* The preferred zone is used for statistics later */
  1583. first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
  1584. if (!preferred_zone)
  1585. return NULL;
  1586. /* First allocation attempt */
  1587. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1588. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1589. preferred_zone, migratetype);
  1590. if (unlikely(!page))
  1591. page = __alloc_pages_slowpath(gfp_mask, order,
  1592. zonelist, high_zoneidx, nodemask,
  1593. preferred_zone, migratetype);
  1594. return page;
  1595. }
  1596. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1597. /*
  1598. * Common helper functions.
  1599. */
  1600. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1601. {
  1602. struct page * page;
  1603. page = alloc_pages(gfp_mask, order);
  1604. if (!page)
  1605. return 0;
  1606. return (unsigned long) page_address(page);
  1607. }
  1608. EXPORT_SYMBOL(__get_free_pages);
  1609. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1610. {
  1611. struct page * page;
  1612. /*
  1613. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1614. * a highmem page
  1615. */
  1616. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1617. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1618. if (page)
  1619. return (unsigned long) page_address(page);
  1620. return 0;
  1621. }
  1622. EXPORT_SYMBOL(get_zeroed_page);
  1623. void __pagevec_free(struct pagevec *pvec)
  1624. {
  1625. int i = pagevec_count(pvec);
  1626. while (--i >= 0)
  1627. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1628. }
  1629. void __free_pages(struct page *page, unsigned int order)
  1630. {
  1631. if (put_page_testzero(page)) {
  1632. if (order == 0)
  1633. free_hot_page(page);
  1634. else
  1635. __free_pages_ok(page, order);
  1636. }
  1637. }
  1638. EXPORT_SYMBOL(__free_pages);
  1639. void free_pages(unsigned long addr, unsigned int order)
  1640. {
  1641. if (addr != 0) {
  1642. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1643. __free_pages(virt_to_page((void *)addr), order);
  1644. }
  1645. }
  1646. EXPORT_SYMBOL(free_pages);
  1647. /**
  1648. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1649. * @size: the number of bytes to allocate
  1650. * @gfp_mask: GFP flags for the allocation
  1651. *
  1652. * This function is similar to alloc_pages(), except that it allocates the
  1653. * minimum number of pages to satisfy the request. alloc_pages() can only
  1654. * allocate memory in power-of-two pages.
  1655. *
  1656. * This function is also limited by MAX_ORDER.
  1657. *
  1658. * Memory allocated by this function must be released by free_pages_exact().
  1659. */
  1660. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1661. {
  1662. unsigned int order = get_order(size);
  1663. unsigned long addr;
  1664. addr = __get_free_pages(gfp_mask, order);
  1665. if (addr) {
  1666. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1667. unsigned long used = addr + PAGE_ALIGN(size);
  1668. split_page(virt_to_page(addr), order);
  1669. while (used < alloc_end) {
  1670. free_page(used);
  1671. used += PAGE_SIZE;
  1672. }
  1673. }
  1674. return (void *)addr;
  1675. }
  1676. EXPORT_SYMBOL(alloc_pages_exact);
  1677. /**
  1678. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1679. * @virt: the value returned by alloc_pages_exact.
  1680. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1681. *
  1682. * Release the memory allocated by a previous call to alloc_pages_exact.
  1683. */
  1684. void free_pages_exact(void *virt, size_t size)
  1685. {
  1686. unsigned long addr = (unsigned long)virt;
  1687. unsigned long end = addr + PAGE_ALIGN(size);
  1688. while (addr < end) {
  1689. free_page(addr);
  1690. addr += PAGE_SIZE;
  1691. }
  1692. }
  1693. EXPORT_SYMBOL(free_pages_exact);
  1694. static unsigned int nr_free_zone_pages(int offset)
  1695. {
  1696. struct zoneref *z;
  1697. struct zone *zone;
  1698. /* Just pick one node, since fallback list is circular */
  1699. unsigned int sum = 0;
  1700. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1701. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1702. unsigned long size = zone->present_pages;
  1703. unsigned long high = high_wmark_pages(zone);
  1704. if (size > high)
  1705. sum += size - high;
  1706. }
  1707. return sum;
  1708. }
  1709. /*
  1710. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1711. */
  1712. unsigned int nr_free_buffer_pages(void)
  1713. {
  1714. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1715. }
  1716. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1717. /*
  1718. * Amount of free RAM allocatable within all zones
  1719. */
  1720. unsigned int nr_free_pagecache_pages(void)
  1721. {
  1722. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1723. }
  1724. static inline void show_node(struct zone *zone)
  1725. {
  1726. if (NUMA_BUILD)
  1727. printk("Node %d ", zone_to_nid(zone));
  1728. }
  1729. void si_meminfo(struct sysinfo *val)
  1730. {
  1731. val->totalram = totalram_pages;
  1732. val->sharedram = 0;
  1733. val->freeram = global_page_state(NR_FREE_PAGES);
  1734. val->bufferram = nr_blockdev_pages();
  1735. val->totalhigh = totalhigh_pages;
  1736. val->freehigh = nr_free_highpages();
  1737. val->mem_unit = PAGE_SIZE;
  1738. }
  1739. EXPORT_SYMBOL(si_meminfo);
  1740. #ifdef CONFIG_NUMA
  1741. void si_meminfo_node(struct sysinfo *val, int nid)
  1742. {
  1743. pg_data_t *pgdat = NODE_DATA(nid);
  1744. val->totalram = pgdat->node_present_pages;
  1745. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1746. #ifdef CONFIG_HIGHMEM
  1747. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1748. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1749. NR_FREE_PAGES);
  1750. #else
  1751. val->totalhigh = 0;
  1752. val->freehigh = 0;
  1753. #endif
  1754. val->mem_unit = PAGE_SIZE;
  1755. }
  1756. #endif
  1757. #define K(x) ((x) << (PAGE_SHIFT-10))
  1758. /*
  1759. * Show free area list (used inside shift_scroll-lock stuff)
  1760. * We also calculate the percentage fragmentation. We do this by counting the
  1761. * memory on each free list with the exception of the first item on the list.
  1762. */
  1763. void show_free_areas(void)
  1764. {
  1765. int cpu;
  1766. struct zone *zone;
  1767. for_each_populated_zone(zone) {
  1768. show_node(zone);
  1769. printk("%s per-cpu:\n", zone->name);
  1770. for_each_online_cpu(cpu) {
  1771. struct per_cpu_pageset *pageset;
  1772. pageset = zone_pcp(zone, cpu);
  1773. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1774. cpu, pageset->pcp.high,
  1775. pageset->pcp.batch, pageset->pcp.count);
  1776. }
  1777. }
  1778. printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
  1779. " inactive_file:%lu"
  1780. //TODO: check/adjust line lengths
  1781. #ifdef CONFIG_UNEVICTABLE_LRU
  1782. " unevictable:%lu"
  1783. #endif
  1784. " dirty:%lu writeback:%lu unstable:%lu\n"
  1785. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1786. global_page_state(NR_ACTIVE_ANON),
  1787. global_page_state(NR_ACTIVE_FILE),
  1788. global_page_state(NR_INACTIVE_ANON),
  1789. global_page_state(NR_INACTIVE_FILE),
  1790. #ifdef CONFIG_UNEVICTABLE_LRU
  1791. global_page_state(NR_UNEVICTABLE),
  1792. #endif
  1793. global_page_state(NR_FILE_DIRTY),
  1794. global_page_state(NR_WRITEBACK),
  1795. global_page_state(NR_UNSTABLE_NFS),
  1796. global_page_state(NR_FREE_PAGES),
  1797. global_page_state(NR_SLAB_RECLAIMABLE) +
  1798. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1799. global_page_state(NR_FILE_MAPPED),
  1800. global_page_state(NR_PAGETABLE),
  1801. global_page_state(NR_BOUNCE));
  1802. for_each_populated_zone(zone) {
  1803. int i;
  1804. show_node(zone);
  1805. printk("%s"
  1806. " free:%lukB"
  1807. " min:%lukB"
  1808. " low:%lukB"
  1809. " high:%lukB"
  1810. " active_anon:%lukB"
  1811. " inactive_anon:%lukB"
  1812. " active_file:%lukB"
  1813. " inactive_file:%lukB"
  1814. #ifdef CONFIG_UNEVICTABLE_LRU
  1815. " unevictable:%lukB"
  1816. #endif
  1817. " present:%lukB"
  1818. " pages_scanned:%lu"
  1819. " all_unreclaimable? %s"
  1820. "\n",
  1821. zone->name,
  1822. K(zone_page_state(zone, NR_FREE_PAGES)),
  1823. K(min_wmark_pages(zone)),
  1824. K(low_wmark_pages(zone)),
  1825. K(high_wmark_pages(zone)),
  1826. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1827. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1828. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1829. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1830. #ifdef CONFIG_UNEVICTABLE_LRU
  1831. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1832. #endif
  1833. K(zone->present_pages),
  1834. zone->pages_scanned,
  1835. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1836. );
  1837. printk("lowmem_reserve[]:");
  1838. for (i = 0; i < MAX_NR_ZONES; i++)
  1839. printk(" %lu", zone->lowmem_reserve[i]);
  1840. printk("\n");
  1841. }
  1842. for_each_populated_zone(zone) {
  1843. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1844. show_node(zone);
  1845. printk("%s: ", zone->name);
  1846. spin_lock_irqsave(&zone->lock, flags);
  1847. for (order = 0; order < MAX_ORDER; order++) {
  1848. nr[order] = zone->free_area[order].nr_free;
  1849. total += nr[order] << order;
  1850. }
  1851. spin_unlock_irqrestore(&zone->lock, flags);
  1852. for (order = 0; order < MAX_ORDER; order++)
  1853. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1854. printk("= %lukB\n", K(total));
  1855. }
  1856. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1857. show_swap_cache_info();
  1858. }
  1859. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1860. {
  1861. zoneref->zone = zone;
  1862. zoneref->zone_idx = zone_idx(zone);
  1863. }
  1864. /*
  1865. * Builds allocation fallback zone lists.
  1866. *
  1867. * Add all populated zones of a node to the zonelist.
  1868. */
  1869. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1870. int nr_zones, enum zone_type zone_type)
  1871. {
  1872. struct zone *zone;
  1873. BUG_ON(zone_type >= MAX_NR_ZONES);
  1874. zone_type++;
  1875. do {
  1876. zone_type--;
  1877. zone = pgdat->node_zones + zone_type;
  1878. if (populated_zone(zone)) {
  1879. zoneref_set_zone(zone,
  1880. &zonelist->_zonerefs[nr_zones++]);
  1881. check_highest_zone(zone_type);
  1882. }
  1883. } while (zone_type);
  1884. return nr_zones;
  1885. }
  1886. /*
  1887. * zonelist_order:
  1888. * 0 = automatic detection of better ordering.
  1889. * 1 = order by ([node] distance, -zonetype)
  1890. * 2 = order by (-zonetype, [node] distance)
  1891. *
  1892. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1893. * the same zonelist. So only NUMA can configure this param.
  1894. */
  1895. #define ZONELIST_ORDER_DEFAULT 0
  1896. #define ZONELIST_ORDER_NODE 1
  1897. #define ZONELIST_ORDER_ZONE 2
  1898. /* zonelist order in the kernel.
  1899. * set_zonelist_order() will set this to NODE or ZONE.
  1900. */
  1901. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1902. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1903. #ifdef CONFIG_NUMA
  1904. /* The value user specified ....changed by config */
  1905. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1906. /* string for sysctl */
  1907. #define NUMA_ZONELIST_ORDER_LEN 16
  1908. char numa_zonelist_order[16] = "default";
  1909. /*
  1910. * interface for configure zonelist ordering.
  1911. * command line option "numa_zonelist_order"
  1912. * = "[dD]efault - default, automatic configuration.
  1913. * = "[nN]ode - order by node locality, then by zone within node
  1914. * = "[zZ]one - order by zone, then by locality within zone
  1915. */
  1916. static int __parse_numa_zonelist_order(char *s)
  1917. {
  1918. if (*s == 'd' || *s == 'D') {
  1919. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1920. } else if (*s == 'n' || *s == 'N') {
  1921. user_zonelist_order = ZONELIST_ORDER_NODE;
  1922. } else if (*s == 'z' || *s == 'Z') {
  1923. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1924. } else {
  1925. printk(KERN_WARNING
  1926. "Ignoring invalid numa_zonelist_order value: "
  1927. "%s\n", s);
  1928. return -EINVAL;
  1929. }
  1930. return 0;
  1931. }
  1932. static __init int setup_numa_zonelist_order(char *s)
  1933. {
  1934. if (s)
  1935. return __parse_numa_zonelist_order(s);
  1936. return 0;
  1937. }
  1938. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1939. /*
  1940. * sysctl handler for numa_zonelist_order
  1941. */
  1942. int numa_zonelist_order_handler(ctl_table *table, int write,
  1943. struct file *file, void __user *buffer, size_t *length,
  1944. loff_t *ppos)
  1945. {
  1946. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1947. int ret;
  1948. if (write)
  1949. strncpy(saved_string, (char*)table->data,
  1950. NUMA_ZONELIST_ORDER_LEN);
  1951. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1952. if (ret)
  1953. return ret;
  1954. if (write) {
  1955. int oldval = user_zonelist_order;
  1956. if (__parse_numa_zonelist_order((char*)table->data)) {
  1957. /*
  1958. * bogus value. restore saved string
  1959. */
  1960. strncpy((char*)table->data, saved_string,
  1961. NUMA_ZONELIST_ORDER_LEN);
  1962. user_zonelist_order = oldval;
  1963. } else if (oldval != user_zonelist_order)
  1964. build_all_zonelists();
  1965. }
  1966. return 0;
  1967. }
  1968. #define MAX_NODE_LOAD (nr_online_nodes)
  1969. static int node_load[MAX_NUMNODES];
  1970. /**
  1971. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1972. * @node: node whose fallback list we're appending
  1973. * @used_node_mask: nodemask_t of already used nodes
  1974. *
  1975. * We use a number of factors to determine which is the next node that should
  1976. * appear on a given node's fallback list. The node should not have appeared
  1977. * already in @node's fallback list, and it should be the next closest node
  1978. * according to the distance array (which contains arbitrary distance values
  1979. * from each node to each node in the system), and should also prefer nodes
  1980. * with no CPUs, since presumably they'll have very little allocation pressure
  1981. * on them otherwise.
  1982. * It returns -1 if no node is found.
  1983. */
  1984. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1985. {
  1986. int n, val;
  1987. int min_val = INT_MAX;
  1988. int best_node = -1;
  1989. const struct cpumask *tmp = cpumask_of_node(0);
  1990. /* Use the local node if we haven't already */
  1991. if (!node_isset(node, *used_node_mask)) {
  1992. node_set(node, *used_node_mask);
  1993. return node;
  1994. }
  1995. for_each_node_state(n, N_HIGH_MEMORY) {
  1996. /* Don't want a node to appear more than once */
  1997. if (node_isset(n, *used_node_mask))
  1998. continue;
  1999. /* Use the distance array to find the distance */
  2000. val = node_distance(node, n);
  2001. /* Penalize nodes under us ("prefer the next node") */
  2002. val += (n < node);
  2003. /* Give preference to headless and unused nodes */
  2004. tmp = cpumask_of_node(n);
  2005. if (!cpumask_empty(tmp))
  2006. val += PENALTY_FOR_NODE_WITH_CPUS;
  2007. /* Slight preference for less loaded node */
  2008. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2009. val += node_load[n];
  2010. if (val < min_val) {
  2011. min_val = val;
  2012. best_node = n;
  2013. }
  2014. }
  2015. if (best_node >= 0)
  2016. node_set(best_node, *used_node_mask);
  2017. return best_node;
  2018. }
  2019. /*
  2020. * Build zonelists ordered by node and zones within node.
  2021. * This results in maximum locality--normal zone overflows into local
  2022. * DMA zone, if any--but risks exhausting DMA zone.
  2023. */
  2024. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2025. {
  2026. int j;
  2027. struct zonelist *zonelist;
  2028. zonelist = &pgdat->node_zonelists[0];
  2029. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2030. ;
  2031. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2032. MAX_NR_ZONES - 1);
  2033. zonelist->_zonerefs[j].zone = NULL;
  2034. zonelist->_zonerefs[j].zone_idx = 0;
  2035. }
  2036. /*
  2037. * Build gfp_thisnode zonelists
  2038. */
  2039. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2040. {
  2041. int j;
  2042. struct zonelist *zonelist;
  2043. zonelist = &pgdat->node_zonelists[1];
  2044. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2045. zonelist->_zonerefs[j].zone = NULL;
  2046. zonelist->_zonerefs[j].zone_idx = 0;
  2047. }
  2048. /*
  2049. * Build zonelists ordered by zone and nodes within zones.
  2050. * This results in conserving DMA zone[s] until all Normal memory is
  2051. * exhausted, but results in overflowing to remote node while memory
  2052. * may still exist in local DMA zone.
  2053. */
  2054. static int node_order[MAX_NUMNODES];
  2055. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2056. {
  2057. int pos, j, node;
  2058. int zone_type; /* needs to be signed */
  2059. struct zone *z;
  2060. struct zonelist *zonelist;
  2061. zonelist = &pgdat->node_zonelists[0];
  2062. pos = 0;
  2063. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2064. for (j = 0; j < nr_nodes; j++) {
  2065. node = node_order[j];
  2066. z = &NODE_DATA(node)->node_zones[zone_type];
  2067. if (populated_zone(z)) {
  2068. zoneref_set_zone(z,
  2069. &zonelist->_zonerefs[pos++]);
  2070. check_highest_zone(zone_type);
  2071. }
  2072. }
  2073. }
  2074. zonelist->_zonerefs[pos].zone = NULL;
  2075. zonelist->_zonerefs[pos].zone_idx = 0;
  2076. }
  2077. static int default_zonelist_order(void)
  2078. {
  2079. int nid, zone_type;
  2080. unsigned long low_kmem_size,total_size;
  2081. struct zone *z;
  2082. int average_size;
  2083. /*
  2084. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  2085. * If they are really small and used heavily, the system can fall
  2086. * into OOM very easily.
  2087. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  2088. */
  2089. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2090. low_kmem_size = 0;
  2091. total_size = 0;
  2092. for_each_online_node(nid) {
  2093. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2094. z = &NODE_DATA(nid)->node_zones[zone_type];
  2095. if (populated_zone(z)) {
  2096. if (zone_type < ZONE_NORMAL)
  2097. low_kmem_size += z->present_pages;
  2098. total_size += z->present_pages;
  2099. }
  2100. }
  2101. }
  2102. if (!low_kmem_size || /* there are no DMA area. */
  2103. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2104. return ZONELIST_ORDER_NODE;
  2105. /*
  2106. * look into each node's config.
  2107. * If there is a node whose DMA/DMA32 memory is very big area on
  2108. * local memory, NODE_ORDER may be suitable.
  2109. */
  2110. average_size = total_size /
  2111. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2112. for_each_online_node(nid) {
  2113. low_kmem_size = 0;
  2114. total_size = 0;
  2115. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2116. z = &NODE_DATA(nid)->node_zones[zone_type];
  2117. if (populated_zone(z)) {
  2118. if (zone_type < ZONE_NORMAL)
  2119. low_kmem_size += z->present_pages;
  2120. total_size += z->present_pages;
  2121. }
  2122. }
  2123. if (low_kmem_size &&
  2124. total_size > average_size && /* ignore small node */
  2125. low_kmem_size > total_size * 70/100)
  2126. return ZONELIST_ORDER_NODE;
  2127. }
  2128. return ZONELIST_ORDER_ZONE;
  2129. }
  2130. static void set_zonelist_order(void)
  2131. {
  2132. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2133. current_zonelist_order = default_zonelist_order();
  2134. else
  2135. current_zonelist_order = user_zonelist_order;
  2136. }
  2137. static void build_zonelists(pg_data_t *pgdat)
  2138. {
  2139. int j, node, load;
  2140. enum zone_type i;
  2141. nodemask_t used_mask;
  2142. int local_node, prev_node;
  2143. struct zonelist *zonelist;
  2144. int order = current_zonelist_order;
  2145. /* initialize zonelists */
  2146. for (i = 0; i < MAX_ZONELISTS; i++) {
  2147. zonelist = pgdat->node_zonelists + i;
  2148. zonelist->_zonerefs[0].zone = NULL;
  2149. zonelist->_zonerefs[0].zone_idx = 0;
  2150. }
  2151. /* NUMA-aware ordering of nodes */
  2152. local_node = pgdat->node_id;
  2153. load = nr_online_nodes;
  2154. prev_node = local_node;
  2155. nodes_clear(used_mask);
  2156. memset(node_load, 0, sizeof(node_load));
  2157. memset(node_order, 0, sizeof(node_order));
  2158. j = 0;
  2159. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2160. int distance = node_distance(local_node, node);
  2161. /*
  2162. * If another node is sufficiently far away then it is better
  2163. * to reclaim pages in a zone before going off node.
  2164. */
  2165. if (distance > RECLAIM_DISTANCE)
  2166. zone_reclaim_mode = 1;
  2167. /*
  2168. * We don't want to pressure a particular node.
  2169. * So adding penalty to the first node in same
  2170. * distance group to make it round-robin.
  2171. */
  2172. if (distance != node_distance(local_node, prev_node))
  2173. node_load[node] = load;
  2174. prev_node = node;
  2175. load--;
  2176. if (order == ZONELIST_ORDER_NODE)
  2177. build_zonelists_in_node_order(pgdat, node);
  2178. else
  2179. node_order[j++] = node; /* remember order */
  2180. }
  2181. if (order == ZONELIST_ORDER_ZONE) {
  2182. /* calculate node order -- i.e., DMA last! */
  2183. build_zonelists_in_zone_order(pgdat, j);
  2184. }
  2185. build_thisnode_zonelists(pgdat);
  2186. }
  2187. /* Construct the zonelist performance cache - see further mmzone.h */
  2188. static void build_zonelist_cache(pg_data_t *pgdat)
  2189. {
  2190. struct zonelist *zonelist;
  2191. struct zonelist_cache *zlc;
  2192. struct zoneref *z;
  2193. zonelist = &pgdat->node_zonelists[0];
  2194. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2195. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2196. for (z = zonelist->_zonerefs; z->zone; z++)
  2197. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2198. }
  2199. #else /* CONFIG_NUMA */
  2200. static void set_zonelist_order(void)
  2201. {
  2202. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2203. }
  2204. static void build_zonelists(pg_data_t *pgdat)
  2205. {
  2206. int node, local_node;
  2207. enum zone_type j;
  2208. struct zonelist *zonelist;
  2209. local_node = pgdat->node_id;
  2210. zonelist = &pgdat->node_zonelists[0];
  2211. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2212. /*
  2213. * Now we build the zonelist so that it contains the zones
  2214. * of all the other nodes.
  2215. * We don't want to pressure a particular node, so when
  2216. * building the zones for node N, we make sure that the
  2217. * zones coming right after the local ones are those from
  2218. * node N+1 (modulo N)
  2219. */
  2220. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2221. if (!node_online(node))
  2222. continue;
  2223. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2224. MAX_NR_ZONES - 1);
  2225. }
  2226. for (node = 0; node < local_node; node++) {
  2227. if (!node_online(node))
  2228. continue;
  2229. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2230. MAX_NR_ZONES - 1);
  2231. }
  2232. zonelist->_zonerefs[j].zone = NULL;
  2233. zonelist->_zonerefs[j].zone_idx = 0;
  2234. }
  2235. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2236. static void build_zonelist_cache(pg_data_t *pgdat)
  2237. {
  2238. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2239. }
  2240. #endif /* CONFIG_NUMA */
  2241. /* return values int ....just for stop_machine() */
  2242. static int __build_all_zonelists(void *dummy)
  2243. {
  2244. int nid;
  2245. for_each_online_node(nid) {
  2246. pg_data_t *pgdat = NODE_DATA(nid);
  2247. build_zonelists(pgdat);
  2248. build_zonelist_cache(pgdat);
  2249. }
  2250. return 0;
  2251. }
  2252. void build_all_zonelists(void)
  2253. {
  2254. set_zonelist_order();
  2255. if (system_state == SYSTEM_BOOTING) {
  2256. __build_all_zonelists(NULL);
  2257. mminit_verify_zonelist();
  2258. cpuset_init_current_mems_allowed();
  2259. } else {
  2260. /* we have to stop all cpus to guarantee there is no user
  2261. of zonelist */
  2262. stop_machine(__build_all_zonelists, NULL, NULL);
  2263. /* cpuset refresh routine should be here */
  2264. }
  2265. vm_total_pages = nr_free_pagecache_pages();
  2266. /*
  2267. * Disable grouping by mobility if the number of pages in the
  2268. * system is too low to allow the mechanism to work. It would be
  2269. * more accurate, but expensive to check per-zone. This check is
  2270. * made on memory-hotadd so a system can start with mobility
  2271. * disabled and enable it later
  2272. */
  2273. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2274. page_group_by_mobility_disabled = 1;
  2275. else
  2276. page_group_by_mobility_disabled = 0;
  2277. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2278. "Total pages: %ld\n",
  2279. nr_online_nodes,
  2280. zonelist_order_name[current_zonelist_order],
  2281. page_group_by_mobility_disabled ? "off" : "on",
  2282. vm_total_pages);
  2283. #ifdef CONFIG_NUMA
  2284. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2285. #endif
  2286. }
  2287. /*
  2288. * Helper functions to size the waitqueue hash table.
  2289. * Essentially these want to choose hash table sizes sufficiently
  2290. * large so that collisions trying to wait on pages are rare.
  2291. * But in fact, the number of active page waitqueues on typical
  2292. * systems is ridiculously low, less than 200. So this is even
  2293. * conservative, even though it seems large.
  2294. *
  2295. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2296. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2297. */
  2298. #define PAGES_PER_WAITQUEUE 256
  2299. #ifndef CONFIG_MEMORY_HOTPLUG
  2300. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2301. {
  2302. unsigned long size = 1;
  2303. pages /= PAGES_PER_WAITQUEUE;
  2304. while (size < pages)
  2305. size <<= 1;
  2306. /*
  2307. * Once we have dozens or even hundreds of threads sleeping
  2308. * on IO we've got bigger problems than wait queue collision.
  2309. * Limit the size of the wait table to a reasonable size.
  2310. */
  2311. size = min(size, 4096UL);
  2312. return max(size, 4UL);
  2313. }
  2314. #else
  2315. /*
  2316. * A zone's size might be changed by hot-add, so it is not possible to determine
  2317. * a suitable size for its wait_table. So we use the maximum size now.
  2318. *
  2319. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2320. *
  2321. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2322. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2323. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2324. *
  2325. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2326. * or more by the traditional way. (See above). It equals:
  2327. *
  2328. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2329. * ia64(16K page size) : = ( 8G + 4M)byte.
  2330. * powerpc (64K page size) : = (32G +16M)byte.
  2331. */
  2332. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2333. {
  2334. return 4096UL;
  2335. }
  2336. #endif
  2337. /*
  2338. * This is an integer logarithm so that shifts can be used later
  2339. * to extract the more random high bits from the multiplicative
  2340. * hash function before the remainder is taken.
  2341. */
  2342. static inline unsigned long wait_table_bits(unsigned long size)
  2343. {
  2344. return ffz(~size);
  2345. }
  2346. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2347. /*
  2348. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2349. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2350. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2351. * higher will lead to a bigger reserve which will get freed as contiguous
  2352. * blocks as reclaim kicks in
  2353. */
  2354. static void setup_zone_migrate_reserve(struct zone *zone)
  2355. {
  2356. unsigned long start_pfn, pfn, end_pfn;
  2357. struct page *page;
  2358. unsigned long reserve, block_migratetype;
  2359. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2360. start_pfn = zone->zone_start_pfn;
  2361. end_pfn = start_pfn + zone->spanned_pages;
  2362. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2363. pageblock_order;
  2364. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2365. if (!pfn_valid(pfn))
  2366. continue;
  2367. page = pfn_to_page(pfn);
  2368. /* Watch out for overlapping nodes */
  2369. if (page_to_nid(page) != zone_to_nid(zone))
  2370. continue;
  2371. /* Blocks with reserved pages will never free, skip them. */
  2372. if (PageReserved(page))
  2373. continue;
  2374. block_migratetype = get_pageblock_migratetype(page);
  2375. /* If this block is reserved, account for it */
  2376. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2377. reserve--;
  2378. continue;
  2379. }
  2380. /* Suitable for reserving if this block is movable */
  2381. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2382. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2383. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2384. reserve--;
  2385. continue;
  2386. }
  2387. /*
  2388. * If the reserve is met and this is a previous reserved block,
  2389. * take it back
  2390. */
  2391. if (block_migratetype == MIGRATE_RESERVE) {
  2392. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2393. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2394. }
  2395. }
  2396. }
  2397. /*
  2398. * Initially all pages are reserved - free ones are freed
  2399. * up by free_all_bootmem() once the early boot process is
  2400. * done. Non-atomic initialization, single-pass.
  2401. */
  2402. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2403. unsigned long start_pfn, enum memmap_context context)
  2404. {
  2405. struct page *page;
  2406. unsigned long end_pfn = start_pfn + size;
  2407. unsigned long pfn;
  2408. struct zone *z;
  2409. if (highest_memmap_pfn < end_pfn - 1)
  2410. highest_memmap_pfn = end_pfn - 1;
  2411. z = &NODE_DATA(nid)->node_zones[zone];
  2412. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2413. /*
  2414. * There can be holes in boot-time mem_map[]s
  2415. * handed to this function. They do not
  2416. * exist on hotplugged memory.
  2417. */
  2418. if (context == MEMMAP_EARLY) {
  2419. if (!early_pfn_valid(pfn))
  2420. continue;
  2421. if (!early_pfn_in_nid(pfn, nid))
  2422. continue;
  2423. }
  2424. page = pfn_to_page(pfn);
  2425. set_page_links(page, zone, nid, pfn);
  2426. mminit_verify_page_links(page, zone, nid, pfn);
  2427. init_page_count(page);
  2428. reset_page_mapcount(page);
  2429. SetPageReserved(page);
  2430. /*
  2431. * Mark the block movable so that blocks are reserved for
  2432. * movable at startup. This will force kernel allocations
  2433. * to reserve their blocks rather than leaking throughout
  2434. * the address space during boot when many long-lived
  2435. * kernel allocations are made. Later some blocks near
  2436. * the start are marked MIGRATE_RESERVE by
  2437. * setup_zone_migrate_reserve()
  2438. *
  2439. * bitmap is created for zone's valid pfn range. but memmap
  2440. * can be created for invalid pages (for alignment)
  2441. * check here not to call set_pageblock_migratetype() against
  2442. * pfn out of zone.
  2443. */
  2444. if ((z->zone_start_pfn <= pfn)
  2445. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2446. && !(pfn & (pageblock_nr_pages - 1)))
  2447. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2448. INIT_LIST_HEAD(&page->lru);
  2449. #ifdef WANT_PAGE_VIRTUAL
  2450. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2451. if (!is_highmem_idx(zone))
  2452. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2453. #endif
  2454. }
  2455. }
  2456. static void __meminit zone_init_free_lists(struct zone *zone)
  2457. {
  2458. int order, t;
  2459. for_each_migratetype_order(order, t) {
  2460. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2461. zone->free_area[order].nr_free = 0;
  2462. }
  2463. }
  2464. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2465. #define memmap_init(size, nid, zone, start_pfn) \
  2466. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2467. #endif
  2468. static int zone_batchsize(struct zone *zone)
  2469. {
  2470. #ifdef CONFIG_MMU
  2471. int batch;
  2472. /*
  2473. * The per-cpu-pages pools are set to around 1000th of the
  2474. * size of the zone. But no more than 1/2 of a meg.
  2475. *
  2476. * OK, so we don't know how big the cache is. So guess.
  2477. */
  2478. batch = zone->present_pages / 1024;
  2479. if (batch * PAGE_SIZE > 512 * 1024)
  2480. batch = (512 * 1024) / PAGE_SIZE;
  2481. batch /= 4; /* We effectively *= 4 below */
  2482. if (batch < 1)
  2483. batch = 1;
  2484. /*
  2485. * Clamp the batch to a 2^n - 1 value. Having a power
  2486. * of 2 value was found to be more likely to have
  2487. * suboptimal cache aliasing properties in some cases.
  2488. *
  2489. * For example if 2 tasks are alternately allocating
  2490. * batches of pages, one task can end up with a lot
  2491. * of pages of one half of the possible page colors
  2492. * and the other with pages of the other colors.
  2493. */
  2494. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2495. return batch;
  2496. #else
  2497. /* The deferral and batching of frees should be suppressed under NOMMU
  2498. * conditions.
  2499. *
  2500. * The problem is that NOMMU needs to be able to allocate large chunks
  2501. * of contiguous memory as there's no hardware page translation to
  2502. * assemble apparent contiguous memory from discontiguous pages.
  2503. *
  2504. * Queueing large contiguous runs of pages for batching, however,
  2505. * causes the pages to actually be freed in smaller chunks. As there
  2506. * can be a significant delay between the individual batches being
  2507. * recycled, this leads to the once large chunks of space being
  2508. * fragmented and becoming unavailable for high-order allocations.
  2509. */
  2510. return 0;
  2511. #endif
  2512. }
  2513. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2514. {
  2515. struct per_cpu_pages *pcp;
  2516. memset(p, 0, sizeof(*p));
  2517. pcp = &p->pcp;
  2518. pcp->count = 0;
  2519. pcp->high = 6 * batch;
  2520. pcp->batch = max(1UL, 1 * batch);
  2521. INIT_LIST_HEAD(&pcp->list);
  2522. }
  2523. /*
  2524. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2525. * to the value high for the pageset p.
  2526. */
  2527. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2528. unsigned long high)
  2529. {
  2530. struct per_cpu_pages *pcp;
  2531. pcp = &p->pcp;
  2532. pcp->high = high;
  2533. pcp->batch = max(1UL, high/4);
  2534. if ((high/4) > (PAGE_SHIFT * 8))
  2535. pcp->batch = PAGE_SHIFT * 8;
  2536. }
  2537. #ifdef CONFIG_NUMA
  2538. /*
  2539. * Boot pageset table. One per cpu which is going to be used for all
  2540. * zones and all nodes. The parameters will be set in such a way
  2541. * that an item put on a list will immediately be handed over to
  2542. * the buddy list. This is safe since pageset manipulation is done
  2543. * with interrupts disabled.
  2544. *
  2545. * Some NUMA counter updates may also be caught by the boot pagesets.
  2546. *
  2547. * The boot_pagesets must be kept even after bootup is complete for
  2548. * unused processors and/or zones. They do play a role for bootstrapping
  2549. * hotplugged processors.
  2550. *
  2551. * zoneinfo_show() and maybe other functions do
  2552. * not check if the processor is online before following the pageset pointer.
  2553. * Other parts of the kernel may not check if the zone is available.
  2554. */
  2555. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2556. /*
  2557. * Dynamically allocate memory for the
  2558. * per cpu pageset array in struct zone.
  2559. */
  2560. static int __cpuinit process_zones(int cpu)
  2561. {
  2562. struct zone *zone, *dzone;
  2563. int node = cpu_to_node(cpu);
  2564. node_set_state(node, N_CPU); /* this node has a cpu */
  2565. for_each_populated_zone(zone) {
  2566. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2567. GFP_KERNEL, node);
  2568. if (!zone_pcp(zone, cpu))
  2569. goto bad;
  2570. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2571. if (percpu_pagelist_fraction)
  2572. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2573. (zone->present_pages / percpu_pagelist_fraction));
  2574. }
  2575. return 0;
  2576. bad:
  2577. for_each_zone(dzone) {
  2578. if (!populated_zone(dzone))
  2579. continue;
  2580. if (dzone == zone)
  2581. break;
  2582. kfree(zone_pcp(dzone, cpu));
  2583. zone_pcp(dzone, cpu) = NULL;
  2584. }
  2585. return -ENOMEM;
  2586. }
  2587. static inline void free_zone_pagesets(int cpu)
  2588. {
  2589. struct zone *zone;
  2590. for_each_zone(zone) {
  2591. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2592. /* Free per_cpu_pageset if it is slab allocated */
  2593. if (pset != &boot_pageset[cpu])
  2594. kfree(pset);
  2595. zone_pcp(zone, cpu) = NULL;
  2596. }
  2597. }
  2598. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2599. unsigned long action,
  2600. void *hcpu)
  2601. {
  2602. int cpu = (long)hcpu;
  2603. int ret = NOTIFY_OK;
  2604. switch (action) {
  2605. case CPU_UP_PREPARE:
  2606. case CPU_UP_PREPARE_FROZEN:
  2607. if (process_zones(cpu))
  2608. ret = NOTIFY_BAD;
  2609. break;
  2610. case CPU_UP_CANCELED:
  2611. case CPU_UP_CANCELED_FROZEN:
  2612. case CPU_DEAD:
  2613. case CPU_DEAD_FROZEN:
  2614. free_zone_pagesets(cpu);
  2615. break;
  2616. default:
  2617. break;
  2618. }
  2619. return ret;
  2620. }
  2621. static struct notifier_block __cpuinitdata pageset_notifier =
  2622. { &pageset_cpuup_callback, NULL, 0 };
  2623. void __init setup_per_cpu_pageset(void)
  2624. {
  2625. int err;
  2626. /* Initialize per_cpu_pageset for cpu 0.
  2627. * A cpuup callback will do this for every cpu
  2628. * as it comes online
  2629. */
  2630. err = process_zones(smp_processor_id());
  2631. BUG_ON(err);
  2632. register_cpu_notifier(&pageset_notifier);
  2633. }
  2634. #endif
  2635. static noinline __init_refok
  2636. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2637. {
  2638. int i;
  2639. struct pglist_data *pgdat = zone->zone_pgdat;
  2640. size_t alloc_size;
  2641. /*
  2642. * The per-page waitqueue mechanism uses hashed waitqueues
  2643. * per zone.
  2644. */
  2645. zone->wait_table_hash_nr_entries =
  2646. wait_table_hash_nr_entries(zone_size_pages);
  2647. zone->wait_table_bits =
  2648. wait_table_bits(zone->wait_table_hash_nr_entries);
  2649. alloc_size = zone->wait_table_hash_nr_entries
  2650. * sizeof(wait_queue_head_t);
  2651. if (!slab_is_available()) {
  2652. zone->wait_table = (wait_queue_head_t *)
  2653. alloc_bootmem_node(pgdat, alloc_size);
  2654. } else {
  2655. /*
  2656. * This case means that a zone whose size was 0 gets new memory
  2657. * via memory hot-add.
  2658. * But it may be the case that a new node was hot-added. In
  2659. * this case vmalloc() will not be able to use this new node's
  2660. * memory - this wait_table must be initialized to use this new
  2661. * node itself as well.
  2662. * To use this new node's memory, further consideration will be
  2663. * necessary.
  2664. */
  2665. zone->wait_table = vmalloc(alloc_size);
  2666. }
  2667. if (!zone->wait_table)
  2668. return -ENOMEM;
  2669. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2670. init_waitqueue_head(zone->wait_table + i);
  2671. return 0;
  2672. }
  2673. static __meminit void zone_pcp_init(struct zone *zone)
  2674. {
  2675. int cpu;
  2676. unsigned long batch = zone_batchsize(zone);
  2677. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2678. #ifdef CONFIG_NUMA
  2679. /* Early boot. Slab allocator not functional yet */
  2680. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2681. setup_pageset(&boot_pageset[cpu],0);
  2682. #else
  2683. setup_pageset(zone_pcp(zone,cpu), batch);
  2684. #endif
  2685. }
  2686. if (zone->present_pages)
  2687. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2688. zone->name, zone->present_pages, batch);
  2689. }
  2690. __meminit int init_currently_empty_zone(struct zone *zone,
  2691. unsigned long zone_start_pfn,
  2692. unsigned long size,
  2693. enum memmap_context context)
  2694. {
  2695. struct pglist_data *pgdat = zone->zone_pgdat;
  2696. int ret;
  2697. ret = zone_wait_table_init(zone, size);
  2698. if (ret)
  2699. return ret;
  2700. pgdat->nr_zones = zone_idx(zone) + 1;
  2701. zone->zone_start_pfn = zone_start_pfn;
  2702. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2703. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2704. pgdat->node_id,
  2705. (unsigned long)zone_idx(zone),
  2706. zone_start_pfn, (zone_start_pfn + size));
  2707. zone_init_free_lists(zone);
  2708. return 0;
  2709. }
  2710. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2711. /*
  2712. * Basic iterator support. Return the first range of PFNs for a node
  2713. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2714. */
  2715. static int __meminit first_active_region_index_in_nid(int nid)
  2716. {
  2717. int i;
  2718. for (i = 0; i < nr_nodemap_entries; i++)
  2719. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2720. return i;
  2721. return -1;
  2722. }
  2723. /*
  2724. * Basic iterator support. Return the next active range of PFNs for a node
  2725. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2726. */
  2727. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2728. {
  2729. for (index = index + 1; index < nr_nodemap_entries; index++)
  2730. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2731. return index;
  2732. return -1;
  2733. }
  2734. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2735. /*
  2736. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2737. * Architectures may implement their own version but if add_active_range()
  2738. * was used and there are no special requirements, this is a convenient
  2739. * alternative
  2740. */
  2741. int __meminit __early_pfn_to_nid(unsigned long pfn)
  2742. {
  2743. int i;
  2744. for (i = 0; i < nr_nodemap_entries; i++) {
  2745. unsigned long start_pfn = early_node_map[i].start_pfn;
  2746. unsigned long end_pfn = early_node_map[i].end_pfn;
  2747. if (start_pfn <= pfn && pfn < end_pfn)
  2748. return early_node_map[i].nid;
  2749. }
  2750. /* This is a memory hole */
  2751. return -1;
  2752. }
  2753. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2754. int __meminit early_pfn_to_nid(unsigned long pfn)
  2755. {
  2756. int nid;
  2757. nid = __early_pfn_to_nid(pfn);
  2758. if (nid >= 0)
  2759. return nid;
  2760. /* just returns 0 */
  2761. return 0;
  2762. }
  2763. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  2764. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  2765. {
  2766. int nid;
  2767. nid = __early_pfn_to_nid(pfn);
  2768. if (nid >= 0 && nid != node)
  2769. return false;
  2770. return true;
  2771. }
  2772. #endif
  2773. /* Basic iterator support to walk early_node_map[] */
  2774. #define for_each_active_range_index_in_nid(i, nid) \
  2775. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2776. i = next_active_region_index_in_nid(i, nid))
  2777. /**
  2778. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2779. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2780. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2781. *
  2782. * If an architecture guarantees that all ranges registered with
  2783. * add_active_ranges() contain no holes and may be freed, this
  2784. * this function may be used instead of calling free_bootmem() manually.
  2785. */
  2786. void __init free_bootmem_with_active_regions(int nid,
  2787. unsigned long max_low_pfn)
  2788. {
  2789. int i;
  2790. for_each_active_range_index_in_nid(i, nid) {
  2791. unsigned long size_pages = 0;
  2792. unsigned long end_pfn = early_node_map[i].end_pfn;
  2793. if (early_node_map[i].start_pfn >= max_low_pfn)
  2794. continue;
  2795. if (end_pfn > max_low_pfn)
  2796. end_pfn = max_low_pfn;
  2797. size_pages = end_pfn - early_node_map[i].start_pfn;
  2798. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2799. PFN_PHYS(early_node_map[i].start_pfn),
  2800. size_pages << PAGE_SHIFT);
  2801. }
  2802. }
  2803. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2804. {
  2805. int i;
  2806. int ret;
  2807. for_each_active_range_index_in_nid(i, nid) {
  2808. ret = work_fn(early_node_map[i].start_pfn,
  2809. early_node_map[i].end_pfn, data);
  2810. if (ret)
  2811. break;
  2812. }
  2813. }
  2814. /**
  2815. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2816. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2817. *
  2818. * If an architecture guarantees that all ranges registered with
  2819. * add_active_ranges() contain no holes and may be freed, this
  2820. * function may be used instead of calling memory_present() manually.
  2821. */
  2822. void __init sparse_memory_present_with_active_regions(int nid)
  2823. {
  2824. int i;
  2825. for_each_active_range_index_in_nid(i, nid)
  2826. memory_present(early_node_map[i].nid,
  2827. early_node_map[i].start_pfn,
  2828. early_node_map[i].end_pfn);
  2829. }
  2830. /**
  2831. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2832. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2833. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2834. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2835. *
  2836. * It returns the start and end page frame of a node based on information
  2837. * provided by an arch calling add_active_range(). If called for a node
  2838. * with no available memory, a warning is printed and the start and end
  2839. * PFNs will be 0.
  2840. */
  2841. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2842. unsigned long *start_pfn, unsigned long *end_pfn)
  2843. {
  2844. int i;
  2845. *start_pfn = -1UL;
  2846. *end_pfn = 0;
  2847. for_each_active_range_index_in_nid(i, nid) {
  2848. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2849. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2850. }
  2851. if (*start_pfn == -1UL)
  2852. *start_pfn = 0;
  2853. }
  2854. /*
  2855. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2856. * assumption is made that zones within a node are ordered in monotonic
  2857. * increasing memory addresses so that the "highest" populated zone is used
  2858. */
  2859. static void __init find_usable_zone_for_movable(void)
  2860. {
  2861. int zone_index;
  2862. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2863. if (zone_index == ZONE_MOVABLE)
  2864. continue;
  2865. if (arch_zone_highest_possible_pfn[zone_index] >
  2866. arch_zone_lowest_possible_pfn[zone_index])
  2867. break;
  2868. }
  2869. VM_BUG_ON(zone_index == -1);
  2870. movable_zone = zone_index;
  2871. }
  2872. /*
  2873. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2874. * because it is sized independant of architecture. Unlike the other zones,
  2875. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2876. * in each node depending on the size of each node and how evenly kernelcore
  2877. * is distributed. This helper function adjusts the zone ranges
  2878. * provided by the architecture for a given node by using the end of the
  2879. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2880. * zones within a node are in order of monotonic increases memory addresses
  2881. */
  2882. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  2883. unsigned long zone_type,
  2884. unsigned long node_start_pfn,
  2885. unsigned long node_end_pfn,
  2886. unsigned long *zone_start_pfn,
  2887. unsigned long *zone_end_pfn)
  2888. {
  2889. /* Only adjust if ZONE_MOVABLE is on this node */
  2890. if (zone_movable_pfn[nid]) {
  2891. /* Size ZONE_MOVABLE */
  2892. if (zone_type == ZONE_MOVABLE) {
  2893. *zone_start_pfn = zone_movable_pfn[nid];
  2894. *zone_end_pfn = min(node_end_pfn,
  2895. arch_zone_highest_possible_pfn[movable_zone]);
  2896. /* Adjust for ZONE_MOVABLE starting within this range */
  2897. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2898. *zone_end_pfn > zone_movable_pfn[nid]) {
  2899. *zone_end_pfn = zone_movable_pfn[nid];
  2900. /* Check if this whole range is within ZONE_MOVABLE */
  2901. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2902. *zone_start_pfn = *zone_end_pfn;
  2903. }
  2904. }
  2905. /*
  2906. * Return the number of pages a zone spans in a node, including holes
  2907. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2908. */
  2909. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2910. unsigned long zone_type,
  2911. unsigned long *ignored)
  2912. {
  2913. unsigned long node_start_pfn, node_end_pfn;
  2914. unsigned long zone_start_pfn, zone_end_pfn;
  2915. /* Get the start and end of the node and zone */
  2916. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2917. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2918. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2919. adjust_zone_range_for_zone_movable(nid, zone_type,
  2920. node_start_pfn, node_end_pfn,
  2921. &zone_start_pfn, &zone_end_pfn);
  2922. /* Check that this node has pages within the zone's required range */
  2923. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2924. return 0;
  2925. /* Move the zone boundaries inside the node if necessary */
  2926. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2927. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2928. /* Return the spanned pages */
  2929. return zone_end_pfn - zone_start_pfn;
  2930. }
  2931. /*
  2932. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2933. * then all holes in the requested range will be accounted for.
  2934. */
  2935. static unsigned long __meminit __absent_pages_in_range(int nid,
  2936. unsigned long range_start_pfn,
  2937. unsigned long range_end_pfn)
  2938. {
  2939. int i = 0;
  2940. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2941. unsigned long start_pfn;
  2942. /* Find the end_pfn of the first active range of pfns in the node */
  2943. i = first_active_region_index_in_nid(nid);
  2944. if (i == -1)
  2945. return 0;
  2946. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2947. /* Account for ranges before physical memory on this node */
  2948. if (early_node_map[i].start_pfn > range_start_pfn)
  2949. hole_pages = prev_end_pfn - range_start_pfn;
  2950. /* Find all holes for the zone within the node */
  2951. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2952. /* No need to continue if prev_end_pfn is outside the zone */
  2953. if (prev_end_pfn >= range_end_pfn)
  2954. break;
  2955. /* Make sure the end of the zone is not within the hole */
  2956. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2957. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2958. /* Update the hole size cound and move on */
  2959. if (start_pfn > range_start_pfn) {
  2960. BUG_ON(prev_end_pfn > start_pfn);
  2961. hole_pages += start_pfn - prev_end_pfn;
  2962. }
  2963. prev_end_pfn = early_node_map[i].end_pfn;
  2964. }
  2965. /* Account for ranges past physical memory on this node */
  2966. if (range_end_pfn > prev_end_pfn)
  2967. hole_pages += range_end_pfn -
  2968. max(range_start_pfn, prev_end_pfn);
  2969. return hole_pages;
  2970. }
  2971. /**
  2972. * absent_pages_in_range - Return number of page frames in holes within a range
  2973. * @start_pfn: The start PFN to start searching for holes
  2974. * @end_pfn: The end PFN to stop searching for holes
  2975. *
  2976. * It returns the number of pages frames in memory holes within a range.
  2977. */
  2978. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2979. unsigned long end_pfn)
  2980. {
  2981. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2982. }
  2983. /* Return the number of page frames in holes in a zone on a node */
  2984. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2985. unsigned long zone_type,
  2986. unsigned long *ignored)
  2987. {
  2988. unsigned long node_start_pfn, node_end_pfn;
  2989. unsigned long zone_start_pfn, zone_end_pfn;
  2990. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2991. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2992. node_start_pfn);
  2993. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2994. node_end_pfn);
  2995. adjust_zone_range_for_zone_movable(nid, zone_type,
  2996. node_start_pfn, node_end_pfn,
  2997. &zone_start_pfn, &zone_end_pfn);
  2998. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2999. }
  3000. #else
  3001. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3002. unsigned long zone_type,
  3003. unsigned long *zones_size)
  3004. {
  3005. return zones_size[zone_type];
  3006. }
  3007. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3008. unsigned long zone_type,
  3009. unsigned long *zholes_size)
  3010. {
  3011. if (!zholes_size)
  3012. return 0;
  3013. return zholes_size[zone_type];
  3014. }
  3015. #endif
  3016. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3017. unsigned long *zones_size, unsigned long *zholes_size)
  3018. {
  3019. unsigned long realtotalpages, totalpages = 0;
  3020. enum zone_type i;
  3021. for (i = 0; i < MAX_NR_ZONES; i++)
  3022. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3023. zones_size);
  3024. pgdat->node_spanned_pages = totalpages;
  3025. realtotalpages = totalpages;
  3026. for (i = 0; i < MAX_NR_ZONES; i++)
  3027. realtotalpages -=
  3028. zone_absent_pages_in_node(pgdat->node_id, i,
  3029. zholes_size);
  3030. pgdat->node_present_pages = realtotalpages;
  3031. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3032. realtotalpages);
  3033. }
  3034. #ifndef CONFIG_SPARSEMEM
  3035. /*
  3036. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3037. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3038. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3039. * round what is now in bits to nearest long in bits, then return it in
  3040. * bytes.
  3041. */
  3042. static unsigned long __init usemap_size(unsigned long zonesize)
  3043. {
  3044. unsigned long usemapsize;
  3045. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3046. usemapsize = usemapsize >> pageblock_order;
  3047. usemapsize *= NR_PAGEBLOCK_BITS;
  3048. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3049. return usemapsize / 8;
  3050. }
  3051. static void __init setup_usemap(struct pglist_data *pgdat,
  3052. struct zone *zone, unsigned long zonesize)
  3053. {
  3054. unsigned long usemapsize = usemap_size(zonesize);
  3055. zone->pageblock_flags = NULL;
  3056. if (usemapsize)
  3057. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3058. }
  3059. #else
  3060. static void inline setup_usemap(struct pglist_data *pgdat,
  3061. struct zone *zone, unsigned long zonesize) {}
  3062. #endif /* CONFIG_SPARSEMEM */
  3063. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3064. /* Return a sensible default order for the pageblock size. */
  3065. static inline int pageblock_default_order(void)
  3066. {
  3067. if (HPAGE_SHIFT > PAGE_SHIFT)
  3068. return HUGETLB_PAGE_ORDER;
  3069. return MAX_ORDER-1;
  3070. }
  3071. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3072. static inline void __init set_pageblock_order(unsigned int order)
  3073. {
  3074. /* Check that pageblock_nr_pages has not already been setup */
  3075. if (pageblock_order)
  3076. return;
  3077. /*
  3078. * Assume the largest contiguous order of interest is a huge page.
  3079. * This value may be variable depending on boot parameters on IA64
  3080. */
  3081. pageblock_order = order;
  3082. }
  3083. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3084. /*
  3085. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3086. * and pageblock_default_order() are unused as pageblock_order is set
  3087. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3088. * pageblock_order based on the kernel config
  3089. */
  3090. static inline int pageblock_default_order(unsigned int order)
  3091. {
  3092. return MAX_ORDER-1;
  3093. }
  3094. #define set_pageblock_order(x) do {} while (0)
  3095. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3096. /*
  3097. * Set up the zone data structures:
  3098. * - mark all pages reserved
  3099. * - mark all memory queues empty
  3100. * - clear the memory bitmaps
  3101. */
  3102. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3103. unsigned long *zones_size, unsigned long *zholes_size)
  3104. {
  3105. enum zone_type j;
  3106. int nid = pgdat->node_id;
  3107. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3108. int ret;
  3109. pgdat_resize_init(pgdat);
  3110. pgdat->nr_zones = 0;
  3111. init_waitqueue_head(&pgdat->kswapd_wait);
  3112. pgdat->kswapd_max_order = 0;
  3113. pgdat_page_cgroup_init(pgdat);
  3114. for (j = 0; j < MAX_NR_ZONES; j++) {
  3115. struct zone *zone = pgdat->node_zones + j;
  3116. unsigned long size, realsize, memmap_pages;
  3117. enum lru_list l;
  3118. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3119. realsize = size - zone_absent_pages_in_node(nid, j,
  3120. zholes_size);
  3121. /*
  3122. * Adjust realsize so that it accounts for how much memory
  3123. * is used by this zone for memmap. This affects the watermark
  3124. * and per-cpu initialisations
  3125. */
  3126. memmap_pages =
  3127. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3128. if (realsize >= memmap_pages) {
  3129. realsize -= memmap_pages;
  3130. if (memmap_pages)
  3131. printk(KERN_DEBUG
  3132. " %s zone: %lu pages used for memmap\n",
  3133. zone_names[j], memmap_pages);
  3134. } else
  3135. printk(KERN_WARNING
  3136. " %s zone: %lu pages exceeds realsize %lu\n",
  3137. zone_names[j], memmap_pages, realsize);
  3138. /* Account for reserved pages */
  3139. if (j == 0 && realsize > dma_reserve) {
  3140. realsize -= dma_reserve;
  3141. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3142. zone_names[0], dma_reserve);
  3143. }
  3144. if (!is_highmem_idx(j))
  3145. nr_kernel_pages += realsize;
  3146. nr_all_pages += realsize;
  3147. zone->spanned_pages = size;
  3148. zone->present_pages = realsize;
  3149. #ifdef CONFIG_NUMA
  3150. zone->node = nid;
  3151. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3152. / 100;
  3153. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3154. #endif
  3155. zone->name = zone_names[j];
  3156. spin_lock_init(&zone->lock);
  3157. spin_lock_init(&zone->lru_lock);
  3158. zone_seqlock_init(zone);
  3159. zone->zone_pgdat = pgdat;
  3160. zone->prev_priority = DEF_PRIORITY;
  3161. zone_pcp_init(zone);
  3162. for_each_lru(l) {
  3163. INIT_LIST_HEAD(&zone->lru[l].list);
  3164. zone->lru[l].nr_scan = 0;
  3165. }
  3166. zone->reclaim_stat.recent_rotated[0] = 0;
  3167. zone->reclaim_stat.recent_rotated[1] = 0;
  3168. zone->reclaim_stat.recent_scanned[0] = 0;
  3169. zone->reclaim_stat.recent_scanned[1] = 0;
  3170. zap_zone_vm_stats(zone);
  3171. zone->flags = 0;
  3172. if (!size)
  3173. continue;
  3174. set_pageblock_order(pageblock_default_order());
  3175. setup_usemap(pgdat, zone, size);
  3176. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3177. size, MEMMAP_EARLY);
  3178. BUG_ON(ret);
  3179. memmap_init(size, nid, j, zone_start_pfn);
  3180. zone_start_pfn += size;
  3181. }
  3182. }
  3183. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3184. {
  3185. /* Skip empty nodes */
  3186. if (!pgdat->node_spanned_pages)
  3187. return;
  3188. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3189. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3190. if (!pgdat->node_mem_map) {
  3191. unsigned long size, start, end;
  3192. struct page *map;
  3193. /*
  3194. * The zone's endpoints aren't required to be MAX_ORDER
  3195. * aligned but the node_mem_map endpoints must be in order
  3196. * for the buddy allocator to function correctly.
  3197. */
  3198. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3199. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3200. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3201. size = (end - start) * sizeof(struct page);
  3202. map = alloc_remap(pgdat->node_id, size);
  3203. if (!map)
  3204. map = alloc_bootmem_node(pgdat, size);
  3205. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3206. }
  3207. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3208. /*
  3209. * With no DISCONTIG, the global mem_map is just set as node 0's
  3210. */
  3211. if (pgdat == NODE_DATA(0)) {
  3212. mem_map = NODE_DATA(0)->node_mem_map;
  3213. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3214. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3215. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3216. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3217. }
  3218. #endif
  3219. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3220. }
  3221. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3222. unsigned long node_start_pfn, unsigned long *zholes_size)
  3223. {
  3224. pg_data_t *pgdat = NODE_DATA(nid);
  3225. pgdat->node_id = nid;
  3226. pgdat->node_start_pfn = node_start_pfn;
  3227. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3228. alloc_node_mem_map(pgdat);
  3229. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3230. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3231. nid, (unsigned long)pgdat,
  3232. (unsigned long)pgdat->node_mem_map);
  3233. #endif
  3234. free_area_init_core(pgdat, zones_size, zholes_size);
  3235. }
  3236. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3237. #if MAX_NUMNODES > 1
  3238. /*
  3239. * Figure out the number of possible node ids.
  3240. */
  3241. static void __init setup_nr_node_ids(void)
  3242. {
  3243. unsigned int node;
  3244. unsigned int highest = 0;
  3245. for_each_node_mask(node, node_possible_map)
  3246. highest = node;
  3247. nr_node_ids = highest + 1;
  3248. }
  3249. #else
  3250. static inline void setup_nr_node_ids(void)
  3251. {
  3252. }
  3253. #endif
  3254. /**
  3255. * add_active_range - Register a range of PFNs backed by physical memory
  3256. * @nid: The node ID the range resides on
  3257. * @start_pfn: The start PFN of the available physical memory
  3258. * @end_pfn: The end PFN of the available physical memory
  3259. *
  3260. * These ranges are stored in an early_node_map[] and later used by
  3261. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3262. * range spans a memory hole, it is up to the architecture to ensure
  3263. * the memory is not freed by the bootmem allocator. If possible
  3264. * the range being registered will be merged with existing ranges.
  3265. */
  3266. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3267. unsigned long end_pfn)
  3268. {
  3269. int i;
  3270. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3271. "Entering add_active_range(%d, %#lx, %#lx) "
  3272. "%d entries of %d used\n",
  3273. nid, start_pfn, end_pfn,
  3274. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3275. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3276. /* Merge with existing active regions if possible */
  3277. for (i = 0; i < nr_nodemap_entries; i++) {
  3278. if (early_node_map[i].nid != nid)
  3279. continue;
  3280. /* Skip if an existing region covers this new one */
  3281. if (start_pfn >= early_node_map[i].start_pfn &&
  3282. end_pfn <= early_node_map[i].end_pfn)
  3283. return;
  3284. /* Merge forward if suitable */
  3285. if (start_pfn <= early_node_map[i].end_pfn &&
  3286. end_pfn > early_node_map[i].end_pfn) {
  3287. early_node_map[i].end_pfn = end_pfn;
  3288. return;
  3289. }
  3290. /* Merge backward if suitable */
  3291. if (start_pfn < early_node_map[i].end_pfn &&
  3292. end_pfn >= early_node_map[i].start_pfn) {
  3293. early_node_map[i].start_pfn = start_pfn;
  3294. return;
  3295. }
  3296. }
  3297. /* Check that early_node_map is large enough */
  3298. if (i >= MAX_ACTIVE_REGIONS) {
  3299. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3300. MAX_ACTIVE_REGIONS);
  3301. return;
  3302. }
  3303. early_node_map[i].nid = nid;
  3304. early_node_map[i].start_pfn = start_pfn;
  3305. early_node_map[i].end_pfn = end_pfn;
  3306. nr_nodemap_entries = i + 1;
  3307. }
  3308. /**
  3309. * remove_active_range - Shrink an existing registered range of PFNs
  3310. * @nid: The node id the range is on that should be shrunk
  3311. * @start_pfn: The new PFN of the range
  3312. * @end_pfn: The new PFN of the range
  3313. *
  3314. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3315. * The map is kept near the end physical page range that has already been
  3316. * registered. This function allows an arch to shrink an existing registered
  3317. * range.
  3318. */
  3319. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3320. unsigned long end_pfn)
  3321. {
  3322. int i, j;
  3323. int removed = 0;
  3324. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3325. nid, start_pfn, end_pfn);
  3326. /* Find the old active region end and shrink */
  3327. for_each_active_range_index_in_nid(i, nid) {
  3328. if (early_node_map[i].start_pfn >= start_pfn &&
  3329. early_node_map[i].end_pfn <= end_pfn) {
  3330. /* clear it */
  3331. early_node_map[i].start_pfn = 0;
  3332. early_node_map[i].end_pfn = 0;
  3333. removed = 1;
  3334. continue;
  3335. }
  3336. if (early_node_map[i].start_pfn < start_pfn &&
  3337. early_node_map[i].end_pfn > start_pfn) {
  3338. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3339. early_node_map[i].end_pfn = start_pfn;
  3340. if (temp_end_pfn > end_pfn)
  3341. add_active_range(nid, end_pfn, temp_end_pfn);
  3342. continue;
  3343. }
  3344. if (early_node_map[i].start_pfn >= start_pfn &&
  3345. early_node_map[i].end_pfn > end_pfn &&
  3346. early_node_map[i].start_pfn < end_pfn) {
  3347. early_node_map[i].start_pfn = end_pfn;
  3348. continue;
  3349. }
  3350. }
  3351. if (!removed)
  3352. return;
  3353. /* remove the blank ones */
  3354. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3355. if (early_node_map[i].nid != nid)
  3356. continue;
  3357. if (early_node_map[i].end_pfn)
  3358. continue;
  3359. /* we found it, get rid of it */
  3360. for (j = i; j < nr_nodemap_entries - 1; j++)
  3361. memcpy(&early_node_map[j], &early_node_map[j+1],
  3362. sizeof(early_node_map[j]));
  3363. j = nr_nodemap_entries - 1;
  3364. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3365. nr_nodemap_entries--;
  3366. }
  3367. }
  3368. /**
  3369. * remove_all_active_ranges - Remove all currently registered regions
  3370. *
  3371. * During discovery, it may be found that a table like SRAT is invalid
  3372. * and an alternative discovery method must be used. This function removes
  3373. * all currently registered regions.
  3374. */
  3375. void __init remove_all_active_ranges(void)
  3376. {
  3377. memset(early_node_map, 0, sizeof(early_node_map));
  3378. nr_nodemap_entries = 0;
  3379. }
  3380. /* Compare two active node_active_regions */
  3381. static int __init cmp_node_active_region(const void *a, const void *b)
  3382. {
  3383. struct node_active_region *arange = (struct node_active_region *)a;
  3384. struct node_active_region *brange = (struct node_active_region *)b;
  3385. /* Done this way to avoid overflows */
  3386. if (arange->start_pfn > brange->start_pfn)
  3387. return 1;
  3388. if (arange->start_pfn < brange->start_pfn)
  3389. return -1;
  3390. return 0;
  3391. }
  3392. /* sort the node_map by start_pfn */
  3393. static void __init sort_node_map(void)
  3394. {
  3395. sort(early_node_map, (size_t)nr_nodemap_entries,
  3396. sizeof(struct node_active_region),
  3397. cmp_node_active_region, NULL);
  3398. }
  3399. /* Find the lowest pfn for a node */
  3400. static unsigned long __init find_min_pfn_for_node(int nid)
  3401. {
  3402. int i;
  3403. unsigned long min_pfn = ULONG_MAX;
  3404. /* Assuming a sorted map, the first range found has the starting pfn */
  3405. for_each_active_range_index_in_nid(i, nid)
  3406. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3407. if (min_pfn == ULONG_MAX) {
  3408. printk(KERN_WARNING
  3409. "Could not find start_pfn for node %d\n", nid);
  3410. return 0;
  3411. }
  3412. return min_pfn;
  3413. }
  3414. /**
  3415. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3416. *
  3417. * It returns the minimum PFN based on information provided via
  3418. * add_active_range().
  3419. */
  3420. unsigned long __init find_min_pfn_with_active_regions(void)
  3421. {
  3422. return find_min_pfn_for_node(MAX_NUMNODES);
  3423. }
  3424. /*
  3425. * early_calculate_totalpages()
  3426. * Sum pages in active regions for movable zone.
  3427. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3428. */
  3429. static unsigned long __init early_calculate_totalpages(void)
  3430. {
  3431. int i;
  3432. unsigned long totalpages = 0;
  3433. for (i = 0; i < nr_nodemap_entries; i++) {
  3434. unsigned long pages = early_node_map[i].end_pfn -
  3435. early_node_map[i].start_pfn;
  3436. totalpages += pages;
  3437. if (pages)
  3438. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3439. }
  3440. return totalpages;
  3441. }
  3442. /*
  3443. * Find the PFN the Movable zone begins in each node. Kernel memory
  3444. * is spread evenly between nodes as long as the nodes have enough
  3445. * memory. When they don't, some nodes will have more kernelcore than
  3446. * others
  3447. */
  3448. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3449. {
  3450. int i, nid;
  3451. unsigned long usable_startpfn;
  3452. unsigned long kernelcore_node, kernelcore_remaining;
  3453. unsigned long totalpages = early_calculate_totalpages();
  3454. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3455. /*
  3456. * If movablecore was specified, calculate what size of
  3457. * kernelcore that corresponds so that memory usable for
  3458. * any allocation type is evenly spread. If both kernelcore
  3459. * and movablecore are specified, then the value of kernelcore
  3460. * will be used for required_kernelcore if it's greater than
  3461. * what movablecore would have allowed.
  3462. */
  3463. if (required_movablecore) {
  3464. unsigned long corepages;
  3465. /*
  3466. * Round-up so that ZONE_MOVABLE is at least as large as what
  3467. * was requested by the user
  3468. */
  3469. required_movablecore =
  3470. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3471. corepages = totalpages - required_movablecore;
  3472. required_kernelcore = max(required_kernelcore, corepages);
  3473. }
  3474. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3475. if (!required_kernelcore)
  3476. return;
  3477. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3478. find_usable_zone_for_movable();
  3479. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3480. restart:
  3481. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3482. kernelcore_node = required_kernelcore / usable_nodes;
  3483. for_each_node_state(nid, N_HIGH_MEMORY) {
  3484. /*
  3485. * Recalculate kernelcore_node if the division per node
  3486. * now exceeds what is necessary to satisfy the requested
  3487. * amount of memory for the kernel
  3488. */
  3489. if (required_kernelcore < kernelcore_node)
  3490. kernelcore_node = required_kernelcore / usable_nodes;
  3491. /*
  3492. * As the map is walked, we track how much memory is usable
  3493. * by the kernel using kernelcore_remaining. When it is
  3494. * 0, the rest of the node is usable by ZONE_MOVABLE
  3495. */
  3496. kernelcore_remaining = kernelcore_node;
  3497. /* Go through each range of PFNs within this node */
  3498. for_each_active_range_index_in_nid(i, nid) {
  3499. unsigned long start_pfn, end_pfn;
  3500. unsigned long size_pages;
  3501. start_pfn = max(early_node_map[i].start_pfn,
  3502. zone_movable_pfn[nid]);
  3503. end_pfn = early_node_map[i].end_pfn;
  3504. if (start_pfn >= end_pfn)
  3505. continue;
  3506. /* Account for what is only usable for kernelcore */
  3507. if (start_pfn < usable_startpfn) {
  3508. unsigned long kernel_pages;
  3509. kernel_pages = min(end_pfn, usable_startpfn)
  3510. - start_pfn;
  3511. kernelcore_remaining -= min(kernel_pages,
  3512. kernelcore_remaining);
  3513. required_kernelcore -= min(kernel_pages,
  3514. required_kernelcore);
  3515. /* Continue if range is now fully accounted */
  3516. if (end_pfn <= usable_startpfn) {
  3517. /*
  3518. * Push zone_movable_pfn to the end so
  3519. * that if we have to rebalance
  3520. * kernelcore across nodes, we will
  3521. * not double account here
  3522. */
  3523. zone_movable_pfn[nid] = end_pfn;
  3524. continue;
  3525. }
  3526. start_pfn = usable_startpfn;
  3527. }
  3528. /*
  3529. * The usable PFN range for ZONE_MOVABLE is from
  3530. * start_pfn->end_pfn. Calculate size_pages as the
  3531. * number of pages used as kernelcore
  3532. */
  3533. size_pages = end_pfn - start_pfn;
  3534. if (size_pages > kernelcore_remaining)
  3535. size_pages = kernelcore_remaining;
  3536. zone_movable_pfn[nid] = start_pfn + size_pages;
  3537. /*
  3538. * Some kernelcore has been met, update counts and
  3539. * break if the kernelcore for this node has been
  3540. * satisified
  3541. */
  3542. required_kernelcore -= min(required_kernelcore,
  3543. size_pages);
  3544. kernelcore_remaining -= size_pages;
  3545. if (!kernelcore_remaining)
  3546. break;
  3547. }
  3548. }
  3549. /*
  3550. * If there is still required_kernelcore, we do another pass with one
  3551. * less node in the count. This will push zone_movable_pfn[nid] further
  3552. * along on the nodes that still have memory until kernelcore is
  3553. * satisified
  3554. */
  3555. usable_nodes--;
  3556. if (usable_nodes && required_kernelcore > usable_nodes)
  3557. goto restart;
  3558. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3559. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3560. zone_movable_pfn[nid] =
  3561. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3562. }
  3563. /* Any regular memory on that node ? */
  3564. static void check_for_regular_memory(pg_data_t *pgdat)
  3565. {
  3566. #ifdef CONFIG_HIGHMEM
  3567. enum zone_type zone_type;
  3568. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3569. struct zone *zone = &pgdat->node_zones[zone_type];
  3570. if (zone->present_pages)
  3571. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3572. }
  3573. #endif
  3574. }
  3575. /**
  3576. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3577. * @max_zone_pfn: an array of max PFNs for each zone
  3578. *
  3579. * This will call free_area_init_node() for each active node in the system.
  3580. * Using the page ranges provided by add_active_range(), the size of each
  3581. * zone in each node and their holes is calculated. If the maximum PFN
  3582. * between two adjacent zones match, it is assumed that the zone is empty.
  3583. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3584. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3585. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3586. * at arch_max_dma_pfn.
  3587. */
  3588. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3589. {
  3590. unsigned long nid;
  3591. int i;
  3592. /* Sort early_node_map as initialisation assumes it is sorted */
  3593. sort_node_map();
  3594. /* Record where the zone boundaries are */
  3595. memset(arch_zone_lowest_possible_pfn, 0,
  3596. sizeof(arch_zone_lowest_possible_pfn));
  3597. memset(arch_zone_highest_possible_pfn, 0,
  3598. sizeof(arch_zone_highest_possible_pfn));
  3599. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3600. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3601. for (i = 1; i < MAX_NR_ZONES; i++) {
  3602. if (i == ZONE_MOVABLE)
  3603. continue;
  3604. arch_zone_lowest_possible_pfn[i] =
  3605. arch_zone_highest_possible_pfn[i-1];
  3606. arch_zone_highest_possible_pfn[i] =
  3607. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3608. }
  3609. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3610. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3611. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3612. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3613. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3614. /* Print out the zone ranges */
  3615. printk("Zone PFN ranges:\n");
  3616. for (i = 0; i < MAX_NR_ZONES; i++) {
  3617. if (i == ZONE_MOVABLE)
  3618. continue;
  3619. printk(" %-8s %0#10lx -> %0#10lx\n",
  3620. zone_names[i],
  3621. arch_zone_lowest_possible_pfn[i],
  3622. arch_zone_highest_possible_pfn[i]);
  3623. }
  3624. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3625. printk("Movable zone start PFN for each node\n");
  3626. for (i = 0; i < MAX_NUMNODES; i++) {
  3627. if (zone_movable_pfn[i])
  3628. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3629. }
  3630. /* Print out the early_node_map[] */
  3631. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3632. for (i = 0; i < nr_nodemap_entries; i++)
  3633. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3634. early_node_map[i].start_pfn,
  3635. early_node_map[i].end_pfn);
  3636. /* Initialise every node */
  3637. mminit_verify_pageflags_layout();
  3638. setup_nr_node_ids();
  3639. for_each_online_node(nid) {
  3640. pg_data_t *pgdat = NODE_DATA(nid);
  3641. free_area_init_node(nid, NULL,
  3642. find_min_pfn_for_node(nid), NULL);
  3643. /* Any memory on that node */
  3644. if (pgdat->node_present_pages)
  3645. node_set_state(nid, N_HIGH_MEMORY);
  3646. check_for_regular_memory(pgdat);
  3647. }
  3648. }
  3649. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3650. {
  3651. unsigned long long coremem;
  3652. if (!p)
  3653. return -EINVAL;
  3654. coremem = memparse(p, &p);
  3655. *core = coremem >> PAGE_SHIFT;
  3656. /* Paranoid check that UL is enough for the coremem value */
  3657. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3658. return 0;
  3659. }
  3660. /*
  3661. * kernelcore=size sets the amount of memory for use for allocations that
  3662. * cannot be reclaimed or migrated.
  3663. */
  3664. static int __init cmdline_parse_kernelcore(char *p)
  3665. {
  3666. return cmdline_parse_core(p, &required_kernelcore);
  3667. }
  3668. /*
  3669. * movablecore=size sets the amount of memory for use for allocations that
  3670. * can be reclaimed or migrated.
  3671. */
  3672. static int __init cmdline_parse_movablecore(char *p)
  3673. {
  3674. return cmdline_parse_core(p, &required_movablecore);
  3675. }
  3676. early_param("kernelcore", cmdline_parse_kernelcore);
  3677. early_param("movablecore", cmdline_parse_movablecore);
  3678. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3679. /**
  3680. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3681. * @new_dma_reserve: The number of pages to mark reserved
  3682. *
  3683. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3684. * In the DMA zone, a significant percentage may be consumed by kernel image
  3685. * and other unfreeable allocations which can skew the watermarks badly. This
  3686. * function may optionally be used to account for unfreeable pages in the
  3687. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3688. * smaller per-cpu batchsize.
  3689. */
  3690. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3691. {
  3692. dma_reserve = new_dma_reserve;
  3693. }
  3694. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3695. struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
  3696. EXPORT_SYMBOL(contig_page_data);
  3697. #endif
  3698. void __init free_area_init(unsigned long *zones_size)
  3699. {
  3700. free_area_init_node(0, zones_size,
  3701. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3702. }
  3703. static int page_alloc_cpu_notify(struct notifier_block *self,
  3704. unsigned long action, void *hcpu)
  3705. {
  3706. int cpu = (unsigned long)hcpu;
  3707. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3708. drain_pages(cpu);
  3709. /*
  3710. * Spill the event counters of the dead processor
  3711. * into the current processors event counters.
  3712. * This artificially elevates the count of the current
  3713. * processor.
  3714. */
  3715. vm_events_fold_cpu(cpu);
  3716. /*
  3717. * Zero the differential counters of the dead processor
  3718. * so that the vm statistics are consistent.
  3719. *
  3720. * This is only okay since the processor is dead and cannot
  3721. * race with what we are doing.
  3722. */
  3723. refresh_cpu_vm_stats(cpu);
  3724. }
  3725. return NOTIFY_OK;
  3726. }
  3727. void __init page_alloc_init(void)
  3728. {
  3729. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3730. }
  3731. /*
  3732. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3733. * or min_free_kbytes changes.
  3734. */
  3735. static void calculate_totalreserve_pages(void)
  3736. {
  3737. struct pglist_data *pgdat;
  3738. unsigned long reserve_pages = 0;
  3739. enum zone_type i, j;
  3740. for_each_online_pgdat(pgdat) {
  3741. for (i = 0; i < MAX_NR_ZONES; i++) {
  3742. struct zone *zone = pgdat->node_zones + i;
  3743. unsigned long max = 0;
  3744. /* Find valid and maximum lowmem_reserve in the zone */
  3745. for (j = i; j < MAX_NR_ZONES; j++) {
  3746. if (zone->lowmem_reserve[j] > max)
  3747. max = zone->lowmem_reserve[j];
  3748. }
  3749. /* we treat the high watermark as reserved pages. */
  3750. max += high_wmark_pages(zone);
  3751. if (max > zone->present_pages)
  3752. max = zone->present_pages;
  3753. reserve_pages += max;
  3754. }
  3755. }
  3756. totalreserve_pages = reserve_pages;
  3757. }
  3758. /*
  3759. * setup_per_zone_lowmem_reserve - called whenever
  3760. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3761. * has a correct pages reserved value, so an adequate number of
  3762. * pages are left in the zone after a successful __alloc_pages().
  3763. */
  3764. static void setup_per_zone_lowmem_reserve(void)
  3765. {
  3766. struct pglist_data *pgdat;
  3767. enum zone_type j, idx;
  3768. for_each_online_pgdat(pgdat) {
  3769. for (j = 0; j < MAX_NR_ZONES; j++) {
  3770. struct zone *zone = pgdat->node_zones + j;
  3771. unsigned long present_pages = zone->present_pages;
  3772. zone->lowmem_reserve[j] = 0;
  3773. idx = j;
  3774. while (idx) {
  3775. struct zone *lower_zone;
  3776. idx--;
  3777. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3778. sysctl_lowmem_reserve_ratio[idx] = 1;
  3779. lower_zone = pgdat->node_zones + idx;
  3780. lower_zone->lowmem_reserve[j] = present_pages /
  3781. sysctl_lowmem_reserve_ratio[idx];
  3782. present_pages += lower_zone->present_pages;
  3783. }
  3784. }
  3785. }
  3786. /* update totalreserve_pages */
  3787. calculate_totalreserve_pages();
  3788. }
  3789. /**
  3790. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3791. *
  3792. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3793. * with respect to min_free_kbytes.
  3794. */
  3795. void setup_per_zone_pages_min(void)
  3796. {
  3797. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3798. unsigned long lowmem_pages = 0;
  3799. struct zone *zone;
  3800. unsigned long flags;
  3801. /* Calculate total number of !ZONE_HIGHMEM pages */
  3802. for_each_zone(zone) {
  3803. if (!is_highmem(zone))
  3804. lowmem_pages += zone->present_pages;
  3805. }
  3806. for_each_zone(zone) {
  3807. u64 tmp;
  3808. spin_lock_irqsave(&zone->lock, flags);
  3809. tmp = (u64)pages_min * zone->present_pages;
  3810. do_div(tmp, lowmem_pages);
  3811. if (is_highmem(zone)) {
  3812. /*
  3813. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3814. * need highmem pages, so cap pages_min to a small
  3815. * value here.
  3816. *
  3817. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  3818. * deltas controls asynch page reclaim, and so should
  3819. * not be capped for highmem.
  3820. */
  3821. int min_pages;
  3822. min_pages = zone->present_pages / 1024;
  3823. if (min_pages < SWAP_CLUSTER_MAX)
  3824. min_pages = SWAP_CLUSTER_MAX;
  3825. if (min_pages > 128)
  3826. min_pages = 128;
  3827. zone->watermark[WMARK_MIN] = min_pages;
  3828. } else {
  3829. /*
  3830. * If it's a lowmem zone, reserve a number of pages
  3831. * proportionate to the zone's size.
  3832. */
  3833. zone->watermark[WMARK_MIN] = tmp;
  3834. }
  3835. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  3836. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  3837. setup_zone_migrate_reserve(zone);
  3838. spin_unlock_irqrestore(&zone->lock, flags);
  3839. }
  3840. /* update totalreserve_pages */
  3841. calculate_totalreserve_pages();
  3842. }
  3843. /**
  3844. * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
  3845. *
  3846. * The inactive anon list should be small enough that the VM never has to
  3847. * do too much work, but large enough that each inactive page has a chance
  3848. * to be referenced again before it is swapped out.
  3849. *
  3850. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  3851. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  3852. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  3853. * the anonymous pages are kept on the inactive list.
  3854. *
  3855. * total target max
  3856. * memory ratio inactive anon
  3857. * -------------------------------------
  3858. * 10MB 1 5MB
  3859. * 100MB 1 50MB
  3860. * 1GB 3 250MB
  3861. * 10GB 10 0.9GB
  3862. * 100GB 31 3GB
  3863. * 1TB 101 10GB
  3864. * 10TB 320 32GB
  3865. */
  3866. static void setup_per_zone_inactive_ratio(void)
  3867. {
  3868. struct zone *zone;
  3869. for_each_zone(zone) {
  3870. unsigned int gb, ratio;
  3871. /* Zone size in gigabytes */
  3872. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  3873. ratio = int_sqrt(10 * gb);
  3874. if (!ratio)
  3875. ratio = 1;
  3876. zone->inactive_ratio = ratio;
  3877. }
  3878. }
  3879. /*
  3880. * Initialise min_free_kbytes.
  3881. *
  3882. * For small machines we want it small (128k min). For large machines
  3883. * we want it large (64MB max). But it is not linear, because network
  3884. * bandwidth does not increase linearly with machine size. We use
  3885. *
  3886. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3887. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3888. *
  3889. * which yields
  3890. *
  3891. * 16MB: 512k
  3892. * 32MB: 724k
  3893. * 64MB: 1024k
  3894. * 128MB: 1448k
  3895. * 256MB: 2048k
  3896. * 512MB: 2896k
  3897. * 1024MB: 4096k
  3898. * 2048MB: 5792k
  3899. * 4096MB: 8192k
  3900. * 8192MB: 11584k
  3901. * 16384MB: 16384k
  3902. */
  3903. static int __init init_per_zone_pages_min(void)
  3904. {
  3905. unsigned long lowmem_kbytes;
  3906. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3907. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3908. if (min_free_kbytes < 128)
  3909. min_free_kbytes = 128;
  3910. if (min_free_kbytes > 65536)
  3911. min_free_kbytes = 65536;
  3912. setup_per_zone_pages_min();
  3913. setup_per_zone_lowmem_reserve();
  3914. setup_per_zone_inactive_ratio();
  3915. return 0;
  3916. }
  3917. module_init(init_per_zone_pages_min)
  3918. /*
  3919. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3920. * that we can call two helper functions whenever min_free_kbytes
  3921. * changes.
  3922. */
  3923. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3924. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3925. {
  3926. proc_dointvec(table, write, file, buffer, length, ppos);
  3927. if (write)
  3928. setup_per_zone_pages_min();
  3929. return 0;
  3930. }
  3931. #ifdef CONFIG_NUMA
  3932. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3933. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3934. {
  3935. struct zone *zone;
  3936. int rc;
  3937. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3938. if (rc)
  3939. return rc;
  3940. for_each_zone(zone)
  3941. zone->min_unmapped_pages = (zone->present_pages *
  3942. sysctl_min_unmapped_ratio) / 100;
  3943. return 0;
  3944. }
  3945. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3946. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3947. {
  3948. struct zone *zone;
  3949. int rc;
  3950. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3951. if (rc)
  3952. return rc;
  3953. for_each_zone(zone)
  3954. zone->min_slab_pages = (zone->present_pages *
  3955. sysctl_min_slab_ratio) / 100;
  3956. return 0;
  3957. }
  3958. #endif
  3959. /*
  3960. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3961. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3962. * whenever sysctl_lowmem_reserve_ratio changes.
  3963. *
  3964. * The reserve ratio obviously has absolutely no relation with the
  3965. * minimum watermarks. The lowmem reserve ratio can only make sense
  3966. * if in function of the boot time zone sizes.
  3967. */
  3968. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3969. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3970. {
  3971. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3972. setup_per_zone_lowmem_reserve();
  3973. return 0;
  3974. }
  3975. /*
  3976. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3977. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3978. * can have before it gets flushed back to buddy allocator.
  3979. */
  3980. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3981. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3982. {
  3983. struct zone *zone;
  3984. unsigned int cpu;
  3985. int ret;
  3986. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3987. if (!write || (ret == -EINVAL))
  3988. return ret;
  3989. for_each_zone(zone) {
  3990. for_each_online_cpu(cpu) {
  3991. unsigned long high;
  3992. high = zone->present_pages / percpu_pagelist_fraction;
  3993. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3994. }
  3995. }
  3996. return 0;
  3997. }
  3998. int hashdist = HASHDIST_DEFAULT;
  3999. #ifdef CONFIG_NUMA
  4000. static int __init set_hashdist(char *str)
  4001. {
  4002. if (!str)
  4003. return 0;
  4004. hashdist = simple_strtoul(str, &str, 0);
  4005. return 1;
  4006. }
  4007. __setup("hashdist=", set_hashdist);
  4008. #endif
  4009. /*
  4010. * allocate a large system hash table from bootmem
  4011. * - it is assumed that the hash table must contain an exact power-of-2
  4012. * quantity of entries
  4013. * - limit is the number of hash buckets, not the total allocation size
  4014. */
  4015. void *__init alloc_large_system_hash(const char *tablename,
  4016. unsigned long bucketsize,
  4017. unsigned long numentries,
  4018. int scale,
  4019. int flags,
  4020. unsigned int *_hash_shift,
  4021. unsigned int *_hash_mask,
  4022. unsigned long limit)
  4023. {
  4024. unsigned long long max = limit;
  4025. unsigned long log2qty, size;
  4026. void *table = NULL;
  4027. /* allow the kernel cmdline to have a say */
  4028. if (!numentries) {
  4029. /* round applicable memory size up to nearest megabyte */
  4030. numentries = nr_kernel_pages;
  4031. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4032. numentries >>= 20 - PAGE_SHIFT;
  4033. numentries <<= 20 - PAGE_SHIFT;
  4034. /* limit to 1 bucket per 2^scale bytes of low memory */
  4035. if (scale > PAGE_SHIFT)
  4036. numentries >>= (scale - PAGE_SHIFT);
  4037. else
  4038. numentries <<= (PAGE_SHIFT - scale);
  4039. /* Make sure we've got at least a 0-order allocation.. */
  4040. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4041. numentries = PAGE_SIZE / bucketsize;
  4042. }
  4043. numentries = roundup_pow_of_two(numentries);
  4044. /* limit allocation size to 1/16 total memory by default */
  4045. if (max == 0) {
  4046. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4047. do_div(max, bucketsize);
  4048. }
  4049. if (numentries > max)
  4050. numentries = max;
  4051. log2qty = ilog2(numentries);
  4052. do {
  4053. size = bucketsize << log2qty;
  4054. if (flags & HASH_EARLY)
  4055. table = alloc_bootmem_nopanic(size);
  4056. else if (hashdist)
  4057. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4058. else {
  4059. /*
  4060. * If bucketsize is not a power-of-two, we may free
  4061. * some pages at the end of hash table which
  4062. * alloc_pages_exact() automatically does
  4063. */
  4064. if (get_order(size) < MAX_ORDER)
  4065. table = alloc_pages_exact(size, GFP_ATOMIC);
  4066. }
  4067. } while (!table && size > PAGE_SIZE && --log2qty);
  4068. if (!table)
  4069. panic("Failed to allocate %s hash table\n", tablename);
  4070. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  4071. tablename,
  4072. (1U << log2qty),
  4073. ilog2(size) - PAGE_SHIFT,
  4074. size);
  4075. if (_hash_shift)
  4076. *_hash_shift = log2qty;
  4077. if (_hash_mask)
  4078. *_hash_mask = (1 << log2qty) - 1;
  4079. /*
  4080. * If hashdist is set, the table allocation is done with __vmalloc()
  4081. * which invokes the kmemleak_alloc() callback. This function may also
  4082. * be called before the slab and kmemleak are initialised when
  4083. * kmemleak simply buffers the request to be executed later
  4084. * (GFP_ATOMIC flag ignored in this case).
  4085. */
  4086. if (!hashdist)
  4087. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4088. return table;
  4089. }
  4090. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4091. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4092. unsigned long pfn)
  4093. {
  4094. #ifdef CONFIG_SPARSEMEM
  4095. return __pfn_to_section(pfn)->pageblock_flags;
  4096. #else
  4097. return zone->pageblock_flags;
  4098. #endif /* CONFIG_SPARSEMEM */
  4099. }
  4100. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4101. {
  4102. #ifdef CONFIG_SPARSEMEM
  4103. pfn &= (PAGES_PER_SECTION-1);
  4104. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4105. #else
  4106. pfn = pfn - zone->zone_start_pfn;
  4107. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4108. #endif /* CONFIG_SPARSEMEM */
  4109. }
  4110. /**
  4111. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4112. * @page: The page within the block of interest
  4113. * @start_bitidx: The first bit of interest to retrieve
  4114. * @end_bitidx: The last bit of interest
  4115. * returns pageblock_bits flags
  4116. */
  4117. unsigned long get_pageblock_flags_group(struct page *page,
  4118. int start_bitidx, int end_bitidx)
  4119. {
  4120. struct zone *zone;
  4121. unsigned long *bitmap;
  4122. unsigned long pfn, bitidx;
  4123. unsigned long flags = 0;
  4124. unsigned long value = 1;
  4125. zone = page_zone(page);
  4126. pfn = page_to_pfn(page);
  4127. bitmap = get_pageblock_bitmap(zone, pfn);
  4128. bitidx = pfn_to_bitidx(zone, pfn);
  4129. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4130. if (test_bit(bitidx + start_bitidx, bitmap))
  4131. flags |= value;
  4132. return flags;
  4133. }
  4134. /**
  4135. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4136. * @page: The page within the block of interest
  4137. * @start_bitidx: The first bit of interest
  4138. * @end_bitidx: The last bit of interest
  4139. * @flags: The flags to set
  4140. */
  4141. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4142. int start_bitidx, int end_bitidx)
  4143. {
  4144. struct zone *zone;
  4145. unsigned long *bitmap;
  4146. unsigned long pfn, bitidx;
  4147. unsigned long value = 1;
  4148. zone = page_zone(page);
  4149. pfn = page_to_pfn(page);
  4150. bitmap = get_pageblock_bitmap(zone, pfn);
  4151. bitidx = pfn_to_bitidx(zone, pfn);
  4152. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4153. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4154. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4155. if (flags & value)
  4156. __set_bit(bitidx + start_bitidx, bitmap);
  4157. else
  4158. __clear_bit(bitidx + start_bitidx, bitmap);
  4159. }
  4160. /*
  4161. * This is designed as sub function...plz see page_isolation.c also.
  4162. * set/clear page block's type to be ISOLATE.
  4163. * page allocater never alloc memory from ISOLATE block.
  4164. */
  4165. int set_migratetype_isolate(struct page *page)
  4166. {
  4167. struct zone *zone;
  4168. unsigned long flags;
  4169. int ret = -EBUSY;
  4170. zone = page_zone(page);
  4171. spin_lock_irqsave(&zone->lock, flags);
  4172. /*
  4173. * In future, more migrate types will be able to be isolation target.
  4174. */
  4175. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  4176. goto out;
  4177. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4178. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4179. ret = 0;
  4180. out:
  4181. spin_unlock_irqrestore(&zone->lock, flags);
  4182. if (!ret)
  4183. drain_all_pages();
  4184. return ret;
  4185. }
  4186. void unset_migratetype_isolate(struct page *page)
  4187. {
  4188. struct zone *zone;
  4189. unsigned long flags;
  4190. zone = page_zone(page);
  4191. spin_lock_irqsave(&zone->lock, flags);
  4192. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4193. goto out;
  4194. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4195. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4196. out:
  4197. spin_unlock_irqrestore(&zone->lock, flags);
  4198. }
  4199. #ifdef CONFIG_MEMORY_HOTREMOVE
  4200. /*
  4201. * All pages in the range must be isolated before calling this.
  4202. */
  4203. void
  4204. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4205. {
  4206. struct page *page;
  4207. struct zone *zone;
  4208. int order, i;
  4209. unsigned long pfn;
  4210. unsigned long flags;
  4211. /* find the first valid pfn */
  4212. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4213. if (pfn_valid(pfn))
  4214. break;
  4215. if (pfn == end_pfn)
  4216. return;
  4217. zone = page_zone(pfn_to_page(pfn));
  4218. spin_lock_irqsave(&zone->lock, flags);
  4219. pfn = start_pfn;
  4220. while (pfn < end_pfn) {
  4221. if (!pfn_valid(pfn)) {
  4222. pfn++;
  4223. continue;
  4224. }
  4225. page = pfn_to_page(pfn);
  4226. BUG_ON(page_count(page));
  4227. BUG_ON(!PageBuddy(page));
  4228. order = page_order(page);
  4229. #ifdef CONFIG_DEBUG_VM
  4230. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4231. pfn, 1 << order, end_pfn);
  4232. #endif
  4233. list_del(&page->lru);
  4234. rmv_page_order(page);
  4235. zone->free_area[order].nr_free--;
  4236. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4237. - (1UL << order));
  4238. for (i = 0; i < (1 << order); i++)
  4239. SetPageReserved((page+i));
  4240. pfn += (1 << order);
  4241. }
  4242. spin_unlock_irqrestore(&zone->lock, flags);
  4243. }
  4244. #endif