amd_iommu.c 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297
  1. /*
  2. * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <joerg.roedel@amd.com>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/pci.h>
  20. #include <linux/gfp.h>
  21. #include <linux/bitops.h>
  22. #include <linux/debugfs.h>
  23. #include <linux/scatterlist.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/iommu-helper.h>
  26. #include <linux/iommu.h>
  27. #include <asm/proto.h>
  28. #include <asm/iommu.h>
  29. #include <asm/gart.h>
  30. #include <asm/amd_iommu_types.h>
  31. #include <asm/amd_iommu.h>
  32. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  33. #define EXIT_LOOP_COUNT 10000000
  34. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  35. /* A list of preallocated protection domains */
  36. static LIST_HEAD(iommu_pd_list);
  37. static DEFINE_SPINLOCK(iommu_pd_list_lock);
  38. /*
  39. * Domain for untranslated devices - only allocated
  40. * if iommu=pt passed on kernel cmd line.
  41. */
  42. static struct protection_domain *pt_domain;
  43. #ifdef CONFIG_IOMMU_API
  44. static struct iommu_ops amd_iommu_ops;
  45. #endif
  46. /*
  47. * general struct to manage commands send to an IOMMU
  48. */
  49. struct iommu_cmd {
  50. u32 data[4];
  51. };
  52. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  53. struct unity_map_entry *e);
  54. static struct dma_ops_domain *find_protection_domain(u16 devid);
  55. static u64* alloc_pte(struct protection_domain *dom,
  56. unsigned long address, u64
  57. **pte_page, gfp_t gfp);
  58. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  59. unsigned long start_page,
  60. unsigned int pages);
  61. #ifndef BUS_NOTIFY_UNBOUND_DRIVER
  62. #define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
  63. #endif
  64. #ifdef CONFIG_AMD_IOMMU_STATS
  65. /*
  66. * Initialization code for statistics collection
  67. */
  68. DECLARE_STATS_COUNTER(compl_wait);
  69. DECLARE_STATS_COUNTER(cnt_map_single);
  70. DECLARE_STATS_COUNTER(cnt_unmap_single);
  71. DECLARE_STATS_COUNTER(cnt_map_sg);
  72. DECLARE_STATS_COUNTER(cnt_unmap_sg);
  73. DECLARE_STATS_COUNTER(cnt_alloc_coherent);
  74. DECLARE_STATS_COUNTER(cnt_free_coherent);
  75. DECLARE_STATS_COUNTER(cross_page);
  76. DECLARE_STATS_COUNTER(domain_flush_single);
  77. DECLARE_STATS_COUNTER(domain_flush_all);
  78. DECLARE_STATS_COUNTER(alloced_io_mem);
  79. DECLARE_STATS_COUNTER(total_map_requests);
  80. static struct dentry *stats_dir;
  81. static struct dentry *de_isolate;
  82. static struct dentry *de_fflush;
  83. static void amd_iommu_stats_add(struct __iommu_counter *cnt)
  84. {
  85. if (stats_dir == NULL)
  86. return;
  87. cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
  88. &cnt->value);
  89. }
  90. static void amd_iommu_stats_init(void)
  91. {
  92. stats_dir = debugfs_create_dir("amd-iommu", NULL);
  93. if (stats_dir == NULL)
  94. return;
  95. de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
  96. (u32 *)&amd_iommu_isolate);
  97. de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
  98. (u32 *)&amd_iommu_unmap_flush);
  99. amd_iommu_stats_add(&compl_wait);
  100. amd_iommu_stats_add(&cnt_map_single);
  101. amd_iommu_stats_add(&cnt_unmap_single);
  102. amd_iommu_stats_add(&cnt_map_sg);
  103. amd_iommu_stats_add(&cnt_unmap_sg);
  104. amd_iommu_stats_add(&cnt_alloc_coherent);
  105. amd_iommu_stats_add(&cnt_free_coherent);
  106. amd_iommu_stats_add(&cross_page);
  107. amd_iommu_stats_add(&domain_flush_single);
  108. amd_iommu_stats_add(&domain_flush_all);
  109. amd_iommu_stats_add(&alloced_io_mem);
  110. amd_iommu_stats_add(&total_map_requests);
  111. }
  112. #endif
  113. /* returns !0 if the IOMMU is caching non-present entries in its TLB */
  114. static int iommu_has_npcache(struct amd_iommu *iommu)
  115. {
  116. return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
  117. }
  118. /****************************************************************************
  119. *
  120. * Interrupt handling functions
  121. *
  122. ****************************************************************************/
  123. static void iommu_print_event(void *__evt)
  124. {
  125. u32 *event = __evt;
  126. int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  127. int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  128. int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  129. int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  130. u64 address = (u64)(((u64)event[3]) << 32) | event[2];
  131. printk(KERN_ERR "AMD IOMMU: Event logged [");
  132. switch (type) {
  133. case EVENT_TYPE_ILL_DEV:
  134. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  135. "address=0x%016llx flags=0x%04x]\n",
  136. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  137. address, flags);
  138. break;
  139. case EVENT_TYPE_IO_FAULT:
  140. printk("IO_PAGE_FAULT device=%02x:%02x.%x "
  141. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  142. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  143. domid, address, flags);
  144. break;
  145. case EVENT_TYPE_DEV_TAB_ERR:
  146. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  147. "address=0x%016llx flags=0x%04x]\n",
  148. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  149. address, flags);
  150. break;
  151. case EVENT_TYPE_PAGE_TAB_ERR:
  152. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  153. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  154. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  155. domid, address, flags);
  156. break;
  157. case EVENT_TYPE_ILL_CMD:
  158. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  159. break;
  160. case EVENT_TYPE_CMD_HARD_ERR:
  161. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  162. "flags=0x%04x]\n", address, flags);
  163. break;
  164. case EVENT_TYPE_IOTLB_INV_TO:
  165. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  166. "address=0x%016llx]\n",
  167. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  168. address);
  169. break;
  170. case EVENT_TYPE_INV_DEV_REQ:
  171. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  172. "address=0x%016llx flags=0x%04x]\n",
  173. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  174. address, flags);
  175. break;
  176. default:
  177. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  178. }
  179. }
  180. static void iommu_poll_events(struct amd_iommu *iommu)
  181. {
  182. u32 head, tail;
  183. unsigned long flags;
  184. spin_lock_irqsave(&iommu->lock, flags);
  185. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  186. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  187. while (head != tail) {
  188. iommu_print_event(iommu->evt_buf + head);
  189. head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
  190. }
  191. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  192. spin_unlock_irqrestore(&iommu->lock, flags);
  193. }
  194. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  195. {
  196. struct amd_iommu *iommu;
  197. for_each_iommu(iommu)
  198. iommu_poll_events(iommu);
  199. return IRQ_HANDLED;
  200. }
  201. /****************************************************************************
  202. *
  203. * IOMMU command queuing functions
  204. *
  205. ****************************************************************************/
  206. /*
  207. * Writes the command to the IOMMUs command buffer and informs the
  208. * hardware about the new command. Must be called with iommu->lock held.
  209. */
  210. static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  211. {
  212. u32 tail, head;
  213. u8 *target;
  214. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  215. target = iommu->cmd_buf + tail;
  216. memcpy_toio(target, cmd, sizeof(*cmd));
  217. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  218. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  219. if (tail == head)
  220. return -ENOMEM;
  221. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  222. return 0;
  223. }
  224. /*
  225. * General queuing function for commands. Takes iommu->lock and calls
  226. * __iommu_queue_command().
  227. */
  228. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  229. {
  230. unsigned long flags;
  231. int ret;
  232. spin_lock_irqsave(&iommu->lock, flags);
  233. ret = __iommu_queue_command(iommu, cmd);
  234. if (!ret)
  235. iommu->need_sync = true;
  236. spin_unlock_irqrestore(&iommu->lock, flags);
  237. return ret;
  238. }
  239. /*
  240. * This function waits until an IOMMU has completed a completion
  241. * wait command
  242. */
  243. static void __iommu_wait_for_completion(struct amd_iommu *iommu)
  244. {
  245. int ready = 0;
  246. unsigned status = 0;
  247. unsigned long i = 0;
  248. INC_STATS_COUNTER(compl_wait);
  249. while (!ready && (i < EXIT_LOOP_COUNT)) {
  250. ++i;
  251. /* wait for the bit to become one */
  252. status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  253. ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
  254. }
  255. /* set bit back to zero */
  256. status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
  257. writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
  258. if (unlikely(i == EXIT_LOOP_COUNT))
  259. panic("AMD IOMMU: Completion wait loop failed\n");
  260. }
  261. /*
  262. * This function queues a completion wait command into the command
  263. * buffer of an IOMMU
  264. */
  265. static int __iommu_completion_wait(struct amd_iommu *iommu)
  266. {
  267. struct iommu_cmd cmd;
  268. memset(&cmd, 0, sizeof(cmd));
  269. cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
  270. CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
  271. return __iommu_queue_command(iommu, &cmd);
  272. }
  273. /*
  274. * This function is called whenever we need to ensure that the IOMMU has
  275. * completed execution of all commands we sent. It sends a
  276. * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
  277. * us about that by writing a value to a physical address we pass with
  278. * the command.
  279. */
  280. static int iommu_completion_wait(struct amd_iommu *iommu)
  281. {
  282. int ret = 0;
  283. unsigned long flags;
  284. spin_lock_irqsave(&iommu->lock, flags);
  285. if (!iommu->need_sync)
  286. goto out;
  287. ret = __iommu_completion_wait(iommu);
  288. iommu->need_sync = false;
  289. if (ret)
  290. goto out;
  291. __iommu_wait_for_completion(iommu);
  292. out:
  293. spin_unlock_irqrestore(&iommu->lock, flags);
  294. return 0;
  295. }
  296. /*
  297. * Command send function for invalidating a device table entry
  298. */
  299. static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
  300. {
  301. struct iommu_cmd cmd;
  302. int ret;
  303. BUG_ON(iommu == NULL);
  304. memset(&cmd, 0, sizeof(cmd));
  305. CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
  306. cmd.data[0] = devid;
  307. ret = iommu_queue_command(iommu, &cmd);
  308. return ret;
  309. }
  310. static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  311. u16 domid, int pde, int s)
  312. {
  313. memset(cmd, 0, sizeof(*cmd));
  314. address &= PAGE_MASK;
  315. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  316. cmd->data[1] |= domid;
  317. cmd->data[2] = lower_32_bits(address);
  318. cmd->data[3] = upper_32_bits(address);
  319. if (s) /* size bit - we flush more than one 4kb page */
  320. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  321. if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
  322. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  323. }
  324. /*
  325. * Generic command send function for invalidaing TLB entries
  326. */
  327. static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
  328. u64 address, u16 domid, int pde, int s)
  329. {
  330. struct iommu_cmd cmd;
  331. int ret;
  332. __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
  333. ret = iommu_queue_command(iommu, &cmd);
  334. return ret;
  335. }
  336. /*
  337. * TLB invalidation function which is called from the mapping functions.
  338. * It invalidates a single PTE if the range to flush is within a single
  339. * page. Otherwise it flushes the whole TLB of the IOMMU.
  340. */
  341. static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
  342. u64 address, size_t size)
  343. {
  344. int s = 0;
  345. unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
  346. address &= PAGE_MASK;
  347. if (pages > 1) {
  348. /*
  349. * If we have to flush more than one page, flush all
  350. * TLB entries for this domain
  351. */
  352. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  353. s = 1;
  354. }
  355. iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
  356. return 0;
  357. }
  358. /* Flush the whole IO/TLB for a given protection domain */
  359. static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
  360. {
  361. u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  362. INC_STATS_COUNTER(domain_flush_single);
  363. iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
  364. }
  365. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  366. static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
  367. {
  368. u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  369. INC_STATS_COUNTER(domain_flush_single);
  370. iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
  371. }
  372. /*
  373. * This function is used to flush the IO/TLB for a given protection domain
  374. * on every IOMMU in the system
  375. */
  376. static void iommu_flush_domain(u16 domid)
  377. {
  378. unsigned long flags;
  379. struct amd_iommu *iommu;
  380. struct iommu_cmd cmd;
  381. INC_STATS_COUNTER(domain_flush_all);
  382. __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  383. domid, 1, 1);
  384. for_each_iommu(iommu) {
  385. spin_lock_irqsave(&iommu->lock, flags);
  386. __iommu_queue_command(iommu, &cmd);
  387. __iommu_completion_wait(iommu);
  388. __iommu_wait_for_completion(iommu);
  389. spin_unlock_irqrestore(&iommu->lock, flags);
  390. }
  391. }
  392. void amd_iommu_flush_all_domains(void)
  393. {
  394. int i;
  395. for (i = 1; i < MAX_DOMAIN_ID; ++i) {
  396. if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
  397. continue;
  398. iommu_flush_domain(i);
  399. }
  400. }
  401. void amd_iommu_flush_all_devices(void)
  402. {
  403. struct amd_iommu *iommu;
  404. int i;
  405. for (i = 0; i <= amd_iommu_last_bdf; ++i) {
  406. if (amd_iommu_pd_table[i] == NULL)
  407. continue;
  408. iommu = amd_iommu_rlookup_table[i];
  409. if (!iommu)
  410. continue;
  411. iommu_queue_inv_dev_entry(iommu, i);
  412. iommu_completion_wait(iommu);
  413. }
  414. }
  415. /****************************************************************************
  416. *
  417. * The functions below are used the create the page table mappings for
  418. * unity mapped regions.
  419. *
  420. ****************************************************************************/
  421. /*
  422. * Generic mapping functions. It maps a physical address into a DMA
  423. * address space. It allocates the page table pages if necessary.
  424. * In the future it can be extended to a generic mapping function
  425. * supporting all features of AMD IOMMU page tables like level skipping
  426. * and full 64 bit address spaces.
  427. */
  428. static int iommu_map_page(struct protection_domain *dom,
  429. unsigned long bus_addr,
  430. unsigned long phys_addr,
  431. int prot)
  432. {
  433. u64 __pte, *pte;
  434. bus_addr = PAGE_ALIGN(bus_addr);
  435. phys_addr = PAGE_ALIGN(phys_addr);
  436. /* only support 512GB address spaces for now */
  437. if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
  438. return -EINVAL;
  439. pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
  440. if (IOMMU_PTE_PRESENT(*pte))
  441. return -EBUSY;
  442. __pte = phys_addr | IOMMU_PTE_P;
  443. if (prot & IOMMU_PROT_IR)
  444. __pte |= IOMMU_PTE_IR;
  445. if (prot & IOMMU_PROT_IW)
  446. __pte |= IOMMU_PTE_IW;
  447. *pte = __pte;
  448. return 0;
  449. }
  450. static void iommu_unmap_page(struct protection_domain *dom,
  451. unsigned long bus_addr)
  452. {
  453. u64 *pte;
  454. pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
  455. if (!IOMMU_PTE_PRESENT(*pte))
  456. return;
  457. pte = IOMMU_PTE_PAGE(*pte);
  458. pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
  459. if (!IOMMU_PTE_PRESENT(*pte))
  460. return;
  461. pte = IOMMU_PTE_PAGE(*pte);
  462. pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
  463. *pte = 0;
  464. }
  465. /*
  466. * This function checks if a specific unity mapping entry is needed for
  467. * this specific IOMMU.
  468. */
  469. static int iommu_for_unity_map(struct amd_iommu *iommu,
  470. struct unity_map_entry *entry)
  471. {
  472. u16 bdf, i;
  473. for (i = entry->devid_start; i <= entry->devid_end; ++i) {
  474. bdf = amd_iommu_alias_table[i];
  475. if (amd_iommu_rlookup_table[bdf] == iommu)
  476. return 1;
  477. }
  478. return 0;
  479. }
  480. /*
  481. * Init the unity mappings for a specific IOMMU in the system
  482. *
  483. * Basically iterates over all unity mapping entries and applies them to
  484. * the default domain DMA of that IOMMU if necessary.
  485. */
  486. static int iommu_init_unity_mappings(struct amd_iommu *iommu)
  487. {
  488. struct unity_map_entry *entry;
  489. int ret;
  490. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  491. if (!iommu_for_unity_map(iommu, entry))
  492. continue;
  493. ret = dma_ops_unity_map(iommu->default_dom, entry);
  494. if (ret)
  495. return ret;
  496. }
  497. return 0;
  498. }
  499. /*
  500. * This function actually applies the mapping to the page table of the
  501. * dma_ops domain.
  502. */
  503. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  504. struct unity_map_entry *e)
  505. {
  506. u64 addr;
  507. int ret;
  508. for (addr = e->address_start; addr < e->address_end;
  509. addr += PAGE_SIZE) {
  510. ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
  511. if (ret)
  512. return ret;
  513. /*
  514. * if unity mapping is in aperture range mark the page
  515. * as allocated in the aperture
  516. */
  517. if (addr < dma_dom->aperture_size)
  518. __set_bit(addr >> PAGE_SHIFT,
  519. dma_dom->aperture[0]->bitmap);
  520. }
  521. return 0;
  522. }
  523. /*
  524. * Inits the unity mappings required for a specific device
  525. */
  526. static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
  527. u16 devid)
  528. {
  529. struct unity_map_entry *e;
  530. int ret;
  531. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  532. if (!(devid >= e->devid_start && devid <= e->devid_end))
  533. continue;
  534. ret = dma_ops_unity_map(dma_dom, e);
  535. if (ret)
  536. return ret;
  537. }
  538. return 0;
  539. }
  540. /****************************************************************************
  541. *
  542. * The next functions belong to the address allocator for the dma_ops
  543. * interface functions. They work like the allocators in the other IOMMU
  544. * drivers. Its basically a bitmap which marks the allocated pages in
  545. * the aperture. Maybe it could be enhanced in the future to a more
  546. * efficient allocator.
  547. *
  548. ****************************************************************************/
  549. /*
  550. * The address allocator core functions.
  551. *
  552. * called with domain->lock held
  553. */
  554. /*
  555. * This function checks if there is a PTE for a given dma address. If
  556. * there is one, it returns the pointer to it.
  557. */
  558. static u64* fetch_pte(struct protection_domain *domain,
  559. unsigned long address)
  560. {
  561. u64 *pte;
  562. pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)];
  563. if (!IOMMU_PTE_PRESENT(*pte))
  564. return NULL;
  565. pte = IOMMU_PTE_PAGE(*pte);
  566. pte = &pte[IOMMU_PTE_L1_INDEX(address)];
  567. if (!IOMMU_PTE_PRESENT(*pte))
  568. return NULL;
  569. pte = IOMMU_PTE_PAGE(*pte);
  570. pte = &pte[IOMMU_PTE_L0_INDEX(address)];
  571. return pte;
  572. }
  573. /*
  574. * This function is used to add a new aperture range to an existing
  575. * aperture in case of dma_ops domain allocation or address allocation
  576. * failure.
  577. */
  578. static int alloc_new_range(struct amd_iommu *iommu,
  579. struct dma_ops_domain *dma_dom,
  580. bool populate, gfp_t gfp)
  581. {
  582. int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
  583. int i;
  584. #ifdef CONFIG_IOMMU_STRESS
  585. populate = false;
  586. #endif
  587. if (index >= APERTURE_MAX_RANGES)
  588. return -ENOMEM;
  589. dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
  590. if (!dma_dom->aperture[index])
  591. return -ENOMEM;
  592. dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
  593. if (!dma_dom->aperture[index]->bitmap)
  594. goto out_free;
  595. dma_dom->aperture[index]->offset = dma_dom->aperture_size;
  596. if (populate) {
  597. unsigned long address = dma_dom->aperture_size;
  598. int i, num_ptes = APERTURE_RANGE_PAGES / 512;
  599. u64 *pte, *pte_page;
  600. for (i = 0; i < num_ptes; ++i) {
  601. pte = alloc_pte(&dma_dom->domain, address,
  602. &pte_page, gfp);
  603. if (!pte)
  604. goto out_free;
  605. dma_dom->aperture[index]->pte_pages[i] = pte_page;
  606. address += APERTURE_RANGE_SIZE / 64;
  607. }
  608. }
  609. dma_dom->aperture_size += APERTURE_RANGE_SIZE;
  610. /* Intialize the exclusion range if necessary */
  611. if (iommu->exclusion_start &&
  612. iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
  613. iommu->exclusion_start < dma_dom->aperture_size) {
  614. unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
  615. int pages = iommu_num_pages(iommu->exclusion_start,
  616. iommu->exclusion_length,
  617. PAGE_SIZE);
  618. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  619. }
  620. /*
  621. * Check for areas already mapped as present in the new aperture
  622. * range and mark those pages as reserved in the allocator. Such
  623. * mappings may already exist as a result of requested unity
  624. * mappings for devices.
  625. */
  626. for (i = dma_dom->aperture[index]->offset;
  627. i < dma_dom->aperture_size;
  628. i += PAGE_SIZE) {
  629. u64 *pte = fetch_pte(&dma_dom->domain, i);
  630. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  631. continue;
  632. dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
  633. }
  634. return 0;
  635. out_free:
  636. free_page((unsigned long)dma_dom->aperture[index]->bitmap);
  637. kfree(dma_dom->aperture[index]);
  638. dma_dom->aperture[index] = NULL;
  639. return -ENOMEM;
  640. }
  641. static unsigned long dma_ops_area_alloc(struct device *dev,
  642. struct dma_ops_domain *dom,
  643. unsigned int pages,
  644. unsigned long align_mask,
  645. u64 dma_mask,
  646. unsigned long start)
  647. {
  648. unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
  649. int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
  650. int i = start >> APERTURE_RANGE_SHIFT;
  651. unsigned long boundary_size;
  652. unsigned long address = -1;
  653. unsigned long limit;
  654. next_bit >>= PAGE_SHIFT;
  655. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  656. PAGE_SIZE) >> PAGE_SHIFT;
  657. for (;i < max_index; ++i) {
  658. unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
  659. if (dom->aperture[i]->offset >= dma_mask)
  660. break;
  661. limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
  662. dma_mask >> PAGE_SHIFT);
  663. address = iommu_area_alloc(dom->aperture[i]->bitmap,
  664. limit, next_bit, pages, 0,
  665. boundary_size, align_mask);
  666. if (address != -1) {
  667. address = dom->aperture[i]->offset +
  668. (address << PAGE_SHIFT);
  669. dom->next_address = address + (pages << PAGE_SHIFT);
  670. break;
  671. }
  672. next_bit = 0;
  673. }
  674. return address;
  675. }
  676. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  677. struct dma_ops_domain *dom,
  678. unsigned int pages,
  679. unsigned long align_mask,
  680. u64 dma_mask)
  681. {
  682. unsigned long address;
  683. #ifdef CONFIG_IOMMU_STRESS
  684. dom->next_address = 0;
  685. dom->need_flush = true;
  686. #endif
  687. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  688. dma_mask, dom->next_address);
  689. if (address == -1) {
  690. dom->next_address = 0;
  691. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  692. dma_mask, 0);
  693. dom->need_flush = true;
  694. }
  695. if (unlikely(address == -1))
  696. address = bad_dma_address;
  697. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  698. return address;
  699. }
  700. /*
  701. * The address free function.
  702. *
  703. * called with domain->lock held
  704. */
  705. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  706. unsigned long address,
  707. unsigned int pages)
  708. {
  709. unsigned i = address >> APERTURE_RANGE_SHIFT;
  710. struct aperture_range *range = dom->aperture[i];
  711. BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
  712. #ifdef CONFIG_IOMMU_STRESS
  713. if (i < 4)
  714. return;
  715. #endif
  716. if (address >= dom->next_address)
  717. dom->need_flush = true;
  718. address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
  719. iommu_area_free(range->bitmap, address, pages);
  720. }
  721. /****************************************************************************
  722. *
  723. * The next functions belong to the domain allocation. A domain is
  724. * allocated for every IOMMU as the default domain. If device isolation
  725. * is enabled, every device get its own domain. The most important thing
  726. * about domains is the page table mapping the DMA address space they
  727. * contain.
  728. *
  729. ****************************************************************************/
  730. static u16 domain_id_alloc(void)
  731. {
  732. unsigned long flags;
  733. int id;
  734. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  735. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  736. BUG_ON(id == 0);
  737. if (id > 0 && id < MAX_DOMAIN_ID)
  738. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  739. else
  740. id = 0;
  741. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  742. return id;
  743. }
  744. static void domain_id_free(int id)
  745. {
  746. unsigned long flags;
  747. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  748. if (id > 0 && id < MAX_DOMAIN_ID)
  749. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  750. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  751. }
  752. /*
  753. * Used to reserve address ranges in the aperture (e.g. for exclusion
  754. * ranges.
  755. */
  756. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  757. unsigned long start_page,
  758. unsigned int pages)
  759. {
  760. unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
  761. if (start_page + pages > last_page)
  762. pages = last_page - start_page;
  763. for (i = start_page; i < start_page + pages; ++i) {
  764. int index = i / APERTURE_RANGE_PAGES;
  765. int page = i % APERTURE_RANGE_PAGES;
  766. __set_bit(page, dom->aperture[index]->bitmap);
  767. }
  768. }
  769. static void free_pagetable(struct protection_domain *domain)
  770. {
  771. int i, j;
  772. u64 *p1, *p2, *p3;
  773. p1 = domain->pt_root;
  774. if (!p1)
  775. return;
  776. for (i = 0; i < 512; ++i) {
  777. if (!IOMMU_PTE_PRESENT(p1[i]))
  778. continue;
  779. p2 = IOMMU_PTE_PAGE(p1[i]);
  780. for (j = 0; j < 512; ++j) {
  781. if (!IOMMU_PTE_PRESENT(p2[j]))
  782. continue;
  783. p3 = IOMMU_PTE_PAGE(p2[j]);
  784. free_page((unsigned long)p3);
  785. }
  786. free_page((unsigned long)p2);
  787. }
  788. free_page((unsigned long)p1);
  789. domain->pt_root = NULL;
  790. }
  791. /*
  792. * Free a domain, only used if something went wrong in the
  793. * allocation path and we need to free an already allocated page table
  794. */
  795. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  796. {
  797. int i;
  798. if (!dom)
  799. return;
  800. free_pagetable(&dom->domain);
  801. for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
  802. if (!dom->aperture[i])
  803. continue;
  804. free_page((unsigned long)dom->aperture[i]->bitmap);
  805. kfree(dom->aperture[i]);
  806. }
  807. kfree(dom);
  808. }
  809. /*
  810. * Allocates a new protection domain usable for the dma_ops functions.
  811. * It also intializes the page table and the address allocator data
  812. * structures required for the dma_ops interface
  813. */
  814. static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
  815. {
  816. struct dma_ops_domain *dma_dom;
  817. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  818. if (!dma_dom)
  819. return NULL;
  820. spin_lock_init(&dma_dom->domain.lock);
  821. dma_dom->domain.id = domain_id_alloc();
  822. if (dma_dom->domain.id == 0)
  823. goto free_dma_dom;
  824. dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
  825. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  826. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  827. dma_dom->domain.priv = dma_dom;
  828. if (!dma_dom->domain.pt_root)
  829. goto free_dma_dom;
  830. dma_dom->need_flush = false;
  831. dma_dom->target_dev = 0xffff;
  832. if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
  833. goto free_dma_dom;
  834. /*
  835. * mark the first page as allocated so we never return 0 as
  836. * a valid dma-address. So we can use 0 as error value
  837. */
  838. dma_dom->aperture[0]->bitmap[0] = 1;
  839. dma_dom->next_address = 0;
  840. return dma_dom;
  841. free_dma_dom:
  842. dma_ops_domain_free(dma_dom);
  843. return NULL;
  844. }
  845. /*
  846. * little helper function to check whether a given protection domain is a
  847. * dma_ops domain
  848. */
  849. static bool dma_ops_domain(struct protection_domain *domain)
  850. {
  851. return domain->flags & PD_DMA_OPS_MASK;
  852. }
  853. /*
  854. * Find out the protection domain structure for a given PCI device. This
  855. * will give us the pointer to the page table root for example.
  856. */
  857. static struct protection_domain *domain_for_device(u16 devid)
  858. {
  859. struct protection_domain *dom;
  860. unsigned long flags;
  861. read_lock_irqsave(&amd_iommu_devtable_lock, flags);
  862. dom = amd_iommu_pd_table[devid];
  863. read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  864. return dom;
  865. }
  866. /*
  867. * If a device is not yet associated with a domain, this function does
  868. * assigns it visible for the hardware
  869. */
  870. static void __attach_device(struct amd_iommu *iommu,
  871. struct protection_domain *domain,
  872. u16 devid)
  873. {
  874. u64 pte_root;
  875. /* lock domain */
  876. spin_lock(&domain->lock);
  877. pte_root = virt_to_phys(domain->pt_root);
  878. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  879. << DEV_ENTRY_MODE_SHIFT;
  880. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
  881. amd_iommu_dev_table[devid].data[2] = domain->id;
  882. amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
  883. amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
  884. amd_iommu_pd_table[devid] = domain;
  885. domain->dev_cnt += 1;
  886. /* ready */
  887. spin_unlock(&domain->lock);
  888. }
  889. static void attach_device(struct amd_iommu *iommu,
  890. struct protection_domain *domain,
  891. u16 devid)
  892. {
  893. unsigned long flags;
  894. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  895. __attach_device(iommu, domain, devid);
  896. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  897. /*
  898. * We might boot into a crash-kernel here. The crashed kernel
  899. * left the caches in the IOMMU dirty. So we have to flush
  900. * here to evict all dirty stuff.
  901. */
  902. iommu_queue_inv_dev_entry(iommu, devid);
  903. iommu_flush_tlb_pde(iommu, domain->id);
  904. }
  905. /*
  906. * Removes a device from a protection domain (unlocked)
  907. */
  908. static void __detach_device(struct protection_domain *domain, u16 devid)
  909. {
  910. /* lock domain */
  911. spin_lock(&domain->lock);
  912. /* remove domain from the lookup table */
  913. amd_iommu_pd_table[devid] = NULL;
  914. /* remove entry from the device table seen by the hardware */
  915. amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
  916. amd_iommu_dev_table[devid].data[1] = 0;
  917. amd_iommu_dev_table[devid].data[2] = 0;
  918. /* decrease reference counter */
  919. domain->dev_cnt -= 1;
  920. /* ready */
  921. spin_unlock(&domain->lock);
  922. /*
  923. * If we run in passthrough mode the device must be assigned to the
  924. * passthrough domain if it is detached from any other domain
  925. */
  926. if (iommu_pass_through) {
  927. struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
  928. __attach_device(iommu, pt_domain, devid);
  929. }
  930. }
  931. /*
  932. * Removes a device from a protection domain (with devtable_lock held)
  933. */
  934. static void detach_device(struct protection_domain *domain, u16 devid)
  935. {
  936. unsigned long flags;
  937. /* lock device table */
  938. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  939. __detach_device(domain, devid);
  940. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  941. }
  942. static int device_change_notifier(struct notifier_block *nb,
  943. unsigned long action, void *data)
  944. {
  945. struct device *dev = data;
  946. struct pci_dev *pdev = to_pci_dev(dev);
  947. u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
  948. struct protection_domain *domain;
  949. struct dma_ops_domain *dma_domain;
  950. struct amd_iommu *iommu;
  951. unsigned long flags;
  952. if (devid > amd_iommu_last_bdf)
  953. goto out;
  954. devid = amd_iommu_alias_table[devid];
  955. iommu = amd_iommu_rlookup_table[devid];
  956. if (iommu == NULL)
  957. goto out;
  958. domain = domain_for_device(devid);
  959. if (domain && !dma_ops_domain(domain))
  960. WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
  961. "to a non-dma-ops domain\n", dev_name(dev));
  962. switch (action) {
  963. case BUS_NOTIFY_UNBOUND_DRIVER:
  964. if (!domain)
  965. goto out;
  966. if (iommu_pass_through)
  967. break;
  968. detach_device(domain, devid);
  969. break;
  970. case BUS_NOTIFY_ADD_DEVICE:
  971. /* allocate a protection domain if a device is added */
  972. dma_domain = find_protection_domain(devid);
  973. if (dma_domain)
  974. goto out;
  975. dma_domain = dma_ops_domain_alloc(iommu);
  976. if (!dma_domain)
  977. goto out;
  978. dma_domain->target_dev = devid;
  979. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  980. list_add_tail(&dma_domain->list, &iommu_pd_list);
  981. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  982. break;
  983. default:
  984. goto out;
  985. }
  986. iommu_queue_inv_dev_entry(iommu, devid);
  987. iommu_completion_wait(iommu);
  988. out:
  989. return 0;
  990. }
  991. static struct notifier_block device_nb = {
  992. .notifier_call = device_change_notifier,
  993. };
  994. /*****************************************************************************
  995. *
  996. * The next functions belong to the dma_ops mapping/unmapping code.
  997. *
  998. *****************************************************************************/
  999. /*
  1000. * This function checks if the driver got a valid device from the caller to
  1001. * avoid dereferencing invalid pointers.
  1002. */
  1003. static bool check_device(struct device *dev)
  1004. {
  1005. if (!dev || !dev->dma_mask)
  1006. return false;
  1007. return true;
  1008. }
  1009. /*
  1010. * In this function the list of preallocated protection domains is traversed to
  1011. * find the domain for a specific device
  1012. */
  1013. static struct dma_ops_domain *find_protection_domain(u16 devid)
  1014. {
  1015. struct dma_ops_domain *entry, *ret = NULL;
  1016. unsigned long flags;
  1017. if (list_empty(&iommu_pd_list))
  1018. return NULL;
  1019. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  1020. list_for_each_entry(entry, &iommu_pd_list, list) {
  1021. if (entry->target_dev == devid) {
  1022. ret = entry;
  1023. break;
  1024. }
  1025. }
  1026. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  1027. return ret;
  1028. }
  1029. /*
  1030. * In the dma_ops path we only have the struct device. This function
  1031. * finds the corresponding IOMMU, the protection domain and the
  1032. * requestor id for a given device.
  1033. * If the device is not yet associated with a domain this is also done
  1034. * in this function.
  1035. */
  1036. static int get_device_resources(struct device *dev,
  1037. struct amd_iommu **iommu,
  1038. struct protection_domain **domain,
  1039. u16 *bdf)
  1040. {
  1041. struct dma_ops_domain *dma_dom;
  1042. struct pci_dev *pcidev;
  1043. u16 _bdf;
  1044. *iommu = NULL;
  1045. *domain = NULL;
  1046. *bdf = 0xffff;
  1047. if (dev->bus != &pci_bus_type)
  1048. return 0;
  1049. pcidev = to_pci_dev(dev);
  1050. _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
  1051. /* device not translated by any IOMMU in the system? */
  1052. if (_bdf > amd_iommu_last_bdf)
  1053. return 0;
  1054. *bdf = amd_iommu_alias_table[_bdf];
  1055. *iommu = amd_iommu_rlookup_table[*bdf];
  1056. if (*iommu == NULL)
  1057. return 0;
  1058. *domain = domain_for_device(*bdf);
  1059. if (*domain == NULL) {
  1060. dma_dom = find_protection_domain(*bdf);
  1061. if (!dma_dom)
  1062. dma_dom = (*iommu)->default_dom;
  1063. *domain = &dma_dom->domain;
  1064. attach_device(*iommu, *domain, *bdf);
  1065. DUMP_printk("Using protection domain %d for device %s\n",
  1066. (*domain)->id, dev_name(dev));
  1067. }
  1068. if (domain_for_device(_bdf) == NULL)
  1069. attach_device(*iommu, *domain, _bdf);
  1070. return 1;
  1071. }
  1072. /*
  1073. * If the pte_page is not yet allocated this function is called
  1074. */
  1075. static u64* alloc_pte(struct protection_domain *dom,
  1076. unsigned long address, u64 **pte_page, gfp_t gfp)
  1077. {
  1078. u64 *pte, *page;
  1079. pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];
  1080. if (!IOMMU_PTE_PRESENT(*pte)) {
  1081. page = (u64 *)get_zeroed_page(gfp);
  1082. if (!page)
  1083. return NULL;
  1084. *pte = IOMMU_L2_PDE(virt_to_phys(page));
  1085. }
  1086. pte = IOMMU_PTE_PAGE(*pte);
  1087. pte = &pte[IOMMU_PTE_L1_INDEX(address)];
  1088. if (!IOMMU_PTE_PRESENT(*pte)) {
  1089. page = (u64 *)get_zeroed_page(gfp);
  1090. if (!page)
  1091. return NULL;
  1092. *pte = IOMMU_L1_PDE(virt_to_phys(page));
  1093. }
  1094. pte = IOMMU_PTE_PAGE(*pte);
  1095. if (pte_page)
  1096. *pte_page = pte;
  1097. pte = &pte[IOMMU_PTE_L0_INDEX(address)];
  1098. return pte;
  1099. }
  1100. /*
  1101. * This function fetches the PTE for a given address in the aperture
  1102. */
  1103. static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
  1104. unsigned long address)
  1105. {
  1106. struct aperture_range *aperture;
  1107. u64 *pte, *pte_page;
  1108. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1109. if (!aperture)
  1110. return NULL;
  1111. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1112. if (!pte) {
  1113. pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
  1114. aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
  1115. } else
  1116. pte += IOMMU_PTE_L0_INDEX(address);
  1117. return pte;
  1118. }
  1119. /*
  1120. * This is the generic map function. It maps one 4kb page at paddr to
  1121. * the given address in the DMA address space for the domain.
  1122. */
  1123. static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
  1124. struct dma_ops_domain *dom,
  1125. unsigned long address,
  1126. phys_addr_t paddr,
  1127. int direction)
  1128. {
  1129. u64 *pte, __pte;
  1130. WARN_ON(address > dom->aperture_size);
  1131. paddr &= PAGE_MASK;
  1132. pte = dma_ops_get_pte(dom, address);
  1133. if (!pte)
  1134. return bad_dma_address;
  1135. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1136. if (direction == DMA_TO_DEVICE)
  1137. __pte |= IOMMU_PTE_IR;
  1138. else if (direction == DMA_FROM_DEVICE)
  1139. __pte |= IOMMU_PTE_IW;
  1140. else if (direction == DMA_BIDIRECTIONAL)
  1141. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  1142. WARN_ON(*pte);
  1143. *pte = __pte;
  1144. return (dma_addr_t)address;
  1145. }
  1146. /*
  1147. * The generic unmapping function for on page in the DMA address space.
  1148. */
  1149. static void dma_ops_domain_unmap(struct amd_iommu *iommu,
  1150. struct dma_ops_domain *dom,
  1151. unsigned long address)
  1152. {
  1153. struct aperture_range *aperture;
  1154. u64 *pte;
  1155. if (address >= dom->aperture_size)
  1156. return;
  1157. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1158. if (!aperture)
  1159. return;
  1160. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1161. if (!pte)
  1162. return;
  1163. pte += IOMMU_PTE_L0_INDEX(address);
  1164. WARN_ON(!*pte);
  1165. *pte = 0ULL;
  1166. }
  1167. /*
  1168. * This function contains common code for mapping of a physically
  1169. * contiguous memory region into DMA address space. It is used by all
  1170. * mapping functions provided with this IOMMU driver.
  1171. * Must be called with the domain lock held.
  1172. */
  1173. static dma_addr_t __map_single(struct device *dev,
  1174. struct amd_iommu *iommu,
  1175. struct dma_ops_domain *dma_dom,
  1176. phys_addr_t paddr,
  1177. size_t size,
  1178. int dir,
  1179. bool align,
  1180. u64 dma_mask)
  1181. {
  1182. dma_addr_t offset = paddr & ~PAGE_MASK;
  1183. dma_addr_t address, start, ret;
  1184. unsigned int pages;
  1185. unsigned long align_mask = 0;
  1186. int i;
  1187. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  1188. paddr &= PAGE_MASK;
  1189. INC_STATS_COUNTER(total_map_requests);
  1190. if (pages > 1)
  1191. INC_STATS_COUNTER(cross_page);
  1192. if (align)
  1193. align_mask = (1UL << get_order(size)) - 1;
  1194. retry:
  1195. address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
  1196. dma_mask);
  1197. if (unlikely(address == bad_dma_address)) {
  1198. /*
  1199. * setting next_address here will let the address
  1200. * allocator only scan the new allocated range in the
  1201. * first run. This is a small optimization.
  1202. */
  1203. dma_dom->next_address = dma_dom->aperture_size;
  1204. if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
  1205. goto out;
  1206. /*
  1207. * aperture was sucessfully enlarged by 128 MB, try
  1208. * allocation again
  1209. */
  1210. goto retry;
  1211. }
  1212. start = address;
  1213. for (i = 0; i < pages; ++i) {
  1214. ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
  1215. if (ret == bad_dma_address)
  1216. goto out_unmap;
  1217. paddr += PAGE_SIZE;
  1218. start += PAGE_SIZE;
  1219. }
  1220. address += offset;
  1221. ADD_STATS_COUNTER(alloced_io_mem, size);
  1222. if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
  1223. iommu_flush_tlb(iommu, dma_dom->domain.id);
  1224. dma_dom->need_flush = false;
  1225. } else if (unlikely(iommu_has_npcache(iommu)))
  1226. iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
  1227. out:
  1228. return address;
  1229. out_unmap:
  1230. for (--i; i >= 0; --i) {
  1231. start -= PAGE_SIZE;
  1232. dma_ops_domain_unmap(iommu, dma_dom, start);
  1233. }
  1234. dma_ops_free_addresses(dma_dom, address, pages);
  1235. return bad_dma_address;
  1236. }
  1237. /*
  1238. * Does the reverse of the __map_single function. Must be called with
  1239. * the domain lock held too
  1240. */
  1241. static void __unmap_single(struct amd_iommu *iommu,
  1242. struct dma_ops_domain *dma_dom,
  1243. dma_addr_t dma_addr,
  1244. size_t size,
  1245. int dir)
  1246. {
  1247. dma_addr_t i, start;
  1248. unsigned int pages;
  1249. if ((dma_addr == bad_dma_address) ||
  1250. (dma_addr + size > dma_dom->aperture_size))
  1251. return;
  1252. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  1253. dma_addr &= PAGE_MASK;
  1254. start = dma_addr;
  1255. for (i = 0; i < pages; ++i) {
  1256. dma_ops_domain_unmap(iommu, dma_dom, start);
  1257. start += PAGE_SIZE;
  1258. }
  1259. SUB_STATS_COUNTER(alloced_io_mem, size);
  1260. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  1261. if (amd_iommu_unmap_flush || dma_dom->need_flush) {
  1262. iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
  1263. dma_dom->need_flush = false;
  1264. }
  1265. }
  1266. /*
  1267. * The exported map_single function for dma_ops.
  1268. */
  1269. static dma_addr_t map_page(struct device *dev, struct page *page,
  1270. unsigned long offset, size_t size,
  1271. enum dma_data_direction dir,
  1272. struct dma_attrs *attrs)
  1273. {
  1274. unsigned long flags;
  1275. struct amd_iommu *iommu;
  1276. struct protection_domain *domain;
  1277. u16 devid;
  1278. dma_addr_t addr;
  1279. u64 dma_mask;
  1280. phys_addr_t paddr = page_to_phys(page) + offset;
  1281. INC_STATS_COUNTER(cnt_map_single);
  1282. if (!check_device(dev))
  1283. return bad_dma_address;
  1284. dma_mask = *dev->dma_mask;
  1285. get_device_resources(dev, &iommu, &domain, &devid);
  1286. if (iommu == NULL || domain == NULL)
  1287. /* device not handled by any AMD IOMMU */
  1288. return (dma_addr_t)paddr;
  1289. if (!dma_ops_domain(domain))
  1290. return bad_dma_address;
  1291. spin_lock_irqsave(&domain->lock, flags);
  1292. addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
  1293. dma_mask);
  1294. if (addr == bad_dma_address)
  1295. goto out;
  1296. iommu_completion_wait(iommu);
  1297. out:
  1298. spin_unlock_irqrestore(&domain->lock, flags);
  1299. return addr;
  1300. }
  1301. /*
  1302. * The exported unmap_single function for dma_ops.
  1303. */
  1304. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  1305. enum dma_data_direction dir, struct dma_attrs *attrs)
  1306. {
  1307. unsigned long flags;
  1308. struct amd_iommu *iommu;
  1309. struct protection_domain *domain;
  1310. u16 devid;
  1311. INC_STATS_COUNTER(cnt_unmap_single);
  1312. if (!check_device(dev) ||
  1313. !get_device_resources(dev, &iommu, &domain, &devid))
  1314. /* device not handled by any AMD IOMMU */
  1315. return;
  1316. if (!dma_ops_domain(domain))
  1317. return;
  1318. spin_lock_irqsave(&domain->lock, flags);
  1319. __unmap_single(iommu, domain->priv, dma_addr, size, dir);
  1320. iommu_completion_wait(iommu);
  1321. spin_unlock_irqrestore(&domain->lock, flags);
  1322. }
  1323. /*
  1324. * This is a special map_sg function which is used if we should map a
  1325. * device which is not handled by an AMD IOMMU in the system.
  1326. */
  1327. static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
  1328. int nelems, int dir)
  1329. {
  1330. struct scatterlist *s;
  1331. int i;
  1332. for_each_sg(sglist, s, nelems, i) {
  1333. s->dma_address = (dma_addr_t)sg_phys(s);
  1334. s->dma_length = s->length;
  1335. }
  1336. return nelems;
  1337. }
  1338. /*
  1339. * The exported map_sg function for dma_ops (handles scatter-gather
  1340. * lists).
  1341. */
  1342. static int map_sg(struct device *dev, struct scatterlist *sglist,
  1343. int nelems, enum dma_data_direction dir,
  1344. struct dma_attrs *attrs)
  1345. {
  1346. unsigned long flags;
  1347. struct amd_iommu *iommu;
  1348. struct protection_domain *domain;
  1349. u16 devid;
  1350. int i;
  1351. struct scatterlist *s;
  1352. phys_addr_t paddr;
  1353. int mapped_elems = 0;
  1354. u64 dma_mask;
  1355. INC_STATS_COUNTER(cnt_map_sg);
  1356. if (!check_device(dev))
  1357. return 0;
  1358. dma_mask = *dev->dma_mask;
  1359. get_device_resources(dev, &iommu, &domain, &devid);
  1360. if (!iommu || !domain)
  1361. return map_sg_no_iommu(dev, sglist, nelems, dir);
  1362. if (!dma_ops_domain(domain))
  1363. return 0;
  1364. spin_lock_irqsave(&domain->lock, flags);
  1365. for_each_sg(sglist, s, nelems, i) {
  1366. paddr = sg_phys(s);
  1367. s->dma_address = __map_single(dev, iommu, domain->priv,
  1368. paddr, s->length, dir, false,
  1369. dma_mask);
  1370. if (s->dma_address) {
  1371. s->dma_length = s->length;
  1372. mapped_elems++;
  1373. } else
  1374. goto unmap;
  1375. }
  1376. iommu_completion_wait(iommu);
  1377. out:
  1378. spin_unlock_irqrestore(&domain->lock, flags);
  1379. return mapped_elems;
  1380. unmap:
  1381. for_each_sg(sglist, s, mapped_elems, i) {
  1382. if (s->dma_address)
  1383. __unmap_single(iommu, domain->priv, s->dma_address,
  1384. s->dma_length, dir);
  1385. s->dma_address = s->dma_length = 0;
  1386. }
  1387. mapped_elems = 0;
  1388. goto out;
  1389. }
  1390. /*
  1391. * The exported map_sg function for dma_ops (handles scatter-gather
  1392. * lists).
  1393. */
  1394. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  1395. int nelems, enum dma_data_direction dir,
  1396. struct dma_attrs *attrs)
  1397. {
  1398. unsigned long flags;
  1399. struct amd_iommu *iommu;
  1400. struct protection_domain *domain;
  1401. struct scatterlist *s;
  1402. u16 devid;
  1403. int i;
  1404. INC_STATS_COUNTER(cnt_unmap_sg);
  1405. if (!check_device(dev) ||
  1406. !get_device_resources(dev, &iommu, &domain, &devid))
  1407. return;
  1408. if (!dma_ops_domain(domain))
  1409. return;
  1410. spin_lock_irqsave(&domain->lock, flags);
  1411. for_each_sg(sglist, s, nelems, i) {
  1412. __unmap_single(iommu, domain->priv, s->dma_address,
  1413. s->dma_length, dir);
  1414. s->dma_address = s->dma_length = 0;
  1415. }
  1416. iommu_completion_wait(iommu);
  1417. spin_unlock_irqrestore(&domain->lock, flags);
  1418. }
  1419. /*
  1420. * The exported alloc_coherent function for dma_ops.
  1421. */
  1422. static void *alloc_coherent(struct device *dev, size_t size,
  1423. dma_addr_t *dma_addr, gfp_t flag)
  1424. {
  1425. unsigned long flags;
  1426. void *virt_addr;
  1427. struct amd_iommu *iommu;
  1428. struct protection_domain *domain;
  1429. u16 devid;
  1430. phys_addr_t paddr;
  1431. u64 dma_mask = dev->coherent_dma_mask;
  1432. INC_STATS_COUNTER(cnt_alloc_coherent);
  1433. if (!check_device(dev))
  1434. return NULL;
  1435. if (!get_device_resources(dev, &iommu, &domain, &devid))
  1436. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  1437. flag |= __GFP_ZERO;
  1438. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  1439. if (!virt_addr)
  1440. return NULL;
  1441. paddr = virt_to_phys(virt_addr);
  1442. if (!iommu || !domain) {
  1443. *dma_addr = (dma_addr_t)paddr;
  1444. return virt_addr;
  1445. }
  1446. if (!dma_ops_domain(domain))
  1447. goto out_free;
  1448. if (!dma_mask)
  1449. dma_mask = *dev->dma_mask;
  1450. spin_lock_irqsave(&domain->lock, flags);
  1451. *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
  1452. size, DMA_BIDIRECTIONAL, true, dma_mask);
  1453. if (*dma_addr == bad_dma_address) {
  1454. spin_unlock_irqrestore(&domain->lock, flags);
  1455. goto out_free;
  1456. }
  1457. iommu_completion_wait(iommu);
  1458. spin_unlock_irqrestore(&domain->lock, flags);
  1459. return virt_addr;
  1460. out_free:
  1461. free_pages((unsigned long)virt_addr, get_order(size));
  1462. return NULL;
  1463. }
  1464. /*
  1465. * The exported free_coherent function for dma_ops.
  1466. */
  1467. static void free_coherent(struct device *dev, size_t size,
  1468. void *virt_addr, dma_addr_t dma_addr)
  1469. {
  1470. unsigned long flags;
  1471. struct amd_iommu *iommu;
  1472. struct protection_domain *domain;
  1473. u16 devid;
  1474. INC_STATS_COUNTER(cnt_free_coherent);
  1475. if (!check_device(dev))
  1476. return;
  1477. get_device_resources(dev, &iommu, &domain, &devid);
  1478. if (!iommu || !domain)
  1479. goto free_mem;
  1480. if (!dma_ops_domain(domain))
  1481. goto free_mem;
  1482. spin_lock_irqsave(&domain->lock, flags);
  1483. __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
  1484. iommu_completion_wait(iommu);
  1485. spin_unlock_irqrestore(&domain->lock, flags);
  1486. free_mem:
  1487. free_pages((unsigned long)virt_addr, get_order(size));
  1488. }
  1489. /*
  1490. * This function is called by the DMA layer to find out if we can handle a
  1491. * particular device. It is part of the dma_ops.
  1492. */
  1493. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  1494. {
  1495. u16 bdf;
  1496. struct pci_dev *pcidev;
  1497. /* No device or no PCI device */
  1498. if (!dev || dev->bus != &pci_bus_type)
  1499. return 0;
  1500. pcidev = to_pci_dev(dev);
  1501. bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
  1502. /* Out of our scope? */
  1503. if (bdf > amd_iommu_last_bdf)
  1504. return 0;
  1505. return 1;
  1506. }
  1507. /*
  1508. * The function for pre-allocating protection domains.
  1509. *
  1510. * If the driver core informs the DMA layer if a driver grabs a device
  1511. * we don't need to preallocate the protection domains anymore.
  1512. * For now we have to.
  1513. */
  1514. static void prealloc_protection_domains(void)
  1515. {
  1516. struct pci_dev *dev = NULL;
  1517. struct dma_ops_domain *dma_dom;
  1518. struct amd_iommu *iommu;
  1519. u16 devid;
  1520. while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
  1521. devid = calc_devid(dev->bus->number, dev->devfn);
  1522. if (devid > amd_iommu_last_bdf)
  1523. continue;
  1524. devid = amd_iommu_alias_table[devid];
  1525. if (domain_for_device(devid))
  1526. continue;
  1527. iommu = amd_iommu_rlookup_table[devid];
  1528. if (!iommu)
  1529. continue;
  1530. dma_dom = dma_ops_domain_alloc(iommu);
  1531. if (!dma_dom)
  1532. continue;
  1533. init_unity_mappings_for_device(dma_dom, devid);
  1534. dma_dom->target_dev = devid;
  1535. list_add_tail(&dma_dom->list, &iommu_pd_list);
  1536. }
  1537. }
  1538. static struct dma_map_ops amd_iommu_dma_ops = {
  1539. .alloc_coherent = alloc_coherent,
  1540. .free_coherent = free_coherent,
  1541. .map_page = map_page,
  1542. .unmap_page = unmap_page,
  1543. .map_sg = map_sg,
  1544. .unmap_sg = unmap_sg,
  1545. .dma_supported = amd_iommu_dma_supported,
  1546. };
  1547. /*
  1548. * The function which clues the AMD IOMMU driver into dma_ops.
  1549. */
  1550. int __init amd_iommu_init_dma_ops(void)
  1551. {
  1552. struct amd_iommu *iommu;
  1553. int ret;
  1554. /*
  1555. * first allocate a default protection domain for every IOMMU we
  1556. * found in the system. Devices not assigned to any other
  1557. * protection domain will be assigned to the default one.
  1558. */
  1559. for_each_iommu(iommu) {
  1560. iommu->default_dom = dma_ops_domain_alloc(iommu);
  1561. if (iommu->default_dom == NULL)
  1562. return -ENOMEM;
  1563. iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
  1564. ret = iommu_init_unity_mappings(iommu);
  1565. if (ret)
  1566. goto free_domains;
  1567. }
  1568. /*
  1569. * If device isolation is enabled, pre-allocate the protection
  1570. * domains for each device.
  1571. */
  1572. if (amd_iommu_isolate)
  1573. prealloc_protection_domains();
  1574. iommu_detected = 1;
  1575. force_iommu = 1;
  1576. bad_dma_address = 0;
  1577. #ifdef CONFIG_GART_IOMMU
  1578. gart_iommu_aperture_disabled = 1;
  1579. gart_iommu_aperture = 0;
  1580. #endif
  1581. /* Make the driver finally visible to the drivers */
  1582. dma_ops = &amd_iommu_dma_ops;
  1583. register_iommu(&amd_iommu_ops);
  1584. bus_register_notifier(&pci_bus_type, &device_nb);
  1585. amd_iommu_stats_init();
  1586. return 0;
  1587. free_domains:
  1588. for_each_iommu(iommu) {
  1589. if (iommu->default_dom)
  1590. dma_ops_domain_free(iommu->default_dom);
  1591. }
  1592. return ret;
  1593. }
  1594. /*****************************************************************************
  1595. *
  1596. * The following functions belong to the exported interface of AMD IOMMU
  1597. *
  1598. * This interface allows access to lower level functions of the IOMMU
  1599. * like protection domain handling and assignement of devices to domains
  1600. * which is not possible with the dma_ops interface.
  1601. *
  1602. *****************************************************************************/
  1603. static void cleanup_domain(struct protection_domain *domain)
  1604. {
  1605. unsigned long flags;
  1606. u16 devid;
  1607. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1608. for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
  1609. if (amd_iommu_pd_table[devid] == domain)
  1610. __detach_device(domain, devid);
  1611. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1612. }
  1613. static void protection_domain_free(struct protection_domain *domain)
  1614. {
  1615. if (!domain)
  1616. return;
  1617. if (domain->id)
  1618. domain_id_free(domain->id);
  1619. kfree(domain);
  1620. }
  1621. static struct protection_domain *protection_domain_alloc(void)
  1622. {
  1623. struct protection_domain *domain;
  1624. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  1625. if (!domain)
  1626. return NULL;
  1627. spin_lock_init(&domain->lock);
  1628. domain->id = domain_id_alloc();
  1629. if (!domain->id)
  1630. goto out_err;
  1631. return domain;
  1632. out_err:
  1633. kfree(domain);
  1634. return NULL;
  1635. }
  1636. static int amd_iommu_domain_init(struct iommu_domain *dom)
  1637. {
  1638. struct protection_domain *domain;
  1639. domain = protection_domain_alloc();
  1640. if (!domain)
  1641. goto out_free;
  1642. domain->mode = PAGE_MODE_3_LEVEL;
  1643. domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1644. if (!domain->pt_root)
  1645. goto out_free;
  1646. dom->priv = domain;
  1647. return 0;
  1648. out_free:
  1649. protection_domain_free(domain);
  1650. return -ENOMEM;
  1651. }
  1652. static void amd_iommu_domain_destroy(struct iommu_domain *dom)
  1653. {
  1654. struct protection_domain *domain = dom->priv;
  1655. if (!domain)
  1656. return;
  1657. if (domain->dev_cnt > 0)
  1658. cleanup_domain(domain);
  1659. BUG_ON(domain->dev_cnt != 0);
  1660. free_pagetable(domain);
  1661. domain_id_free(domain->id);
  1662. kfree(domain);
  1663. dom->priv = NULL;
  1664. }
  1665. static void amd_iommu_detach_device(struct iommu_domain *dom,
  1666. struct device *dev)
  1667. {
  1668. struct protection_domain *domain = dom->priv;
  1669. struct amd_iommu *iommu;
  1670. struct pci_dev *pdev;
  1671. u16 devid;
  1672. if (dev->bus != &pci_bus_type)
  1673. return;
  1674. pdev = to_pci_dev(dev);
  1675. devid = calc_devid(pdev->bus->number, pdev->devfn);
  1676. if (devid > 0)
  1677. detach_device(domain, devid);
  1678. iommu = amd_iommu_rlookup_table[devid];
  1679. if (!iommu)
  1680. return;
  1681. iommu_queue_inv_dev_entry(iommu, devid);
  1682. iommu_completion_wait(iommu);
  1683. }
  1684. static int amd_iommu_attach_device(struct iommu_domain *dom,
  1685. struct device *dev)
  1686. {
  1687. struct protection_domain *domain = dom->priv;
  1688. struct protection_domain *old_domain;
  1689. struct amd_iommu *iommu;
  1690. struct pci_dev *pdev;
  1691. u16 devid;
  1692. if (dev->bus != &pci_bus_type)
  1693. return -EINVAL;
  1694. pdev = to_pci_dev(dev);
  1695. devid = calc_devid(pdev->bus->number, pdev->devfn);
  1696. if (devid >= amd_iommu_last_bdf ||
  1697. devid != amd_iommu_alias_table[devid])
  1698. return -EINVAL;
  1699. iommu = amd_iommu_rlookup_table[devid];
  1700. if (!iommu)
  1701. return -EINVAL;
  1702. old_domain = domain_for_device(devid);
  1703. if (old_domain)
  1704. detach_device(old_domain, devid);
  1705. attach_device(iommu, domain, devid);
  1706. iommu_completion_wait(iommu);
  1707. return 0;
  1708. }
  1709. static int amd_iommu_map_range(struct iommu_domain *dom,
  1710. unsigned long iova, phys_addr_t paddr,
  1711. size_t size, int iommu_prot)
  1712. {
  1713. struct protection_domain *domain = dom->priv;
  1714. unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
  1715. int prot = 0;
  1716. int ret;
  1717. if (iommu_prot & IOMMU_READ)
  1718. prot |= IOMMU_PROT_IR;
  1719. if (iommu_prot & IOMMU_WRITE)
  1720. prot |= IOMMU_PROT_IW;
  1721. iova &= PAGE_MASK;
  1722. paddr &= PAGE_MASK;
  1723. for (i = 0; i < npages; ++i) {
  1724. ret = iommu_map_page(domain, iova, paddr, prot);
  1725. if (ret)
  1726. return ret;
  1727. iova += PAGE_SIZE;
  1728. paddr += PAGE_SIZE;
  1729. }
  1730. return 0;
  1731. }
  1732. static void amd_iommu_unmap_range(struct iommu_domain *dom,
  1733. unsigned long iova, size_t size)
  1734. {
  1735. struct protection_domain *domain = dom->priv;
  1736. unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
  1737. iova &= PAGE_MASK;
  1738. for (i = 0; i < npages; ++i) {
  1739. iommu_unmap_page(domain, iova);
  1740. iova += PAGE_SIZE;
  1741. }
  1742. iommu_flush_domain(domain->id);
  1743. }
  1744. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  1745. unsigned long iova)
  1746. {
  1747. struct protection_domain *domain = dom->priv;
  1748. unsigned long offset = iova & ~PAGE_MASK;
  1749. phys_addr_t paddr;
  1750. u64 *pte;
  1751. pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];
  1752. if (!IOMMU_PTE_PRESENT(*pte))
  1753. return 0;
  1754. pte = IOMMU_PTE_PAGE(*pte);
  1755. pte = &pte[IOMMU_PTE_L1_INDEX(iova)];
  1756. if (!IOMMU_PTE_PRESENT(*pte))
  1757. return 0;
  1758. pte = IOMMU_PTE_PAGE(*pte);
  1759. pte = &pte[IOMMU_PTE_L0_INDEX(iova)];
  1760. if (!IOMMU_PTE_PRESENT(*pte))
  1761. return 0;
  1762. paddr = *pte & IOMMU_PAGE_MASK;
  1763. paddr |= offset;
  1764. return paddr;
  1765. }
  1766. static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
  1767. unsigned long cap)
  1768. {
  1769. return 0;
  1770. }
  1771. static struct iommu_ops amd_iommu_ops = {
  1772. .domain_init = amd_iommu_domain_init,
  1773. .domain_destroy = amd_iommu_domain_destroy,
  1774. .attach_dev = amd_iommu_attach_device,
  1775. .detach_dev = amd_iommu_detach_device,
  1776. .map = amd_iommu_map_range,
  1777. .unmap = amd_iommu_unmap_range,
  1778. .iova_to_phys = amd_iommu_iova_to_phys,
  1779. .domain_has_cap = amd_iommu_domain_has_cap,
  1780. };
  1781. /*****************************************************************************
  1782. *
  1783. * The next functions do a basic initialization of IOMMU for pass through
  1784. * mode
  1785. *
  1786. * In passthrough mode the IOMMU is initialized and enabled but not used for
  1787. * DMA-API translation.
  1788. *
  1789. *****************************************************************************/
  1790. int __init amd_iommu_init_passthrough(void)
  1791. {
  1792. struct pci_dev *dev = NULL;
  1793. u16 devid, devid2;
  1794. /* allocate passthroug domain */
  1795. pt_domain = protection_domain_alloc();
  1796. if (!pt_domain)
  1797. return -ENOMEM;
  1798. pt_domain->mode |= PAGE_MODE_NONE;
  1799. while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
  1800. struct amd_iommu *iommu;
  1801. devid = calc_devid(dev->bus->number, dev->devfn);
  1802. if (devid > amd_iommu_last_bdf)
  1803. continue;
  1804. devid2 = amd_iommu_alias_table[devid];
  1805. iommu = amd_iommu_rlookup_table[devid2];
  1806. if (!iommu)
  1807. continue;
  1808. __attach_device(iommu, pt_domain, devid);
  1809. __attach_device(iommu, pt_domain, devid2);
  1810. }
  1811. pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
  1812. return 0;
  1813. }