skge.c 95 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/in.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/mii.h>
  40. #include <asm/irq.h>
  41. #include "skge.h"
  42. #define DRV_NAME "skge"
  43. #define DRV_VERSION "1.8"
  44. #define PFX DRV_NAME " "
  45. #define DEFAULT_TX_RING_SIZE 128
  46. #define DEFAULT_RX_RING_SIZE 512
  47. #define MAX_TX_RING_SIZE 1024
  48. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  49. #define MAX_RX_RING_SIZE 4096
  50. #define RX_COPY_THRESHOLD 128
  51. #define RX_BUF_SIZE 1536
  52. #define PHY_RETRIES 1000
  53. #define ETH_JUMBO_MTU 9000
  54. #define TX_WATCHDOG (5 * HZ)
  55. #define NAPI_WEIGHT 64
  56. #define BLINK_MS 250
  57. #define LINK_HZ (HZ/2)
  58. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  59. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  60. MODULE_LICENSE("GPL");
  61. MODULE_VERSION(DRV_VERSION);
  62. static const u32 default_msg
  63. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  64. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  65. static int debug = -1; /* defaults above */
  66. module_param(debug, int, 0);
  67. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  68. static const struct pci_device_id skge_id_table[] = {
  69. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  70. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  71. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  73. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
  74. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  75. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  76. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  77. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  78. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  79. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
  80. { 0 }
  81. };
  82. MODULE_DEVICE_TABLE(pci, skge_id_table);
  83. static int skge_up(struct net_device *dev);
  84. static int skge_down(struct net_device *dev);
  85. static void skge_phy_reset(struct skge_port *skge);
  86. static void skge_tx_clean(struct net_device *dev);
  87. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  88. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  89. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  90. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  91. static void yukon_init(struct skge_hw *hw, int port);
  92. static void genesis_mac_init(struct skge_hw *hw, int port);
  93. static void genesis_link_up(struct skge_port *skge);
  94. /* Avoid conditionals by using array */
  95. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  96. static const int rxqaddr[] = { Q_R1, Q_R2 };
  97. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  98. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  99. static const u32 irqmask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  100. static int skge_get_regs_len(struct net_device *dev)
  101. {
  102. return 0x4000;
  103. }
  104. /*
  105. * Returns copy of whole control register region
  106. * Note: skip RAM address register because accessing it will
  107. * cause bus hangs!
  108. */
  109. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  110. void *p)
  111. {
  112. const struct skge_port *skge = netdev_priv(dev);
  113. const void __iomem *io = skge->hw->regs;
  114. regs->version = 1;
  115. memset(p, 0, regs->len);
  116. memcpy_fromio(p, io, B3_RAM_ADDR);
  117. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  118. regs->len - B3_RI_WTO_R1);
  119. }
  120. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  121. static int wol_supported(const struct skge_hw *hw)
  122. {
  123. return !((hw->chip_id == CHIP_ID_GENESIS ||
  124. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
  125. }
  126. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  127. {
  128. struct skge_port *skge = netdev_priv(dev);
  129. wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
  130. wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
  131. }
  132. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  133. {
  134. struct skge_port *skge = netdev_priv(dev);
  135. struct skge_hw *hw = skge->hw;
  136. if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  137. return -EOPNOTSUPP;
  138. if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
  139. return -EOPNOTSUPP;
  140. skge->wol = wol->wolopts == WAKE_MAGIC;
  141. if (skge->wol) {
  142. memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
  143. skge_write16(hw, WOL_CTRL_STAT,
  144. WOL_CTL_ENA_PME_ON_MAGIC_PKT |
  145. WOL_CTL_ENA_MAGIC_PKT_UNIT);
  146. } else
  147. skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
  148. return 0;
  149. }
  150. /* Determine supported/advertised modes based on hardware.
  151. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  152. */
  153. static u32 skge_supported_modes(const struct skge_hw *hw)
  154. {
  155. u32 supported;
  156. if (hw->copper) {
  157. supported = SUPPORTED_10baseT_Half
  158. | SUPPORTED_10baseT_Full
  159. | SUPPORTED_100baseT_Half
  160. | SUPPORTED_100baseT_Full
  161. | SUPPORTED_1000baseT_Half
  162. | SUPPORTED_1000baseT_Full
  163. | SUPPORTED_Autoneg| SUPPORTED_TP;
  164. if (hw->chip_id == CHIP_ID_GENESIS)
  165. supported &= ~(SUPPORTED_10baseT_Half
  166. | SUPPORTED_10baseT_Full
  167. | SUPPORTED_100baseT_Half
  168. | SUPPORTED_100baseT_Full);
  169. else if (hw->chip_id == CHIP_ID_YUKON)
  170. supported &= ~SUPPORTED_1000baseT_Half;
  171. } else
  172. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  173. | SUPPORTED_Autoneg;
  174. return supported;
  175. }
  176. static int skge_get_settings(struct net_device *dev,
  177. struct ethtool_cmd *ecmd)
  178. {
  179. struct skge_port *skge = netdev_priv(dev);
  180. struct skge_hw *hw = skge->hw;
  181. ecmd->transceiver = XCVR_INTERNAL;
  182. ecmd->supported = skge_supported_modes(hw);
  183. if (hw->copper) {
  184. ecmd->port = PORT_TP;
  185. ecmd->phy_address = hw->phy_addr;
  186. } else
  187. ecmd->port = PORT_FIBRE;
  188. ecmd->advertising = skge->advertising;
  189. ecmd->autoneg = skge->autoneg;
  190. ecmd->speed = skge->speed;
  191. ecmd->duplex = skge->duplex;
  192. return 0;
  193. }
  194. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  195. {
  196. struct skge_port *skge = netdev_priv(dev);
  197. const struct skge_hw *hw = skge->hw;
  198. u32 supported = skge_supported_modes(hw);
  199. if (ecmd->autoneg == AUTONEG_ENABLE) {
  200. ecmd->advertising = supported;
  201. skge->duplex = -1;
  202. skge->speed = -1;
  203. } else {
  204. u32 setting;
  205. switch (ecmd->speed) {
  206. case SPEED_1000:
  207. if (ecmd->duplex == DUPLEX_FULL)
  208. setting = SUPPORTED_1000baseT_Full;
  209. else if (ecmd->duplex == DUPLEX_HALF)
  210. setting = SUPPORTED_1000baseT_Half;
  211. else
  212. return -EINVAL;
  213. break;
  214. case SPEED_100:
  215. if (ecmd->duplex == DUPLEX_FULL)
  216. setting = SUPPORTED_100baseT_Full;
  217. else if (ecmd->duplex == DUPLEX_HALF)
  218. setting = SUPPORTED_100baseT_Half;
  219. else
  220. return -EINVAL;
  221. break;
  222. case SPEED_10:
  223. if (ecmd->duplex == DUPLEX_FULL)
  224. setting = SUPPORTED_10baseT_Full;
  225. else if (ecmd->duplex == DUPLEX_HALF)
  226. setting = SUPPORTED_10baseT_Half;
  227. else
  228. return -EINVAL;
  229. break;
  230. default:
  231. return -EINVAL;
  232. }
  233. if ((setting & supported) == 0)
  234. return -EINVAL;
  235. skge->speed = ecmd->speed;
  236. skge->duplex = ecmd->duplex;
  237. }
  238. skge->autoneg = ecmd->autoneg;
  239. skge->advertising = ecmd->advertising;
  240. if (netif_running(dev))
  241. skge_phy_reset(skge);
  242. return (0);
  243. }
  244. static void skge_get_drvinfo(struct net_device *dev,
  245. struct ethtool_drvinfo *info)
  246. {
  247. struct skge_port *skge = netdev_priv(dev);
  248. strcpy(info->driver, DRV_NAME);
  249. strcpy(info->version, DRV_VERSION);
  250. strcpy(info->fw_version, "N/A");
  251. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  252. }
  253. static const struct skge_stat {
  254. char name[ETH_GSTRING_LEN];
  255. u16 xmac_offset;
  256. u16 gma_offset;
  257. } skge_stats[] = {
  258. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  259. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  260. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  261. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  262. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  263. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  264. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  265. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  266. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  267. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  268. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  269. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  270. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  271. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  272. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  273. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  274. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  275. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  276. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  277. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  278. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  279. };
  280. static int skge_get_stats_count(struct net_device *dev)
  281. {
  282. return ARRAY_SIZE(skge_stats);
  283. }
  284. static void skge_get_ethtool_stats(struct net_device *dev,
  285. struct ethtool_stats *stats, u64 *data)
  286. {
  287. struct skge_port *skge = netdev_priv(dev);
  288. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  289. genesis_get_stats(skge, data);
  290. else
  291. yukon_get_stats(skge, data);
  292. }
  293. /* Use hardware MIB variables for critical path statistics and
  294. * transmit feedback not reported at interrupt.
  295. * Other errors are accounted for in interrupt handler.
  296. */
  297. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  298. {
  299. struct skge_port *skge = netdev_priv(dev);
  300. u64 data[ARRAY_SIZE(skge_stats)];
  301. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  302. genesis_get_stats(skge, data);
  303. else
  304. yukon_get_stats(skge, data);
  305. skge->net_stats.tx_bytes = data[0];
  306. skge->net_stats.rx_bytes = data[1];
  307. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  308. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  309. skge->net_stats.multicast = data[3] + data[5];
  310. skge->net_stats.collisions = data[10];
  311. skge->net_stats.tx_aborted_errors = data[12];
  312. return &skge->net_stats;
  313. }
  314. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  315. {
  316. int i;
  317. switch (stringset) {
  318. case ETH_SS_STATS:
  319. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  320. memcpy(data + i * ETH_GSTRING_LEN,
  321. skge_stats[i].name, ETH_GSTRING_LEN);
  322. break;
  323. }
  324. }
  325. static void skge_get_ring_param(struct net_device *dev,
  326. struct ethtool_ringparam *p)
  327. {
  328. struct skge_port *skge = netdev_priv(dev);
  329. p->rx_max_pending = MAX_RX_RING_SIZE;
  330. p->tx_max_pending = MAX_TX_RING_SIZE;
  331. p->rx_mini_max_pending = 0;
  332. p->rx_jumbo_max_pending = 0;
  333. p->rx_pending = skge->rx_ring.count;
  334. p->tx_pending = skge->tx_ring.count;
  335. p->rx_mini_pending = 0;
  336. p->rx_jumbo_pending = 0;
  337. }
  338. static int skge_set_ring_param(struct net_device *dev,
  339. struct ethtool_ringparam *p)
  340. {
  341. struct skge_port *skge = netdev_priv(dev);
  342. int err;
  343. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  344. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  345. return -EINVAL;
  346. skge->rx_ring.count = p->rx_pending;
  347. skge->tx_ring.count = p->tx_pending;
  348. if (netif_running(dev)) {
  349. skge_down(dev);
  350. err = skge_up(dev);
  351. if (err)
  352. dev_close(dev);
  353. }
  354. return 0;
  355. }
  356. static u32 skge_get_msglevel(struct net_device *netdev)
  357. {
  358. struct skge_port *skge = netdev_priv(netdev);
  359. return skge->msg_enable;
  360. }
  361. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  362. {
  363. struct skge_port *skge = netdev_priv(netdev);
  364. skge->msg_enable = value;
  365. }
  366. static int skge_nway_reset(struct net_device *dev)
  367. {
  368. struct skge_port *skge = netdev_priv(dev);
  369. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  370. return -EINVAL;
  371. skge_phy_reset(skge);
  372. return 0;
  373. }
  374. static int skge_set_sg(struct net_device *dev, u32 data)
  375. {
  376. struct skge_port *skge = netdev_priv(dev);
  377. struct skge_hw *hw = skge->hw;
  378. if (hw->chip_id == CHIP_ID_GENESIS && data)
  379. return -EOPNOTSUPP;
  380. return ethtool_op_set_sg(dev, data);
  381. }
  382. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  383. {
  384. struct skge_port *skge = netdev_priv(dev);
  385. struct skge_hw *hw = skge->hw;
  386. if (hw->chip_id == CHIP_ID_GENESIS && data)
  387. return -EOPNOTSUPP;
  388. return ethtool_op_set_tx_csum(dev, data);
  389. }
  390. static u32 skge_get_rx_csum(struct net_device *dev)
  391. {
  392. struct skge_port *skge = netdev_priv(dev);
  393. return skge->rx_csum;
  394. }
  395. /* Only Yukon supports checksum offload. */
  396. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  397. {
  398. struct skge_port *skge = netdev_priv(dev);
  399. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  400. return -EOPNOTSUPP;
  401. skge->rx_csum = data;
  402. return 0;
  403. }
  404. static void skge_get_pauseparam(struct net_device *dev,
  405. struct ethtool_pauseparam *ecmd)
  406. {
  407. struct skge_port *skge = netdev_priv(dev);
  408. ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
  409. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  410. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
  411. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  412. ecmd->autoneg = skge->autoneg;
  413. }
  414. static int skge_set_pauseparam(struct net_device *dev,
  415. struct ethtool_pauseparam *ecmd)
  416. {
  417. struct skge_port *skge = netdev_priv(dev);
  418. skge->autoneg = ecmd->autoneg;
  419. if (ecmd->rx_pause && ecmd->tx_pause)
  420. skge->flow_control = FLOW_MODE_SYMMETRIC;
  421. else if (ecmd->rx_pause && !ecmd->tx_pause)
  422. skge->flow_control = FLOW_MODE_REM_SEND;
  423. else if (!ecmd->rx_pause && ecmd->tx_pause)
  424. skge->flow_control = FLOW_MODE_LOC_SEND;
  425. else
  426. skge->flow_control = FLOW_MODE_NONE;
  427. if (netif_running(dev))
  428. skge_phy_reset(skge);
  429. return 0;
  430. }
  431. /* Chip internal frequency for clock calculations */
  432. static inline u32 hwkhz(const struct skge_hw *hw)
  433. {
  434. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  435. }
  436. /* Chip HZ to microseconds */
  437. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  438. {
  439. return (ticks * 1000) / hwkhz(hw);
  440. }
  441. /* Microseconds to chip HZ */
  442. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  443. {
  444. return hwkhz(hw) * usec / 1000;
  445. }
  446. static int skge_get_coalesce(struct net_device *dev,
  447. struct ethtool_coalesce *ecmd)
  448. {
  449. struct skge_port *skge = netdev_priv(dev);
  450. struct skge_hw *hw = skge->hw;
  451. int port = skge->port;
  452. ecmd->rx_coalesce_usecs = 0;
  453. ecmd->tx_coalesce_usecs = 0;
  454. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  455. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  456. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  457. if (msk & rxirqmask[port])
  458. ecmd->rx_coalesce_usecs = delay;
  459. if (msk & txirqmask[port])
  460. ecmd->tx_coalesce_usecs = delay;
  461. }
  462. return 0;
  463. }
  464. /* Note: interrupt timer is per board, but can turn on/off per port */
  465. static int skge_set_coalesce(struct net_device *dev,
  466. struct ethtool_coalesce *ecmd)
  467. {
  468. struct skge_port *skge = netdev_priv(dev);
  469. struct skge_hw *hw = skge->hw;
  470. int port = skge->port;
  471. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  472. u32 delay = 25;
  473. if (ecmd->rx_coalesce_usecs == 0)
  474. msk &= ~rxirqmask[port];
  475. else if (ecmd->rx_coalesce_usecs < 25 ||
  476. ecmd->rx_coalesce_usecs > 33333)
  477. return -EINVAL;
  478. else {
  479. msk |= rxirqmask[port];
  480. delay = ecmd->rx_coalesce_usecs;
  481. }
  482. if (ecmd->tx_coalesce_usecs == 0)
  483. msk &= ~txirqmask[port];
  484. else if (ecmd->tx_coalesce_usecs < 25 ||
  485. ecmd->tx_coalesce_usecs > 33333)
  486. return -EINVAL;
  487. else {
  488. msk |= txirqmask[port];
  489. delay = min(delay, ecmd->rx_coalesce_usecs);
  490. }
  491. skge_write32(hw, B2_IRQM_MSK, msk);
  492. if (msk == 0)
  493. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  494. else {
  495. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  496. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  497. }
  498. return 0;
  499. }
  500. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  501. static void skge_led(struct skge_port *skge, enum led_mode mode)
  502. {
  503. struct skge_hw *hw = skge->hw;
  504. int port = skge->port;
  505. mutex_lock(&hw->phy_mutex);
  506. if (hw->chip_id == CHIP_ID_GENESIS) {
  507. switch (mode) {
  508. case LED_MODE_OFF:
  509. if (hw->phy_type == SK_PHY_BCOM)
  510. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  511. else {
  512. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  513. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  514. }
  515. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  516. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  517. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  518. break;
  519. case LED_MODE_ON:
  520. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  521. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  522. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  523. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  524. break;
  525. case LED_MODE_TST:
  526. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  527. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  528. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  529. if (hw->phy_type == SK_PHY_BCOM)
  530. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  531. else {
  532. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  533. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  534. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  535. }
  536. }
  537. } else {
  538. switch (mode) {
  539. case LED_MODE_OFF:
  540. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  541. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  542. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  543. PHY_M_LED_MO_10(MO_LED_OFF) |
  544. PHY_M_LED_MO_100(MO_LED_OFF) |
  545. PHY_M_LED_MO_1000(MO_LED_OFF) |
  546. PHY_M_LED_MO_RX(MO_LED_OFF));
  547. break;
  548. case LED_MODE_ON:
  549. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  550. PHY_M_LED_PULS_DUR(PULS_170MS) |
  551. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  552. PHY_M_LEDC_TX_CTRL |
  553. PHY_M_LEDC_DP_CTRL);
  554. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  555. PHY_M_LED_MO_RX(MO_LED_OFF) |
  556. (skge->speed == SPEED_100 ?
  557. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  558. break;
  559. case LED_MODE_TST:
  560. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  561. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  562. PHY_M_LED_MO_DUP(MO_LED_ON) |
  563. PHY_M_LED_MO_10(MO_LED_ON) |
  564. PHY_M_LED_MO_100(MO_LED_ON) |
  565. PHY_M_LED_MO_1000(MO_LED_ON) |
  566. PHY_M_LED_MO_RX(MO_LED_ON));
  567. }
  568. }
  569. mutex_unlock(&hw->phy_mutex);
  570. }
  571. /* blink LED's for finding board */
  572. static int skge_phys_id(struct net_device *dev, u32 data)
  573. {
  574. struct skge_port *skge = netdev_priv(dev);
  575. unsigned long ms;
  576. enum led_mode mode = LED_MODE_TST;
  577. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  578. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  579. else
  580. ms = data * 1000;
  581. while (ms > 0) {
  582. skge_led(skge, mode);
  583. mode ^= LED_MODE_TST;
  584. if (msleep_interruptible(BLINK_MS))
  585. break;
  586. ms -= BLINK_MS;
  587. }
  588. /* back to regular LED state */
  589. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  590. return 0;
  591. }
  592. static const struct ethtool_ops skge_ethtool_ops = {
  593. .get_settings = skge_get_settings,
  594. .set_settings = skge_set_settings,
  595. .get_drvinfo = skge_get_drvinfo,
  596. .get_regs_len = skge_get_regs_len,
  597. .get_regs = skge_get_regs,
  598. .get_wol = skge_get_wol,
  599. .set_wol = skge_set_wol,
  600. .get_msglevel = skge_get_msglevel,
  601. .set_msglevel = skge_set_msglevel,
  602. .nway_reset = skge_nway_reset,
  603. .get_link = ethtool_op_get_link,
  604. .get_ringparam = skge_get_ring_param,
  605. .set_ringparam = skge_set_ring_param,
  606. .get_pauseparam = skge_get_pauseparam,
  607. .set_pauseparam = skge_set_pauseparam,
  608. .get_coalesce = skge_get_coalesce,
  609. .set_coalesce = skge_set_coalesce,
  610. .get_sg = ethtool_op_get_sg,
  611. .set_sg = skge_set_sg,
  612. .get_tx_csum = ethtool_op_get_tx_csum,
  613. .set_tx_csum = skge_set_tx_csum,
  614. .get_rx_csum = skge_get_rx_csum,
  615. .set_rx_csum = skge_set_rx_csum,
  616. .get_strings = skge_get_strings,
  617. .phys_id = skge_phys_id,
  618. .get_stats_count = skge_get_stats_count,
  619. .get_ethtool_stats = skge_get_ethtool_stats,
  620. .get_perm_addr = ethtool_op_get_perm_addr,
  621. };
  622. /*
  623. * Allocate ring elements and chain them together
  624. * One-to-one association of board descriptors with ring elements
  625. */
  626. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  627. {
  628. struct skge_tx_desc *d;
  629. struct skge_element *e;
  630. int i;
  631. ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
  632. if (!ring->start)
  633. return -ENOMEM;
  634. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  635. e->desc = d;
  636. if (i == ring->count - 1) {
  637. e->next = ring->start;
  638. d->next_offset = base;
  639. } else {
  640. e->next = e + 1;
  641. d->next_offset = base + (i+1) * sizeof(*d);
  642. }
  643. }
  644. ring->to_use = ring->to_clean = ring->start;
  645. return 0;
  646. }
  647. /* Allocate and setup a new buffer for receiving */
  648. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  649. struct sk_buff *skb, unsigned int bufsize)
  650. {
  651. struct skge_rx_desc *rd = e->desc;
  652. u64 map;
  653. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  654. PCI_DMA_FROMDEVICE);
  655. rd->dma_lo = map;
  656. rd->dma_hi = map >> 32;
  657. e->skb = skb;
  658. rd->csum1_start = ETH_HLEN;
  659. rd->csum2_start = ETH_HLEN;
  660. rd->csum1 = 0;
  661. rd->csum2 = 0;
  662. wmb();
  663. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  664. pci_unmap_addr_set(e, mapaddr, map);
  665. pci_unmap_len_set(e, maplen, bufsize);
  666. }
  667. /* Resume receiving using existing skb,
  668. * Note: DMA address is not changed by chip.
  669. * MTU not changed while receiver active.
  670. */
  671. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  672. {
  673. struct skge_rx_desc *rd = e->desc;
  674. rd->csum2 = 0;
  675. rd->csum2_start = ETH_HLEN;
  676. wmb();
  677. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  678. }
  679. /* Free all buffers in receive ring, assumes receiver stopped */
  680. static void skge_rx_clean(struct skge_port *skge)
  681. {
  682. struct skge_hw *hw = skge->hw;
  683. struct skge_ring *ring = &skge->rx_ring;
  684. struct skge_element *e;
  685. e = ring->start;
  686. do {
  687. struct skge_rx_desc *rd = e->desc;
  688. rd->control = 0;
  689. if (e->skb) {
  690. pci_unmap_single(hw->pdev,
  691. pci_unmap_addr(e, mapaddr),
  692. pci_unmap_len(e, maplen),
  693. PCI_DMA_FROMDEVICE);
  694. dev_kfree_skb(e->skb);
  695. e->skb = NULL;
  696. }
  697. } while ((e = e->next) != ring->start);
  698. }
  699. /* Allocate buffers for receive ring
  700. * For receive: to_clean is next received frame.
  701. */
  702. static int skge_rx_fill(struct net_device *dev)
  703. {
  704. struct skge_port *skge = netdev_priv(dev);
  705. struct skge_ring *ring = &skge->rx_ring;
  706. struct skge_element *e;
  707. e = ring->start;
  708. do {
  709. struct sk_buff *skb;
  710. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  711. GFP_KERNEL);
  712. if (!skb)
  713. return -ENOMEM;
  714. skb_reserve(skb, NET_IP_ALIGN);
  715. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  716. } while ( (e = e->next) != ring->start);
  717. ring->to_clean = ring->start;
  718. return 0;
  719. }
  720. static void skge_link_up(struct skge_port *skge)
  721. {
  722. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  723. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  724. netif_carrier_on(skge->netdev);
  725. netif_wake_queue(skge->netdev);
  726. if (netif_msg_link(skge))
  727. printk(KERN_INFO PFX
  728. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  729. skge->netdev->name, skge->speed,
  730. skge->duplex == DUPLEX_FULL ? "full" : "half",
  731. (skge->flow_control == FLOW_MODE_NONE) ? "none" :
  732. (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
  733. (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
  734. (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
  735. "unknown");
  736. }
  737. static void skge_link_down(struct skge_port *skge)
  738. {
  739. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  740. netif_carrier_off(skge->netdev);
  741. netif_stop_queue(skge->netdev);
  742. if (netif_msg_link(skge))
  743. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  744. }
  745. static void xm_link_down(struct skge_hw *hw, int port)
  746. {
  747. struct net_device *dev = hw->dev[port];
  748. struct skge_port *skge = netdev_priv(dev);
  749. u16 cmd, msk;
  750. if (hw->phy_type == SK_PHY_XMAC) {
  751. msk = xm_read16(hw, port, XM_IMSK);
  752. msk |= XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND;
  753. xm_write16(hw, port, XM_IMSK, msk);
  754. }
  755. cmd = xm_read16(hw, port, XM_MMU_CMD);
  756. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  757. xm_write16(hw, port, XM_MMU_CMD, cmd);
  758. /* dummy read to ensure writing */
  759. (void) xm_read16(hw, port, XM_MMU_CMD);
  760. if (netif_carrier_ok(dev))
  761. skge_link_down(skge);
  762. }
  763. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  764. {
  765. int i;
  766. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  767. *val = xm_read16(hw, port, XM_PHY_DATA);
  768. if (hw->phy_type == SK_PHY_XMAC)
  769. goto ready;
  770. for (i = 0; i < PHY_RETRIES; i++) {
  771. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  772. goto ready;
  773. udelay(1);
  774. }
  775. return -ETIMEDOUT;
  776. ready:
  777. *val = xm_read16(hw, port, XM_PHY_DATA);
  778. return 0;
  779. }
  780. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  781. {
  782. u16 v = 0;
  783. if (__xm_phy_read(hw, port, reg, &v))
  784. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  785. hw->dev[port]->name);
  786. return v;
  787. }
  788. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  789. {
  790. int i;
  791. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  792. for (i = 0; i < PHY_RETRIES; i++) {
  793. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  794. goto ready;
  795. udelay(1);
  796. }
  797. return -EIO;
  798. ready:
  799. xm_write16(hw, port, XM_PHY_DATA, val);
  800. for (i = 0; i < PHY_RETRIES; i++) {
  801. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  802. return 0;
  803. udelay(1);
  804. }
  805. return -ETIMEDOUT;
  806. }
  807. static void genesis_init(struct skge_hw *hw)
  808. {
  809. /* set blink source counter */
  810. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  811. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  812. /* configure mac arbiter */
  813. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  814. /* configure mac arbiter timeout values */
  815. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  816. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  817. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  818. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  819. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  820. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  821. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  822. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  823. /* configure packet arbiter timeout */
  824. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  825. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  826. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  827. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  828. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  829. }
  830. static void genesis_reset(struct skge_hw *hw, int port)
  831. {
  832. const u8 zero[8] = { 0 };
  833. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  834. /* reset the statistics module */
  835. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  836. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  837. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  838. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  839. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  840. /* disable Broadcom PHY IRQ */
  841. if (hw->phy_type == SK_PHY_BCOM)
  842. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  843. xm_outhash(hw, port, XM_HSM, zero);
  844. }
  845. /* Convert mode to MII values */
  846. static const u16 phy_pause_map[] = {
  847. [FLOW_MODE_NONE] = 0,
  848. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  849. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  850. [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  851. };
  852. /* Check status of Broadcom phy link */
  853. static void bcom_check_link(struct skge_hw *hw, int port)
  854. {
  855. struct net_device *dev = hw->dev[port];
  856. struct skge_port *skge = netdev_priv(dev);
  857. u16 status;
  858. /* read twice because of latch */
  859. (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
  860. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  861. if ((status & PHY_ST_LSYNC) == 0) {
  862. xm_link_down(hw, port);
  863. return;
  864. }
  865. if (skge->autoneg == AUTONEG_ENABLE) {
  866. u16 lpa, aux;
  867. if (!(status & PHY_ST_AN_OVER))
  868. return;
  869. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  870. if (lpa & PHY_B_AN_RF) {
  871. printk(KERN_NOTICE PFX "%s: remote fault\n",
  872. dev->name);
  873. return;
  874. }
  875. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  876. /* Check Duplex mismatch */
  877. switch (aux & PHY_B_AS_AN_RES_MSK) {
  878. case PHY_B_RES_1000FD:
  879. skge->duplex = DUPLEX_FULL;
  880. break;
  881. case PHY_B_RES_1000HD:
  882. skge->duplex = DUPLEX_HALF;
  883. break;
  884. default:
  885. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  886. dev->name);
  887. return;
  888. }
  889. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  890. switch (aux & PHY_B_AS_PAUSE_MSK) {
  891. case PHY_B_AS_PAUSE_MSK:
  892. skge->flow_control = FLOW_MODE_SYMMETRIC;
  893. break;
  894. case PHY_B_AS_PRR:
  895. skge->flow_control = FLOW_MODE_REM_SEND;
  896. break;
  897. case PHY_B_AS_PRT:
  898. skge->flow_control = FLOW_MODE_LOC_SEND;
  899. break;
  900. default:
  901. skge->flow_control = FLOW_MODE_NONE;
  902. }
  903. skge->speed = SPEED_1000;
  904. }
  905. if (!netif_carrier_ok(dev))
  906. genesis_link_up(skge);
  907. }
  908. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  909. * Phy on for 100 or 10Mbit operation
  910. */
  911. static void bcom_phy_init(struct skge_port *skge)
  912. {
  913. struct skge_hw *hw = skge->hw;
  914. int port = skge->port;
  915. int i;
  916. u16 id1, r, ext, ctl;
  917. /* magic workaround patterns for Broadcom */
  918. static const struct {
  919. u16 reg;
  920. u16 val;
  921. } A1hack[] = {
  922. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  923. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  924. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  925. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  926. }, C0hack[] = {
  927. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  928. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  929. };
  930. /* read Id from external PHY (all have the same address) */
  931. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  932. /* Optimize MDIO transfer by suppressing preamble. */
  933. r = xm_read16(hw, port, XM_MMU_CMD);
  934. r |= XM_MMU_NO_PRE;
  935. xm_write16(hw, port, XM_MMU_CMD,r);
  936. switch (id1) {
  937. case PHY_BCOM_ID1_C0:
  938. /*
  939. * Workaround BCOM Errata for the C0 type.
  940. * Write magic patterns to reserved registers.
  941. */
  942. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  943. xm_phy_write(hw, port,
  944. C0hack[i].reg, C0hack[i].val);
  945. break;
  946. case PHY_BCOM_ID1_A1:
  947. /*
  948. * Workaround BCOM Errata for the A1 type.
  949. * Write magic patterns to reserved registers.
  950. */
  951. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  952. xm_phy_write(hw, port,
  953. A1hack[i].reg, A1hack[i].val);
  954. break;
  955. }
  956. /*
  957. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  958. * Disable Power Management after reset.
  959. */
  960. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  961. r |= PHY_B_AC_DIS_PM;
  962. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  963. /* Dummy read */
  964. xm_read16(hw, port, XM_ISRC);
  965. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  966. ctl = PHY_CT_SP1000; /* always 1000mbit */
  967. if (skge->autoneg == AUTONEG_ENABLE) {
  968. /*
  969. * Workaround BCOM Errata #1 for the C5 type.
  970. * 1000Base-T Link Acquisition Failure in Slave Mode
  971. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  972. */
  973. u16 adv = PHY_B_1000C_RD;
  974. if (skge->advertising & ADVERTISED_1000baseT_Half)
  975. adv |= PHY_B_1000C_AHD;
  976. if (skge->advertising & ADVERTISED_1000baseT_Full)
  977. adv |= PHY_B_1000C_AFD;
  978. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  979. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  980. } else {
  981. if (skge->duplex == DUPLEX_FULL)
  982. ctl |= PHY_CT_DUP_MD;
  983. /* Force to slave */
  984. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  985. }
  986. /* Set autonegotiation pause parameters */
  987. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  988. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  989. /* Handle Jumbo frames */
  990. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  991. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  992. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  993. ext |= PHY_B_PEC_HIGH_LA;
  994. }
  995. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  996. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  997. /* Use link status change interrupt */
  998. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  999. }
  1000. static void xm_phy_init(struct skge_port *skge)
  1001. {
  1002. struct skge_hw *hw = skge->hw;
  1003. int port = skge->port;
  1004. u16 ctrl = 0;
  1005. if (skge->autoneg == AUTONEG_ENABLE) {
  1006. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1007. ctrl |= PHY_X_AN_HD;
  1008. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1009. ctrl |= PHY_X_AN_FD;
  1010. switch(skge->flow_control) {
  1011. case FLOW_MODE_NONE:
  1012. ctrl |= PHY_X_P_NO_PAUSE;
  1013. break;
  1014. case FLOW_MODE_LOC_SEND:
  1015. ctrl |= PHY_X_P_ASYM_MD;
  1016. break;
  1017. case FLOW_MODE_SYMMETRIC:
  1018. ctrl |= PHY_X_P_BOTH_MD;
  1019. break;
  1020. }
  1021. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1022. /* Restart Auto-negotiation */
  1023. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1024. } else {
  1025. /* Set DuplexMode in Config register */
  1026. if (skge->duplex == DUPLEX_FULL)
  1027. ctrl |= PHY_CT_DUP_MD;
  1028. /*
  1029. * Do NOT enable Auto-negotiation here. This would hold
  1030. * the link down because no IDLEs are transmitted
  1031. */
  1032. }
  1033. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1034. /* Poll PHY for status changes */
  1035. schedule_delayed_work(&skge->link_thread, LINK_HZ);
  1036. }
  1037. static void xm_check_link(struct net_device *dev)
  1038. {
  1039. struct skge_port *skge = netdev_priv(dev);
  1040. struct skge_hw *hw = skge->hw;
  1041. int port = skge->port;
  1042. u16 status;
  1043. /* read twice because of latch */
  1044. (void) xm_phy_read(hw, port, PHY_XMAC_STAT);
  1045. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1046. if ((status & PHY_ST_LSYNC) == 0) {
  1047. xm_link_down(hw, port);
  1048. return;
  1049. }
  1050. if (skge->autoneg == AUTONEG_ENABLE) {
  1051. u16 lpa, res;
  1052. if (!(status & PHY_ST_AN_OVER))
  1053. return;
  1054. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1055. if (lpa & PHY_B_AN_RF) {
  1056. printk(KERN_NOTICE PFX "%s: remote fault\n",
  1057. dev->name);
  1058. return;
  1059. }
  1060. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1061. /* Check Duplex mismatch */
  1062. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1063. case PHY_X_RS_FD:
  1064. skge->duplex = DUPLEX_FULL;
  1065. break;
  1066. case PHY_X_RS_HD:
  1067. skge->duplex = DUPLEX_HALF;
  1068. break;
  1069. default:
  1070. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  1071. dev->name);
  1072. return;
  1073. }
  1074. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1075. if (lpa & PHY_X_P_SYM_MD)
  1076. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1077. else if ((lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1078. skge->flow_control = FLOW_MODE_REM_SEND;
  1079. else if ((lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1080. skge->flow_control = FLOW_MODE_LOC_SEND;
  1081. else
  1082. skge->flow_control = FLOW_MODE_NONE;
  1083. skge->speed = SPEED_1000;
  1084. }
  1085. if (!netif_carrier_ok(dev))
  1086. genesis_link_up(skge);
  1087. }
  1088. /* Poll to check for link coming up.
  1089. * Since internal PHY is wired to a level triggered pin, can't
  1090. * get an interrupt when carrier is detected.
  1091. */
  1092. static void xm_link_timer(void *arg)
  1093. {
  1094. struct net_device *dev = arg;
  1095. struct skge_port *skge = netdev_priv(arg);
  1096. struct skge_hw *hw = skge->hw;
  1097. int port = skge->port;
  1098. if (!netif_running(dev))
  1099. return;
  1100. if (netif_carrier_ok(dev)) {
  1101. xm_read16(hw, port, XM_ISRC);
  1102. if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS))
  1103. goto nochange;
  1104. } else {
  1105. if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1106. goto nochange;
  1107. xm_read16(hw, port, XM_ISRC);
  1108. if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
  1109. goto nochange;
  1110. }
  1111. mutex_lock(&hw->phy_mutex);
  1112. xm_check_link(dev);
  1113. mutex_unlock(&hw->phy_mutex);
  1114. nochange:
  1115. schedule_delayed_work(&skge->link_thread, LINK_HZ);
  1116. }
  1117. static void genesis_mac_init(struct skge_hw *hw, int port)
  1118. {
  1119. struct net_device *dev = hw->dev[port];
  1120. struct skge_port *skge = netdev_priv(dev);
  1121. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1122. int i;
  1123. u32 r;
  1124. const u8 zero[6] = { 0 };
  1125. for (i = 0; i < 10; i++) {
  1126. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1127. MFF_SET_MAC_RST);
  1128. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1129. goto reset_ok;
  1130. udelay(1);
  1131. }
  1132. printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
  1133. reset_ok:
  1134. /* Unreset the XMAC. */
  1135. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1136. /*
  1137. * Perform additional initialization for external PHYs,
  1138. * namely for the 1000baseTX cards that use the XMAC's
  1139. * GMII mode.
  1140. */
  1141. if (hw->phy_type != SK_PHY_XMAC) {
  1142. /* Take external Phy out of reset */
  1143. r = skge_read32(hw, B2_GP_IO);
  1144. if (port == 0)
  1145. r |= GP_DIR_0|GP_IO_0;
  1146. else
  1147. r |= GP_DIR_2|GP_IO_2;
  1148. skge_write32(hw, B2_GP_IO, r);
  1149. /* Enable GMII interface */
  1150. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1151. }
  1152. switch(hw->phy_type) {
  1153. case SK_PHY_XMAC:
  1154. xm_phy_init(skge);
  1155. break;
  1156. case SK_PHY_BCOM:
  1157. bcom_phy_init(skge);
  1158. bcom_check_link(hw, port);
  1159. }
  1160. /* Set Station Address */
  1161. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1162. /* We don't use match addresses so clear */
  1163. for (i = 1; i < 16; i++)
  1164. xm_outaddr(hw, port, XM_EXM(i), zero);
  1165. /* Clear MIB counters */
  1166. xm_write16(hw, port, XM_STAT_CMD,
  1167. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1168. /* Clear two times according to Errata #3 */
  1169. xm_write16(hw, port, XM_STAT_CMD,
  1170. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1171. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1172. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1173. /* We don't need the FCS appended to the packet. */
  1174. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1175. if (jumbo)
  1176. r |= XM_RX_BIG_PK_OK;
  1177. if (skge->duplex == DUPLEX_HALF) {
  1178. /*
  1179. * If in manual half duplex mode the other side might be in
  1180. * full duplex mode, so ignore if a carrier extension is not seen
  1181. * on frames received
  1182. */
  1183. r |= XM_RX_DIS_CEXT;
  1184. }
  1185. xm_write16(hw, port, XM_RX_CMD, r);
  1186. /* We want short frames padded to 60 bytes. */
  1187. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1188. /*
  1189. * Bump up the transmit threshold. This helps hold off transmit
  1190. * underruns when we're blasting traffic from both ports at once.
  1191. */
  1192. xm_write16(hw, port, XM_TX_THR, 512);
  1193. /*
  1194. * Enable the reception of all error frames. This is is
  1195. * a necessary evil due to the design of the XMAC. The
  1196. * XMAC's receive FIFO is only 8K in size, however jumbo
  1197. * frames can be up to 9000 bytes in length. When bad
  1198. * frame filtering is enabled, the XMAC's RX FIFO operates
  1199. * in 'store and forward' mode. For this to work, the
  1200. * entire frame has to fit into the FIFO, but that means
  1201. * that jumbo frames larger than 8192 bytes will be
  1202. * truncated. Disabling all bad frame filtering causes
  1203. * the RX FIFO to operate in streaming mode, in which
  1204. * case the XMAC will start transferring frames out of the
  1205. * RX FIFO as soon as the FIFO threshold is reached.
  1206. */
  1207. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1208. /*
  1209. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1210. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1211. * and 'Octets Rx OK Hi Cnt Ov'.
  1212. */
  1213. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1214. /*
  1215. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1216. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1217. * and 'Octets Tx OK Hi Cnt Ov'.
  1218. */
  1219. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1220. /* Configure MAC arbiter */
  1221. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1222. /* configure timeout values */
  1223. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1224. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1225. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1226. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1227. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1228. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1229. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1230. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1231. /* Configure Rx MAC FIFO */
  1232. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1233. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1234. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1235. /* Configure Tx MAC FIFO */
  1236. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1237. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1238. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1239. if (jumbo) {
  1240. /* Enable frame flushing if jumbo frames used */
  1241. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1242. } else {
  1243. /* enable timeout timers if normal frames */
  1244. skge_write16(hw, B3_PA_CTRL,
  1245. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1246. }
  1247. }
  1248. static void genesis_stop(struct skge_port *skge)
  1249. {
  1250. struct skge_hw *hw = skge->hw;
  1251. int port = skge->port;
  1252. u32 reg;
  1253. genesis_reset(hw, port);
  1254. /* Clear Tx packet arbiter timeout IRQ */
  1255. skge_write16(hw, B3_PA_CTRL,
  1256. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1257. /*
  1258. * If the transfer sticks at the MAC the STOP command will not
  1259. * terminate if we don't flush the XMAC's transmit FIFO !
  1260. */
  1261. xm_write32(hw, port, XM_MODE,
  1262. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1263. /* Reset the MAC */
  1264. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1265. /* For external PHYs there must be special handling */
  1266. if (hw->phy_type != SK_PHY_XMAC) {
  1267. reg = skge_read32(hw, B2_GP_IO);
  1268. if (port == 0) {
  1269. reg |= GP_DIR_0;
  1270. reg &= ~GP_IO_0;
  1271. } else {
  1272. reg |= GP_DIR_2;
  1273. reg &= ~GP_IO_2;
  1274. }
  1275. skge_write32(hw, B2_GP_IO, reg);
  1276. skge_read32(hw, B2_GP_IO);
  1277. }
  1278. xm_write16(hw, port, XM_MMU_CMD,
  1279. xm_read16(hw, port, XM_MMU_CMD)
  1280. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1281. xm_read16(hw, port, XM_MMU_CMD);
  1282. }
  1283. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1284. {
  1285. struct skge_hw *hw = skge->hw;
  1286. int port = skge->port;
  1287. int i;
  1288. unsigned long timeout = jiffies + HZ;
  1289. xm_write16(hw, port,
  1290. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1291. /* wait for update to complete */
  1292. while (xm_read16(hw, port, XM_STAT_CMD)
  1293. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1294. if (time_after(jiffies, timeout))
  1295. break;
  1296. udelay(10);
  1297. }
  1298. /* special case for 64 bit octet counter */
  1299. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1300. | xm_read32(hw, port, XM_TXO_OK_LO);
  1301. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1302. | xm_read32(hw, port, XM_RXO_OK_LO);
  1303. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1304. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1305. }
  1306. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1307. {
  1308. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1309. u16 status = xm_read16(hw, port, XM_ISRC);
  1310. if (netif_msg_intr(skge))
  1311. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1312. skge->netdev->name, status);
  1313. if (hw->phy_type == SK_PHY_XMAC &&
  1314. (status & (XM_IS_INP_ASS | XM_IS_LIPA_RC)))
  1315. xm_link_down(hw, port);
  1316. if (status & XM_IS_TXF_UR) {
  1317. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1318. ++skge->net_stats.tx_fifo_errors;
  1319. }
  1320. if (status & XM_IS_RXF_OV) {
  1321. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1322. ++skge->net_stats.rx_fifo_errors;
  1323. }
  1324. }
  1325. static void genesis_link_up(struct skge_port *skge)
  1326. {
  1327. struct skge_hw *hw = skge->hw;
  1328. int port = skge->port;
  1329. u16 cmd, msk;
  1330. u32 mode;
  1331. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1332. /*
  1333. * enabling pause frame reception is required for 1000BT
  1334. * because the XMAC is not reset if the link is going down
  1335. */
  1336. if (skge->flow_control == FLOW_MODE_NONE ||
  1337. skge->flow_control == FLOW_MODE_LOC_SEND)
  1338. /* Disable Pause Frame Reception */
  1339. cmd |= XM_MMU_IGN_PF;
  1340. else
  1341. /* Enable Pause Frame Reception */
  1342. cmd &= ~XM_MMU_IGN_PF;
  1343. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1344. mode = xm_read32(hw, port, XM_MODE);
  1345. if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1346. skge->flow_control == FLOW_MODE_LOC_SEND) {
  1347. /*
  1348. * Configure Pause Frame Generation
  1349. * Use internal and external Pause Frame Generation.
  1350. * Sending pause frames is edge triggered.
  1351. * Send a Pause frame with the maximum pause time if
  1352. * internal oder external FIFO full condition occurs.
  1353. * Send a zero pause time frame to re-start transmission.
  1354. */
  1355. /* XM_PAUSE_DA = '010000C28001' (default) */
  1356. /* XM_MAC_PTIME = 0xffff (maximum) */
  1357. /* remember this value is defined in big endian (!) */
  1358. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1359. mode |= XM_PAUSE_MODE;
  1360. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1361. } else {
  1362. /*
  1363. * disable pause frame generation is required for 1000BT
  1364. * because the XMAC is not reset if the link is going down
  1365. */
  1366. /* Disable Pause Mode in Mode Register */
  1367. mode &= ~XM_PAUSE_MODE;
  1368. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1369. }
  1370. xm_write32(hw, port, XM_MODE, mode);
  1371. msk = XM_DEF_MSK;
  1372. if (hw->phy_type != SK_PHY_XMAC)
  1373. msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
  1374. xm_write16(hw, port, XM_IMSK, msk);
  1375. xm_read16(hw, port, XM_ISRC);
  1376. /* get MMU Command Reg. */
  1377. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1378. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1379. cmd |= XM_MMU_GMII_FD;
  1380. /*
  1381. * Workaround BCOM Errata (#10523) for all BCom Phys
  1382. * Enable Power Management after link up
  1383. */
  1384. if (hw->phy_type == SK_PHY_BCOM) {
  1385. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1386. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1387. & ~PHY_B_AC_DIS_PM);
  1388. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1389. }
  1390. /* enable Rx/Tx */
  1391. xm_write16(hw, port, XM_MMU_CMD,
  1392. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1393. skge_link_up(skge);
  1394. }
  1395. static inline void bcom_phy_intr(struct skge_port *skge)
  1396. {
  1397. struct skge_hw *hw = skge->hw;
  1398. int port = skge->port;
  1399. u16 isrc;
  1400. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1401. if (netif_msg_intr(skge))
  1402. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1403. skge->netdev->name, isrc);
  1404. if (isrc & PHY_B_IS_PSE)
  1405. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1406. hw->dev[port]->name);
  1407. /* Workaround BCom Errata:
  1408. * enable and disable loopback mode if "NO HCD" occurs.
  1409. */
  1410. if (isrc & PHY_B_IS_NO_HDCL) {
  1411. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1412. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1413. ctrl | PHY_CT_LOOP);
  1414. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1415. ctrl & ~PHY_CT_LOOP);
  1416. }
  1417. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1418. bcom_check_link(hw, port);
  1419. }
  1420. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1421. {
  1422. int i;
  1423. gma_write16(hw, port, GM_SMI_DATA, val);
  1424. gma_write16(hw, port, GM_SMI_CTRL,
  1425. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1426. for (i = 0; i < PHY_RETRIES; i++) {
  1427. udelay(1);
  1428. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1429. return 0;
  1430. }
  1431. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1432. hw->dev[port]->name);
  1433. return -EIO;
  1434. }
  1435. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1436. {
  1437. int i;
  1438. gma_write16(hw, port, GM_SMI_CTRL,
  1439. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1440. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1441. for (i = 0; i < PHY_RETRIES; i++) {
  1442. udelay(1);
  1443. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1444. goto ready;
  1445. }
  1446. return -ETIMEDOUT;
  1447. ready:
  1448. *val = gma_read16(hw, port, GM_SMI_DATA);
  1449. return 0;
  1450. }
  1451. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1452. {
  1453. u16 v = 0;
  1454. if (__gm_phy_read(hw, port, reg, &v))
  1455. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1456. hw->dev[port]->name);
  1457. return v;
  1458. }
  1459. /* Marvell Phy Initialization */
  1460. static void yukon_init(struct skge_hw *hw, int port)
  1461. {
  1462. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1463. u16 ctrl, ct1000, adv;
  1464. if (skge->autoneg == AUTONEG_ENABLE) {
  1465. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1466. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1467. PHY_M_EC_MAC_S_MSK);
  1468. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1469. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1470. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1471. }
  1472. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1473. if (skge->autoneg == AUTONEG_DISABLE)
  1474. ctrl &= ~PHY_CT_ANE;
  1475. ctrl |= PHY_CT_RESET;
  1476. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1477. ctrl = 0;
  1478. ct1000 = 0;
  1479. adv = PHY_AN_CSMA;
  1480. if (skge->autoneg == AUTONEG_ENABLE) {
  1481. if (hw->copper) {
  1482. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1483. ct1000 |= PHY_M_1000C_AFD;
  1484. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1485. ct1000 |= PHY_M_1000C_AHD;
  1486. if (skge->advertising & ADVERTISED_100baseT_Full)
  1487. adv |= PHY_M_AN_100_FD;
  1488. if (skge->advertising & ADVERTISED_100baseT_Half)
  1489. adv |= PHY_M_AN_100_HD;
  1490. if (skge->advertising & ADVERTISED_10baseT_Full)
  1491. adv |= PHY_M_AN_10_FD;
  1492. if (skge->advertising & ADVERTISED_10baseT_Half)
  1493. adv |= PHY_M_AN_10_HD;
  1494. } else /* special defines for FIBER (88E1011S only) */
  1495. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  1496. /* Set Flow-control capabilities */
  1497. adv |= phy_pause_map[skge->flow_control];
  1498. /* Restart Auto-negotiation */
  1499. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1500. } else {
  1501. /* forced speed/duplex settings */
  1502. ct1000 = PHY_M_1000C_MSE;
  1503. if (skge->duplex == DUPLEX_FULL)
  1504. ctrl |= PHY_CT_DUP_MD;
  1505. switch (skge->speed) {
  1506. case SPEED_1000:
  1507. ctrl |= PHY_CT_SP1000;
  1508. break;
  1509. case SPEED_100:
  1510. ctrl |= PHY_CT_SP100;
  1511. break;
  1512. }
  1513. ctrl |= PHY_CT_RESET;
  1514. }
  1515. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1516. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1517. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1518. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1519. if (skge->autoneg == AUTONEG_ENABLE)
  1520. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1521. else
  1522. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1523. }
  1524. static void yukon_reset(struct skge_hw *hw, int port)
  1525. {
  1526. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1527. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1528. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1529. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1530. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1531. gma_write16(hw, port, GM_RX_CTRL,
  1532. gma_read16(hw, port, GM_RX_CTRL)
  1533. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1534. }
  1535. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1536. static int is_yukon_lite_a0(struct skge_hw *hw)
  1537. {
  1538. u32 reg;
  1539. int ret;
  1540. if (hw->chip_id != CHIP_ID_YUKON)
  1541. return 0;
  1542. reg = skge_read32(hw, B2_FAR);
  1543. skge_write8(hw, B2_FAR + 3, 0xff);
  1544. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1545. skge_write32(hw, B2_FAR, reg);
  1546. return ret;
  1547. }
  1548. static void yukon_mac_init(struct skge_hw *hw, int port)
  1549. {
  1550. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1551. int i;
  1552. u32 reg;
  1553. const u8 *addr = hw->dev[port]->dev_addr;
  1554. /* WA code for COMA mode -- set PHY reset */
  1555. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1556. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1557. reg = skge_read32(hw, B2_GP_IO);
  1558. reg |= GP_DIR_9 | GP_IO_9;
  1559. skge_write32(hw, B2_GP_IO, reg);
  1560. }
  1561. /* hard reset */
  1562. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1563. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1564. /* WA code for COMA mode -- clear PHY reset */
  1565. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1566. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1567. reg = skge_read32(hw, B2_GP_IO);
  1568. reg |= GP_DIR_9;
  1569. reg &= ~GP_IO_9;
  1570. skge_write32(hw, B2_GP_IO, reg);
  1571. }
  1572. /* Set hardware config mode */
  1573. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1574. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1575. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1576. /* Clear GMC reset */
  1577. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1578. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1579. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1580. if (skge->autoneg == AUTONEG_DISABLE) {
  1581. reg = GM_GPCR_AU_ALL_DIS;
  1582. gma_write16(hw, port, GM_GP_CTRL,
  1583. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1584. switch (skge->speed) {
  1585. case SPEED_1000:
  1586. reg &= ~GM_GPCR_SPEED_100;
  1587. reg |= GM_GPCR_SPEED_1000;
  1588. break;
  1589. case SPEED_100:
  1590. reg &= ~GM_GPCR_SPEED_1000;
  1591. reg |= GM_GPCR_SPEED_100;
  1592. break;
  1593. case SPEED_10:
  1594. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1595. break;
  1596. }
  1597. if (skge->duplex == DUPLEX_FULL)
  1598. reg |= GM_GPCR_DUP_FULL;
  1599. } else
  1600. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1601. switch (skge->flow_control) {
  1602. case FLOW_MODE_NONE:
  1603. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1604. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1605. break;
  1606. case FLOW_MODE_LOC_SEND:
  1607. /* disable Rx flow-control */
  1608. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1609. }
  1610. gma_write16(hw, port, GM_GP_CTRL, reg);
  1611. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1612. yukon_init(hw, port);
  1613. /* MIB clear */
  1614. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1615. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1616. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1617. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1618. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1619. /* transmit control */
  1620. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1621. /* receive control reg: unicast + multicast + no FCS */
  1622. gma_write16(hw, port, GM_RX_CTRL,
  1623. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1624. /* transmit flow control */
  1625. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1626. /* transmit parameter */
  1627. gma_write16(hw, port, GM_TX_PARAM,
  1628. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1629. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1630. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1631. /* serial mode register */
  1632. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1633. if (hw->dev[port]->mtu > 1500)
  1634. reg |= GM_SMOD_JUMBO_ENA;
  1635. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1636. /* physical address: used for pause frames */
  1637. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1638. /* virtual address for data */
  1639. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1640. /* enable interrupt mask for counter overflows */
  1641. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1642. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1643. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1644. /* Initialize Mac Fifo */
  1645. /* Configure Rx MAC FIFO */
  1646. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1647. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1648. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1649. if (is_yukon_lite_a0(hw))
  1650. reg &= ~GMF_RX_F_FL_ON;
  1651. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1652. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1653. /*
  1654. * because Pause Packet Truncation in GMAC is not working
  1655. * we have to increase the Flush Threshold to 64 bytes
  1656. * in order to flush pause packets in Rx FIFO on Yukon-1
  1657. */
  1658. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1659. /* Configure Tx MAC FIFO */
  1660. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1661. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1662. }
  1663. /* Go into power down mode */
  1664. static void yukon_suspend(struct skge_hw *hw, int port)
  1665. {
  1666. u16 ctrl;
  1667. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1668. ctrl |= PHY_M_PC_POL_R_DIS;
  1669. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1670. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1671. ctrl |= PHY_CT_RESET;
  1672. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1673. /* switch IEEE compatible power down mode on */
  1674. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1675. ctrl |= PHY_CT_PDOWN;
  1676. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1677. }
  1678. static void yukon_stop(struct skge_port *skge)
  1679. {
  1680. struct skge_hw *hw = skge->hw;
  1681. int port = skge->port;
  1682. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1683. yukon_reset(hw, port);
  1684. gma_write16(hw, port, GM_GP_CTRL,
  1685. gma_read16(hw, port, GM_GP_CTRL)
  1686. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1687. gma_read16(hw, port, GM_GP_CTRL);
  1688. yukon_suspend(hw, port);
  1689. /* set GPHY Control reset */
  1690. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1691. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1692. }
  1693. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1694. {
  1695. struct skge_hw *hw = skge->hw;
  1696. int port = skge->port;
  1697. int i;
  1698. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1699. | gma_read32(hw, port, GM_TXO_OK_LO);
  1700. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1701. | gma_read32(hw, port, GM_RXO_OK_LO);
  1702. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1703. data[i] = gma_read32(hw, port,
  1704. skge_stats[i].gma_offset);
  1705. }
  1706. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1707. {
  1708. struct net_device *dev = hw->dev[port];
  1709. struct skge_port *skge = netdev_priv(dev);
  1710. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1711. if (netif_msg_intr(skge))
  1712. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1713. dev->name, status);
  1714. if (status & GM_IS_RX_FF_OR) {
  1715. ++skge->net_stats.rx_fifo_errors;
  1716. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1717. }
  1718. if (status & GM_IS_TX_FF_UR) {
  1719. ++skge->net_stats.tx_fifo_errors;
  1720. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1721. }
  1722. }
  1723. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1724. {
  1725. switch (aux & PHY_M_PS_SPEED_MSK) {
  1726. case PHY_M_PS_SPEED_1000:
  1727. return SPEED_1000;
  1728. case PHY_M_PS_SPEED_100:
  1729. return SPEED_100;
  1730. default:
  1731. return SPEED_10;
  1732. }
  1733. }
  1734. static void yukon_link_up(struct skge_port *skge)
  1735. {
  1736. struct skge_hw *hw = skge->hw;
  1737. int port = skge->port;
  1738. u16 reg;
  1739. /* Enable Transmit FIFO Underrun */
  1740. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1741. reg = gma_read16(hw, port, GM_GP_CTRL);
  1742. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1743. reg |= GM_GPCR_DUP_FULL;
  1744. /* enable Rx/Tx */
  1745. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1746. gma_write16(hw, port, GM_GP_CTRL, reg);
  1747. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1748. skge_link_up(skge);
  1749. }
  1750. static void yukon_link_down(struct skge_port *skge)
  1751. {
  1752. struct skge_hw *hw = skge->hw;
  1753. int port = skge->port;
  1754. u16 ctrl;
  1755. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1756. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1757. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1758. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1759. if (skge->flow_control == FLOW_MODE_REM_SEND) {
  1760. /* restore Asymmetric Pause bit */
  1761. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1762. gm_phy_read(hw, port,
  1763. PHY_MARV_AUNE_ADV)
  1764. | PHY_M_AN_ASP);
  1765. }
  1766. yukon_reset(hw, port);
  1767. skge_link_down(skge);
  1768. yukon_init(hw, port);
  1769. }
  1770. static void yukon_phy_intr(struct skge_port *skge)
  1771. {
  1772. struct skge_hw *hw = skge->hw;
  1773. int port = skge->port;
  1774. const char *reason = NULL;
  1775. u16 istatus, phystat;
  1776. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1777. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1778. if (netif_msg_intr(skge))
  1779. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1780. skge->netdev->name, istatus, phystat);
  1781. if (istatus & PHY_M_IS_AN_COMPL) {
  1782. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1783. & PHY_M_AN_RF) {
  1784. reason = "remote fault";
  1785. goto failed;
  1786. }
  1787. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1788. reason = "master/slave fault";
  1789. goto failed;
  1790. }
  1791. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1792. reason = "speed/duplex";
  1793. goto failed;
  1794. }
  1795. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1796. ? DUPLEX_FULL : DUPLEX_HALF;
  1797. skge->speed = yukon_speed(hw, phystat);
  1798. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1799. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1800. case PHY_M_PS_PAUSE_MSK:
  1801. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1802. break;
  1803. case PHY_M_PS_RX_P_EN:
  1804. skge->flow_control = FLOW_MODE_REM_SEND;
  1805. break;
  1806. case PHY_M_PS_TX_P_EN:
  1807. skge->flow_control = FLOW_MODE_LOC_SEND;
  1808. break;
  1809. default:
  1810. skge->flow_control = FLOW_MODE_NONE;
  1811. }
  1812. if (skge->flow_control == FLOW_MODE_NONE ||
  1813. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1814. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1815. else
  1816. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1817. yukon_link_up(skge);
  1818. return;
  1819. }
  1820. if (istatus & PHY_M_IS_LSP_CHANGE)
  1821. skge->speed = yukon_speed(hw, phystat);
  1822. if (istatus & PHY_M_IS_DUP_CHANGE)
  1823. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1824. if (istatus & PHY_M_IS_LST_CHANGE) {
  1825. if (phystat & PHY_M_PS_LINK_UP)
  1826. yukon_link_up(skge);
  1827. else
  1828. yukon_link_down(skge);
  1829. }
  1830. return;
  1831. failed:
  1832. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1833. skge->netdev->name, reason);
  1834. /* XXX restart autonegotiation? */
  1835. }
  1836. static void skge_phy_reset(struct skge_port *skge)
  1837. {
  1838. struct skge_hw *hw = skge->hw;
  1839. int port = skge->port;
  1840. netif_stop_queue(skge->netdev);
  1841. netif_carrier_off(skge->netdev);
  1842. mutex_lock(&hw->phy_mutex);
  1843. if (hw->chip_id == CHIP_ID_GENESIS) {
  1844. genesis_reset(hw, port);
  1845. genesis_mac_init(hw, port);
  1846. } else {
  1847. yukon_reset(hw, port);
  1848. yukon_init(hw, port);
  1849. }
  1850. mutex_unlock(&hw->phy_mutex);
  1851. }
  1852. /* Basic MII support */
  1853. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  1854. {
  1855. struct mii_ioctl_data *data = if_mii(ifr);
  1856. struct skge_port *skge = netdev_priv(dev);
  1857. struct skge_hw *hw = skge->hw;
  1858. int err = -EOPNOTSUPP;
  1859. if (!netif_running(dev))
  1860. return -ENODEV; /* Phy still in reset */
  1861. switch(cmd) {
  1862. case SIOCGMIIPHY:
  1863. data->phy_id = hw->phy_addr;
  1864. /* fallthru */
  1865. case SIOCGMIIREG: {
  1866. u16 val = 0;
  1867. mutex_lock(&hw->phy_mutex);
  1868. if (hw->chip_id == CHIP_ID_GENESIS)
  1869. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1870. else
  1871. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1872. mutex_unlock(&hw->phy_mutex);
  1873. data->val_out = val;
  1874. break;
  1875. }
  1876. case SIOCSMIIREG:
  1877. if (!capable(CAP_NET_ADMIN))
  1878. return -EPERM;
  1879. mutex_lock(&hw->phy_mutex);
  1880. if (hw->chip_id == CHIP_ID_GENESIS)
  1881. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1882. data->val_in);
  1883. else
  1884. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1885. data->val_in);
  1886. mutex_unlock(&hw->phy_mutex);
  1887. break;
  1888. }
  1889. return err;
  1890. }
  1891. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1892. {
  1893. u32 end;
  1894. start /= 8;
  1895. len /= 8;
  1896. end = start + len - 1;
  1897. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1898. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1899. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1900. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1901. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1902. if (q == Q_R1 || q == Q_R2) {
  1903. /* Set thresholds on receive queue's */
  1904. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1905. start + (2*len)/3);
  1906. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1907. start + (len/3));
  1908. } else {
  1909. /* Enable store & forward on Tx queue's because
  1910. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1911. */
  1912. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1913. }
  1914. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1915. }
  1916. /* Setup Bus Memory Interface */
  1917. static void skge_qset(struct skge_port *skge, u16 q,
  1918. const struct skge_element *e)
  1919. {
  1920. struct skge_hw *hw = skge->hw;
  1921. u32 watermark = 0x600;
  1922. u64 base = skge->dma + (e->desc - skge->mem);
  1923. /* optimization to reduce window on 32bit/33mhz */
  1924. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  1925. watermark /= 2;
  1926. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  1927. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  1928. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  1929. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  1930. }
  1931. static int skge_up(struct net_device *dev)
  1932. {
  1933. struct skge_port *skge = netdev_priv(dev);
  1934. struct skge_hw *hw = skge->hw;
  1935. int port = skge->port;
  1936. u32 chunk, ram_addr;
  1937. size_t rx_size, tx_size;
  1938. int err;
  1939. if (netif_msg_ifup(skge))
  1940. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  1941. if (dev->mtu > RX_BUF_SIZE)
  1942. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  1943. else
  1944. skge->rx_buf_size = RX_BUF_SIZE;
  1945. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  1946. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  1947. skge->mem_size = tx_size + rx_size;
  1948. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  1949. if (!skge->mem)
  1950. return -ENOMEM;
  1951. BUG_ON(skge->dma & 7);
  1952. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  1953. printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
  1954. err = -EINVAL;
  1955. goto free_pci_mem;
  1956. }
  1957. memset(skge->mem, 0, skge->mem_size);
  1958. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  1959. if (err)
  1960. goto free_pci_mem;
  1961. err = skge_rx_fill(dev);
  1962. if (err)
  1963. goto free_rx_ring;
  1964. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  1965. skge->dma + rx_size);
  1966. if (err)
  1967. goto free_rx_ring;
  1968. /* Initialize MAC */
  1969. mutex_lock(&hw->phy_mutex);
  1970. if (hw->chip_id == CHIP_ID_GENESIS)
  1971. genesis_mac_init(hw, port);
  1972. else
  1973. yukon_mac_init(hw, port);
  1974. mutex_unlock(&hw->phy_mutex);
  1975. /* Configure RAMbuffers */
  1976. chunk = hw->ram_size / ((hw->ports + 1)*2);
  1977. ram_addr = hw->ram_offset + 2 * chunk * port;
  1978. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  1979. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  1980. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  1981. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  1982. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  1983. /* Start receiver BMU */
  1984. wmb();
  1985. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  1986. skge_led(skge, LED_MODE_ON);
  1987. netif_poll_enable(dev);
  1988. return 0;
  1989. free_rx_ring:
  1990. skge_rx_clean(skge);
  1991. kfree(skge->rx_ring.start);
  1992. free_pci_mem:
  1993. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1994. skge->mem = NULL;
  1995. return err;
  1996. }
  1997. static int skge_down(struct net_device *dev)
  1998. {
  1999. struct skge_port *skge = netdev_priv(dev);
  2000. struct skge_hw *hw = skge->hw;
  2001. int port = skge->port;
  2002. if (skge->mem == NULL)
  2003. return 0;
  2004. if (netif_msg_ifdown(skge))
  2005. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  2006. netif_stop_queue(dev);
  2007. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  2008. cancel_rearming_delayed_work(&skge->link_thread);
  2009. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2010. if (hw->chip_id == CHIP_ID_GENESIS)
  2011. genesis_stop(skge);
  2012. else
  2013. yukon_stop(skge);
  2014. /* Stop transmitter */
  2015. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2016. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2017. RB_RST_SET|RB_DIS_OP_MD);
  2018. /* Disable Force Sync bit and Enable Alloc bit */
  2019. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2020. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2021. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2022. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2023. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2024. /* Reset PCI FIFO */
  2025. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2026. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2027. /* Reset the RAM Buffer async Tx queue */
  2028. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2029. /* stop receiver */
  2030. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2031. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2032. RB_RST_SET|RB_DIS_OP_MD);
  2033. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2034. if (hw->chip_id == CHIP_ID_GENESIS) {
  2035. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2036. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2037. } else {
  2038. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2039. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2040. }
  2041. skge_led(skge, LED_MODE_OFF);
  2042. netif_poll_disable(dev);
  2043. skge_tx_clean(dev);
  2044. skge_rx_clean(skge);
  2045. kfree(skge->rx_ring.start);
  2046. kfree(skge->tx_ring.start);
  2047. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2048. skge->mem = NULL;
  2049. return 0;
  2050. }
  2051. static inline int skge_avail(const struct skge_ring *ring)
  2052. {
  2053. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2054. + (ring->to_clean - ring->to_use) - 1;
  2055. }
  2056. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  2057. {
  2058. struct skge_port *skge = netdev_priv(dev);
  2059. struct skge_hw *hw = skge->hw;
  2060. struct skge_element *e;
  2061. struct skge_tx_desc *td;
  2062. int i;
  2063. u32 control, len;
  2064. u64 map;
  2065. if (skb_padto(skb, ETH_ZLEN))
  2066. return NETDEV_TX_OK;
  2067. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2068. return NETDEV_TX_BUSY;
  2069. e = skge->tx_ring.to_use;
  2070. td = e->desc;
  2071. BUG_ON(td->control & BMU_OWN);
  2072. e->skb = skb;
  2073. len = skb_headlen(skb);
  2074. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2075. pci_unmap_addr_set(e, mapaddr, map);
  2076. pci_unmap_len_set(e, maplen, len);
  2077. td->dma_lo = map;
  2078. td->dma_hi = map >> 32;
  2079. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2080. int offset = skb->h.raw - skb->data;
  2081. /* This seems backwards, but it is what the sk98lin
  2082. * does. Looks like hardware is wrong?
  2083. */
  2084. if (skb->h.ipiph->protocol == IPPROTO_UDP
  2085. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2086. control = BMU_TCP_CHECK;
  2087. else
  2088. control = BMU_UDP_CHECK;
  2089. td->csum_offs = 0;
  2090. td->csum_start = offset;
  2091. td->csum_write = offset + skb->csum;
  2092. } else
  2093. control = BMU_CHECK;
  2094. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2095. control |= BMU_EOF| BMU_IRQ_EOF;
  2096. else {
  2097. struct skge_tx_desc *tf = td;
  2098. control |= BMU_STFWD;
  2099. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2100. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2101. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2102. frag->size, PCI_DMA_TODEVICE);
  2103. e = e->next;
  2104. e->skb = skb;
  2105. tf = e->desc;
  2106. BUG_ON(tf->control & BMU_OWN);
  2107. tf->dma_lo = map;
  2108. tf->dma_hi = (u64) map >> 32;
  2109. pci_unmap_addr_set(e, mapaddr, map);
  2110. pci_unmap_len_set(e, maplen, frag->size);
  2111. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2112. }
  2113. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2114. }
  2115. /* Make sure all the descriptors written */
  2116. wmb();
  2117. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2118. wmb();
  2119. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2120. if (unlikely(netif_msg_tx_queued(skge)))
  2121. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  2122. dev->name, e - skge->tx_ring.start, skb->len);
  2123. skge->tx_ring.to_use = e->next;
  2124. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2125. pr_debug("%s: transmit queue full\n", dev->name);
  2126. netif_stop_queue(dev);
  2127. }
  2128. dev->trans_start = jiffies;
  2129. return NETDEV_TX_OK;
  2130. }
  2131. /* Free resources associated with this reing element */
  2132. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2133. u32 control)
  2134. {
  2135. struct pci_dev *pdev = skge->hw->pdev;
  2136. BUG_ON(!e->skb);
  2137. /* skb header vs. fragment */
  2138. if (control & BMU_STF)
  2139. pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
  2140. pci_unmap_len(e, maplen),
  2141. PCI_DMA_TODEVICE);
  2142. else
  2143. pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
  2144. pci_unmap_len(e, maplen),
  2145. PCI_DMA_TODEVICE);
  2146. if (control & BMU_EOF) {
  2147. if (unlikely(netif_msg_tx_done(skge)))
  2148. printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
  2149. skge->netdev->name, e - skge->tx_ring.start);
  2150. dev_kfree_skb(e->skb);
  2151. }
  2152. e->skb = NULL;
  2153. }
  2154. /* Free all buffers in transmit ring */
  2155. static void skge_tx_clean(struct net_device *dev)
  2156. {
  2157. struct skge_port *skge = netdev_priv(dev);
  2158. struct skge_element *e;
  2159. netif_tx_lock_bh(dev);
  2160. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2161. struct skge_tx_desc *td = e->desc;
  2162. skge_tx_free(skge, e, td->control);
  2163. td->control = 0;
  2164. }
  2165. skge->tx_ring.to_clean = e;
  2166. netif_wake_queue(dev);
  2167. netif_tx_unlock_bh(dev);
  2168. }
  2169. static void skge_tx_timeout(struct net_device *dev)
  2170. {
  2171. struct skge_port *skge = netdev_priv(dev);
  2172. if (netif_msg_timer(skge))
  2173. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2174. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2175. skge_tx_clean(dev);
  2176. }
  2177. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2178. {
  2179. int err;
  2180. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2181. return -EINVAL;
  2182. if (!netif_running(dev)) {
  2183. dev->mtu = new_mtu;
  2184. return 0;
  2185. }
  2186. skge_down(dev);
  2187. dev->mtu = new_mtu;
  2188. err = skge_up(dev);
  2189. if (err)
  2190. dev_close(dev);
  2191. return err;
  2192. }
  2193. static void genesis_set_multicast(struct net_device *dev)
  2194. {
  2195. struct skge_port *skge = netdev_priv(dev);
  2196. struct skge_hw *hw = skge->hw;
  2197. int port = skge->port;
  2198. int i, count = dev->mc_count;
  2199. struct dev_mc_list *list = dev->mc_list;
  2200. u32 mode;
  2201. u8 filter[8];
  2202. mode = xm_read32(hw, port, XM_MODE);
  2203. mode |= XM_MD_ENA_HASH;
  2204. if (dev->flags & IFF_PROMISC)
  2205. mode |= XM_MD_ENA_PROM;
  2206. else
  2207. mode &= ~XM_MD_ENA_PROM;
  2208. if (dev->flags & IFF_ALLMULTI)
  2209. memset(filter, 0xff, sizeof(filter));
  2210. else {
  2211. memset(filter, 0, sizeof(filter));
  2212. for (i = 0; list && i < count; i++, list = list->next) {
  2213. u32 crc, bit;
  2214. crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
  2215. bit = ~crc & 0x3f;
  2216. filter[bit/8] |= 1 << (bit%8);
  2217. }
  2218. }
  2219. xm_write32(hw, port, XM_MODE, mode);
  2220. xm_outhash(hw, port, XM_HSM, filter);
  2221. }
  2222. static void yukon_set_multicast(struct net_device *dev)
  2223. {
  2224. struct skge_port *skge = netdev_priv(dev);
  2225. struct skge_hw *hw = skge->hw;
  2226. int port = skge->port;
  2227. struct dev_mc_list *list = dev->mc_list;
  2228. u16 reg;
  2229. u8 filter[8];
  2230. memset(filter, 0, sizeof(filter));
  2231. reg = gma_read16(hw, port, GM_RX_CTRL);
  2232. reg |= GM_RXCR_UCF_ENA;
  2233. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2234. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2235. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2236. memset(filter, 0xff, sizeof(filter));
  2237. else if (dev->mc_count == 0) /* no multicast */
  2238. reg &= ~GM_RXCR_MCF_ENA;
  2239. else {
  2240. int i;
  2241. reg |= GM_RXCR_MCF_ENA;
  2242. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2243. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2244. filter[bit/8] |= 1 << (bit%8);
  2245. }
  2246. }
  2247. gma_write16(hw, port, GM_MC_ADDR_H1,
  2248. (u16)filter[0] | ((u16)filter[1] << 8));
  2249. gma_write16(hw, port, GM_MC_ADDR_H2,
  2250. (u16)filter[2] | ((u16)filter[3] << 8));
  2251. gma_write16(hw, port, GM_MC_ADDR_H3,
  2252. (u16)filter[4] | ((u16)filter[5] << 8));
  2253. gma_write16(hw, port, GM_MC_ADDR_H4,
  2254. (u16)filter[6] | ((u16)filter[7] << 8));
  2255. gma_write16(hw, port, GM_RX_CTRL, reg);
  2256. }
  2257. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2258. {
  2259. if (hw->chip_id == CHIP_ID_GENESIS)
  2260. return status >> XMR_FS_LEN_SHIFT;
  2261. else
  2262. return status >> GMR_FS_LEN_SHIFT;
  2263. }
  2264. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2265. {
  2266. if (hw->chip_id == CHIP_ID_GENESIS)
  2267. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2268. else
  2269. return (status & GMR_FS_ANY_ERR) ||
  2270. (status & GMR_FS_RX_OK) == 0;
  2271. }
  2272. /* Get receive buffer from descriptor.
  2273. * Handles copy of small buffers and reallocation failures
  2274. */
  2275. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2276. struct skge_element *e,
  2277. u32 control, u32 status, u16 csum)
  2278. {
  2279. struct skge_port *skge = netdev_priv(dev);
  2280. struct sk_buff *skb;
  2281. u16 len = control & BMU_BBC;
  2282. if (unlikely(netif_msg_rx_status(skge)))
  2283. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2284. dev->name, e - skge->rx_ring.start,
  2285. status, len);
  2286. if (len > skge->rx_buf_size)
  2287. goto error;
  2288. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2289. goto error;
  2290. if (bad_phy_status(skge->hw, status))
  2291. goto error;
  2292. if (phy_length(skge->hw, status) != len)
  2293. goto error;
  2294. if (len < RX_COPY_THRESHOLD) {
  2295. skb = netdev_alloc_skb(dev, len + 2);
  2296. if (!skb)
  2297. goto resubmit;
  2298. skb_reserve(skb, 2);
  2299. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2300. pci_unmap_addr(e, mapaddr),
  2301. len, PCI_DMA_FROMDEVICE);
  2302. memcpy(skb->data, e->skb->data, len);
  2303. pci_dma_sync_single_for_device(skge->hw->pdev,
  2304. pci_unmap_addr(e, mapaddr),
  2305. len, PCI_DMA_FROMDEVICE);
  2306. skge_rx_reuse(e, skge->rx_buf_size);
  2307. } else {
  2308. struct sk_buff *nskb;
  2309. nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
  2310. if (!nskb)
  2311. goto resubmit;
  2312. skb_reserve(nskb, NET_IP_ALIGN);
  2313. pci_unmap_single(skge->hw->pdev,
  2314. pci_unmap_addr(e, mapaddr),
  2315. pci_unmap_len(e, maplen),
  2316. PCI_DMA_FROMDEVICE);
  2317. skb = e->skb;
  2318. prefetch(skb->data);
  2319. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2320. }
  2321. skb_put(skb, len);
  2322. if (skge->rx_csum) {
  2323. skb->csum = csum;
  2324. skb->ip_summed = CHECKSUM_COMPLETE;
  2325. }
  2326. skb->protocol = eth_type_trans(skb, dev);
  2327. return skb;
  2328. error:
  2329. if (netif_msg_rx_err(skge))
  2330. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2331. dev->name, e - skge->rx_ring.start,
  2332. control, status);
  2333. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2334. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2335. skge->net_stats.rx_length_errors++;
  2336. if (status & XMR_FS_FRA_ERR)
  2337. skge->net_stats.rx_frame_errors++;
  2338. if (status & XMR_FS_FCS_ERR)
  2339. skge->net_stats.rx_crc_errors++;
  2340. } else {
  2341. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2342. skge->net_stats.rx_length_errors++;
  2343. if (status & GMR_FS_FRAGMENT)
  2344. skge->net_stats.rx_frame_errors++;
  2345. if (status & GMR_FS_CRC_ERR)
  2346. skge->net_stats.rx_crc_errors++;
  2347. }
  2348. resubmit:
  2349. skge_rx_reuse(e, skge->rx_buf_size);
  2350. return NULL;
  2351. }
  2352. /* Free all buffers in Tx ring which are no longer owned by device */
  2353. static void skge_tx_done(struct net_device *dev)
  2354. {
  2355. struct skge_port *skge = netdev_priv(dev);
  2356. struct skge_ring *ring = &skge->tx_ring;
  2357. struct skge_element *e;
  2358. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2359. netif_tx_lock(dev);
  2360. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2361. struct skge_tx_desc *td = e->desc;
  2362. if (td->control & BMU_OWN)
  2363. break;
  2364. skge_tx_free(skge, e, td->control);
  2365. }
  2366. skge->tx_ring.to_clean = e;
  2367. if (skge_avail(&skge->tx_ring) > TX_LOW_WATER)
  2368. netif_wake_queue(dev);
  2369. netif_tx_unlock(dev);
  2370. }
  2371. static int skge_poll(struct net_device *dev, int *budget)
  2372. {
  2373. struct skge_port *skge = netdev_priv(dev);
  2374. struct skge_hw *hw = skge->hw;
  2375. struct skge_ring *ring = &skge->rx_ring;
  2376. struct skge_element *e;
  2377. int to_do = min(dev->quota, *budget);
  2378. int work_done = 0;
  2379. skge_tx_done(dev);
  2380. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2381. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2382. struct skge_rx_desc *rd = e->desc;
  2383. struct sk_buff *skb;
  2384. u32 control;
  2385. rmb();
  2386. control = rd->control;
  2387. if (control & BMU_OWN)
  2388. break;
  2389. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2390. if (likely(skb)) {
  2391. dev->last_rx = jiffies;
  2392. netif_receive_skb(skb);
  2393. ++work_done;
  2394. }
  2395. }
  2396. ring->to_clean = e;
  2397. /* restart receiver */
  2398. wmb();
  2399. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2400. *budget -= work_done;
  2401. dev->quota -= work_done;
  2402. if (work_done >= to_do)
  2403. return 1; /* not done */
  2404. spin_lock_irq(&hw->hw_lock);
  2405. __netif_rx_complete(dev);
  2406. hw->intr_mask |= irqmask[skge->port];
  2407. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2408. skge_read32(hw, B0_IMSK);
  2409. spin_unlock_irq(&hw->hw_lock);
  2410. return 0;
  2411. }
  2412. /* Parity errors seem to happen when Genesis is connected to a switch
  2413. * with no other ports present. Heartbeat error??
  2414. */
  2415. static void skge_mac_parity(struct skge_hw *hw, int port)
  2416. {
  2417. struct net_device *dev = hw->dev[port];
  2418. if (dev) {
  2419. struct skge_port *skge = netdev_priv(dev);
  2420. ++skge->net_stats.tx_heartbeat_errors;
  2421. }
  2422. if (hw->chip_id == CHIP_ID_GENESIS)
  2423. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2424. MFF_CLR_PERR);
  2425. else
  2426. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2427. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2428. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2429. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2430. }
  2431. static void skge_mac_intr(struct skge_hw *hw, int port)
  2432. {
  2433. if (hw->chip_id == CHIP_ID_GENESIS)
  2434. genesis_mac_intr(hw, port);
  2435. else
  2436. yukon_mac_intr(hw, port);
  2437. }
  2438. /* Handle device specific framing and timeout interrupts */
  2439. static void skge_error_irq(struct skge_hw *hw)
  2440. {
  2441. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2442. if (hw->chip_id == CHIP_ID_GENESIS) {
  2443. /* clear xmac errors */
  2444. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2445. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2446. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2447. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2448. } else {
  2449. /* Timestamp (unused) overflow */
  2450. if (hwstatus & IS_IRQ_TIST_OV)
  2451. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2452. }
  2453. if (hwstatus & IS_RAM_RD_PAR) {
  2454. printk(KERN_ERR PFX "Ram read data parity error\n");
  2455. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2456. }
  2457. if (hwstatus & IS_RAM_WR_PAR) {
  2458. printk(KERN_ERR PFX "Ram write data parity error\n");
  2459. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2460. }
  2461. if (hwstatus & IS_M1_PAR_ERR)
  2462. skge_mac_parity(hw, 0);
  2463. if (hwstatus & IS_M2_PAR_ERR)
  2464. skge_mac_parity(hw, 1);
  2465. if (hwstatus & IS_R1_PAR_ERR) {
  2466. printk(KERN_ERR PFX "%s: receive queue parity error\n",
  2467. hw->dev[0]->name);
  2468. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2469. }
  2470. if (hwstatus & IS_R2_PAR_ERR) {
  2471. printk(KERN_ERR PFX "%s: receive queue parity error\n",
  2472. hw->dev[1]->name);
  2473. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2474. }
  2475. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2476. u16 pci_status, pci_cmd;
  2477. pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
  2478. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2479. printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
  2480. pci_name(hw->pdev), pci_cmd, pci_status);
  2481. /* Write the error bits back to clear them. */
  2482. pci_status &= PCI_STATUS_ERROR_BITS;
  2483. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2484. pci_write_config_word(hw->pdev, PCI_COMMAND,
  2485. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2486. pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
  2487. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2488. /* if error still set then just ignore it */
  2489. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2490. if (hwstatus & IS_IRQ_STAT) {
  2491. printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
  2492. hw->intr_mask &= ~IS_HW_ERR;
  2493. }
  2494. }
  2495. }
  2496. /*
  2497. * Interrupt from PHY are handled in work queue
  2498. * because accessing phy registers requires spin wait which might
  2499. * cause excess interrupt latency.
  2500. */
  2501. static void skge_extirq(void *arg)
  2502. {
  2503. struct skge_hw *hw = arg;
  2504. int port;
  2505. mutex_lock(&hw->phy_mutex);
  2506. for (port = 0; port < hw->ports; port++) {
  2507. struct net_device *dev = hw->dev[port];
  2508. struct skge_port *skge = netdev_priv(dev);
  2509. if (netif_running(dev)) {
  2510. if (hw->chip_id != CHIP_ID_GENESIS)
  2511. yukon_phy_intr(skge);
  2512. else if (hw->phy_type == SK_PHY_BCOM)
  2513. bcom_phy_intr(skge);
  2514. }
  2515. }
  2516. mutex_unlock(&hw->phy_mutex);
  2517. spin_lock_irq(&hw->hw_lock);
  2518. hw->intr_mask |= IS_EXT_REG;
  2519. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2520. skge_read32(hw, B0_IMSK);
  2521. spin_unlock_irq(&hw->hw_lock);
  2522. }
  2523. static irqreturn_t skge_intr(int irq, void *dev_id)
  2524. {
  2525. struct skge_hw *hw = dev_id;
  2526. u32 status;
  2527. int handled = 0;
  2528. spin_lock(&hw->hw_lock);
  2529. /* Reading this register masks IRQ */
  2530. status = skge_read32(hw, B0_SP_ISRC);
  2531. if (status == 0 || status == ~0)
  2532. goto out;
  2533. handled = 1;
  2534. status &= hw->intr_mask;
  2535. if (status & IS_EXT_REG) {
  2536. hw->intr_mask &= ~IS_EXT_REG;
  2537. schedule_work(&hw->phy_work);
  2538. }
  2539. if (status & (IS_XA1_F|IS_R1_F)) {
  2540. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2541. netif_rx_schedule(hw->dev[0]);
  2542. }
  2543. if (status & IS_PA_TO_TX1)
  2544. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2545. if (status & IS_PA_TO_RX1) {
  2546. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2547. ++skge->net_stats.rx_over_errors;
  2548. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2549. }
  2550. if (status & IS_MAC1)
  2551. skge_mac_intr(hw, 0);
  2552. if (hw->dev[1]) {
  2553. if (status & (IS_XA2_F|IS_R2_F)) {
  2554. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2555. netif_rx_schedule(hw->dev[1]);
  2556. }
  2557. if (status & IS_PA_TO_RX2) {
  2558. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2559. ++skge->net_stats.rx_over_errors;
  2560. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2561. }
  2562. if (status & IS_PA_TO_TX2)
  2563. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2564. if (status & IS_MAC2)
  2565. skge_mac_intr(hw, 1);
  2566. }
  2567. if (status & IS_HW_ERR)
  2568. skge_error_irq(hw);
  2569. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2570. skge_read32(hw, B0_IMSK);
  2571. out:
  2572. spin_unlock(&hw->hw_lock);
  2573. return IRQ_RETVAL(handled);
  2574. }
  2575. #ifdef CONFIG_NET_POLL_CONTROLLER
  2576. static void skge_netpoll(struct net_device *dev)
  2577. {
  2578. struct skge_port *skge = netdev_priv(dev);
  2579. disable_irq(dev->irq);
  2580. skge_intr(dev->irq, skge->hw);
  2581. enable_irq(dev->irq);
  2582. }
  2583. #endif
  2584. static int skge_set_mac_address(struct net_device *dev, void *p)
  2585. {
  2586. struct skge_port *skge = netdev_priv(dev);
  2587. struct skge_hw *hw = skge->hw;
  2588. unsigned port = skge->port;
  2589. const struct sockaddr *addr = p;
  2590. if (!is_valid_ether_addr(addr->sa_data))
  2591. return -EADDRNOTAVAIL;
  2592. mutex_lock(&hw->phy_mutex);
  2593. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2594. memcpy_toio(hw->regs + B2_MAC_1 + port*8,
  2595. dev->dev_addr, ETH_ALEN);
  2596. memcpy_toio(hw->regs + B2_MAC_2 + port*8,
  2597. dev->dev_addr, ETH_ALEN);
  2598. if (hw->chip_id == CHIP_ID_GENESIS)
  2599. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2600. else {
  2601. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2602. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2603. }
  2604. mutex_unlock(&hw->phy_mutex);
  2605. return 0;
  2606. }
  2607. static const struct {
  2608. u8 id;
  2609. const char *name;
  2610. } skge_chips[] = {
  2611. { CHIP_ID_GENESIS, "Genesis" },
  2612. { CHIP_ID_YUKON, "Yukon" },
  2613. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2614. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2615. };
  2616. static const char *skge_board_name(const struct skge_hw *hw)
  2617. {
  2618. int i;
  2619. static char buf[16];
  2620. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2621. if (skge_chips[i].id == hw->chip_id)
  2622. return skge_chips[i].name;
  2623. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2624. return buf;
  2625. }
  2626. /*
  2627. * Setup the board data structure, but don't bring up
  2628. * the port(s)
  2629. */
  2630. static int skge_reset(struct skge_hw *hw)
  2631. {
  2632. u32 reg;
  2633. u16 ctst, pci_status;
  2634. u8 t8, mac_cfg, pmd_type;
  2635. int i;
  2636. ctst = skge_read16(hw, B0_CTST);
  2637. /* do a SW reset */
  2638. skge_write8(hw, B0_CTST, CS_RST_SET);
  2639. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2640. /* clear PCI errors, if any */
  2641. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2642. skge_write8(hw, B2_TST_CTRL2, 0);
  2643. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2644. pci_write_config_word(hw->pdev, PCI_STATUS,
  2645. pci_status | PCI_STATUS_ERROR_BITS);
  2646. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2647. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2648. /* restore CLK_RUN bits (for Yukon-Lite) */
  2649. skge_write16(hw, B0_CTST,
  2650. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2651. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2652. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2653. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2654. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2655. switch (hw->chip_id) {
  2656. case CHIP_ID_GENESIS:
  2657. switch (hw->phy_type) {
  2658. case SK_PHY_XMAC:
  2659. hw->phy_addr = PHY_ADDR_XMAC;
  2660. break;
  2661. case SK_PHY_BCOM:
  2662. hw->phy_addr = PHY_ADDR_BCOM;
  2663. break;
  2664. default:
  2665. printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
  2666. pci_name(hw->pdev), hw->phy_type);
  2667. return -EOPNOTSUPP;
  2668. }
  2669. break;
  2670. case CHIP_ID_YUKON:
  2671. case CHIP_ID_YUKON_LITE:
  2672. case CHIP_ID_YUKON_LP:
  2673. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2674. hw->copper = 1;
  2675. hw->phy_addr = PHY_ADDR_MARV;
  2676. break;
  2677. default:
  2678. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  2679. pci_name(hw->pdev), hw->chip_id);
  2680. return -EOPNOTSUPP;
  2681. }
  2682. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2683. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2684. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2685. /* read the adapters RAM size */
  2686. t8 = skge_read8(hw, B2_E_0);
  2687. if (hw->chip_id == CHIP_ID_GENESIS) {
  2688. if (t8 == 3) {
  2689. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2690. hw->ram_size = 0x100000;
  2691. hw->ram_offset = 0x80000;
  2692. } else
  2693. hw->ram_size = t8 * 512;
  2694. }
  2695. else if (t8 == 0)
  2696. hw->ram_size = 0x20000;
  2697. else
  2698. hw->ram_size = t8 * 4096;
  2699. hw->intr_mask = IS_HW_ERR | IS_PORT_1;
  2700. if (hw->ports > 1)
  2701. hw->intr_mask |= IS_PORT_2;
  2702. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2703. hw->intr_mask |= IS_EXT_REG;
  2704. if (hw->chip_id == CHIP_ID_GENESIS)
  2705. genesis_init(hw);
  2706. else {
  2707. /* switch power to VCC (WA for VAUX problem) */
  2708. skge_write8(hw, B0_POWER_CTRL,
  2709. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2710. /* avoid boards with stuck Hardware error bits */
  2711. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2712. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2713. printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
  2714. hw->intr_mask &= ~IS_HW_ERR;
  2715. }
  2716. /* Clear PHY COMA */
  2717. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2718. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2719. reg &= ~PCI_PHY_COMA;
  2720. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2721. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2722. for (i = 0; i < hw->ports; i++) {
  2723. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2724. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2725. }
  2726. }
  2727. /* turn off hardware timer (unused) */
  2728. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2729. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2730. skge_write8(hw, B0_LED, LED_STAT_ON);
  2731. /* enable the Tx Arbiters */
  2732. for (i = 0; i < hw->ports; i++)
  2733. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2734. /* Initialize ram interface */
  2735. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2736. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2737. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2738. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2739. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2740. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2741. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2742. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2743. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2744. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2745. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2746. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2747. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2748. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2749. /* Set interrupt moderation for Transmit only
  2750. * Receive interrupts avoided by NAPI
  2751. */
  2752. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2753. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2754. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2755. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2756. mutex_lock(&hw->phy_mutex);
  2757. for (i = 0; i < hw->ports; i++) {
  2758. if (hw->chip_id == CHIP_ID_GENESIS)
  2759. genesis_reset(hw, i);
  2760. else
  2761. yukon_reset(hw, i);
  2762. }
  2763. mutex_unlock(&hw->phy_mutex);
  2764. return 0;
  2765. }
  2766. /* Initialize network device */
  2767. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2768. int highmem)
  2769. {
  2770. struct skge_port *skge;
  2771. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2772. if (!dev) {
  2773. printk(KERN_ERR "skge etherdev alloc failed");
  2774. return NULL;
  2775. }
  2776. SET_MODULE_OWNER(dev);
  2777. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2778. dev->open = skge_up;
  2779. dev->stop = skge_down;
  2780. dev->do_ioctl = skge_ioctl;
  2781. dev->hard_start_xmit = skge_xmit_frame;
  2782. dev->get_stats = skge_get_stats;
  2783. if (hw->chip_id == CHIP_ID_GENESIS)
  2784. dev->set_multicast_list = genesis_set_multicast;
  2785. else
  2786. dev->set_multicast_list = yukon_set_multicast;
  2787. dev->set_mac_address = skge_set_mac_address;
  2788. dev->change_mtu = skge_change_mtu;
  2789. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2790. dev->tx_timeout = skge_tx_timeout;
  2791. dev->watchdog_timeo = TX_WATCHDOG;
  2792. dev->poll = skge_poll;
  2793. dev->weight = NAPI_WEIGHT;
  2794. #ifdef CONFIG_NET_POLL_CONTROLLER
  2795. dev->poll_controller = skge_netpoll;
  2796. #endif
  2797. dev->irq = hw->pdev->irq;
  2798. if (highmem)
  2799. dev->features |= NETIF_F_HIGHDMA;
  2800. skge = netdev_priv(dev);
  2801. skge->netdev = dev;
  2802. skge->hw = hw;
  2803. skge->msg_enable = netif_msg_init(debug, default_msg);
  2804. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2805. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2806. /* Auto speed and flow control */
  2807. skge->autoneg = AUTONEG_ENABLE;
  2808. skge->flow_control = FLOW_MODE_SYMMETRIC;
  2809. skge->duplex = -1;
  2810. skge->speed = -1;
  2811. skge->advertising = skge_supported_modes(hw);
  2812. hw->dev[port] = dev;
  2813. skge->port = port;
  2814. /* Only used for Genesis XMAC */
  2815. INIT_WORK(&skge->link_thread, xm_link_timer, dev);
  2816. if (hw->chip_id != CHIP_ID_GENESIS) {
  2817. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2818. skge->rx_csum = 1;
  2819. }
  2820. /* read the mac address */
  2821. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2822. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2823. /* device is off until link detection */
  2824. netif_carrier_off(dev);
  2825. netif_stop_queue(dev);
  2826. return dev;
  2827. }
  2828. static void __devinit skge_show_addr(struct net_device *dev)
  2829. {
  2830. const struct skge_port *skge = netdev_priv(dev);
  2831. if (netif_msg_probe(skge))
  2832. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2833. dev->name,
  2834. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2835. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2836. }
  2837. static int __devinit skge_probe(struct pci_dev *pdev,
  2838. const struct pci_device_id *ent)
  2839. {
  2840. struct net_device *dev, *dev1;
  2841. struct skge_hw *hw;
  2842. int err, using_dac = 0;
  2843. err = pci_enable_device(pdev);
  2844. if (err) {
  2845. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2846. pci_name(pdev));
  2847. goto err_out;
  2848. }
  2849. err = pci_request_regions(pdev, DRV_NAME);
  2850. if (err) {
  2851. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2852. pci_name(pdev));
  2853. goto err_out_disable_pdev;
  2854. }
  2855. pci_set_master(pdev);
  2856. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  2857. using_dac = 1;
  2858. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2859. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2860. using_dac = 0;
  2861. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  2862. }
  2863. if (err) {
  2864. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2865. pci_name(pdev));
  2866. goto err_out_free_regions;
  2867. }
  2868. #ifdef __BIG_ENDIAN
  2869. /* byte swap descriptors in hardware */
  2870. {
  2871. u32 reg;
  2872. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2873. reg |= PCI_REV_DESC;
  2874. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2875. }
  2876. #endif
  2877. err = -ENOMEM;
  2878. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2879. if (!hw) {
  2880. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2881. pci_name(pdev));
  2882. goto err_out_free_regions;
  2883. }
  2884. hw->pdev = pdev;
  2885. mutex_init(&hw->phy_mutex);
  2886. INIT_WORK(&hw->phy_work, skge_extirq, hw);
  2887. spin_lock_init(&hw->hw_lock);
  2888. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2889. if (!hw->regs) {
  2890. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2891. pci_name(pdev));
  2892. goto err_out_free_hw;
  2893. }
  2894. err = skge_reset(hw);
  2895. if (err)
  2896. goto err_out_iounmap;
  2897. printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
  2898. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  2899. skge_board_name(hw), hw->chip_rev);
  2900. dev = skge_devinit(hw, 0, using_dac);
  2901. if (!dev)
  2902. goto err_out_led_off;
  2903. if (!is_valid_ether_addr(dev->dev_addr)) {
  2904. printk(KERN_ERR PFX "%s: bad (zero?) ethernet address in rom\n",
  2905. pci_name(pdev));
  2906. err = -EIO;
  2907. goto err_out_free_netdev;
  2908. }
  2909. err = register_netdev(dev);
  2910. if (err) {
  2911. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2912. pci_name(pdev));
  2913. goto err_out_free_netdev;
  2914. }
  2915. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
  2916. if (err) {
  2917. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2918. dev->name, pdev->irq);
  2919. goto err_out_unregister;
  2920. }
  2921. skge_show_addr(dev);
  2922. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  2923. if (register_netdev(dev1) == 0)
  2924. skge_show_addr(dev1);
  2925. else {
  2926. /* Failure to register second port need not be fatal */
  2927. printk(KERN_WARNING PFX "register of second port failed\n");
  2928. hw->dev[1] = NULL;
  2929. free_netdev(dev1);
  2930. }
  2931. }
  2932. pci_set_drvdata(pdev, hw);
  2933. return 0;
  2934. err_out_unregister:
  2935. unregister_netdev(dev);
  2936. err_out_free_netdev:
  2937. free_netdev(dev);
  2938. err_out_led_off:
  2939. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2940. err_out_iounmap:
  2941. iounmap(hw->regs);
  2942. err_out_free_hw:
  2943. kfree(hw);
  2944. err_out_free_regions:
  2945. pci_release_regions(pdev);
  2946. err_out_disable_pdev:
  2947. pci_disable_device(pdev);
  2948. pci_set_drvdata(pdev, NULL);
  2949. err_out:
  2950. return err;
  2951. }
  2952. static void __devexit skge_remove(struct pci_dev *pdev)
  2953. {
  2954. struct skge_hw *hw = pci_get_drvdata(pdev);
  2955. struct net_device *dev0, *dev1;
  2956. if (!hw)
  2957. return;
  2958. if ((dev1 = hw->dev[1]))
  2959. unregister_netdev(dev1);
  2960. dev0 = hw->dev[0];
  2961. unregister_netdev(dev0);
  2962. spin_lock_irq(&hw->hw_lock);
  2963. hw->intr_mask = 0;
  2964. skge_write32(hw, B0_IMSK, 0);
  2965. skge_read32(hw, B0_IMSK);
  2966. spin_unlock_irq(&hw->hw_lock);
  2967. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2968. skge_write8(hw, B0_CTST, CS_RST_SET);
  2969. flush_scheduled_work();
  2970. free_irq(pdev->irq, hw);
  2971. pci_release_regions(pdev);
  2972. pci_disable_device(pdev);
  2973. if (dev1)
  2974. free_netdev(dev1);
  2975. free_netdev(dev0);
  2976. iounmap(hw->regs);
  2977. kfree(hw);
  2978. pci_set_drvdata(pdev, NULL);
  2979. }
  2980. #ifdef CONFIG_PM
  2981. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  2982. {
  2983. struct skge_hw *hw = pci_get_drvdata(pdev);
  2984. int i, wol = 0;
  2985. pci_save_state(pdev);
  2986. for (i = 0; i < hw->ports; i++) {
  2987. struct net_device *dev = hw->dev[i];
  2988. if (netif_running(dev)) {
  2989. struct skge_port *skge = netdev_priv(dev);
  2990. netif_carrier_off(dev);
  2991. if (skge->wol)
  2992. netif_stop_queue(dev);
  2993. else
  2994. skge_down(dev);
  2995. wol |= skge->wol;
  2996. }
  2997. netif_device_detach(dev);
  2998. }
  2999. skge_write32(hw, B0_IMSK, 0);
  3000. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  3001. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3002. return 0;
  3003. }
  3004. static int skge_resume(struct pci_dev *pdev)
  3005. {
  3006. struct skge_hw *hw = pci_get_drvdata(pdev);
  3007. int i, err;
  3008. pci_set_power_state(pdev, PCI_D0);
  3009. pci_restore_state(pdev);
  3010. pci_enable_wake(pdev, PCI_D0, 0);
  3011. err = skge_reset(hw);
  3012. if (err)
  3013. goto out;
  3014. for (i = 0; i < hw->ports; i++) {
  3015. struct net_device *dev = hw->dev[i];
  3016. netif_device_attach(dev);
  3017. if (netif_running(dev)) {
  3018. err = skge_up(dev);
  3019. if (err) {
  3020. printk(KERN_ERR PFX "%s: could not up: %d\n",
  3021. dev->name, err);
  3022. dev_close(dev);
  3023. goto out;
  3024. }
  3025. }
  3026. }
  3027. out:
  3028. return err;
  3029. }
  3030. #endif
  3031. static struct pci_driver skge_driver = {
  3032. .name = DRV_NAME,
  3033. .id_table = skge_id_table,
  3034. .probe = skge_probe,
  3035. .remove = __devexit_p(skge_remove),
  3036. #ifdef CONFIG_PM
  3037. .suspend = skge_suspend,
  3038. .resume = skge_resume,
  3039. #endif
  3040. };
  3041. static int __init skge_init_module(void)
  3042. {
  3043. return pci_register_driver(&skge_driver);
  3044. }
  3045. static void __exit skge_cleanup_module(void)
  3046. {
  3047. pci_unregister_driver(&skge_driver);
  3048. }
  3049. module_init(skge_init_module);
  3050. module_exit(skge_cleanup_module);