mct.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512
  1. /* linux/arch/arm/mach-exynos4/mct.c
  2. *
  3. * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * EXYNOS4 MCT(Multi-Core Timer) support
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/irq.h>
  15. #include <linux/err.h>
  16. #include <linux/clk.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/delay.h>
  20. #include <linux/percpu.h>
  21. #include <linux/of.h>
  22. #include <asm/arch_timer.h>
  23. #include <asm/localtimer.h>
  24. #include <plat/cpu.h>
  25. #include <mach/map.h>
  26. #include <mach/irqs.h>
  27. #include <asm/mach/time.h>
  28. #define EXYNOS4_MCTREG(x) (x)
  29. #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
  30. #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
  31. #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
  32. #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
  33. #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
  34. #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
  35. #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
  36. #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
  37. #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
  38. #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
  39. #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
  40. #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
  41. #define EXYNOS4_MCT_L_MASK (0xffffff00)
  42. #define MCT_L_TCNTB_OFFSET (0x00)
  43. #define MCT_L_ICNTB_OFFSET (0x08)
  44. #define MCT_L_TCON_OFFSET (0x20)
  45. #define MCT_L_INT_CSTAT_OFFSET (0x30)
  46. #define MCT_L_INT_ENB_OFFSET (0x34)
  47. #define MCT_L_WSTAT_OFFSET (0x40)
  48. #define MCT_G_TCON_START (1 << 8)
  49. #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
  50. #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
  51. #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
  52. #define MCT_L_TCON_INT_START (1 << 1)
  53. #define MCT_L_TCON_TIMER_START (1 << 0)
  54. #define TICK_BASE_CNT 1
  55. enum {
  56. MCT_INT_SPI,
  57. MCT_INT_PPI
  58. };
  59. static void __iomem *reg_base;
  60. static unsigned long clk_rate;
  61. static unsigned int mct_int_type;
  62. struct mct_clock_event_device {
  63. struct clock_event_device *evt;
  64. unsigned long base;
  65. char name[10];
  66. };
  67. static void exynos4_mct_write(unsigned int value, unsigned long offset)
  68. {
  69. unsigned long stat_addr;
  70. u32 mask;
  71. u32 i;
  72. __raw_writel(value, reg_base + offset);
  73. if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
  74. stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
  75. switch (offset & EXYNOS4_MCT_L_MASK) {
  76. case MCT_L_TCON_OFFSET:
  77. mask = 1 << 3; /* L_TCON write status */
  78. break;
  79. case MCT_L_ICNTB_OFFSET:
  80. mask = 1 << 1; /* L_ICNTB write status */
  81. break;
  82. case MCT_L_TCNTB_OFFSET:
  83. mask = 1 << 0; /* L_TCNTB write status */
  84. break;
  85. default:
  86. return;
  87. }
  88. } else {
  89. switch (offset) {
  90. case EXYNOS4_MCT_G_TCON:
  91. stat_addr = EXYNOS4_MCT_G_WSTAT;
  92. mask = 1 << 16; /* G_TCON write status */
  93. break;
  94. case EXYNOS4_MCT_G_COMP0_L:
  95. stat_addr = EXYNOS4_MCT_G_WSTAT;
  96. mask = 1 << 0; /* G_COMP0_L write status */
  97. break;
  98. case EXYNOS4_MCT_G_COMP0_U:
  99. stat_addr = EXYNOS4_MCT_G_WSTAT;
  100. mask = 1 << 1; /* G_COMP0_U write status */
  101. break;
  102. case EXYNOS4_MCT_G_COMP0_ADD_INCR:
  103. stat_addr = EXYNOS4_MCT_G_WSTAT;
  104. mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
  105. break;
  106. case EXYNOS4_MCT_G_CNT_L:
  107. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  108. mask = 1 << 0; /* G_CNT_L write status */
  109. break;
  110. case EXYNOS4_MCT_G_CNT_U:
  111. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  112. mask = 1 << 1; /* G_CNT_U write status */
  113. break;
  114. default:
  115. return;
  116. }
  117. }
  118. /* Wait maximum 1 ms until written values are applied */
  119. for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
  120. if (__raw_readl(reg_base + stat_addr) & mask) {
  121. __raw_writel(mask, reg_base + stat_addr);
  122. return;
  123. }
  124. panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
  125. }
  126. /* Clocksource handling */
  127. static void exynos4_mct_frc_start(u32 hi, u32 lo)
  128. {
  129. u32 reg;
  130. exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
  131. exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
  132. reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  133. reg |= MCT_G_TCON_START;
  134. exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
  135. }
  136. static cycle_t exynos4_frc_read(struct clocksource *cs)
  137. {
  138. unsigned int lo, hi;
  139. u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
  140. do {
  141. hi = hi2;
  142. lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
  143. hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
  144. } while (hi != hi2);
  145. return ((cycle_t)hi << 32) | lo;
  146. }
  147. static void exynos4_frc_resume(struct clocksource *cs)
  148. {
  149. exynos4_mct_frc_start(0, 0);
  150. }
  151. struct clocksource mct_frc = {
  152. .name = "mct-frc",
  153. .rating = 400,
  154. .read = exynos4_frc_read,
  155. .mask = CLOCKSOURCE_MASK(64),
  156. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  157. .resume = exynos4_frc_resume,
  158. };
  159. static void __init exynos4_clocksource_init(void)
  160. {
  161. exynos4_mct_frc_start(0, 0);
  162. if (clocksource_register_hz(&mct_frc, clk_rate))
  163. panic("%s: can't register clocksource\n", mct_frc.name);
  164. }
  165. static void exynos4_mct_comp0_stop(void)
  166. {
  167. unsigned int tcon;
  168. tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  169. tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
  170. exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
  171. exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
  172. }
  173. static void exynos4_mct_comp0_start(enum clock_event_mode mode,
  174. unsigned long cycles)
  175. {
  176. unsigned int tcon;
  177. cycle_t comp_cycle;
  178. tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  179. if (mode == CLOCK_EVT_MODE_PERIODIC) {
  180. tcon |= MCT_G_TCON_COMP0_AUTO_INC;
  181. exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
  182. }
  183. comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
  184. exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
  185. exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
  186. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
  187. tcon |= MCT_G_TCON_COMP0_ENABLE;
  188. exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
  189. }
  190. static int exynos4_comp_set_next_event(unsigned long cycles,
  191. struct clock_event_device *evt)
  192. {
  193. exynos4_mct_comp0_start(evt->mode, cycles);
  194. return 0;
  195. }
  196. static void exynos4_comp_set_mode(enum clock_event_mode mode,
  197. struct clock_event_device *evt)
  198. {
  199. unsigned long cycles_per_jiffy;
  200. exynos4_mct_comp0_stop();
  201. switch (mode) {
  202. case CLOCK_EVT_MODE_PERIODIC:
  203. cycles_per_jiffy =
  204. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  205. exynos4_mct_comp0_start(mode, cycles_per_jiffy);
  206. break;
  207. case CLOCK_EVT_MODE_ONESHOT:
  208. case CLOCK_EVT_MODE_UNUSED:
  209. case CLOCK_EVT_MODE_SHUTDOWN:
  210. case CLOCK_EVT_MODE_RESUME:
  211. break;
  212. }
  213. }
  214. static struct clock_event_device mct_comp_device = {
  215. .name = "mct-comp",
  216. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  217. .rating = 250,
  218. .set_next_event = exynos4_comp_set_next_event,
  219. .set_mode = exynos4_comp_set_mode,
  220. };
  221. static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
  222. {
  223. struct clock_event_device *evt = dev_id;
  224. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
  225. evt->event_handler(evt);
  226. return IRQ_HANDLED;
  227. }
  228. static struct irqaction mct_comp_event_irq = {
  229. .name = "mct_comp_irq",
  230. .flags = IRQF_TIMER | IRQF_IRQPOLL,
  231. .handler = exynos4_mct_comp_isr,
  232. .dev_id = &mct_comp_device,
  233. };
  234. static void exynos4_clockevent_init(void)
  235. {
  236. mct_comp_device.cpumask = cpumask_of(0);
  237. clockevents_config_and_register(&mct_comp_device, clk_rate,
  238. 0xf, 0xffffffff);
  239. if (soc_is_exynos5250())
  240. setup_irq(EXYNOS5_IRQ_MCT_G0, &mct_comp_event_irq);
  241. else
  242. setup_irq(EXYNOS4_IRQ_MCT_G0, &mct_comp_event_irq);
  243. }
  244. #ifdef CONFIG_LOCAL_TIMERS
  245. static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
  246. /* Clock event handling */
  247. static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
  248. {
  249. unsigned long tmp;
  250. unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
  251. unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
  252. tmp = __raw_readl(reg_base + offset);
  253. if (tmp & mask) {
  254. tmp &= ~mask;
  255. exynos4_mct_write(tmp, offset);
  256. }
  257. }
  258. static void exynos4_mct_tick_start(unsigned long cycles,
  259. struct mct_clock_event_device *mevt)
  260. {
  261. unsigned long tmp;
  262. exynos4_mct_tick_stop(mevt);
  263. tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
  264. /* update interrupt count buffer */
  265. exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
  266. /* enable MCT tick interrupt */
  267. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
  268. tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
  269. tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
  270. MCT_L_TCON_INTERVAL_MODE;
  271. exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
  272. }
  273. static int exynos4_tick_set_next_event(unsigned long cycles,
  274. struct clock_event_device *evt)
  275. {
  276. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  277. exynos4_mct_tick_start(cycles, mevt);
  278. return 0;
  279. }
  280. static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
  281. struct clock_event_device *evt)
  282. {
  283. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  284. unsigned long cycles_per_jiffy;
  285. exynos4_mct_tick_stop(mevt);
  286. switch (mode) {
  287. case CLOCK_EVT_MODE_PERIODIC:
  288. cycles_per_jiffy =
  289. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  290. exynos4_mct_tick_start(cycles_per_jiffy, mevt);
  291. break;
  292. case CLOCK_EVT_MODE_ONESHOT:
  293. case CLOCK_EVT_MODE_UNUSED:
  294. case CLOCK_EVT_MODE_SHUTDOWN:
  295. case CLOCK_EVT_MODE_RESUME:
  296. break;
  297. }
  298. }
  299. static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
  300. {
  301. struct clock_event_device *evt = mevt->evt;
  302. /*
  303. * This is for supporting oneshot mode.
  304. * Mct would generate interrupt periodically
  305. * without explicit stopping.
  306. */
  307. if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
  308. exynos4_mct_tick_stop(mevt);
  309. /* Clear the MCT tick interrupt */
  310. if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
  311. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
  312. return 1;
  313. } else {
  314. return 0;
  315. }
  316. }
  317. static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
  318. {
  319. struct mct_clock_event_device *mevt = dev_id;
  320. struct clock_event_device *evt = mevt->evt;
  321. exynos4_mct_tick_clear(mevt);
  322. evt->event_handler(evt);
  323. return IRQ_HANDLED;
  324. }
  325. static struct irqaction mct_tick0_event_irq = {
  326. .name = "mct_tick0_irq",
  327. .flags = IRQF_TIMER | IRQF_NOBALANCING,
  328. .handler = exynos4_mct_tick_isr,
  329. };
  330. static struct irqaction mct_tick1_event_irq = {
  331. .name = "mct_tick1_irq",
  332. .flags = IRQF_TIMER | IRQF_NOBALANCING,
  333. .handler = exynos4_mct_tick_isr,
  334. };
  335. static int __cpuinit exynos4_local_timer_setup(struct clock_event_device *evt)
  336. {
  337. struct mct_clock_event_device *mevt;
  338. unsigned int cpu = smp_processor_id();
  339. int mct_lx_irq;
  340. mevt = this_cpu_ptr(&percpu_mct_tick);
  341. mevt->evt = evt;
  342. mevt->base = EXYNOS4_MCT_L_BASE(cpu);
  343. sprintf(mevt->name, "mct_tick%d", cpu);
  344. evt->name = mevt->name;
  345. evt->cpumask = cpumask_of(cpu);
  346. evt->set_next_event = exynos4_tick_set_next_event;
  347. evt->set_mode = exynos4_tick_set_mode;
  348. evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
  349. evt->rating = 450;
  350. clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
  351. 0xf, 0x7fffffff);
  352. exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
  353. if (mct_int_type == MCT_INT_SPI) {
  354. if (cpu == 0) {
  355. mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L0 :
  356. EXYNOS5_IRQ_MCT_L0;
  357. mct_tick0_event_irq.dev_id = mevt;
  358. evt->irq = mct_lx_irq;
  359. setup_irq(mct_lx_irq, &mct_tick0_event_irq);
  360. } else {
  361. mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L1 :
  362. EXYNOS5_IRQ_MCT_L1;
  363. mct_tick1_event_irq.dev_id = mevt;
  364. evt->irq = mct_lx_irq;
  365. setup_irq(mct_lx_irq, &mct_tick1_event_irq);
  366. irq_set_affinity(mct_lx_irq, cpumask_of(1));
  367. }
  368. } else {
  369. enable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER, 0);
  370. }
  371. return 0;
  372. }
  373. static void exynos4_local_timer_stop(struct clock_event_device *evt)
  374. {
  375. unsigned int cpu = smp_processor_id();
  376. evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
  377. if (mct_int_type == MCT_INT_SPI)
  378. if (cpu == 0)
  379. remove_irq(evt->irq, &mct_tick0_event_irq);
  380. else
  381. remove_irq(evt->irq, &mct_tick1_event_irq);
  382. else
  383. disable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER);
  384. }
  385. static struct local_timer_ops exynos4_mct_tick_ops __cpuinitdata = {
  386. .setup = exynos4_local_timer_setup,
  387. .stop = exynos4_local_timer_stop,
  388. };
  389. #endif /* CONFIG_LOCAL_TIMERS */
  390. static void __init exynos4_timer_resources(void)
  391. {
  392. struct clk *mct_clk;
  393. mct_clk = clk_get(NULL, "xtal");
  394. clk_rate = clk_get_rate(mct_clk);
  395. reg_base = S5P_VA_SYSTIMER;
  396. #ifdef CONFIG_LOCAL_TIMERS
  397. if (mct_int_type == MCT_INT_PPI) {
  398. int err;
  399. err = request_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER,
  400. exynos4_mct_tick_isr, "MCT",
  401. &percpu_mct_tick);
  402. WARN(err, "MCT: can't request IRQ %d (%d)\n",
  403. EXYNOS_IRQ_MCT_LOCALTIMER, err);
  404. }
  405. local_timer_register(&exynos4_mct_tick_ops);
  406. #endif /* CONFIG_LOCAL_TIMERS */
  407. }
  408. void __init exynos4_timer_init(void)
  409. {
  410. if (soc_is_exynos5440()) {
  411. arch_timer_of_register();
  412. return;
  413. }
  414. if ((soc_is_exynos4210()) || (soc_is_exynos5250()))
  415. mct_int_type = MCT_INT_SPI;
  416. else
  417. mct_int_type = MCT_INT_PPI;
  418. exynos4_timer_resources();
  419. exynos4_clocksource_init();
  420. exynos4_clockevent_init();
  421. }