xfs_buf.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include <linux/stddef.h>
  20. #include <linux/errno.h>
  21. #include <linux/gfp.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/init.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/bio.h>
  26. #include <linux/sysctl.h>
  27. #include <linux/proc_fs.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/percpu.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/hash.h>
  32. #include <linux/kthread.h>
  33. #include <linux/migrate.h>
  34. #include <linux/backing-dev.h>
  35. #include <linux/freezer.h>
  36. #include <linux/list_sort.h>
  37. #include "xfs_sb.h"
  38. #include "xfs_inum.h"
  39. #include "xfs_log.h"
  40. #include "xfs_ag.h"
  41. #include "xfs_mount.h"
  42. #include "xfs_trace.h"
  43. static kmem_zone_t *xfs_buf_zone;
  44. STATIC int xfsbufd(void *);
  45. STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
  46. static struct workqueue_struct *xfslogd_workqueue;
  47. struct workqueue_struct *xfsdatad_workqueue;
  48. struct workqueue_struct *xfsconvertd_workqueue;
  49. #ifdef XFS_BUF_LOCK_TRACKING
  50. # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
  51. # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
  52. # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
  53. #else
  54. # define XB_SET_OWNER(bp) do { } while (0)
  55. # define XB_CLEAR_OWNER(bp) do { } while (0)
  56. # define XB_GET_OWNER(bp) do { } while (0)
  57. #endif
  58. #define xb_to_gfp(flags) \
  59. ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
  60. ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
  61. #define xb_to_km(flags) \
  62. (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
  63. #define xfs_buf_allocate(flags) \
  64. kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
  65. #define xfs_buf_deallocate(bp) \
  66. kmem_zone_free(xfs_buf_zone, (bp));
  67. static inline int
  68. xfs_buf_is_vmapped(
  69. struct xfs_buf *bp)
  70. {
  71. /*
  72. * Return true if the buffer is vmapped.
  73. *
  74. * The XBF_MAPPED flag is set if the buffer should be mapped, but the
  75. * code is clever enough to know it doesn't have to map a single page,
  76. * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
  77. */
  78. return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
  79. }
  80. static inline int
  81. xfs_buf_vmap_len(
  82. struct xfs_buf *bp)
  83. {
  84. return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  85. }
  86. /*
  87. * Page Region interfaces.
  88. *
  89. * For pages in filesystems where the blocksize is smaller than the
  90. * pagesize, we use the page->private field (long) to hold a bitmap
  91. * of uptodate regions within the page.
  92. *
  93. * Each such region is "bytes per page / bits per long" bytes long.
  94. *
  95. * NBPPR == number-of-bytes-per-page-region
  96. * BTOPR == bytes-to-page-region (rounded up)
  97. * BTOPRT == bytes-to-page-region-truncated (rounded down)
  98. */
  99. #if (BITS_PER_LONG == 32)
  100. #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
  101. #elif (BITS_PER_LONG == 64)
  102. #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
  103. #else
  104. #error BITS_PER_LONG must be 32 or 64
  105. #endif
  106. #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
  107. #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
  108. #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
  109. STATIC unsigned long
  110. page_region_mask(
  111. size_t offset,
  112. size_t length)
  113. {
  114. unsigned long mask;
  115. int first, final;
  116. first = BTOPR(offset);
  117. final = BTOPRT(offset + length - 1);
  118. first = min(first, final);
  119. mask = ~0UL;
  120. mask <<= BITS_PER_LONG - (final - first);
  121. mask >>= BITS_PER_LONG - (final);
  122. ASSERT(offset + length <= PAGE_CACHE_SIZE);
  123. ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
  124. return mask;
  125. }
  126. STATIC void
  127. set_page_region(
  128. struct page *page,
  129. size_t offset,
  130. size_t length)
  131. {
  132. set_page_private(page,
  133. page_private(page) | page_region_mask(offset, length));
  134. if (page_private(page) == ~0UL)
  135. SetPageUptodate(page);
  136. }
  137. STATIC int
  138. test_page_region(
  139. struct page *page,
  140. size_t offset,
  141. size_t length)
  142. {
  143. unsigned long mask = page_region_mask(offset, length);
  144. return (mask && (page_private(page) & mask) == mask);
  145. }
  146. /*
  147. * xfs_buf_lru_add - add a buffer to the LRU.
  148. *
  149. * The LRU takes a new reference to the buffer so that it will only be freed
  150. * once the shrinker takes the buffer off the LRU.
  151. */
  152. STATIC void
  153. xfs_buf_lru_add(
  154. struct xfs_buf *bp)
  155. {
  156. struct xfs_buftarg *btp = bp->b_target;
  157. spin_lock(&btp->bt_lru_lock);
  158. if (list_empty(&bp->b_lru)) {
  159. atomic_inc(&bp->b_hold);
  160. list_add_tail(&bp->b_lru, &btp->bt_lru);
  161. btp->bt_lru_nr++;
  162. }
  163. spin_unlock(&btp->bt_lru_lock);
  164. }
  165. /*
  166. * xfs_buf_lru_del - remove a buffer from the LRU
  167. *
  168. * The unlocked check is safe here because it only occurs when there are not
  169. * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
  170. * to optimise the shrinker removing the buffer from the LRU and calling
  171. * xfs_buf_free(). i.e. it removes an unneccessary round trip on the
  172. * bt_lru_lock.
  173. */
  174. STATIC void
  175. xfs_buf_lru_del(
  176. struct xfs_buf *bp)
  177. {
  178. struct xfs_buftarg *btp = bp->b_target;
  179. if (list_empty(&bp->b_lru))
  180. return;
  181. spin_lock(&btp->bt_lru_lock);
  182. if (!list_empty(&bp->b_lru)) {
  183. list_del_init(&bp->b_lru);
  184. btp->bt_lru_nr--;
  185. }
  186. spin_unlock(&btp->bt_lru_lock);
  187. }
  188. /*
  189. * When we mark a buffer stale, we remove the buffer from the LRU and clear the
  190. * b_lru_ref count so that the buffer is freed immediately when the buffer
  191. * reference count falls to zero. If the buffer is already on the LRU, we need
  192. * to remove the reference that LRU holds on the buffer.
  193. *
  194. * This prevents build-up of stale buffers on the LRU.
  195. */
  196. void
  197. xfs_buf_stale(
  198. struct xfs_buf *bp)
  199. {
  200. bp->b_flags |= XBF_STALE;
  201. atomic_set(&(bp)->b_lru_ref, 0);
  202. if (!list_empty(&bp->b_lru)) {
  203. struct xfs_buftarg *btp = bp->b_target;
  204. spin_lock(&btp->bt_lru_lock);
  205. if (!list_empty(&bp->b_lru)) {
  206. list_del_init(&bp->b_lru);
  207. btp->bt_lru_nr--;
  208. atomic_dec(&bp->b_hold);
  209. }
  210. spin_unlock(&btp->bt_lru_lock);
  211. }
  212. ASSERT(atomic_read(&bp->b_hold) >= 1);
  213. }
  214. STATIC void
  215. _xfs_buf_initialize(
  216. xfs_buf_t *bp,
  217. xfs_buftarg_t *target,
  218. xfs_off_t range_base,
  219. size_t range_length,
  220. xfs_buf_flags_t flags)
  221. {
  222. /*
  223. * We don't want certain flags to appear in b_flags.
  224. */
  225. flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
  226. memset(bp, 0, sizeof(xfs_buf_t));
  227. atomic_set(&bp->b_hold, 1);
  228. atomic_set(&bp->b_lru_ref, 1);
  229. init_completion(&bp->b_iowait);
  230. INIT_LIST_HEAD(&bp->b_lru);
  231. INIT_LIST_HEAD(&bp->b_list);
  232. RB_CLEAR_NODE(&bp->b_rbnode);
  233. sema_init(&bp->b_sema, 0); /* held, no waiters */
  234. XB_SET_OWNER(bp);
  235. bp->b_target = target;
  236. bp->b_file_offset = range_base;
  237. /*
  238. * Set buffer_length and count_desired to the same value initially.
  239. * I/O routines should use count_desired, which will be the same in
  240. * most cases but may be reset (e.g. XFS recovery).
  241. */
  242. bp->b_buffer_length = bp->b_count_desired = range_length;
  243. bp->b_flags = flags;
  244. bp->b_bn = XFS_BUF_DADDR_NULL;
  245. atomic_set(&bp->b_pin_count, 0);
  246. init_waitqueue_head(&bp->b_waiters);
  247. XFS_STATS_INC(xb_create);
  248. trace_xfs_buf_init(bp, _RET_IP_);
  249. }
  250. /*
  251. * Allocate a page array capable of holding a specified number
  252. * of pages, and point the page buf at it.
  253. */
  254. STATIC int
  255. _xfs_buf_get_pages(
  256. xfs_buf_t *bp,
  257. int page_count,
  258. xfs_buf_flags_t flags)
  259. {
  260. /* Make sure that we have a page list */
  261. if (bp->b_pages == NULL) {
  262. bp->b_offset = xfs_buf_poff(bp->b_file_offset);
  263. bp->b_page_count = page_count;
  264. if (page_count <= XB_PAGES) {
  265. bp->b_pages = bp->b_page_array;
  266. } else {
  267. bp->b_pages = kmem_alloc(sizeof(struct page *) *
  268. page_count, xb_to_km(flags));
  269. if (bp->b_pages == NULL)
  270. return -ENOMEM;
  271. }
  272. memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
  273. }
  274. return 0;
  275. }
  276. /*
  277. * Frees b_pages if it was allocated.
  278. */
  279. STATIC void
  280. _xfs_buf_free_pages(
  281. xfs_buf_t *bp)
  282. {
  283. if (bp->b_pages != bp->b_page_array) {
  284. kmem_free(bp->b_pages);
  285. bp->b_pages = NULL;
  286. }
  287. }
  288. /*
  289. * Releases the specified buffer.
  290. *
  291. * The modification state of any associated pages is left unchanged.
  292. * The buffer most not be on any hash - use xfs_buf_rele instead for
  293. * hashed and refcounted buffers
  294. */
  295. void
  296. xfs_buf_free(
  297. xfs_buf_t *bp)
  298. {
  299. trace_xfs_buf_free(bp, _RET_IP_);
  300. ASSERT(list_empty(&bp->b_lru));
  301. if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
  302. uint i;
  303. if (xfs_buf_is_vmapped(bp))
  304. vm_unmap_ram(bp->b_addr - bp->b_offset,
  305. bp->b_page_count);
  306. for (i = 0; i < bp->b_page_count; i++) {
  307. struct page *page = bp->b_pages[i];
  308. if (bp->b_flags & _XBF_PAGE_CACHE)
  309. ASSERT(!PagePrivate(page));
  310. page_cache_release(page);
  311. }
  312. }
  313. _xfs_buf_free_pages(bp);
  314. xfs_buf_deallocate(bp);
  315. }
  316. /*
  317. * Finds all pages for buffer in question and builds it's page list.
  318. */
  319. STATIC int
  320. _xfs_buf_lookup_pages(
  321. xfs_buf_t *bp,
  322. uint flags)
  323. {
  324. struct address_space *mapping = bp->b_target->bt_mapping;
  325. size_t blocksize = bp->b_target->bt_bsize;
  326. size_t size = bp->b_count_desired;
  327. size_t nbytes, offset;
  328. gfp_t gfp_mask = xb_to_gfp(flags);
  329. unsigned short page_count, i;
  330. pgoff_t first;
  331. xfs_off_t end;
  332. int error;
  333. end = bp->b_file_offset + bp->b_buffer_length;
  334. page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
  335. error = _xfs_buf_get_pages(bp, page_count, flags);
  336. if (unlikely(error))
  337. return error;
  338. bp->b_flags |= _XBF_PAGE_CACHE;
  339. offset = bp->b_offset;
  340. first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
  341. for (i = 0; i < bp->b_page_count; i++) {
  342. struct page *page;
  343. uint retries = 0;
  344. retry:
  345. page = find_or_create_page(mapping, first + i, gfp_mask);
  346. if (unlikely(page == NULL)) {
  347. if (flags & XBF_READ_AHEAD) {
  348. bp->b_page_count = i;
  349. for (i = 0; i < bp->b_page_count; i++)
  350. unlock_page(bp->b_pages[i]);
  351. return -ENOMEM;
  352. }
  353. /*
  354. * This could deadlock.
  355. *
  356. * But until all the XFS lowlevel code is revamped to
  357. * handle buffer allocation failures we can't do much.
  358. */
  359. if (!(++retries % 100))
  360. xfs_err(NULL,
  361. "possible memory allocation deadlock in %s (mode:0x%x)",
  362. __func__, gfp_mask);
  363. XFS_STATS_INC(xb_page_retries);
  364. congestion_wait(BLK_RW_ASYNC, HZ/50);
  365. goto retry;
  366. }
  367. XFS_STATS_INC(xb_page_found);
  368. nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
  369. size -= nbytes;
  370. ASSERT(!PagePrivate(page));
  371. if (!PageUptodate(page)) {
  372. page_count--;
  373. if (blocksize >= PAGE_CACHE_SIZE) {
  374. if (flags & XBF_READ)
  375. bp->b_flags |= _XBF_PAGE_LOCKED;
  376. } else if (!PagePrivate(page)) {
  377. if (test_page_region(page, offset, nbytes))
  378. page_count++;
  379. }
  380. }
  381. bp->b_pages[i] = page;
  382. offset = 0;
  383. }
  384. if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
  385. for (i = 0; i < bp->b_page_count; i++)
  386. unlock_page(bp->b_pages[i]);
  387. }
  388. if (page_count == bp->b_page_count)
  389. bp->b_flags |= XBF_DONE;
  390. return error;
  391. }
  392. /*
  393. * Map buffer into kernel address-space if nessecary.
  394. */
  395. STATIC int
  396. _xfs_buf_map_pages(
  397. xfs_buf_t *bp,
  398. uint flags)
  399. {
  400. /* A single page buffer is always mappable */
  401. if (bp->b_page_count == 1) {
  402. bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
  403. bp->b_flags |= XBF_MAPPED;
  404. } else if (flags & XBF_MAPPED) {
  405. int retried = 0;
  406. do {
  407. bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
  408. -1, PAGE_KERNEL);
  409. if (bp->b_addr)
  410. break;
  411. vm_unmap_aliases();
  412. } while (retried++ <= 1);
  413. if (!bp->b_addr)
  414. return -ENOMEM;
  415. bp->b_addr += bp->b_offset;
  416. bp->b_flags |= XBF_MAPPED;
  417. }
  418. return 0;
  419. }
  420. /*
  421. * Finding and Reading Buffers
  422. */
  423. /*
  424. * Look up, and creates if absent, a lockable buffer for
  425. * a given range of an inode. The buffer is returned
  426. * locked. If other overlapping buffers exist, they are
  427. * released before the new buffer is created and locked,
  428. * which may imply that this call will block until those buffers
  429. * are unlocked. No I/O is implied by this call.
  430. */
  431. xfs_buf_t *
  432. _xfs_buf_find(
  433. xfs_buftarg_t *btp, /* block device target */
  434. xfs_off_t ioff, /* starting offset of range */
  435. size_t isize, /* length of range */
  436. xfs_buf_flags_t flags,
  437. xfs_buf_t *new_bp)
  438. {
  439. xfs_off_t range_base;
  440. size_t range_length;
  441. struct xfs_perag *pag;
  442. struct rb_node **rbp;
  443. struct rb_node *parent;
  444. xfs_buf_t *bp;
  445. range_base = (ioff << BBSHIFT);
  446. range_length = (isize << BBSHIFT);
  447. /* Check for IOs smaller than the sector size / not sector aligned */
  448. ASSERT(!(range_length < (1 << btp->bt_sshift)));
  449. ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
  450. /* get tree root */
  451. pag = xfs_perag_get(btp->bt_mount,
  452. xfs_daddr_to_agno(btp->bt_mount, ioff));
  453. /* walk tree */
  454. spin_lock(&pag->pag_buf_lock);
  455. rbp = &pag->pag_buf_tree.rb_node;
  456. parent = NULL;
  457. bp = NULL;
  458. while (*rbp) {
  459. parent = *rbp;
  460. bp = rb_entry(parent, struct xfs_buf, b_rbnode);
  461. if (range_base < bp->b_file_offset)
  462. rbp = &(*rbp)->rb_left;
  463. else if (range_base > bp->b_file_offset)
  464. rbp = &(*rbp)->rb_right;
  465. else {
  466. /*
  467. * found a block offset match. If the range doesn't
  468. * match, the only way this is allowed is if the buffer
  469. * in the cache is stale and the transaction that made
  470. * it stale has not yet committed. i.e. we are
  471. * reallocating a busy extent. Skip this buffer and
  472. * continue searching to the right for an exact match.
  473. */
  474. if (bp->b_buffer_length != range_length) {
  475. ASSERT(bp->b_flags & XBF_STALE);
  476. rbp = &(*rbp)->rb_right;
  477. continue;
  478. }
  479. atomic_inc(&bp->b_hold);
  480. goto found;
  481. }
  482. }
  483. /* No match found */
  484. if (new_bp) {
  485. _xfs_buf_initialize(new_bp, btp, range_base,
  486. range_length, flags);
  487. rb_link_node(&new_bp->b_rbnode, parent, rbp);
  488. rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
  489. /* the buffer keeps the perag reference until it is freed */
  490. new_bp->b_pag = pag;
  491. spin_unlock(&pag->pag_buf_lock);
  492. } else {
  493. XFS_STATS_INC(xb_miss_locked);
  494. spin_unlock(&pag->pag_buf_lock);
  495. xfs_perag_put(pag);
  496. }
  497. return new_bp;
  498. found:
  499. spin_unlock(&pag->pag_buf_lock);
  500. xfs_perag_put(pag);
  501. if (xfs_buf_cond_lock(bp)) {
  502. /* failed, so wait for the lock if requested. */
  503. if (!(flags & XBF_TRYLOCK)) {
  504. xfs_buf_lock(bp);
  505. XFS_STATS_INC(xb_get_locked_waited);
  506. } else {
  507. xfs_buf_rele(bp);
  508. XFS_STATS_INC(xb_busy_locked);
  509. return NULL;
  510. }
  511. }
  512. if (bp->b_flags & XBF_STALE) {
  513. ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
  514. bp->b_flags &= XBF_MAPPED;
  515. }
  516. trace_xfs_buf_find(bp, flags, _RET_IP_);
  517. XFS_STATS_INC(xb_get_locked);
  518. return bp;
  519. }
  520. /*
  521. * Assembles a buffer covering the specified range.
  522. * Storage in memory for all portions of the buffer will be allocated,
  523. * although backing storage may not be.
  524. */
  525. xfs_buf_t *
  526. xfs_buf_get(
  527. xfs_buftarg_t *target,/* target for buffer */
  528. xfs_off_t ioff, /* starting offset of range */
  529. size_t isize, /* length of range */
  530. xfs_buf_flags_t flags)
  531. {
  532. xfs_buf_t *bp, *new_bp;
  533. int error = 0, i;
  534. new_bp = xfs_buf_allocate(flags);
  535. if (unlikely(!new_bp))
  536. return NULL;
  537. bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
  538. if (bp == new_bp) {
  539. error = _xfs_buf_lookup_pages(bp, flags);
  540. if (error)
  541. goto no_buffer;
  542. } else {
  543. xfs_buf_deallocate(new_bp);
  544. if (unlikely(bp == NULL))
  545. return NULL;
  546. }
  547. for (i = 0; i < bp->b_page_count; i++)
  548. mark_page_accessed(bp->b_pages[i]);
  549. if (!(bp->b_flags & XBF_MAPPED)) {
  550. error = _xfs_buf_map_pages(bp, flags);
  551. if (unlikely(error)) {
  552. xfs_warn(target->bt_mount,
  553. "%s: failed to map pages\n", __func__);
  554. goto no_buffer;
  555. }
  556. }
  557. XFS_STATS_INC(xb_get);
  558. /*
  559. * Always fill in the block number now, the mapped cases can do
  560. * their own overlay of this later.
  561. */
  562. bp->b_bn = ioff;
  563. bp->b_count_desired = bp->b_buffer_length;
  564. trace_xfs_buf_get(bp, flags, _RET_IP_);
  565. return bp;
  566. no_buffer:
  567. if (flags & (XBF_LOCK | XBF_TRYLOCK))
  568. xfs_buf_unlock(bp);
  569. xfs_buf_rele(bp);
  570. return NULL;
  571. }
  572. STATIC int
  573. _xfs_buf_read(
  574. xfs_buf_t *bp,
  575. xfs_buf_flags_t flags)
  576. {
  577. int status;
  578. ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
  579. ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
  580. bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
  581. XBF_READ_AHEAD | _XBF_RUN_QUEUES);
  582. bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
  583. XBF_READ_AHEAD | _XBF_RUN_QUEUES);
  584. status = xfs_buf_iorequest(bp);
  585. if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
  586. return status;
  587. return xfs_buf_iowait(bp);
  588. }
  589. xfs_buf_t *
  590. xfs_buf_read(
  591. xfs_buftarg_t *target,
  592. xfs_off_t ioff,
  593. size_t isize,
  594. xfs_buf_flags_t flags)
  595. {
  596. xfs_buf_t *bp;
  597. flags |= XBF_READ;
  598. bp = xfs_buf_get(target, ioff, isize, flags);
  599. if (bp) {
  600. trace_xfs_buf_read(bp, flags, _RET_IP_);
  601. if (!XFS_BUF_ISDONE(bp)) {
  602. XFS_STATS_INC(xb_get_read);
  603. _xfs_buf_read(bp, flags);
  604. } else if (flags & XBF_ASYNC) {
  605. /*
  606. * Read ahead call which is already satisfied,
  607. * drop the buffer
  608. */
  609. goto no_buffer;
  610. } else {
  611. /* We do not want read in the flags */
  612. bp->b_flags &= ~XBF_READ;
  613. }
  614. }
  615. return bp;
  616. no_buffer:
  617. if (flags & (XBF_LOCK | XBF_TRYLOCK))
  618. xfs_buf_unlock(bp);
  619. xfs_buf_rele(bp);
  620. return NULL;
  621. }
  622. /*
  623. * If we are not low on memory then do the readahead in a deadlock
  624. * safe manner.
  625. */
  626. void
  627. xfs_buf_readahead(
  628. xfs_buftarg_t *target,
  629. xfs_off_t ioff,
  630. size_t isize)
  631. {
  632. struct backing_dev_info *bdi;
  633. bdi = target->bt_mapping->backing_dev_info;
  634. if (bdi_read_congested(bdi))
  635. return;
  636. xfs_buf_read(target, ioff, isize,
  637. XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
  638. }
  639. /*
  640. * Read an uncached buffer from disk. Allocates and returns a locked
  641. * buffer containing the disk contents or nothing.
  642. */
  643. struct xfs_buf *
  644. xfs_buf_read_uncached(
  645. struct xfs_mount *mp,
  646. struct xfs_buftarg *target,
  647. xfs_daddr_t daddr,
  648. size_t length,
  649. int flags)
  650. {
  651. xfs_buf_t *bp;
  652. int error;
  653. bp = xfs_buf_get_uncached(target, length, flags);
  654. if (!bp)
  655. return NULL;
  656. /* set up the buffer for a read IO */
  657. xfs_buf_lock(bp);
  658. XFS_BUF_SET_ADDR(bp, daddr);
  659. XFS_BUF_READ(bp);
  660. XFS_BUF_BUSY(bp);
  661. xfsbdstrat(mp, bp);
  662. error = xfs_buf_iowait(bp);
  663. if (error || bp->b_error) {
  664. xfs_buf_relse(bp);
  665. return NULL;
  666. }
  667. return bp;
  668. }
  669. xfs_buf_t *
  670. xfs_buf_get_empty(
  671. size_t len,
  672. xfs_buftarg_t *target)
  673. {
  674. xfs_buf_t *bp;
  675. bp = xfs_buf_allocate(0);
  676. if (bp)
  677. _xfs_buf_initialize(bp, target, 0, len, 0);
  678. return bp;
  679. }
  680. static inline struct page *
  681. mem_to_page(
  682. void *addr)
  683. {
  684. if ((!is_vmalloc_addr(addr))) {
  685. return virt_to_page(addr);
  686. } else {
  687. return vmalloc_to_page(addr);
  688. }
  689. }
  690. int
  691. xfs_buf_associate_memory(
  692. xfs_buf_t *bp,
  693. void *mem,
  694. size_t len)
  695. {
  696. int rval;
  697. int i = 0;
  698. unsigned long pageaddr;
  699. unsigned long offset;
  700. size_t buflen;
  701. int page_count;
  702. pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
  703. offset = (unsigned long)mem - pageaddr;
  704. buflen = PAGE_CACHE_ALIGN(len + offset);
  705. page_count = buflen >> PAGE_CACHE_SHIFT;
  706. /* Free any previous set of page pointers */
  707. if (bp->b_pages)
  708. _xfs_buf_free_pages(bp);
  709. bp->b_pages = NULL;
  710. bp->b_addr = mem;
  711. rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
  712. if (rval)
  713. return rval;
  714. bp->b_offset = offset;
  715. for (i = 0; i < bp->b_page_count; i++) {
  716. bp->b_pages[i] = mem_to_page((void *)pageaddr);
  717. pageaddr += PAGE_CACHE_SIZE;
  718. }
  719. bp->b_count_desired = len;
  720. bp->b_buffer_length = buflen;
  721. bp->b_flags |= XBF_MAPPED;
  722. bp->b_flags &= ~_XBF_PAGE_LOCKED;
  723. return 0;
  724. }
  725. xfs_buf_t *
  726. xfs_buf_get_uncached(
  727. struct xfs_buftarg *target,
  728. size_t len,
  729. int flags)
  730. {
  731. unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
  732. int error, i;
  733. xfs_buf_t *bp;
  734. bp = xfs_buf_allocate(0);
  735. if (unlikely(bp == NULL))
  736. goto fail;
  737. _xfs_buf_initialize(bp, target, 0, len, 0);
  738. error = _xfs_buf_get_pages(bp, page_count, 0);
  739. if (error)
  740. goto fail_free_buf;
  741. for (i = 0; i < page_count; i++) {
  742. bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
  743. if (!bp->b_pages[i])
  744. goto fail_free_mem;
  745. }
  746. bp->b_flags |= _XBF_PAGES;
  747. error = _xfs_buf_map_pages(bp, XBF_MAPPED);
  748. if (unlikely(error)) {
  749. xfs_warn(target->bt_mount,
  750. "%s: failed to map pages\n", __func__);
  751. goto fail_free_mem;
  752. }
  753. xfs_buf_unlock(bp);
  754. trace_xfs_buf_get_uncached(bp, _RET_IP_);
  755. return bp;
  756. fail_free_mem:
  757. while (--i >= 0)
  758. __free_page(bp->b_pages[i]);
  759. _xfs_buf_free_pages(bp);
  760. fail_free_buf:
  761. xfs_buf_deallocate(bp);
  762. fail:
  763. return NULL;
  764. }
  765. /*
  766. * Increment reference count on buffer, to hold the buffer concurrently
  767. * with another thread which may release (free) the buffer asynchronously.
  768. * Must hold the buffer already to call this function.
  769. */
  770. void
  771. xfs_buf_hold(
  772. xfs_buf_t *bp)
  773. {
  774. trace_xfs_buf_hold(bp, _RET_IP_);
  775. atomic_inc(&bp->b_hold);
  776. }
  777. /*
  778. * Releases a hold on the specified buffer. If the
  779. * the hold count is 1, calls xfs_buf_free.
  780. */
  781. void
  782. xfs_buf_rele(
  783. xfs_buf_t *bp)
  784. {
  785. struct xfs_perag *pag = bp->b_pag;
  786. trace_xfs_buf_rele(bp, _RET_IP_);
  787. if (!pag) {
  788. ASSERT(list_empty(&bp->b_lru));
  789. ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
  790. if (atomic_dec_and_test(&bp->b_hold))
  791. xfs_buf_free(bp);
  792. return;
  793. }
  794. ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
  795. ASSERT(atomic_read(&bp->b_hold) > 0);
  796. if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
  797. if (!(bp->b_flags & XBF_STALE) &&
  798. atomic_read(&bp->b_lru_ref)) {
  799. xfs_buf_lru_add(bp);
  800. spin_unlock(&pag->pag_buf_lock);
  801. } else {
  802. xfs_buf_lru_del(bp);
  803. ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
  804. rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
  805. spin_unlock(&pag->pag_buf_lock);
  806. xfs_perag_put(pag);
  807. xfs_buf_free(bp);
  808. }
  809. }
  810. }
  811. /*
  812. * Mutual exclusion on buffers. Locking model:
  813. *
  814. * Buffers associated with inodes for which buffer locking
  815. * is not enabled are not protected by semaphores, and are
  816. * assumed to be exclusively owned by the caller. There is a
  817. * spinlock in the buffer, used by the caller when concurrent
  818. * access is possible.
  819. */
  820. /*
  821. * Locks a buffer object, if it is not already locked. Note that this in
  822. * no way locks the underlying pages, so it is only useful for
  823. * synchronizing concurrent use of buffer objects, not for synchronizing
  824. * independent access to the underlying pages.
  825. *
  826. * If we come across a stale, pinned, locked buffer, we know that we are
  827. * being asked to lock a buffer that has been reallocated. Because it is
  828. * pinned, we know that the log has not been pushed to disk and hence it
  829. * will still be locked. Rather than continuing to have trylock attempts
  830. * fail until someone else pushes the log, push it ourselves before
  831. * returning. This means that the xfsaild will not get stuck trying
  832. * to push on stale inode buffers.
  833. */
  834. int
  835. xfs_buf_cond_lock(
  836. xfs_buf_t *bp)
  837. {
  838. int locked;
  839. locked = down_trylock(&bp->b_sema) == 0;
  840. if (locked)
  841. XB_SET_OWNER(bp);
  842. else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
  843. xfs_log_force(bp->b_target->bt_mount, 0);
  844. trace_xfs_buf_cond_lock(bp, _RET_IP_);
  845. return locked ? 0 : -EBUSY;
  846. }
  847. int
  848. xfs_buf_lock_value(
  849. xfs_buf_t *bp)
  850. {
  851. return bp->b_sema.count;
  852. }
  853. /*
  854. * Locks a buffer object.
  855. * Note that this in no way locks the underlying pages, so it is only
  856. * useful for synchronizing concurrent use of buffer objects, not for
  857. * synchronizing independent access to the underlying pages.
  858. *
  859. * If we come across a stale, pinned, locked buffer, we know that we
  860. * are being asked to lock a buffer that has been reallocated. Because
  861. * it is pinned, we know that the log has not been pushed to disk and
  862. * hence it will still be locked. Rather than sleeping until someone
  863. * else pushes the log, push it ourselves before trying to get the lock.
  864. */
  865. void
  866. xfs_buf_lock(
  867. xfs_buf_t *bp)
  868. {
  869. trace_xfs_buf_lock(bp, _RET_IP_);
  870. if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
  871. xfs_log_force(bp->b_target->bt_mount, 0);
  872. if (atomic_read(&bp->b_io_remaining))
  873. blk_run_address_space(bp->b_target->bt_mapping);
  874. down(&bp->b_sema);
  875. XB_SET_OWNER(bp);
  876. trace_xfs_buf_lock_done(bp, _RET_IP_);
  877. }
  878. /*
  879. * Releases the lock on the buffer object.
  880. * If the buffer is marked delwri but is not queued, do so before we
  881. * unlock the buffer as we need to set flags correctly. We also need to
  882. * take a reference for the delwri queue because the unlocker is going to
  883. * drop their's and they don't know we just queued it.
  884. */
  885. void
  886. xfs_buf_unlock(
  887. xfs_buf_t *bp)
  888. {
  889. if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
  890. atomic_inc(&bp->b_hold);
  891. bp->b_flags |= XBF_ASYNC;
  892. xfs_buf_delwri_queue(bp, 0);
  893. }
  894. XB_CLEAR_OWNER(bp);
  895. up(&bp->b_sema);
  896. trace_xfs_buf_unlock(bp, _RET_IP_);
  897. }
  898. STATIC void
  899. xfs_buf_wait_unpin(
  900. xfs_buf_t *bp)
  901. {
  902. DECLARE_WAITQUEUE (wait, current);
  903. if (atomic_read(&bp->b_pin_count) == 0)
  904. return;
  905. add_wait_queue(&bp->b_waiters, &wait);
  906. for (;;) {
  907. set_current_state(TASK_UNINTERRUPTIBLE);
  908. if (atomic_read(&bp->b_pin_count) == 0)
  909. break;
  910. if (atomic_read(&bp->b_io_remaining))
  911. blk_run_address_space(bp->b_target->bt_mapping);
  912. schedule();
  913. }
  914. remove_wait_queue(&bp->b_waiters, &wait);
  915. set_current_state(TASK_RUNNING);
  916. }
  917. /*
  918. * Buffer Utility Routines
  919. */
  920. STATIC void
  921. xfs_buf_iodone_work(
  922. struct work_struct *work)
  923. {
  924. xfs_buf_t *bp =
  925. container_of(work, xfs_buf_t, b_iodone_work);
  926. if (bp->b_iodone)
  927. (*(bp->b_iodone))(bp);
  928. else if (bp->b_flags & XBF_ASYNC)
  929. xfs_buf_relse(bp);
  930. }
  931. void
  932. xfs_buf_ioend(
  933. xfs_buf_t *bp,
  934. int schedule)
  935. {
  936. trace_xfs_buf_iodone(bp, _RET_IP_);
  937. bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
  938. if (bp->b_error == 0)
  939. bp->b_flags |= XBF_DONE;
  940. if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
  941. if (schedule) {
  942. INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
  943. queue_work(xfslogd_workqueue, &bp->b_iodone_work);
  944. } else {
  945. xfs_buf_iodone_work(&bp->b_iodone_work);
  946. }
  947. } else {
  948. complete(&bp->b_iowait);
  949. }
  950. }
  951. void
  952. xfs_buf_ioerror(
  953. xfs_buf_t *bp,
  954. int error)
  955. {
  956. ASSERT(error >= 0 && error <= 0xffff);
  957. bp->b_error = (unsigned short)error;
  958. trace_xfs_buf_ioerror(bp, error, _RET_IP_);
  959. }
  960. int
  961. xfs_bwrite(
  962. struct xfs_mount *mp,
  963. struct xfs_buf *bp)
  964. {
  965. int error;
  966. bp->b_flags |= XBF_WRITE;
  967. bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
  968. xfs_buf_delwri_dequeue(bp);
  969. xfs_bdstrat_cb(bp);
  970. error = xfs_buf_iowait(bp);
  971. if (error)
  972. xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
  973. xfs_buf_relse(bp);
  974. return error;
  975. }
  976. void
  977. xfs_bdwrite(
  978. void *mp,
  979. struct xfs_buf *bp)
  980. {
  981. trace_xfs_buf_bdwrite(bp, _RET_IP_);
  982. bp->b_flags &= ~XBF_READ;
  983. bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
  984. xfs_buf_delwri_queue(bp, 1);
  985. }
  986. /*
  987. * Called when we want to stop a buffer from getting written or read.
  988. * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
  989. * so that the proper iodone callbacks get called.
  990. */
  991. STATIC int
  992. xfs_bioerror(
  993. xfs_buf_t *bp)
  994. {
  995. #ifdef XFSERRORDEBUG
  996. ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
  997. #endif
  998. /*
  999. * No need to wait until the buffer is unpinned, we aren't flushing it.
  1000. */
  1001. XFS_BUF_ERROR(bp, EIO);
  1002. /*
  1003. * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
  1004. */
  1005. XFS_BUF_UNREAD(bp);
  1006. XFS_BUF_UNDELAYWRITE(bp);
  1007. XFS_BUF_UNDONE(bp);
  1008. XFS_BUF_STALE(bp);
  1009. xfs_buf_ioend(bp, 0);
  1010. return EIO;
  1011. }
  1012. /*
  1013. * Same as xfs_bioerror, except that we are releasing the buffer
  1014. * here ourselves, and avoiding the xfs_buf_ioend call.
  1015. * This is meant for userdata errors; metadata bufs come with
  1016. * iodone functions attached, so that we can track down errors.
  1017. */
  1018. STATIC int
  1019. xfs_bioerror_relse(
  1020. struct xfs_buf *bp)
  1021. {
  1022. int64_t fl = XFS_BUF_BFLAGS(bp);
  1023. /*
  1024. * No need to wait until the buffer is unpinned.
  1025. * We aren't flushing it.
  1026. *
  1027. * chunkhold expects B_DONE to be set, whether
  1028. * we actually finish the I/O or not. We don't want to
  1029. * change that interface.
  1030. */
  1031. XFS_BUF_UNREAD(bp);
  1032. XFS_BUF_UNDELAYWRITE(bp);
  1033. XFS_BUF_DONE(bp);
  1034. XFS_BUF_STALE(bp);
  1035. XFS_BUF_CLR_IODONE_FUNC(bp);
  1036. if (!(fl & XBF_ASYNC)) {
  1037. /*
  1038. * Mark b_error and B_ERROR _both_.
  1039. * Lot's of chunkcache code assumes that.
  1040. * There's no reason to mark error for
  1041. * ASYNC buffers.
  1042. */
  1043. XFS_BUF_ERROR(bp, EIO);
  1044. XFS_BUF_FINISH_IOWAIT(bp);
  1045. } else {
  1046. xfs_buf_relse(bp);
  1047. }
  1048. return EIO;
  1049. }
  1050. /*
  1051. * All xfs metadata buffers except log state machine buffers
  1052. * get this attached as their b_bdstrat callback function.
  1053. * This is so that we can catch a buffer
  1054. * after prematurely unpinning it to forcibly shutdown the filesystem.
  1055. */
  1056. int
  1057. xfs_bdstrat_cb(
  1058. struct xfs_buf *bp)
  1059. {
  1060. if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
  1061. trace_xfs_bdstrat_shut(bp, _RET_IP_);
  1062. /*
  1063. * Metadata write that didn't get logged but
  1064. * written delayed anyway. These aren't associated
  1065. * with a transaction, and can be ignored.
  1066. */
  1067. if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
  1068. return xfs_bioerror_relse(bp);
  1069. else
  1070. return xfs_bioerror(bp);
  1071. }
  1072. xfs_buf_iorequest(bp);
  1073. return 0;
  1074. }
  1075. /*
  1076. * Wrapper around bdstrat so that we can stop data from going to disk in case
  1077. * we are shutting down the filesystem. Typically user data goes thru this
  1078. * path; one of the exceptions is the superblock.
  1079. */
  1080. void
  1081. xfsbdstrat(
  1082. struct xfs_mount *mp,
  1083. struct xfs_buf *bp)
  1084. {
  1085. if (XFS_FORCED_SHUTDOWN(mp)) {
  1086. trace_xfs_bdstrat_shut(bp, _RET_IP_);
  1087. xfs_bioerror_relse(bp);
  1088. return;
  1089. }
  1090. xfs_buf_iorequest(bp);
  1091. }
  1092. STATIC void
  1093. _xfs_buf_ioend(
  1094. xfs_buf_t *bp,
  1095. int schedule)
  1096. {
  1097. if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
  1098. bp->b_flags &= ~_XBF_PAGE_LOCKED;
  1099. xfs_buf_ioend(bp, schedule);
  1100. }
  1101. }
  1102. STATIC void
  1103. xfs_buf_bio_end_io(
  1104. struct bio *bio,
  1105. int error)
  1106. {
  1107. xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
  1108. unsigned int blocksize = bp->b_target->bt_bsize;
  1109. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  1110. xfs_buf_ioerror(bp, -error);
  1111. if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
  1112. invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
  1113. do {
  1114. struct page *page = bvec->bv_page;
  1115. ASSERT(!PagePrivate(page));
  1116. if (unlikely(bp->b_error)) {
  1117. if (bp->b_flags & XBF_READ)
  1118. ClearPageUptodate(page);
  1119. } else if (blocksize >= PAGE_CACHE_SIZE) {
  1120. SetPageUptodate(page);
  1121. } else if (!PagePrivate(page) &&
  1122. (bp->b_flags & _XBF_PAGE_CACHE)) {
  1123. set_page_region(page, bvec->bv_offset, bvec->bv_len);
  1124. }
  1125. if (--bvec >= bio->bi_io_vec)
  1126. prefetchw(&bvec->bv_page->flags);
  1127. if (bp->b_flags & _XBF_PAGE_LOCKED)
  1128. unlock_page(page);
  1129. } while (bvec >= bio->bi_io_vec);
  1130. _xfs_buf_ioend(bp, 1);
  1131. bio_put(bio);
  1132. }
  1133. STATIC void
  1134. _xfs_buf_ioapply(
  1135. xfs_buf_t *bp)
  1136. {
  1137. int rw, map_i, total_nr_pages, nr_pages;
  1138. struct bio *bio;
  1139. int offset = bp->b_offset;
  1140. int size = bp->b_count_desired;
  1141. sector_t sector = bp->b_bn;
  1142. unsigned int blocksize = bp->b_target->bt_bsize;
  1143. total_nr_pages = bp->b_page_count;
  1144. map_i = 0;
  1145. if (bp->b_flags & XBF_ORDERED) {
  1146. ASSERT(!(bp->b_flags & XBF_READ));
  1147. rw = WRITE_FLUSH_FUA;
  1148. } else if (bp->b_flags & XBF_LOG_BUFFER) {
  1149. ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
  1150. bp->b_flags &= ~_XBF_RUN_QUEUES;
  1151. rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
  1152. } else if (bp->b_flags & _XBF_RUN_QUEUES) {
  1153. ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
  1154. bp->b_flags &= ~_XBF_RUN_QUEUES;
  1155. rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
  1156. } else {
  1157. rw = (bp->b_flags & XBF_WRITE) ? WRITE :
  1158. (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
  1159. }
  1160. /* Special code path for reading a sub page size buffer in --
  1161. * we populate up the whole page, and hence the other metadata
  1162. * in the same page. This optimization is only valid when the
  1163. * filesystem block size is not smaller than the page size.
  1164. */
  1165. if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
  1166. ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
  1167. (XBF_READ|_XBF_PAGE_LOCKED)) &&
  1168. (blocksize >= PAGE_CACHE_SIZE)) {
  1169. bio = bio_alloc(GFP_NOIO, 1);
  1170. bio->bi_bdev = bp->b_target->bt_bdev;
  1171. bio->bi_sector = sector - (offset >> BBSHIFT);
  1172. bio->bi_end_io = xfs_buf_bio_end_io;
  1173. bio->bi_private = bp;
  1174. bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
  1175. size = 0;
  1176. atomic_inc(&bp->b_io_remaining);
  1177. goto submit_io;
  1178. }
  1179. next_chunk:
  1180. atomic_inc(&bp->b_io_remaining);
  1181. nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
  1182. if (nr_pages > total_nr_pages)
  1183. nr_pages = total_nr_pages;
  1184. bio = bio_alloc(GFP_NOIO, nr_pages);
  1185. bio->bi_bdev = bp->b_target->bt_bdev;
  1186. bio->bi_sector = sector;
  1187. bio->bi_end_io = xfs_buf_bio_end_io;
  1188. bio->bi_private = bp;
  1189. for (; size && nr_pages; nr_pages--, map_i++) {
  1190. int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
  1191. if (nbytes > size)
  1192. nbytes = size;
  1193. rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
  1194. if (rbytes < nbytes)
  1195. break;
  1196. offset = 0;
  1197. sector += nbytes >> BBSHIFT;
  1198. size -= nbytes;
  1199. total_nr_pages--;
  1200. }
  1201. submit_io:
  1202. if (likely(bio->bi_size)) {
  1203. if (xfs_buf_is_vmapped(bp)) {
  1204. flush_kernel_vmap_range(bp->b_addr,
  1205. xfs_buf_vmap_len(bp));
  1206. }
  1207. submit_bio(rw, bio);
  1208. if (size)
  1209. goto next_chunk;
  1210. } else {
  1211. /*
  1212. * if we get here, no pages were added to the bio. However,
  1213. * we can't just error out here - if the pages are locked then
  1214. * we have to unlock them otherwise we can hang on a later
  1215. * access to the page.
  1216. */
  1217. xfs_buf_ioerror(bp, EIO);
  1218. if (bp->b_flags & _XBF_PAGE_LOCKED) {
  1219. int i;
  1220. for (i = 0; i < bp->b_page_count; i++)
  1221. unlock_page(bp->b_pages[i]);
  1222. }
  1223. bio_put(bio);
  1224. }
  1225. }
  1226. int
  1227. xfs_buf_iorequest(
  1228. xfs_buf_t *bp)
  1229. {
  1230. trace_xfs_buf_iorequest(bp, _RET_IP_);
  1231. if (bp->b_flags & XBF_DELWRI) {
  1232. xfs_buf_delwri_queue(bp, 1);
  1233. return 0;
  1234. }
  1235. if (bp->b_flags & XBF_WRITE) {
  1236. xfs_buf_wait_unpin(bp);
  1237. }
  1238. xfs_buf_hold(bp);
  1239. /* Set the count to 1 initially, this will stop an I/O
  1240. * completion callout which happens before we have started
  1241. * all the I/O from calling xfs_buf_ioend too early.
  1242. */
  1243. atomic_set(&bp->b_io_remaining, 1);
  1244. _xfs_buf_ioapply(bp);
  1245. _xfs_buf_ioend(bp, 0);
  1246. xfs_buf_rele(bp);
  1247. return 0;
  1248. }
  1249. /*
  1250. * Waits for I/O to complete on the buffer supplied.
  1251. * It returns immediately if no I/O is pending.
  1252. * It returns the I/O error code, if any, or 0 if there was no error.
  1253. */
  1254. int
  1255. xfs_buf_iowait(
  1256. xfs_buf_t *bp)
  1257. {
  1258. trace_xfs_buf_iowait(bp, _RET_IP_);
  1259. if (atomic_read(&bp->b_io_remaining))
  1260. blk_run_address_space(bp->b_target->bt_mapping);
  1261. wait_for_completion(&bp->b_iowait);
  1262. trace_xfs_buf_iowait_done(bp, _RET_IP_);
  1263. return bp->b_error;
  1264. }
  1265. xfs_caddr_t
  1266. xfs_buf_offset(
  1267. xfs_buf_t *bp,
  1268. size_t offset)
  1269. {
  1270. struct page *page;
  1271. if (bp->b_flags & XBF_MAPPED)
  1272. return XFS_BUF_PTR(bp) + offset;
  1273. offset += bp->b_offset;
  1274. page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
  1275. return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
  1276. }
  1277. /*
  1278. * Move data into or out of a buffer.
  1279. */
  1280. void
  1281. xfs_buf_iomove(
  1282. xfs_buf_t *bp, /* buffer to process */
  1283. size_t boff, /* starting buffer offset */
  1284. size_t bsize, /* length to copy */
  1285. void *data, /* data address */
  1286. xfs_buf_rw_t mode) /* read/write/zero flag */
  1287. {
  1288. size_t bend, cpoff, csize;
  1289. struct page *page;
  1290. bend = boff + bsize;
  1291. while (boff < bend) {
  1292. page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
  1293. cpoff = xfs_buf_poff(boff + bp->b_offset);
  1294. csize = min_t(size_t,
  1295. PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
  1296. ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
  1297. switch (mode) {
  1298. case XBRW_ZERO:
  1299. memset(page_address(page) + cpoff, 0, csize);
  1300. break;
  1301. case XBRW_READ:
  1302. memcpy(data, page_address(page) + cpoff, csize);
  1303. break;
  1304. case XBRW_WRITE:
  1305. memcpy(page_address(page) + cpoff, data, csize);
  1306. }
  1307. boff += csize;
  1308. data += csize;
  1309. }
  1310. }
  1311. /*
  1312. * Handling of buffer targets (buftargs).
  1313. */
  1314. /*
  1315. * Wait for any bufs with callbacks that have been submitted but have not yet
  1316. * returned. These buffers will have an elevated hold count, so wait on those
  1317. * while freeing all the buffers only held by the LRU.
  1318. */
  1319. void
  1320. xfs_wait_buftarg(
  1321. struct xfs_buftarg *btp)
  1322. {
  1323. struct xfs_buf *bp;
  1324. restart:
  1325. spin_lock(&btp->bt_lru_lock);
  1326. while (!list_empty(&btp->bt_lru)) {
  1327. bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
  1328. if (atomic_read(&bp->b_hold) > 1) {
  1329. spin_unlock(&btp->bt_lru_lock);
  1330. delay(100);
  1331. goto restart;
  1332. }
  1333. /*
  1334. * clear the LRU reference count so the bufer doesn't get
  1335. * ignored in xfs_buf_rele().
  1336. */
  1337. atomic_set(&bp->b_lru_ref, 0);
  1338. spin_unlock(&btp->bt_lru_lock);
  1339. xfs_buf_rele(bp);
  1340. spin_lock(&btp->bt_lru_lock);
  1341. }
  1342. spin_unlock(&btp->bt_lru_lock);
  1343. }
  1344. int
  1345. xfs_buftarg_shrink(
  1346. struct shrinker *shrink,
  1347. int nr_to_scan,
  1348. gfp_t mask)
  1349. {
  1350. struct xfs_buftarg *btp = container_of(shrink,
  1351. struct xfs_buftarg, bt_shrinker);
  1352. struct xfs_buf *bp;
  1353. LIST_HEAD(dispose);
  1354. if (!nr_to_scan)
  1355. return btp->bt_lru_nr;
  1356. spin_lock(&btp->bt_lru_lock);
  1357. while (!list_empty(&btp->bt_lru)) {
  1358. if (nr_to_scan-- <= 0)
  1359. break;
  1360. bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
  1361. /*
  1362. * Decrement the b_lru_ref count unless the value is already
  1363. * zero. If the value is already zero, we need to reclaim the
  1364. * buffer, otherwise it gets another trip through the LRU.
  1365. */
  1366. if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
  1367. list_move_tail(&bp->b_lru, &btp->bt_lru);
  1368. continue;
  1369. }
  1370. /*
  1371. * remove the buffer from the LRU now to avoid needing another
  1372. * lock round trip inside xfs_buf_rele().
  1373. */
  1374. list_move(&bp->b_lru, &dispose);
  1375. btp->bt_lru_nr--;
  1376. }
  1377. spin_unlock(&btp->bt_lru_lock);
  1378. while (!list_empty(&dispose)) {
  1379. bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
  1380. list_del_init(&bp->b_lru);
  1381. xfs_buf_rele(bp);
  1382. }
  1383. return btp->bt_lru_nr;
  1384. }
  1385. void
  1386. xfs_free_buftarg(
  1387. struct xfs_mount *mp,
  1388. struct xfs_buftarg *btp)
  1389. {
  1390. unregister_shrinker(&btp->bt_shrinker);
  1391. xfs_flush_buftarg(btp, 1);
  1392. if (mp->m_flags & XFS_MOUNT_BARRIER)
  1393. xfs_blkdev_issue_flush(btp);
  1394. iput(btp->bt_mapping->host);
  1395. kthread_stop(btp->bt_task);
  1396. kmem_free(btp);
  1397. }
  1398. STATIC int
  1399. xfs_setsize_buftarg_flags(
  1400. xfs_buftarg_t *btp,
  1401. unsigned int blocksize,
  1402. unsigned int sectorsize,
  1403. int verbose)
  1404. {
  1405. btp->bt_bsize = blocksize;
  1406. btp->bt_sshift = ffs(sectorsize) - 1;
  1407. btp->bt_smask = sectorsize - 1;
  1408. if (set_blocksize(btp->bt_bdev, sectorsize)) {
  1409. xfs_warn(btp->bt_mount,
  1410. "Cannot set_blocksize to %u on device %s\n",
  1411. sectorsize, XFS_BUFTARG_NAME(btp));
  1412. return EINVAL;
  1413. }
  1414. if (verbose &&
  1415. (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
  1416. printk(KERN_WARNING
  1417. "XFS: %u byte sectors in use on device %s. "
  1418. "This is suboptimal; %u or greater is ideal.\n",
  1419. sectorsize, XFS_BUFTARG_NAME(btp),
  1420. (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
  1421. }
  1422. return 0;
  1423. }
  1424. /*
  1425. * When allocating the initial buffer target we have not yet
  1426. * read in the superblock, so don't know what sized sectors
  1427. * are being used is at this early stage. Play safe.
  1428. */
  1429. STATIC int
  1430. xfs_setsize_buftarg_early(
  1431. xfs_buftarg_t *btp,
  1432. struct block_device *bdev)
  1433. {
  1434. return xfs_setsize_buftarg_flags(btp,
  1435. PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
  1436. }
  1437. int
  1438. xfs_setsize_buftarg(
  1439. xfs_buftarg_t *btp,
  1440. unsigned int blocksize,
  1441. unsigned int sectorsize)
  1442. {
  1443. return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
  1444. }
  1445. STATIC int
  1446. xfs_mapping_buftarg(
  1447. xfs_buftarg_t *btp,
  1448. struct block_device *bdev)
  1449. {
  1450. struct backing_dev_info *bdi;
  1451. struct inode *inode;
  1452. struct address_space *mapping;
  1453. static const struct address_space_operations mapping_aops = {
  1454. .sync_page = block_sync_page,
  1455. .migratepage = fail_migrate_page,
  1456. };
  1457. inode = new_inode(bdev->bd_inode->i_sb);
  1458. if (!inode) {
  1459. printk(KERN_WARNING
  1460. "XFS: Cannot allocate mapping inode for device %s\n",
  1461. XFS_BUFTARG_NAME(btp));
  1462. return ENOMEM;
  1463. }
  1464. inode->i_ino = get_next_ino();
  1465. inode->i_mode = S_IFBLK;
  1466. inode->i_bdev = bdev;
  1467. inode->i_rdev = bdev->bd_dev;
  1468. bdi = blk_get_backing_dev_info(bdev);
  1469. if (!bdi)
  1470. bdi = &default_backing_dev_info;
  1471. mapping = &inode->i_data;
  1472. mapping->a_ops = &mapping_aops;
  1473. mapping->backing_dev_info = bdi;
  1474. mapping_set_gfp_mask(mapping, GFP_NOFS);
  1475. btp->bt_mapping = mapping;
  1476. return 0;
  1477. }
  1478. STATIC int
  1479. xfs_alloc_delwrite_queue(
  1480. xfs_buftarg_t *btp,
  1481. const char *fsname)
  1482. {
  1483. INIT_LIST_HEAD(&btp->bt_delwrite_queue);
  1484. spin_lock_init(&btp->bt_delwrite_lock);
  1485. btp->bt_flags = 0;
  1486. btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
  1487. if (IS_ERR(btp->bt_task))
  1488. return PTR_ERR(btp->bt_task);
  1489. return 0;
  1490. }
  1491. xfs_buftarg_t *
  1492. xfs_alloc_buftarg(
  1493. struct xfs_mount *mp,
  1494. struct block_device *bdev,
  1495. int external,
  1496. const char *fsname)
  1497. {
  1498. xfs_buftarg_t *btp;
  1499. btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
  1500. btp->bt_mount = mp;
  1501. btp->bt_dev = bdev->bd_dev;
  1502. btp->bt_bdev = bdev;
  1503. INIT_LIST_HEAD(&btp->bt_lru);
  1504. spin_lock_init(&btp->bt_lru_lock);
  1505. if (xfs_setsize_buftarg_early(btp, bdev))
  1506. goto error;
  1507. if (xfs_mapping_buftarg(btp, bdev))
  1508. goto error;
  1509. if (xfs_alloc_delwrite_queue(btp, fsname))
  1510. goto error;
  1511. btp->bt_shrinker.shrink = xfs_buftarg_shrink;
  1512. btp->bt_shrinker.seeks = DEFAULT_SEEKS;
  1513. register_shrinker(&btp->bt_shrinker);
  1514. return btp;
  1515. error:
  1516. kmem_free(btp);
  1517. return NULL;
  1518. }
  1519. /*
  1520. * Delayed write buffer handling
  1521. */
  1522. STATIC void
  1523. xfs_buf_delwri_queue(
  1524. xfs_buf_t *bp,
  1525. int unlock)
  1526. {
  1527. struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
  1528. spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
  1529. trace_xfs_buf_delwri_queue(bp, _RET_IP_);
  1530. ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
  1531. spin_lock(dwlk);
  1532. /* If already in the queue, dequeue and place at tail */
  1533. if (!list_empty(&bp->b_list)) {
  1534. ASSERT(bp->b_flags & _XBF_DELWRI_Q);
  1535. if (unlock)
  1536. atomic_dec(&bp->b_hold);
  1537. list_del(&bp->b_list);
  1538. }
  1539. if (list_empty(dwq)) {
  1540. /* start xfsbufd as it is about to have something to do */
  1541. wake_up_process(bp->b_target->bt_task);
  1542. }
  1543. bp->b_flags |= _XBF_DELWRI_Q;
  1544. list_add_tail(&bp->b_list, dwq);
  1545. bp->b_queuetime = jiffies;
  1546. spin_unlock(dwlk);
  1547. if (unlock)
  1548. xfs_buf_unlock(bp);
  1549. }
  1550. void
  1551. xfs_buf_delwri_dequeue(
  1552. xfs_buf_t *bp)
  1553. {
  1554. spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
  1555. int dequeued = 0;
  1556. spin_lock(dwlk);
  1557. if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
  1558. ASSERT(bp->b_flags & _XBF_DELWRI_Q);
  1559. list_del_init(&bp->b_list);
  1560. dequeued = 1;
  1561. }
  1562. bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
  1563. spin_unlock(dwlk);
  1564. if (dequeued)
  1565. xfs_buf_rele(bp);
  1566. trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
  1567. }
  1568. /*
  1569. * If a delwri buffer needs to be pushed before it has aged out, then promote
  1570. * it to the head of the delwri queue so that it will be flushed on the next
  1571. * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
  1572. * than the age currently needed to flush the buffer. Hence the next time the
  1573. * xfsbufd sees it is guaranteed to be considered old enough to flush.
  1574. */
  1575. void
  1576. xfs_buf_delwri_promote(
  1577. struct xfs_buf *bp)
  1578. {
  1579. struct xfs_buftarg *btp = bp->b_target;
  1580. long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
  1581. ASSERT(bp->b_flags & XBF_DELWRI);
  1582. ASSERT(bp->b_flags & _XBF_DELWRI_Q);
  1583. /*
  1584. * Check the buffer age before locking the delayed write queue as we
  1585. * don't need to promote buffers that are already past the flush age.
  1586. */
  1587. if (bp->b_queuetime < jiffies - age)
  1588. return;
  1589. bp->b_queuetime = jiffies - age;
  1590. spin_lock(&btp->bt_delwrite_lock);
  1591. list_move(&bp->b_list, &btp->bt_delwrite_queue);
  1592. spin_unlock(&btp->bt_delwrite_lock);
  1593. }
  1594. STATIC void
  1595. xfs_buf_runall_queues(
  1596. struct workqueue_struct *queue)
  1597. {
  1598. flush_workqueue(queue);
  1599. }
  1600. /*
  1601. * Move as many buffers as specified to the supplied list
  1602. * idicating if we skipped any buffers to prevent deadlocks.
  1603. */
  1604. STATIC int
  1605. xfs_buf_delwri_split(
  1606. xfs_buftarg_t *target,
  1607. struct list_head *list,
  1608. unsigned long age)
  1609. {
  1610. xfs_buf_t *bp, *n;
  1611. struct list_head *dwq = &target->bt_delwrite_queue;
  1612. spinlock_t *dwlk = &target->bt_delwrite_lock;
  1613. int skipped = 0;
  1614. int force;
  1615. force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
  1616. INIT_LIST_HEAD(list);
  1617. spin_lock(dwlk);
  1618. list_for_each_entry_safe(bp, n, dwq, b_list) {
  1619. ASSERT(bp->b_flags & XBF_DELWRI);
  1620. if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
  1621. if (!force &&
  1622. time_before(jiffies, bp->b_queuetime + age)) {
  1623. xfs_buf_unlock(bp);
  1624. break;
  1625. }
  1626. bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
  1627. _XBF_RUN_QUEUES);
  1628. bp->b_flags |= XBF_WRITE;
  1629. list_move_tail(&bp->b_list, list);
  1630. trace_xfs_buf_delwri_split(bp, _RET_IP_);
  1631. } else
  1632. skipped++;
  1633. }
  1634. spin_unlock(dwlk);
  1635. return skipped;
  1636. }
  1637. /*
  1638. * Compare function is more complex than it needs to be because
  1639. * the return value is only 32 bits and we are doing comparisons
  1640. * on 64 bit values
  1641. */
  1642. static int
  1643. xfs_buf_cmp(
  1644. void *priv,
  1645. struct list_head *a,
  1646. struct list_head *b)
  1647. {
  1648. struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
  1649. struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
  1650. xfs_daddr_t diff;
  1651. diff = ap->b_bn - bp->b_bn;
  1652. if (diff < 0)
  1653. return -1;
  1654. if (diff > 0)
  1655. return 1;
  1656. return 0;
  1657. }
  1658. void
  1659. xfs_buf_delwri_sort(
  1660. xfs_buftarg_t *target,
  1661. struct list_head *list)
  1662. {
  1663. list_sort(NULL, list, xfs_buf_cmp);
  1664. }
  1665. STATIC int
  1666. xfsbufd(
  1667. void *data)
  1668. {
  1669. xfs_buftarg_t *target = (xfs_buftarg_t *)data;
  1670. current->flags |= PF_MEMALLOC;
  1671. set_freezable();
  1672. do {
  1673. long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
  1674. long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
  1675. int count = 0;
  1676. struct list_head tmp;
  1677. if (unlikely(freezing(current))) {
  1678. set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
  1679. refrigerator();
  1680. } else {
  1681. clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
  1682. }
  1683. /* sleep for a long time if there is nothing to do. */
  1684. if (list_empty(&target->bt_delwrite_queue))
  1685. tout = MAX_SCHEDULE_TIMEOUT;
  1686. schedule_timeout_interruptible(tout);
  1687. xfs_buf_delwri_split(target, &tmp, age);
  1688. list_sort(NULL, &tmp, xfs_buf_cmp);
  1689. while (!list_empty(&tmp)) {
  1690. struct xfs_buf *bp;
  1691. bp = list_first_entry(&tmp, struct xfs_buf, b_list);
  1692. list_del_init(&bp->b_list);
  1693. xfs_bdstrat_cb(bp);
  1694. count++;
  1695. }
  1696. if (count)
  1697. blk_run_address_space(target->bt_mapping);
  1698. } while (!kthread_should_stop());
  1699. return 0;
  1700. }
  1701. /*
  1702. * Go through all incore buffers, and release buffers if they belong to
  1703. * the given device. This is used in filesystem error handling to
  1704. * preserve the consistency of its metadata.
  1705. */
  1706. int
  1707. xfs_flush_buftarg(
  1708. xfs_buftarg_t *target,
  1709. int wait)
  1710. {
  1711. xfs_buf_t *bp;
  1712. int pincount = 0;
  1713. LIST_HEAD(tmp_list);
  1714. LIST_HEAD(wait_list);
  1715. xfs_buf_runall_queues(xfsconvertd_workqueue);
  1716. xfs_buf_runall_queues(xfsdatad_workqueue);
  1717. xfs_buf_runall_queues(xfslogd_workqueue);
  1718. set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
  1719. pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
  1720. /*
  1721. * Dropped the delayed write list lock, now walk the temporary list.
  1722. * All I/O is issued async and then if we need to wait for completion
  1723. * we do that after issuing all the IO.
  1724. */
  1725. list_sort(NULL, &tmp_list, xfs_buf_cmp);
  1726. while (!list_empty(&tmp_list)) {
  1727. bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
  1728. ASSERT(target == bp->b_target);
  1729. list_del_init(&bp->b_list);
  1730. if (wait) {
  1731. bp->b_flags &= ~XBF_ASYNC;
  1732. list_add(&bp->b_list, &wait_list);
  1733. }
  1734. xfs_bdstrat_cb(bp);
  1735. }
  1736. if (wait) {
  1737. /* Expedite and wait for IO to complete. */
  1738. blk_run_address_space(target->bt_mapping);
  1739. while (!list_empty(&wait_list)) {
  1740. bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
  1741. list_del_init(&bp->b_list);
  1742. xfs_buf_iowait(bp);
  1743. xfs_buf_relse(bp);
  1744. }
  1745. }
  1746. return pincount;
  1747. }
  1748. int __init
  1749. xfs_buf_init(void)
  1750. {
  1751. xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
  1752. KM_ZONE_HWALIGN, NULL);
  1753. if (!xfs_buf_zone)
  1754. goto out;
  1755. xfslogd_workqueue = alloc_workqueue("xfslogd",
  1756. WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
  1757. if (!xfslogd_workqueue)
  1758. goto out_free_buf_zone;
  1759. xfsdatad_workqueue = create_workqueue("xfsdatad");
  1760. if (!xfsdatad_workqueue)
  1761. goto out_destroy_xfslogd_workqueue;
  1762. xfsconvertd_workqueue = create_workqueue("xfsconvertd");
  1763. if (!xfsconvertd_workqueue)
  1764. goto out_destroy_xfsdatad_workqueue;
  1765. return 0;
  1766. out_destroy_xfsdatad_workqueue:
  1767. destroy_workqueue(xfsdatad_workqueue);
  1768. out_destroy_xfslogd_workqueue:
  1769. destroy_workqueue(xfslogd_workqueue);
  1770. out_free_buf_zone:
  1771. kmem_zone_destroy(xfs_buf_zone);
  1772. out:
  1773. return -ENOMEM;
  1774. }
  1775. void
  1776. xfs_buf_terminate(void)
  1777. {
  1778. destroy_workqueue(xfsconvertd_workqueue);
  1779. destroy_workqueue(xfsdatad_workqueue);
  1780. destroy_workqueue(xfslogd_workqueue);
  1781. kmem_zone_destroy(xfs_buf_zone);
  1782. }
  1783. #ifdef CONFIG_KDB_MODULES
  1784. struct list_head *
  1785. xfs_get_buftarg_list(void)
  1786. {
  1787. return &xfs_buftarg_list;
  1788. }
  1789. #endif