processor_idle.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247
  1. /*
  2. * processor_idle - idle state submodule to the ACPI processor driver
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
  7. * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  8. * - Added processor hotplug support
  9. * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10. * - Added support for C3 on SMP
  11. *
  12. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or (at
  17. * your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful, but
  20. * WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  22. * General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  27. *
  28. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/init.h>
  33. #include <linux/cpufreq.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/seq_file.h>
  36. #include <linux/acpi.h>
  37. #include <linux/dmi.h>
  38. #include <linux/moduleparam.h>
  39. #include <linux/sched.h> /* need_resched() */
  40. #include <linux/pm_qos_params.h>
  41. #include <linux/clockchips.h>
  42. #include <linux/cpuidle.h>
  43. #include <linux/irqflags.h>
  44. /*
  45. * Include the apic definitions for x86 to have the APIC timer related defines
  46. * available also for UP (on SMP it gets magically included via linux/smp.h).
  47. * asm/acpi.h is not an option, as it would require more include magic. Also
  48. * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  49. */
  50. #ifdef CONFIG_X86
  51. #include <asm/apic.h>
  52. #endif
  53. #include <asm/io.h>
  54. #include <asm/uaccess.h>
  55. #include <acpi/acpi_bus.h>
  56. #include <acpi/processor.h>
  57. #include <asm/processor.h>
  58. #define PREFIX "ACPI: "
  59. #define ACPI_PROCESSOR_CLASS "processor"
  60. #define _COMPONENT ACPI_PROCESSOR_COMPONENT
  61. ACPI_MODULE_NAME("processor_idle");
  62. #define ACPI_PROCESSOR_FILE_POWER "power"
  63. #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
  64. #define C2_OVERHEAD 1 /* 1us */
  65. #define C3_OVERHEAD 1 /* 1us */
  66. #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
  67. static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  68. module_param(max_cstate, uint, 0000);
  69. static unsigned int nocst __read_mostly;
  70. module_param(nocst, uint, 0000);
  71. static unsigned int latency_factor __read_mostly = 2;
  72. module_param(latency_factor, uint, 0644);
  73. static s64 us_to_pm_timer_ticks(s64 t)
  74. {
  75. return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
  76. }
  77. /*
  78. * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  79. * For now disable this. Probably a bug somewhere else.
  80. *
  81. * To skip this limit, boot/load with a large max_cstate limit.
  82. */
  83. static int set_max_cstate(const struct dmi_system_id *id)
  84. {
  85. if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  86. return 0;
  87. printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
  88. " Override with \"processor.max_cstate=%d\"\n", id->ident,
  89. (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  90. max_cstate = (long)id->driver_data;
  91. return 0;
  92. }
  93. /* Actually this shouldn't be __cpuinitdata, would be better to fix the
  94. callers to only run once -AK */
  95. static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
  96. { set_max_cstate, "Clevo 5600D", {
  97. DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  98. DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  99. (void *)2},
  100. {},
  101. };
  102. /*
  103. * Callers should disable interrupts before the call and enable
  104. * interrupts after return.
  105. */
  106. static void acpi_safe_halt(void)
  107. {
  108. current_thread_info()->status &= ~TS_POLLING;
  109. /*
  110. * TS_POLLING-cleared state must be visible before we
  111. * test NEED_RESCHED:
  112. */
  113. smp_mb();
  114. if (!need_resched()) {
  115. safe_halt();
  116. local_irq_disable();
  117. }
  118. current_thread_info()->status |= TS_POLLING;
  119. }
  120. #ifdef ARCH_APICTIMER_STOPS_ON_C3
  121. /*
  122. * Some BIOS implementations switch to C3 in the published C2 state.
  123. * This seems to be a common problem on AMD boxen, but other vendors
  124. * are affected too. We pick the most conservative approach: we assume
  125. * that the local APIC stops in both C2 and C3.
  126. */
  127. static void lapic_timer_check_state(int state, struct acpi_processor *pr,
  128. struct acpi_processor_cx *cx)
  129. {
  130. struct acpi_processor_power *pwr = &pr->power;
  131. u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
  132. if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
  133. return;
  134. if (boot_cpu_has(X86_FEATURE_AMDC1E))
  135. type = ACPI_STATE_C1;
  136. /*
  137. * Check, if one of the previous states already marked the lapic
  138. * unstable
  139. */
  140. if (pwr->timer_broadcast_on_state < state)
  141. return;
  142. if (cx->type >= type)
  143. pr->power.timer_broadcast_on_state = state;
  144. }
  145. static void lapic_timer_propagate_broadcast(void *arg)
  146. {
  147. struct acpi_processor *pr = (struct acpi_processor *) arg;
  148. unsigned long reason;
  149. reason = pr->power.timer_broadcast_on_state < INT_MAX ?
  150. CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
  151. clockevents_notify(reason, &pr->id);
  152. }
  153. /* Power(C) State timer broadcast control */
  154. static void lapic_timer_state_broadcast(struct acpi_processor *pr,
  155. struct acpi_processor_cx *cx,
  156. int broadcast)
  157. {
  158. int state = cx - pr->power.states;
  159. if (state >= pr->power.timer_broadcast_on_state) {
  160. unsigned long reason;
  161. reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
  162. CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
  163. clockevents_notify(reason, &pr->id);
  164. }
  165. }
  166. #else
  167. static void lapic_timer_check_state(int state, struct acpi_processor *pr,
  168. struct acpi_processor_cx *cstate) { }
  169. static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
  170. static void lapic_timer_state_broadcast(struct acpi_processor *pr,
  171. struct acpi_processor_cx *cx,
  172. int broadcast)
  173. {
  174. }
  175. #endif
  176. /*
  177. * Suspend / resume control
  178. */
  179. static int acpi_idle_suspend;
  180. static u32 saved_bm_rld;
  181. static void acpi_idle_bm_rld_save(void)
  182. {
  183. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
  184. }
  185. static void acpi_idle_bm_rld_restore(void)
  186. {
  187. u32 resumed_bm_rld;
  188. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
  189. if (resumed_bm_rld != saved_bm_rld)
  190. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
  191. }
  192. int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
  193. {
  194. if (acpi_idle_suspend == 1)
  195. return 0;
  196. acpi_idle_bm_rld_save();
  197. acpi_idle_suspend = 1;
  198. return 0;
  199. }
  200. int acpi_processor_resume(struct acpi_device * device)
  201. {
  202. if (acpi_idle_suspend == 0)
  203. return 0;
  204. acpi_idle_bm_rld_restore();
  205. acpi_idle_suspend = 0;
  206. return 0;
  207. }
  208. #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
  209. static void tsc_check_state(int state)
  210. {
  211. switch (boot_cpu_data.x86_vendor) {
  212. case X86_VENDOR_AMD:
  213. case X86_VENDOR_INTEL:
  214. /*
  215. * AMD Fam10h TSC will tick in all
  216. * C/P/S0/S1 states when this bit is set.
  217. */
  218. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  219. return;
  220. /*FALL THROUGH*/
  221. default:
  222. /* TSC could halt in idle, so notify users */
  223. if (state > ACPI_STATE_C1)
  224. mark_tsc_unstable("TSC halts in idle");
  225. }
  226. }
  227. #else
  228. static void tsc_check_state(int state) { return; }
  229. #endif
  230. static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
  231. {
  232. if (!pr)
  233. return -EINVAL;
  234. if (!pr->pblk)
  235. return -ENODEV;
  236. /* if info is obtained from pblk/fadt, type equals state */
  237. pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
  238. pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
  239. #ifndef CONFIG_HOTPLUG_CPU
  240. /*
  241. * Check for P_LVL2_UP flag before entering C2 and above on
  242. * an SMP system.
  243. */
  244. if ((num_online_cpus() > 1) &&
  245. !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
  246. return -ENODEV;
  247. #endif
  248. /* determine C2 and C3 address from pblk */
  249. pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
  250. pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
  251. /* determine latencies from FADT */
  252. pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
  253. pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
  254. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  255. "lvl2[0x%08x] lvl3[0x%08x]\n",
  256. pr->power.states[ACPI_STATE_C2].address,
  257. pr->power.states[ACPI_STATE_C3].address));
  258. return 0;
  259. }
  260. static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
  261. {
  262. if (!pr->power.states[ACPI_STATE_C1].valid) {
  263. /* set the first C-State to C1 */
  264. /* all processors need to support C1 */
  265. pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
  266. pr->power.states[ACPI_STATE_C1].valid = 1;
  267. pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
  268. }
  269. /* the C0 state only exists as a filler in our array */
  270. pr->power.states[ACPI_STATE_C0].valid = 1;
  271. return 0;
  272. }
  273. static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
  274. {
  275. acpi_status status = 0;
  276. acpi_integer count;
  277. int current_count;
  278. int i;
  279. struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
  280. union acpi_object *cst;
  281. if (nocst)
  282. return -ENODEV;
  283. current_count = 0;
  284. status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
  285. if (ACPI_FAILURE(status)) {
  286. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
  287. return -ENODEV;
  288. }
  289. cst = buffer.pointer;
  290. /* There must be at least 2 elements */
  291. if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
  292. printk(KERN_ERR PREFIX "not enough elements in _CST\n");
  293. status = -EFAULT;
  294. goto end;
  295. }
  296. count = cst->package.elements[0].integer.value;
  297. /* Validate number of power states. */
  298. if (count < 1 || count != cst->package.count - 1) {
  299. printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
  300. status = -EFAULT;
  301. goto end;
  302. }
  303. /* Tell driver that at least _CST is supported. */
  304. pr->flags.has_cst = 1;
  305. for (i = 1; i <= count; i++) {
  306. union acpi_object *element;
  307. union acpi_object *obj;
  308. struct acpi_power_register *reg;
  309. struct acpi_processor_cx cx;
  310. memset(&cx, 0, sizeof(cx));
  311. element = &(cst->package.elements[i]);
  312. if (element->type != ACPI_TYPE_PACKAGE)
  313. continue;
  314. if (element->package.count != 4)
  315. continue;
  316. obj = &(element->package.elements[0]);
  317. if (obj->type != ACPI_TYPE_BUFFER)
  318. continue;
  319. reg = (struct acpi_power_register *)obj->buffer.pointer;
  320. if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
  321. (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
  322. continue;
  323. /* There should be an easy way to extract an integer... */
  324. obj = &(element->package.elements[1]);
  325. if (obj->type != ACPI_TYPE_INTEGER)
  326. continue;
  327. cx.type = obj->integer.value;
  328. /*
  329. * Some buggy BIOSes won't list C1 in _CST -
  330. * Let acpi_processor_get_power_info_default() handle them later
  331. */
  332. if (i == 1 && cx.type != ACPI_STATE_C1)
  333. current_count++;
  334. cx.address = reg->address;
  335. cx.index = current_count + 1;
  336. cx.entry_method = ACPI_CSTATE_SYSTEMIO;
  337. if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
  338. if (acpi_processor_ffh_cstate_probe
  339. (pr->id, &cx, reg) == 0) {
  340. cx.entry_method = ACPI_CSTATE_FFH;
  341. } else if (cx.type == ACPI_STATE_C1) {
  342. /*
  343. * C1 is a special case where FIXED_HARDWARE
  344. * can be handled in non-MWAIT way as well.
  345. * In that case, save this _CST entry info.
  346. * Otherwise, ignore this info and continue.
  347. */
  348. cx.entry_method = ACPI_CSTATE_HALT;
  349. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
  350. } else {
  351. continue;
  352. }
  353. if (cx.type == ACPI_STATE_C1 &&
  354. (idle_halt || idle_nomwait)) {
  355. /*
  356. * In most cases the C1 space_id obtained from
  357. * _CST object is FIXED_HARDWARE access mode.
  358. * But when the option of idle=halt is added,
  359. * the entry_method type should be changed from
  360. * CSTATE_FFH to CSTATE_HALT.
  361. * When the option of idle=nomwait is added,
  362. * the C1 entry_method type should be
  363. * CSTATE_HALT.
  364. */
  365. cx.entry_method = ACPI_CSTATE_HALT;
  366. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
  367. }
  368. } else {
  369. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
  370. cx.address);
  371. }
  372. if (cx.type == ACPI_STATE_C1) {
  373. cx.valid = 1;
  374. }
  375. obj = &(element->package.elements[2]);
  376. if (obj->type != ACPI_TYPE_INTEGER)
  377. continue;
  378. cx.latency = obj->integer.value;
  379. obj = &(element->package.elements[3]);
  380. if (obj->type != ACPI_TYPE_INTEGER)
  381. continue;
  382. cx.power = obj->integer.value;
  383. current_count++;
  384. memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
  385. /*
  386. * We support total ACPI_PROCESSOR_MAX_POWER - 1
  387. * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
  388. */
  389. if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
  390. printk(KERN_WARNING
  391. "Limiting number of power states to max (%d)\n",
  392. ACPI_PROCESSOR_MAX_POWER);
  393. printk(KERN_WARNING
  394. "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
  395. break;
  396. }
  397. }
  398. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
  399. current_count));
  400. /* Validate number of power states discovered */
  401. if (current_count < 2)
  402. status = -EFAULT;
  403. end:
  404. kfree(buffer.pointer);
  405. return status;
  406. }
  407. static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
  408. {
  409. if (!cx->address)
  410. return;
  411. /*
  412. * C2 latency must be less than or equal to 100
  413. * microseconds.
  414. */
  415. else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
  416. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  417. "latency too large [%d]\n", cx->latency));
  418. return;
  419. }
  420. /*
  421. * Otherwise we've met all of our C2 requirements.
  422. * Normalize the C2 latency to expidite policy
  423. */
  424. cx->valid = 1;
  425. cx->latency_ticks = cx->latency;
  426. return;
  427. }
  428. static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
  429. struct acpi_processor_cx *cx)
  430. {
  431. static int bm_check_flag = -1;
  432. static int bm_control_flag = -1;
  433. if (!cx->address)
  434. return;
  435. /*
  436. * C3 latency must be less than or equal to 1000
  437. * microseconds.
  438. */
  439. else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
  440. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  441. "latency too large [%d]\n", cx->latency));
  442. return;
  443. }
  444. /*
  445. * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
  446. * DMA transfers are used by any ISA device to avoid livelock.
  447. * Note that we could disable Type-F DMA (as recommended by
  448. * the erratum), but this is known to disrupt certain ISA
  449. * devices thus we take the conservative approach.
  450. */
  451. else if (errata.piix4.fdma) {
  452. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  453. "C3 not supported on PIIX4 with Type-F DMA\n"));
  454. return;
  455. }
  456. /* All the logic here assumes flags.bm_check is same across all CPUs */
  457. if (bm_check_flag == -1) {
  458. /* Determine whether bm_check is needed based on CPU */
  459. acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
  460. bm_check_flag = pr->flags.bm_check;
  461. bm_control_flag = pr->flags.bm_control;
  462. } else {
  463. pr->flags.bm_check = bm_check_flag;
  464. pr->flags.bm_control = bm_control_flag;
  465. }
  466. if (pr->flags.bm_check) {
  467. if (!pr->flags.bm_control) {
  468. if (pr->flags.has_cst != 1) {
  469. /* bus mastering control is necessary */
  470. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  471. "C3 support requires BM control\n"));
  472. return;
  473. } else {
  474. /* Here we enter C3 without bus mastering */
  475. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  476. "C3 support without BM control\n"));
  477. }
  478. }
  479. } else {
  480. /*
  481. * WBINVD should be set in fadt, for C3 state to be
  482. * supported on when bm_check is not required.
  483. */
  484. if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
  485. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  486. "Cache invalidation should work properly"
  487. " for C3 to be enabled on SMP systems\n"));
  488. return;
  489. }
  490. }
  491. /*
  492. * Otherwise we've met all of our C3 requirements.
  493. * Normalize the C3 latency to expidite policy. Enable
  494. * checking of bus mastering status (bm_check) so we can
  495. * use this in our C3 policy
  496. */
  497. cx->valid = 1;
  498. cx->latency_ticks = cx->latency;
  499. /*
  500. * On older chipsets, BM_RLD needs to be set
  501. * in order for Bus Master activity to wake the
  502. * system from C3. Newer chipsets handle DMA
  503. * during C3 automatically and BM_RLD is a NOP.
  504. * In either case, the proper way to
  505. * handle BM_RLD is to set it and leave it set.
  506. */
  507. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
  508. return;
  509. }
  510. static int acpi_processor_power_verify(struct acpi_processor *pr)
  511. {
  512. unsigned int i;
  513. unsigned int working = 0;
  514. pr->power.timer_broadcast_on_state = INT_MAX;
  515. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
  516. struct acpi_processor_cx *cx = &pr->power.states[i];
  517. switch (cx->type) {
  518. case ACPI_STATE_C1:
  519. cx->valid = 1;
  520. break;
  521. case ACPI_STATE_C2:
  522. acpi_processor_power_verify_c2(cx);
  523. break;
  524. case ACPI_STATE_C3:
  525. acpi_processor_power_verify_c3(pr, cx);
  526. break;
  527. }
  528. if (!cx->valid)
  529. continue;
  530. lapic_timer_check_state(i, pr, cx);
  531. tsc_check_state(cx->type);
  532. working++;
  533. }
  534. smp_call_function_single(pr->id, lapic_timer_propagate_broadcast,
  535. pr, 1);
  536. return (working);
  537. }
  538. static int acpi_processor_get_power_info(struct acpi_processor *pr)
  539. {
  540. unsigned int i;
  541. int result;
  542. /* NOTE: the idle thread may not be running while calling
  543. * this function */
  544. /* Zero initialize all the C-states info. */
  545. memset(pr->power.states, 0, sizeof(pr->power.states));
  546. result = acpi_processor_get_power_info_cst(pr);
  547. if (result == -ENODEV)
  548. result = acpi_processor_get_power_info_fadt(pr);
  549. if (result)
  550. return result;
  551. acpi_processor_get_power_info_default(pr);
  552. pr->power.count = acpi_processor_power_verify(pr);
  553. /*
  554. * if one state of type C2 or C3 is available, mark this
  555. * CPU as being "idle manageable"
  556. */
  557. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
  558. if (pr->power.states[i].valid) {
  559. pr->power.count = i;
  560. if (pr->power.states[i].type >= ACPI_STATE_C2)
  561. pr->flags.power = 1;
  562. }
  563. }
  564. return 0;
  565. }
  566. static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
  567. {
  568. struct acpi_processor *pr = seq->private;
  569. unsigned int i;
  570. if (!pr)
  571. goto end;
  572. seq_printf(seq, "active state: C%zd\n"
  573. "max_cstate: C%d\n"
  574. "maximum allowed latency: %d usec\n",
  575. pr->power.state ? pr->power.state - pr->power.states : 0,
  576. max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
  577. seq_puts(seq, "states:\n");
  578. for (i = 1; i <= pr->power.count; i++) {
  579. seq_printf(seq, " %cC%d: ",
  580. (&pr->power.states[i] ==
  581. pr->power.state ? '*' : ' '), i);
  582. if (!pr->power.states[i].valid) {
  583. seq_puts(seq, "<not supported>\n");
  584. continue;
  585. }
  586. switch (pr->power.states[i].type) {
  587. case ACPI_STATE_C1:
  588. seq_printf(seq, "type[C1] ");
  589. break;
  590. case ACPI_STATE_C2:
  591. seq_printf(seq, "type[C2] ");
  592. break;
  593. case ACPI_STATE_C3:
  594. seq_printf(seq, "type[C3] ");
  595. break;
  596. default:
  597. seq_printf(seq, "type[--] ");
  598. break;
  599. }
  600. if (pr->power.states[i].promotion.state)
  601. seq_printf(seq, "promotion[C%zd] ",
  602. (pr->power.states[i].promotion.state -
  603. pr->power.states));
  604. else
  605. seq_puts(seq, "promotion[--] ");
  606. if (pr->power.states[i].demotion.state)
  607. seq_printf(seq, "demotion[C%zd] ",
  608. (pr->power.states[i].demotion.state -
  609. pr->power.states));
  610. else
  611. seq_puts(seq, "demotion[--] ");
  612. seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
  613. pr->power.states[i].latency,
  614. pr->power.states[i].usage,
  615. (unsigned long long)pr->power.states[i].time);
  616. }
  617. end:
  618. return 0;
  619. }
  620. static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
  621. {
  622. return single_open(file, acpi_processor_power_seq_show,
  623. PDE(inode)->data);
  624. }
  625. static const struct file_operations acpi_processor_power_fops = {
  626. .owner = THIS_MODULE,
  627. .open = acpi_processor_power_open_fs,
  628. .read = seq_read,
  629. .llseek = seq_lseek,
  630. .release = single_release,
  631. };
  632. /**
  633. * acpi_idle_bm_check - checks if bus master activity was detected
  634. */
  635. static int acpi_idle_bm_check(void)
  636. {
  637. u32 bm_status = 0;
  638. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
  639. if (bm_status)
  640. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
  641. /*
  642. * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
  643. * the true state of bus mastering activity; forcing us to
  644. * manually check the BMIDEA bit of each IDE channel.
  645. */
  646. else if (errata.piix4.bmisx) {
  647. if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
  648. || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
  649. bm_status = 1;
  650. }
  651. return bm_status;
  652. }
  653. /**
  654. * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
  655. * @cx: cstate data
  656. *
  657. * Caller disables interrupt before call and enables interrupt after return.
  658. */
  659. static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
  660. {
  661. /* Don't trace irqs off for idle */
  662. stop_critical_timings();
  663. if (cx->entry_method == ACPI_CSTATE_FFH) {
  664. /* Call into architectural FFH based C-state */
  665. acpi_processor_ffh_cstate_enter(cx);
  666. } else if (cx->entry_method == ACPI_CSTATE_HALT) {
  667. acpi_safe_halt();
  668. } else {
  669. int unused;
  670. /* IO port based C-state */
  671. inb(cx->address);
  672. /* Dummy wait op - must do something useless after P_LVL2 read
  673. because chipsets cannot guarantee that STPCLK# signal
  674. gets asserted in time to freeze execution properly. */
  675. unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
  676. }
  677. start_critical_timings();
  678. }
  679. /**
  680. * acpi_idle_enter_c1 - enters an ACPI C1 state-type
  681. * @dev: the target CPU
  682. * @state: the state data
  683. *
  684. * This is equivalent to the HALT instruction.
  685. */
  686. static int acpi_idle_enter_c1(struct cpuidle_device *dev,
  687. struct cpuidle_state *state)
  688. {
  689. ktime_t kt1, kt2;
  690. s64 idle_time;
  691. struct acpi_processor *pr;
  692. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  693. pr = __get_cpu_var(processors);
  694. if (unlikely(!pr))
  695. return 0;
  696. local_irq_disable();
  697. /* Do not access any ACPI IO ports in suspend path */
  698. if (acpi_idle_suspend) {
  699. local_irq_enable();
  700. cpu_relax();
  701. return 0;
  702. }
  703. lapic_timer_state_broadcast(pr, cx, 1);
  704. kt1 = ktime_get_real();
  705. acpi_idle_do_entry(cx);
  706. kt2 = ktime_get_real();
  707. idle_time = ktime_to_us(ktime_sub(kt2, kt1));
  708. local_irq_enable();
  709. cx->usage++;
  710. lapic_timer_state_broadcast(pr, cx, 0);
  711. return idle_time;
  712. }
  713. /**
  714. * acpi_idle_enter_simple - enters an ACPI state without BM handling
  715. * @dev: the target CPU
  716. * @state: the state data
  717. */
  718. static int acpi_idle_enter_simple(struct cpuidle_device *dev,
  719. struct cpuidle_state *state)
  720. {
  721. struct acpi_processor *pr;
  722. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  723. ktime_t kt1, kt2;
  724. s64 idle_time;
  725. s64 sleep_ticks = 0;
  726. pr = __get_cpu_var(processors);
  727. if (unlikely(!pr))
  728. return 0;
  729. if (acpi_idle_suspend)
  730. return(acpi_idle_enter_c1(dev, state));
  731. local_irq_disable();
  732. current_thread_info()->status &= ~TS_POLLING;
  733. /*
  734. * TS_POLLING-cleared state must be visible before we test
  735. * NEED_RESCHED:
  736. */
  737. smp_mb();
  738. if (unlikely(need_resched())) {
  739. current_thread_info()->status |= TS_POLLING;
  740. local_irq_enable();
  741. return 0;
  742. }
  743. /*
  744. * Must be done before busmaster disable as we might need to
  745. * access HPET !
  746. */
  747. lapic_timer_state_broadcast(pr, cx, 1);
  748. if (cx->type == ACPI_STATE_C3)
  749. ACPI_FLUSH_CPU_CACHE();
  750. kt1 = ktime_get_real();
  751. /* Tell the scheduler that we are going deep-idle: */
  752. sched_clock_idle_sleep_event();
  753. acpi_idle_do_entry(cx);
  754. kt2 = ktime_get_real();
  755. idle_time = ktime_to_us(ktime_sub(kt2, kt1));
  756. sleep_ticks = us_to_pm_timer_ticks(idle_time);
  757. /* Tell the scheduler how much we idled: */
  758. sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
  759. local_irq_enable();
  760. current_thread_info()->status |= TS_POLLING;
  761. cx->usage++;
  762. lapic_timer_state_broadcast(pr, cx, 0);
  763. cx->time += sleep_ticks;
  764. return idle_time;
  765. }
  766. static int c3_cpu_count;
  767. static DEFINE_SPINLOCK(c3_lock);
  768. /**
  769. * acpi_idle_enter_bm - enters C3 with proper BM handling
  770. * @dev: the target CPU
  771. * @state: the state data
  772. *
  773. * If BM is detected, the deepest non-C3 idle state is entered instead.
  774. */
  775. static int acpi_idle_enter_bm(struct cpuidle_device *dev,
  776. struct cpuidle_state *state)
  777. {
  778. struct acpi_processor *pr;
  779. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  780. ktime_t kt1, kt2;
  781. s64 idle_time;
  782. s64 sleep_ticks = 0;
  783. pr = __get_cpu_var(processors);
  784. if (unlikely(!pr))
  785. return 0;
  786. if (acpi_idle_suspend)
  787. return(acpi_idle_enter_c1(dev, state));
  788. if (acpi_idle_bm_check()) {
  789. if (dev->safe_state) {
  790. dev->last_state = dev->safe_state;
  791. return dev->safe_state->enter(dev, dev->safe_state);
  792. } else {
  793. local_irq_disable();
  794. acpi_safe_halt();
  795. local_irq_enable();
  796. return 0;
  797. }
  798. }
  799. local_irq_disable();
  800. current_thread_info()->status &= ~TS_POLLING;
  801. /*
  802. * TS_POLLING-cleared state must be visible before we test
  803. * NEED_RESCHED:
  804. */
  805. smp_mb();
  806. if (unlikely(need_resched())) {
  807. current_thread_info()->status |= TS_POLLING;
  808. local_irq_enable();
  809. return 0;
  810. }
  811. acpi_unlazy_tlb(smp_processor_id());
  812. /* Tell the scheduler that we are going deep-idle: */
  813. sched_clock_idle_sleep_event();
  814. /*
  815. * Must be done before busmaster disable as we might need to
  816. * access HPET !
  817. */
  818. lapic_timer_state_broadcast(pr, cx, 1);
  819. kt1 = ktime_get_real();
  820. /*
  821. * disable bus master
  822. * bm_check implies we need ARB_DIS
  823. * !bm_check implies we need cache flush
  824. * bm_control implies whether we can do ARB_DIS
  825. *
  826. * That leaves a case where bm_check is set and bm_control is
  827. * not set. In that case we cannot do much, we enter C3
  828. * without doing anything.
  829. */
  830. if (pr->flags.bm_check && pr->flags.bm_control) {
  831. spin_lock(&c3_lock);
  832. c3_cpu_count++;
  833. /* Disable bus master arbitration when all CPUs are in C3 */
  834. if (c3_cpu_count == num_online_cpus())
  835. acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
  836. spin_unlock(&c3_lock);
  837. } else if (!pr->flags.bm_check) {
  838. ACPI_FLUSH_CPU_CACHE();
  839. }
  840. acpi_idle_do_entry(cx);
  841. /* Re-enable bus master arbitration */
  842. if (pr->flags.bm_check && pr->flags.bm_control) {
  843. spin_lock(&c3_lock);
  844. acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
  845. c3_cpu_count--;
  846. spin_unlock(&c3_lock);
  847. }
  848. kt2 = ktime_get_real();
  849. idle_time = ktime_to_us(ktime_sub(kt2, kt1));
  850. sleep_ticks = us_to_pm_timer_ticks(idle_time);
  851. /* Tell the scheduler how much we idled: */
  852. sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
  853. local_irq_enable();
  854. current_thread_info()->status |= TS_POLLING;
  855. cx->usage++;
  856. lapic_timer_state_broadcast(pr, cx, 0);
  857. cx->time += sleep_ticks;
  858. return idle_time;
  859. }
  860. struct cpuidle_driver acpi_idle_driver = {
  861. .name = "acpi_idle",
  862. .owner = THIS_MODULE,
  863. };
  864. /**
  865. * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
  866. * @pr: the ACPI processor
  867. */
  868. static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
  869. {
  870. int i, count = CPUIDLE_DRIVER_STATE_START;
  871. struct acpi_processor_cx *cx;
  872. struct cpuidle_state *state;
  873. struct cpuidle_device *dev = &pr->power.dev;
  874. if (!pr->flags.power_setup_done)
  875. return -EINVAL;
  876. if (pr->flags.power == 0) {
  877. return -EINVAL;
  878. }
  879. dev->cpu = pr->id;
  880. for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
  881. dev->states[i].name[0] = '\0';
  882. dev->states[i].desc[0] = '\0';
  883. }
  884. if (max_cstate == 0)
  885. max_cstate = 1;
  886. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
  887. cx = &pr->power.states[i];
  888. state = &dev->states[count];
  889. if (!cx->valid)
  890. continue;
  891. #ifdef CONFIG_HOTPLUG_CPU
  892. if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
  893. !pr->flags.has_cst &&
  894. !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
  895. continue;
  896. #endif
  897. cpuidle_set_statedata(state, cx);
  898. snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
  899. strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
  900. state->exit_latency = cx->latency;
  901. state->target_residency = cx->latency * latency_factor;
  902. state->power_usage = cx->power;
  903. state->flags = 0;
  904. switch (cx->type) {
  905. case ACPI_STATE_C1:
  906. state->flags |= CPUIDLE_FLAG_SHALLOW;
  907. if (cx->entry_method == ACPI_CSTATE_FFH)
  908. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  909. state->enter = acpi_idle_enter_c1;
  910. dev->safe_state = state;
  911. break;
  912. case ACPI_STATE_C2:
  913. state->flags |= CPUIDLE_FLAG_BALANCED;
  914. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  915. state->enter = acpi_idle_enter_simple;
  916. dev->safe_state = state;
  917. break;
  918. case ACPI_STATE_C3:
  919. state->flags |= CPUIDLE_FLAG_DEEP;
  920. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  921. state->flags |= CPUIDLE_FLAG_CHECK_BM;
  922. state->enter = pr->flags.bm_check ?
  923. acpi_idle_enter_bm :
  924. acpi_idle_enter_simple;
  925. break;
  926. }
  927. count++;
  928. if (count == CPUIDLE_STATE_MAX)
  929. break;
  930. }
  931. dev->state_count = count;
  932. if (!count)
  933. return -EINVAL;
  934. return 0;
  935. }
  936. int acpi_processor_cst_has_changed(struct acpi_processor *pr)
  937. {
  938. int ret = 0;
  939. if (boot_option_idle_override)
  940. return 0;
  941. if (!pr)
  942. return -EINVAL;
  943. if (nocst) {
  944. return -ENODEV;
  945. }
  946. if (!pr->flags.power_setup_done)
  947. return -ENODEV;
  948. cpuidle_pause_and_lock();
  949. cpuidle_disable_device(&pr->power.dev);
  950. acpi_processor_get_power_info(pr);
  951. if (pr->flags.power) {
  952. acpi_processor_setup_cpuidle(pr);
  953. ret = cpuidle_enable_device(&pr->power.dev);
  954. }
  955. cpuidle_resume_and_unlock();
  956. return ret;
  957. }
  958. int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
  959. struct acpi_device *device)
  960. {
  961. acpi_status status = 0;
  962. static int first_run;
  963. struct proc_dir_entry *entry = NULL;
  964. unsigned int i;
  965. if (boot_option_idle_override)
  966. return 0;
  967. if (!first_run) {
  968. if (idle_halt) {
  969. /*
  970. * When the boot option of "idle=halt" is added, halt
  971. * is used for CPU IDLE.
  972. * In such case C2/C3 is meaningless. So the max_cstate
  973. * is set to one.
  974. */
  975. max_cstate = 1;
  976. }
  977. dmi_check_system(processor_power_dmi_table);
  978. max_cstate = acpi_processor_cstate_check(max_cstate);
  979. if (max_cstate < ACPI_C_STATES_MAX)
  980. printk(KERN_NOTICE
  981. "ACPI: processor limited to max C-state %d\n",
  982. max_cstate);
  983. first_run++;
  984. }
  985. if (!pr)
  986. return -EINVAL;
  987. if (acpi_gbl_FADT.cst_control && !nocst) {
  988. status =
  989. acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
  990. if (ACPI_FAILURE(status)) {
  991. ACPI_EXCEPTION((AE_INFO, status,
  992. "Notifying BIOS of _CST ability failed"));
  993. }
  994. }
  995. acpi_processor_get_power_info(pr);
  996. pr->flags.power_setup_done = 1;
  997. /*
  998. * Install the idle handler if processor power management is supported.
  999. * Note that we use previously set idle handler will be used on
  1000. * platforms that only support C1.
  1001. */
  1002. if (pr->flags.power) {
  1003. acpi_processor_setup_cpuidle(pr);
  1004. if (cpuidle_register_device(&pr->power.dev))
  1005. return -EIO;
  1006. printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
  1007. for (i = 1; i <= pr->power.count; i++)
  1008. if (pr->power.states[i].valid)
  1009. printk(" C%d[C%d]", i,
  1010. pr->power.states[i].type);
  1011. printk(")\n");
  1012. }
  1013. /* 'power' [R] */
  1014. entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
  1015. S_IRUGO, acpi_device_dir(device),
  1016. &acpi_processor_power_fops,
  1017. acpi_driver_data(device));
  1018. if (!entry)
  1019. return -EIO;
  1020. return 0;
  1021. }
  1022. int acpi_processor_power_exit(struct acpi_processor *pr,
  1023. struct acpi_device *device)
  1024. {
  1025. if (boot_option_idle_override)
  1026. return 0;
  1027. cpuidle_unregister_device(&pr->power.dev);
  1028. pr->flags.power_setup_done = 0;
  1029. if (acpi_device_dir(device))
  1030. remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
  1031. acpi_device_dir(device));
  1032. return 0;
  1033. }