sched.c 181 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/pid_namespace.h>
  47. #include <linux/smp.h>
  48. #include <linux/threads.h>
  49. #include <linux/timer.h>
  50. #include <linux/rcupdate.h>
  51. #include <linux/cpu.h>
  52. #include <linux/cpuset.h>
  53. #include <linux/percpu.h>
  54. #include <linux/kthread.h>
  55. #include <linux/seq_file.h>
  56. #include <linux/sysctl.h>
  57. #include <linux/syscalls.h>
  58. #include <linux/times.h>
  59. #include <linux/tsacct_kern.h>
  60. #include <linux/kprobes.h>
  61. #include <linux/delayacct.h>
  62. #include <linux/reciprocal_div.h>
  63. #include <linux/unistd.h>
  64. #include <linux/pagemap.h>
  65. #include <asm/tlb.h>
  66. #include <asm/irq_regs.h>
  67. /*
  68. * Scheduler clock - returns current time in nanosec units.
  69. * This is default implementation.
  70. * Architectures and sub-architectures can override this.
  71. */
  72. unsigned long long __attribute__((weak)) sched_clock(void)
  73. {
  74. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  75. }
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Some helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  96. #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
  97. #define NICE_0_LOAD SCHED_LOAD_SCALE
  98. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  99. /*
  100. * These are the 'tuning knobs' of the scheduler:
  101. *
  102. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  103. * Timeslices get refilled after they expire.
  104. */
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. static inline int rt_policy(int policy)
  126. {
  127. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  128. return 1;
  129. return 0;
  130. }
  131. static inline int task_has_rt_policy(struct task_struct *p)
  132. {
  133. return rt_policy(p->policy);
  134. }
  135. /*
  136. * This is the priority-queue data structure of the RT scheduling class:
  137. */
  138. struct rt_prio_array {
  139. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  140. struct list_head queue[MAX_RT_PRIO];
  141. };
  142. #ifdef CONFIG_FAIR_GROUP_SCHED
  143. #include <linux/cgroup.h>
  144. struct cfs_rq;
  145. /* task group related information */
  146. struct task_group {
  147. #ifdef CONFIG_FAIR_CGROUP_SCHED
  148. struct cgroup_subsys_state css;
  149. #endif
  150. /* schedulable entities of this group on each cpu */
  151. struct sched_entity **se;
  152. /* runqueue "owned" by this group on each cpu */
  153. struct cfs_rq **cfs_rq;
  154. unsigned long shares;
  155. struct rcu_head rcu;
  156. };
  157. /* Default task group's sched entity on each cpu */
  158. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  159. /* Default task group's cfs_rq on each cpu */
  160. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  161. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  162. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  163. /* task_group_mutex serializes add/remove of task groups and also changes to
  164. * a task group's cpu shares.
  165. */
  166. static DEFINE_MUTEX(task_group_mutex);
  167. /* doms_cur_mutex serializes access to doms_cur[] array */
  168. static DEFINE_MUTEX(doms_cur_mutex);
  169. /* Default task group.
  170. * Every task in system belong to this group at bootup.
  171. */
  172. struct task_group init_task_group = {
  173. .se = init_sched_entity_p,
  174. .cfs_rq = init_cfs_rq_p,
  175. };
  176. #ifdef CONFIG_FAIR_USER_SCHED
  177. # define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
  178. #else
  179. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  180. #endif
  181. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  182. /* return group to which a task belongs */
  183. static inline struct task_group *task_group(struct task_struct *p)
  184. {
  185. struct task_group *tg;
  186. #ifdef CONFIG_FAIR_USER_SCHED
  187. tg = p->user->tg;
  188. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  189. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  190. struct task_group, css);
  191. #else
  192. tg = &init_task_group;
  193. #endif
  194. return tg;
  195. }
  196. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  197. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
  198. {
  199. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  200. p->se.parent = task_group(p)->se[cpu];
  201. }
  202. static inline void lock_task_group_list(void)
  203. {
  204. mutex_lock(&task_group_mutex);
  205. }
  206. static inline void unlock_task_group_list(void)
  207. {
  208. mutex_unlock(&task_group_mutex);
  209. }
  210. static inline void lock_doms_cur(void)
  211. {
  212. mutex_lock(&doms_cur_mutex);
  213. }
  214. static inline void unlock_doms_cur(void)
  215. {
  216. mutex_unlock(&doms_cur_mutex);
  217. }
  218. #else
  219. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
  220. static inline void lock_task_group_list(void) { }
  221. static inline void unlock_task_group_list(void) { }
  222. static inline void lock_doms_cur(void) { }
  223. static inline void unlock_doms_cur(void) { }
  224. #endif /* CONFIG_FAIR_GROUP_SCHED */
  225. /* CFS-related fields in a runqueue */
  226. struct cfs_rq {
  227. struct load_weight load;
  228. unsigned long nr_running;
  229. u64 exec_clock;
  230. u64 min_vruntime;
  231. struct rb_root tasks_timeline;
  232. struct rb_node *rb_leftmost;
  233. struct rb_node *rb_load_balance_curr;
  234. /* 'curr' points to currently running entity on this cfs_rq.
  235. * It is set to NULL otherwise (i.e when none are currently running).
  236. */
  237. struct sched_entity *curr;
  238. unsigned long nr_spread_over;
  239. #ifdef CONFIG_FAIR_GROUP_SCHED
  240. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  241. /*
  242. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  243. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  244. * (like users, containers etc.)
  245. *
  246. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  247. * list is used during load balance.
  248. */
  249. struct list_head leaf_cfs_rq_list;
  250. struct task_group *tg; /* group that "owns" this runqueue */
  251. #endif
  252. };
  253. /* Real-Time classes' related field in a runqueue: */
  254. struct rt_rq {
  255. struct rt_prio_array active;
  256. int rt_load_balance_idx;
  257. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  258. };
  259. /*
  260. * This is the main, per-CPU runqueue data structure.
  261. *
  262. * Locking rule: those places that want to lock multiple runqueues
  263. * (such as the load balancing or the thread migration code), lock
  264. * acquire operations must be ordered by ascending &runqueue.
  265. */
  266. struct rq {
  267. /* runqueue lock: */
  268. spinlock_t lock;
  269. /*
  270. * nr_running and cpu_load should be in the same cacheline because
  271. * remote CPUs use both these fields when doing load calculation.
  272. */
  273. unsigned long nr_running;
  274. #define CPU_LOAD_IDX_MAX 5
  275. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  276. unsigned char idle_at_tick;
  277. #ifdef CONFIG_NO_HZ
  278. unsigned char in_nohz_recently;
  279. #endif
  280. /* capture load from *all* tasks on this cpu: */
  281. struct load_weight load;
  282. unsigned long nr_load_updates;
  283. u64 nr_switches;
  284. struct cfs_rq cfs;
  285. #ifdef CONFIG_FAIR_GROUP_SCHED
  286. /* list of leaf cfs_rq on this cpu: */
  287. struct list_head leaf_cfs_rq_list;
  288. #endif
  289. struct rt_rq rt;
  290. /*
  291. * This is part of a global counter where only the total sum
  292. * over all CPUs matters. A task can increase this counter on
  293. * one CPU and if it got migrated afterwards it may decrease
  294. * it on another CPU. Always updated under the runqueue lock:
  295. */
  296. unsigned long nr_uninterruptible;
  297. struct task_struct *curr, *idle;
  298. unsigned long next_balance;
  299. struct mm_struct *prev_mm;
  300. u64 clock, prev_clock_raw;
  301. s64 clock_max_delta;
  302. unsigned int clock_warps, clock_overflows;
  303. u64 idle_clock;
  304. unsigned int clock_deep_idle_events;
  305. u64 tick_timestamp;
  306. atomic_t nr_iowait;
  307. #ifdef CONFIG_SMP
  308. struct sched_domain *sd;
  309. /* For active balancing */
  310. int active_balance;
  311. int push_cpu;
  312. /* cpu of this runqueue: */
  313. int cpu;
  314. struct task_struct *migration_thread;
  315. struct list_head migration_queue;
  316. #endif
  317. #ifdef CONFIG_SCHEDSTATS
  318. /* latency stats */
  319. struct sched_info rq_sched_info;
  320. /* sys_sched_yield() stats */
  321. unsigned int yld_exp_empty;
  322. unsigned int yld_act_empty;
  323. unsigned int yld_both_empty;
  324. unsigned int yld_count;
  325. /* schedule() stats */
  326. unsigned int sched_switch;
  327. unsigned int sched_count;
  328. unsigned int sched_goidle;
  329. /* try_to_wake_up() stats */
  330. unsigned int ttwu_count;
  331. unsigned int ttwu_local;
  332. /* BKL stats */
  333. unsigned int bkl_count;
  334. #endif
  335. struct lock_class_key rq_lock_key;
  336. };
  337. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  338. static DEFINE_MUTEX(sched_hotcpu_mutex);
  339. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  340. {
  341. rq->curr->sched_class->check_preempt_curr(rq, p);
  342. }
  343. static inline int cpu_of(struct rq *rq)
  344. {
  345. #ifdef CONFIG_SMP
  346. return rq->cpu;
  347. #else
  348. return 0;
  349. #endif
  350. }
  351. /*
  352. * Update the per-runqueue clock, as finegrained as the platform can give
  353. * us, but without assuming monotonicity, etc.:
  354. */
  355. static void __update_rq_clock(struct rq *rq)
  356. {
  357. u64 prev_raw = rq->prev_clock_raw;
  358. u64 now = sched_clock();
  359. s64 delta = now - prev_raw;
  360. u64 clock = rq->clock;
  361. #ifdef CONFIG_SCHED_DEBUG
  362. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  363. #endif
  364. /*
  365. * Protect against sched_clock() occasionally going backwards:
  366. */
  367. if (unlikely(delta < 0)) {
  368. clock++;
  369. rq->clock_warps++;
  370. } else {
  371. /*
  372. * Catch too large forward jumps too:
  373. */
  374. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  375. if (clock < rq->tick_timestamp + TICK_NSEC)
  376. clock = rq->tick_timestamp + TICK_NSEC;
  377. else
  378. clock++;
  379. rq->clock_overflows++;
  380. } else {
  381. if (unlikely(delta > rq->clock_max_delta))
  382. rq->clock_max_delta = delta;
  383. clock += delta;
  384. }
  385. }
  386. rq->prev_clock_raw = now;
  387. rq->clock = clock;
  388. }
  389. static void update_rq_clock(struct rq *rq)
  390. {
  391. if (likely(smp_processor_id() == cpu_of(rq)))
  392. __update_rq_clock(rq);
  393. }
  394. /*
  395. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  396. * See detach_destroy_domains: synchronize_sched for details.
  397. *
  398. * The domain tree of any CPU may only be accessed from within
  399. * preempt-disabled sections.
  400. */
  401. #define for_each_domain(cpu, __sd) \
  402. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  403. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  404. #define this_rq() (&__get_cpu_var(runqueues))
  405. #define task_rq(p) cpu_rq(task_cpu(p))
  406. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  407. /*
  408. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  409. */
  410. #ifdef CONFIG_SCHED_DEBUG
  411. # define const_debug __read_mostly
  412. #else
  413. # define const_debug static const
  414. #endif
  415. /*
  416. * Debugging: various feature bits
  417. */
  418. enum {
  419. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  420. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  421. SCHED_FEAT_START_DEBIT = 4,
  422. SCHED_FEAT_TREE_AVG = 8,
  423. SCHED_FEAT_APPROX_AVG = 16,
  424. };
  425. const_debug unsigned int sysctl_sched_features =
  426. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  427. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  428. SCHED_FEAT_START_DEBIT * 1 |
  429. SCHED_FEAT_TREE_AVG * 0 |
  430. SCHED_FEAT_APPROX_AVG * 0;
  431. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  432. /*
  433. * Number of tasks to iterate in a single balance run.
  434. * Limited because this is done with IRQs disabled.
  435. */
  436. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  437. /*
  438. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  439. * clock constructed from sched_clock():
  440. */
  441. unsigned long long cpu_clock(int cpu)
  442. {
  443. unsigned long long now;
  444. unsigned long flags;
  445. struct rq *rq;
  446. local_irq_save(flags);
  447. rq = cpu_rq(cpu);
  448. /*
  449. * Only call sched_clock() if the scheduler has already been
  450. * initialized (some code might call cpu_clock() very early):
  451. */
  452. if (rq->idle)
  453. update_rq_clock(rq);
  454. now = rq->clock;
  455. local_irq_restore(flags);
  456. return now;
  457. }
  458. EXPORT_SYMBOL_GPL(cpu_clock);
  459. #ifndef prepare_arch_switch
  460. # define prepare_arch_switch(next) do { } while (0)
  461. #endif
  462. #ifndef finish_arch_switch
  463. # define finish_arch_switch(prev) do { } while (0)
  464. #endif
  465. static inline int task_current(struct rq *rq, struct task_struct *p)
  466. {
  467. return rq->curr == p;
  468. }
  469. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  470. static inline int task_running(struct rq *rq, struct task_struct *p)
  471. {
  472. return task_current(rq, p);
  473. }
  474. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  475. {
  476. }
  477. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  478. {
  479. #ifdef CONFIG_DEBUG_SPINLOCK
  480. /* this is a valid case when another task releases the spinlock */
  481. rq->lock.owner = current;
  482. #endif
  483. /*
  484. * If we are tracking spinlock dependencies then we have to
  485. * fix up the runqueue lock - which gets 'carried over' from
  486. * prev into current:
  487. */
  488. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  489. spin_unlock_irq(&rq->lock);
  490. }
  491. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  492. static inline int task_running(struct rq *rq, struct task_struct *p)
  493. {
  494. #ifdef CONFIG_SMP
  495. return p->oncpu;
  496. #else
  497. return task_current(rq, p);
  498. #endif
  499. }
  500. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  501. {
  502. #ifdef CONFIG_SMP
  503. /*
  504. * We can optimise this out completely for !SMP, because the
  505. * SMP rebalancing from interrupt is the only thing that cares
  506. * here.
  507. */
  508. next->oncpu = 1;
  509. #endif
  510. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  511. spin_unlock_irq(&rq->lock);
  512. #else
  513. spin_unlock(&rq->lock);
  514. #endif
  515. }
  516. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  517. {
  518. #ifdef CONFIG_SMP
  519. /*
  520. * After ->oncpu is cleared, the task can be moved to a different CPU.
  521. * We must ensure this doesn't happen until the switch is completely
  522. * finished.
  523. */
  524. smp_wmb();
  525. prev->oncpu = 0;
  526. #endif
  527. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  528. local_irq_enable();
  529. #endif
  530. }
  531. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  532. /*
  533. * __task_rq_lock - lock the runqueue a given task resides on.
  534. * Must be called interrupts disabled.
  535. */
  536. static inline struct rq *__task_rq_lock(struct task_struct *p)
  537. __acquires(rq->lock)
  538. {
  539. for (;;) {
  540. struct rq *rq = task_rq(p);
  541. spin_lock(&rq->lock);
  542. if (likely(rq == task_rq(p)))
  543. return rq;
  544. spin_unlock(&rq->lock);
  545. }
  546. }
  547. /*
  548. * task_rq_lock - lock the runqueue a given task resides on and disable
  549. * interrupts. Note the ordering: we can safely lookup the task_rq without
  550. * explicitly disabling preemption.
  551. */
  552. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  553. __acquires(rq->lock)
  554. {
  555. struct rq *rq;
  556. for (;;) {
  557. local_irq_save(*flags);
  558. rq = task_rq(p);
  559. spin_lock(&rq->lock);
  560. if (likely(rq == task_rq(p)))
  561. return rq;
  562. spin_unlock_irqrestore(&rq->lock, *flags);
  563. }
  564. }
  565. static void __task_rq_unlock(struct rq *rq)
  566. __releases(rq->lock)
  567. {
  568. spin_unlock(&rq->lock);
  569. }
  570. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  571. __releases(rq->lock)
  572. {
  573. spin_unlock_irqrestore(&rq->lock, *flags);
  574. }
  575. /*
  576. * this_rq_lock - lock this runqueue and disable interrupts.
  577. */
  578. static struct rq *this_rq_lock(void)
  579. __acquires(rq->lock)
  580. {
  581. struct rq *rq;
  582. local_irq_disable();
  583. rq = this_rq();
  584. spin_lock(&rq->lock);
  585. return rq;
  586. }
  587. /*
  588. * We are going deep-idle (irqs are disabled):
  589. */
  590. void sched_clock_idle_sleep_event(void)
  591. {
  592. struct rq *rq = cpu_rq(smp_processor_id());
  593. spin_lock(&rq->lock);
  594. __update_rq_clock(rq);
  595. spin_unlock(&rq->lock);
  596. rq->clock_deep_idle_events++;
  597. }
  598. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  599. /*
  600. * We just idled delta nanoseconds (called with irqs disabled):
  601. */
  602. void sched_clock_idle_wakeup_event(u64 delta_ns)
  603. {
  604. struct rq *rq = cpu_rq(smp_processor_id());
  605. u64 now = sched_clock();
  606. touch_softlockup_watchdog();
  607. rq->idle_clock += delta_ns;
  608. /*
  609. * Override the previous timestamp and ignore all
  610. * sched_clock() deltas that occured while we idled,
  611. * and use the PM-provided delta_ns to advance the
  612. * rq clock:
  613. */
  614. spin_lock(&rq->lock);
  615. rq->prev_clock_raw = now;
  616. rq->clock += delta_ns;
  617. spin_unlock(&rq->lock);
  618. }
  619. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  620. /*
  621. * resched_task - mark a task 'to be rescheduled now'.
  622. *
  623. * On UP this means the setting of the need_resched flag, on SMP it
  624. * might also involve a cross-CPU call to trigger the scheduler on
  625. * the target CPU.
  626. */
  627. #ifdef CONFIG_SMP
  628. #ifndef tsk_is_polling
  629. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  630. #endif
  631. static void resched_task(struct task_struct *p)
  632. {
  633. int cpu;
  634. assert_spin_locked(&task_rq(p)->lock);
  635. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  636. return;
  637. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  638. cpu = task_cpu(p);
  639. if (cpu == smp_processor_id())
  640. return;
  641. /* NEED_RESCHED must be visible before we test polling */
  642. smp_mb();
  643. if (!tsk_is_polling(p))
  644. smp_send_reschedule(cpu);
  645. }
  646. static void resched_cpu(int cpu)
  647. {
  648. struct rq *rq = cpu_rq(cpu);
  649. unsigned long flags;
  650. if (!spin_trylock_irqsave(&rq->lock, flags))
  651. return;
  652. resched_task(cpu_curr(cpu));
  653. spin_unlock_irqrestore(&rq->lock, flags);
  654. }
  655. #else
  656. static inline void resched_task(struct task_struct *p)
  657. {
  658. assert_spin_locked(&task_rq(p)->lock);
  659. set_tsk_need_resched(p);
  660. }
  661. #endif
  662. #if BITS_PER_LONG == 32
  663. # define WMULT_CONST (~0UL)
  664. #else
  665. # define WMULT_CONST (1UL << 32)
  666. #endif
  667. #define WMULT_SHIFT 32
  668. /*
  669. * Shift right and round:
  670. */
  671. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  672. static unsigned long
  673. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  674. struct load_weight *lw)
  675. {
  676. u64 tmp;
  677. if (unlikely(!lw->inv_weight))
  678. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  679. tmp = (u64)delta_exec * weight;
  680. /*
  681. * Check whether we'd overflow the 64-bit multiplication:
  682. */
  683. if (unlikely(tmp > WMULT_CONST))
  684. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  685. WMULT_SHIFT/2);
  686. else
  687. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  688. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  689. }
  690. static inline unsigned long
  691. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  692. {
  693. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  694. }
  695. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  696. {
  697. lw->weight += inc;
  698. }
  699. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  700. {
  701. lw->weight -= dec;
  702. }
  703. /*
  704. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  705. * of tasks with abnormal "nice" values across CPUs the contribution that
  706. * each task makes to its run queue's load is weighted according to its
  707. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  708. * scaled version of the new time slice allocation that they receive on time
  709. * slice expiry etc.
  710. */
  711. #define WEIGHT_IDLEPRIO 2
  712. #define WMULT_IDLEPRIO (1 << 31)
  713. /*
  714. * Nice levels are multiplicative, with a gentle 10% change for every
  715. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  716. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  717. * that remained on nice 0.
  718. *
  719. * The "10% effect" is relative and cumulative: from _any_ nice level,
  720. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  721. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  722. * If a task goes up by ~10% and another task goes down by ~10% then
  723. * the relative distance between them is ~25%.)
  724. */
  725. static const int prio_to_weight[40] = {
  726. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  727. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  728. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  729. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  730. /* 0 */ 1024, 820, 655, 526, 423,
  731. /* 5 */ 335, 272, 215, 172, 137,
  732. /* 10 */ 110, 87, 70, 56, 45,
  733. /* 15 */ 36, 29, 23, 18, 15,
  734. };
  735. /*
  736. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  737. *
  738. * In cases where the weight does not change often, we can use the
  739. * precalculated inverse to speed up arithmetics by turning divisions
  740. * into multiplications:
  741. */
  742. static const u32 prio_to_wmult[40] = {
  743. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  744. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  745. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  746. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  747. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  748. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  749. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  750. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  751. };
  752. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  753. /*
  754. * runqueue iterator, to support SMP load-balancing between different
  755. * scheduling classes, without having to expose their internal data
  756. * structures to the load-balancing proper:
  757. */
  758. struct rq_iterator {
  759. void *arg;
  760. struct task_struct *(*start)(void *);
  761. struct task_struct *(*next)(void *);
  762. };
  763. #ifdef CONFIG_SMP
  764. static unsigned long
  765. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  766. unsigned long max_load_move, struct sched_domain *sd,
  767. enum cpu_idle_type idle, int *all_pinned,
  768. int *this_best_prio, struct rq_iterator *iterator);
  769. static int
  770. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  771. struct sched_domain *sd, enum cpu_idle_type idle,
  772. struct rq_iterator *iterator);
  773. #endif
  774. #ifdef CONFIG_CGROUP_CPUACCT
  775. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  776. #else
  777. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  778. #endif
  779. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  780. {
  781. update_load_add(&rq->load, load);
  782. }
  783. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  784. {
  785. update_load_sub(&rq->load, load);
  786. }
  787. #include "sched_stats.h"
  788. #include "sched_idletask.c"
  789. #include "sched_fair.c"
  790. #include "sched_rt.c"
  791. #ifdef CONFIG_SCHED_DEBUG
  792. # include "sched_debug.c"
  793. #endif
  794. #define sched_class_highest (&rt_sched_class)
  795. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  796. {
  797. rq->nr_running++;
  798. }
  799. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  800. {
  801. rq->nr_running--;
  802. }
  803. static void set_load_weight(struct task_struct *p)
  804. {
  805. if (task_has_rt_policy(p)) {
  806. p->se.load.weight = prio_to_weight[0] * 2;
  807. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  808. return;
  809. }
  810. /*
  811. * SCHED_IDLE tasks get minimal weight:
  812. */
  813. if (p->policy == SCHED_IDLE) {
  814. p->se.load.weight = WEIGHT_IDLEPRIO;
  815. p->se.load.inv_weight = WMULT_IDLEPRIO;
  816. return;
  817. }
  818. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  819. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  820. }
  821. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  822. {
  823. sched_info_queued(p);
  824. p->sched_class->enqueue_task(rq, p, wakeup);
  825. p->se.on_rq = 1;
  826. }
  827. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  828. {
  829. p->sched_class->dequeue_task(rq, p, sleep);
  830. p->se.on_rq = 0;
  831. }
  832. /*
  833. * __normal_prio - return the priority that is based on the static prio
  834. */
  835. static inline int __normal_prio(struct task_struct *p)
  836. {
  837. return p->static_prio;
  838. }
  839. /*
  840. * Calculate the expected normal priority: i.e. priority
  841. * without taking RT-inheritance into account. Might be
  842. * boosted by interactivity modifiers. Changes upon fork,
  843. * setprio syscalls, and whenever the interactivity
  844. * estimator recalculates.
  845. */
  846. static inline int normal_prio(struct task_struct *p)
  847. {
  848. int prio;
  849. if (task_has_rt_policy(p))
  850. prio = MAX_RT_PRIO-1 - p->rt_priority;
  851. else
  852. prio = __normal_prio(p);
  853. return prio;
  854. }
  855. /*
  856. * Calculate the current priority, i.e. the priority
  857. * taken into account by the scheduler. This value might
  858. * be boosted by RT tasks, or might be boosted by
  859. * interactivity modifiers. Will be RT if the task got
  860. * RT-boosted. If not then it returns p->normal_prio.
  861. */
  862. static int effective_prio(struct task_struct *p)
  863. {
  864. p->normal_prio = normal_prio(p);
  865. /*
  866. * If we are RT tasks or we were boosted to RT priority,
  867. * keep the priority unchanged. Otherwise, update priority
  868. * to the normal priority:
  869. */
  870. if (!rt_prio(p->prio))
  871. return p->normal_prio;
  872. return p->prio;
  873. }
  874. /*
  875. * activate_task - move a task to the runqueue.
  876. */
  877. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  878. {
  879. if (p->state == TASK_UNINTERRUPTIBLE)
  880. rq->nr_uninterruptible--;
  881. enqueue_task(rq, p, wakeup);
  882. inc_nr_running(p, rq);
  883. }
  884. /*
  885. * deactivate_task - remove a task from the runqueue.
  886. */
  887. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  888. {
  889. if (p->state == TASK_UNINTERRUPTIBLE)
  890. rq->nr_uninterruptible++;
  891. dequeue_task(rq, p, sleep);
  892. dec_nr_running(p, rq);
  893. }
  894. /**
  895. * task_curr - is this task currently executing on a CPU?
  896. * @p: the task in question.
  897. */
  898. inline int task_curr(const struct task_struct *p)
  899. {
  900. return cpu_curr(task_cpu(p)) == p;
  901. }
  902. /* Used instead of source_load when we know the type == 0 */
  903. unsigned long weighted_cpuload(const int cpu)
  904. {
  905. return cpu_rq(cpu)->load.weight;
  906. }
  907. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  908. {
  909. set_task_cfs_rq(p, cpu);
  910. #ifdef CONFIG_SMP
  911. /*
  912. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  913. * successfuly executed on another CPU. We must ensure that updates of
  914. * per-task data have been completed by this moment.
  915. */
  916. smp_wmb();
  917. task_thread_info(p)->cpu = cpu;
  918. #endif
  919. }
  920. #ifdef CONFIG_SMP
  921. /*
  922. * Is this task likely cache-hot:
  923. */
  924. static inline int
  925. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  926. {
  927. s64 delta;
  928. if (p->sched_class != &fair_sched_class)
  929. return 0;
  930. if (sysctl_sched_migration_cost == -1)
  931. return 1;
  932. if (sysctl_sched_migration_cost == 0)
  933. return 0;
  934. delta = now - p->se.exec_start;
  935. return delta < (s64)sysctl_sched_migration_cost;
  936. }
  937. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  938. {
  939. int old_cpu = task_cpu(p);
  940. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  941. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  942. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  943. u64 clock_offset;
  944. clock_offset = old_rq->clock - new_rq->clock;
  945. #ifdef CONFIG_SCHEDSTATS
  946. if (p->se.wait_start)
  947. p->se.wait_start -= clock_offset;
  948. if (p->se.sleep_start)
  949. p->se.sleep_start -= clock_offset;
  950. if (p->se.block_start)
  951. p->se.block_start -= clock_offset;
  952. if (old_cpu != new_cpu) {
  953. schedstat_inc(p, se.nr_migrations);
  954. if (task_hot(p, old_rq->clock, NULL))
  955. schedstat_inc(p, se.nr_forced2_migrations);
  956. }
  957. #endif
  958. p->se.vruntime -= old_cfsrq->min_vruntime -
  959. new_cfsrq->min_vruntime;
  960. __set_task_cpu(p, new_cpu);
  961. }
  962. struct migration_req {
  963. struct list_head list;
  964. struct task_struct *task;
  965. int dest_cpu;
  966. struct completion done;
  967. };
  968. /*
  969. * The task's runqueue lock must be held.
  970. * Returns true if you have to wait for migration thread.
  971. */
  972. static int
  973. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  974. {
  975. struct rq *rq = task_rq(p);
  976. /*
  977. * If the task is not on a runqueue (and not running), then
  978. * it is sufficient to simply update the task's cpu field.
  979. */
  980. if (!p->se.on_rq && !task_running(rq, p)) {
  981. set_task_cpu(p, dest_cpu);
  982. return 0;
  983. }
  984. init_completion(&req->done);
  985. req->task = p;
  986. req->dest_cpu = dest_cpu;
  987. list_add(&req->list, &rq->migration_queue);
  988. return 1;
  989. }
  990. /*
  991. * wait_task_inactive - wait for a thread to unschedule.
  992. *
  993. * The caller must ensure that the task *will* unschedule sometime soon,
  994. * else this function might spin for a *long* time. This function can't
  995. * be called with interrupts off, or it may introduce deadlock with
  996. * smp_call_function() if an IPI is sent by the same process we are
  997. * waiting to become inactive.
  998. */
  999. void wait_task_inactive(struct task_struct *p)
  1000. {
  1001. unsigned long flags;
  1002. int running, on_rq;
  1003. struct rq *rq;
  1004. for (;;) {
  1005. /*
  1006. * We do the initial early heuristics without holding
  1007. * any task-queue locks at all. We'll only try to get
  1008. * the runqueue lock when things look like they will
  1009. * work out!
  1010. */
  1011. rq = task_rq(p);
  1012. /*
  1013. * If the task is actively running on another CPU
  1014. * still, just relax and busy-wait without holding
  1015. * any locks.
  1016. *
  1017. * NOTE! Since we don't hold any locks, it's not
  1018. * even sure that "rq" stays as the right runqueue!
  1019. * But we don't care, since "task_running()" will
  1020. * return false if the runqueue has changed and p
  1021. * is actually now running somewhere else!
  1022. */
  1023. while (task_running(rq, p))
  1024. cpu_relax();
  1025. /*
  1026. * Ok, time to look more closely! We need the rq
  1027. * lock now, to be *sure*. If we're wrong, we'll
  1028. * just go back and repeat.
  1029. */
  1030. rq = task_rq_lock(p, &flags);
  1031. running = task_running(rq, p);
  1032. on_rq = p->se.on_rq;
  1033. task_rq_unlock(rq, &flags);
  1034. /*
  1035. * Was it really running after all now that we
  1036. * checked with the proper locks actually held?
  1037. *
  1038. * Oops. Go back and try again..
  1039. */
  1040. if (unlikely(running)) {
  1041. cpu_relax();
  1042. continue;
  1043. }
  1044. /*
  1045. * It's not enough that it's not actively running,
  1046. * it must be off the runqueue _entirely_, and not
  1047. * preempted!
  1048. *
  1049. * So if it wa still runnable (but just not actively
  1050. * running right now), it's preempted, and we should
  1051. * yield - it could be a while.
  1052. */
  1053. if (unlikely(on_rq)) {
  1054. schedule_timeout_uninterruptible(1);
  1055. continue;
  1056. }
  1057. /*
  1058. * Ahh, all good. It wasn't running, and it wasn't
  1059. * runnable, which means that it will never become
  1060. * running in the future either. We're all done!
  1061. */
  1062. break;
  1063. }
  1064. }
  1065. /***
  1066. * kick_process - kick a running thread to enter/exit the kernel
  1067. * @p: the to-be-kicked thread
  1068. *
  1069. * Cause a process which is running on another CPU to enter
  1070. * kernel-mode, without any delay. (to get signals handled.)
  1071. *
  1072. * NOTE: this function doesnt have to take the runqueue lock,
  1073. * because all it wants to ensure is that the remote task enters
  1074. * the kernel. If the IPI races and the task has been migrated
  1075. * to another CPU then no harm is done and the purpose has been
  1076. * achieved as well.
  1077. */
  1078. void kick_process(struct task_struct *p)
  1079. {
  1080. int cpu;
  1081. preempt_disable();
  1082. cpu = task_cpu(p);
  1083. if ((cpu != smp_processor_id()) && task_curr(p))
  1084. smp_send_reschedule(cpu);
  1085. preempt_enable();
  1086. }
  1087. /*
  1088. * Return a low guess at the load of a migration-source cpu weighted
  1089. * according to the scheduling class and "nice" value.
  1090. *
  1091. * We want to under-estimate the load of migration sources, to
  1092. * balance conservatively.
  1093. */
  1094. static unsigned long source_load(int cpu, int type)
  1095. {
  1096. struct rq *rq = cpu_rq(cpu);
  1097. unsigned long total = weighted_cpuload(cpu);
  1098. if (type == 0)
  1099. return total;
  1100. return min(rq->cpu_load[type-1], total);
  1101. }
  1102. /*
  1103. * Return a high guess at the load of a migration-target cpu weighted
  1104. * according to the scheduling class and "nice" value.
  1105. */
  1106. static unsigned long target_load(int cpu, int type)
  1107. {
  1108. struct rq *rq = cpu_rq(cpu);
  1109. unsigned long total = weighted_cpuload(cpu);
  1110. if (type == 0)
  1111. return total;
  1112. return max(rq->cpu_load[type-1], total);
  1113. }
  1114. /*
  1115. * Return the average load per task on the cpu's run queue
  1116. */
  1117. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1118. {
  1119. struct rq *rq = cpu_rq(cpu);
  1120. unsigned long total = weighted_cpuload(cpu);
  1121. unsigned long n = rq->nr_running;
  1122. return n ? total / n : SCHED_LOAD_SCALE;
  1123. }
  1124. /*
  1125. * find_idlest_group finds and returns the least busy CPU group within the
  1126. * domain.
  1127. */
  1128. static struct sched_group *
  1129. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1130. {
  1131. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1132. unsigned long min_load = ULONG_MAX, this_load = 0;
  1133. int load_idx = sd->forkexec_idx;
  1134. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1135. do {
  1136. unsigned long load, avg_load;
  1137. int local_group;
  1138. int i;
  1139. /* Skip over this group if it has no CPUs allowed */
  1140. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1141. continue;
  1142. local_group = cpu_isset(this_cpu, group->cpumask);
  1143. /* Tally up the load of all CPUs in the group */
  1144. avg_load = 0;
  1145. for_each_cpu_mask(i, group->cpumask) {
  1146. /* Bias balancing toward cpus of our domain */
  1147. if (local_group)
  1148. load = source_load(i, load_idx);
  1149. else
  1150. load = target_load(i, load_idx);
  1151. avg_load += load;
  1152. }
  1153. /* Adjust by relative CPU power of the group */
  1154. avg_load = sg_div_cpu_power(group,
  1155. avg_load * SCHED_LOAD_SCALE);
  1156. if (local_group) {
  1157. this_load = avg_load;
  1158. this = group;
  1159. } else if (avg_load < min_load) {
  1160. min_load = avg_load;
  1161. idlest = group;
  1162. }
  1163. } while (group = group->next, group != sd->groups);
  1164. if (!idlest || 100*this_load < imbalance*min_load)
  1165. return NULL;
  1166. return idlest;
  1167. }
  1168. /*
  1169. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1170. */
  1171. static int
  1172. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1173. {
  1174. cpumask_t tmp;
  1175. unsigned long load, min_load = ULONG_MAX;
  1176. int idlest = -1;
  1177. int i;
  1178. /* Traverse only the allowed CPUs */
  1179. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1180. for_each_cpu_mask(i, tmp) {
  1181. load = weighted_cpuload(i);
  1182. if (load < min_load || (load == min_load && i == this_cpu)) {
  1183. min_load = load;
  1184. idlest = i;
  1185. }
  1186. }
  1187. return idlest;
  1188. }
  1189. /*
  1190. * sched_balance_self: balance the current task (running on cpu) in domains
  1191. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1192. * SD_BALANCE_EXEC.
  1193. *
  1194. * Balance, ie. select the least loaded group.
  1195. *
  1196. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1197. *
  1198. * preempt must be disabled.
  1199. */
  1200. static int sched_balance_self(int cpu, int flag)
  1201. {
  1202. struct task_struct *t = current;
  1203. struct sched_domain *tmp, *sd = NULL;
  1204. for_each_domain(cpu, tmp) {
  1205. /*
  1206. * If power savings logic is enabled for a domain, stop there.
  1207. */
  1208. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1209. break;
  1210. if (tmp->flags & flag)
  1211. sd = tmp;
  1212. }
  1213. while (sd) {
  1214. cpumask_t span;
  1215. struct sched_group *group;
  1216. int new_cpu, weight;
  1217. if (!(sd->flags & flag)) {
  1218. sd = sd->child;
  1219. continue;
  1220. }
  1221. span = sd->span;
  1222. group = find_idlest_group(sd, t, cpu);
  1223. if (!group) {
  1224. sd = sd->child;
  1225. continue;
  1226. }
  1227. new_cpu = find_idlest_cpu(group, t, cpu);
  1228. if (new_cpu == -1 || new_cpu == cpu) {
  1229. /* Now try balancing at a lower domain level of cpu */
  1230. sd = sd->child;
  1231. continue;
  1232. }
  1233. /* Now try balancing at a lower domain level of new_cpu */
  1234. cpu = new_cpu;
  1235. sd = NULL;
  1236. weight = cpus_weight(span);
  1237. for_each_domain(cpu, tmp) {
  1238. if (weight <= cpus_weight(tmp->span))
  1239. break;
  1240. if (tmp->flags & flag)
  1241. sd = tmp;
  1242. }
  1243. /* while loop will break here if sd == NULL */
  1244. }
  1245. return cpu;
  1246. }
  1247. #endif /* CONFIG_SMP */
  1248. /*
  1249. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1250. * not idle and an idle cpu is available. The span of cpus to
  1251. * search starts with cpus closest then further out as needed,
  1252. * so we always favor a closer, idle cpu.
  1253. *
  1254. * Returns the CPU we should wake onto.
  1255. */
  1256. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1257. static int wake_idle(int cpu, struct task_struct *p)
  1258. {
  1259. cpumask_t tmp;
  1260. struct sched_domain *sd;
  1261. int i;
  1262. /*
  1263. * If it is idle, then it is the best cpu to run this task.
  1264. *
  1265. * This cpu is also the best, if it has more than one task already.
  1266. * Siblings must be also busy(in most cases) as they didn't already
  1267. * pickup the extra load from this cpu and hence we need not check
  1268. * sibling runqueue info. This will avoid the checks and cache miss
  1269. * penalities associated with that.
  1270. */
  1271. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1272. return cpu;
  1273. for_each_domain(cpu, sd) {
  1274. if (sd->flags & SD_WAKE_IDLE) {
  1275. cpus_and(tmp, sd->span, p->cpus_allowed);
  1276. for_each_cpu_mask(i, tmp) {
  1277. if (idle_cpu(i)) {
  1278. if (i != task_cpu(p)) {
  1279. schedstat_inc(p,
  1280. se.nr_wakeups_idle);
  1281. }
  1282. return i;
  1283. }
  1284. }
  1285. } else {
  1286. break;
  1287. }
  1288. }
  1289. return cpu;
  1290. }
  1291. #else
  1292. static inline int wake_idle(int cpu, struct task_struct *p)
  1293. {
  1294. return cpu;
  1295. }
  1296. #endif
  1297. /***
  1298. * try_to_wake_up - wake up a thread
  1299. * @p: the to-be-woken-up thread
  1300. * @state: the mask of task states that can be woken
  1301. * @sync: do a synchronous wakeup?
  1302. *
  1303. * Put it on the run-queue if it's not already there. The "current"
  1304. * thread is always on the run-queue (except when the actual
  1305. * re-schedule is in progress), and as such you're allowed to do
  1306. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1307. * runnable without the overhead of this.
  1308. *
  1309. * returns failure only if the task is already active.
  1310. */
  1311. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1312. {
  1313. int cpu, orig_cpu, this_cpu, success = 0;
  1314. unsigned long flags;
  1315. long old_state;
  1316. struct rq *rq;
  1317. #ifdef CONFIG_SMP
  1318. struct sched_domain *sd, *this_sd = NULL;
  1319. unsigned long load, this_load;
  1320. int new_cpu;
  1321. #endif
  1322. rq = task_rq_lock(p, &flags);
  1323. old_state = p->state;
  1324. if (!(old_state & state))
  1325. goto out;
  1326. if (p->se.on_rq)
  1327. goto out_running;
  1328. cpu = task_cpu(p);
  1329. orig_cpu = cpu;
  1330. this_cpu = smp_processor_id();
  1331. #ifdef CONFIG_SMP
  1332. if (unlikely(task_running(rq, p)))
  1333. goto out_activate;
  1334. new_cpu = cpu;
  1335. schedstat_inc(rq, ttwu_count);
  1336. if (cpu == this_cpu) {
  1337. schedstat_inc(rq, ttwu_local);
  1338. goto out_set_cpu;
  1339. }
  1340. for_each_domain(this_cpu, sd) {
  1341. if (cpu_isset(cpu, sd->span)) {
  1342. schedstat_inc(sd, ttwu_wake_remote);
  1343. this_sd = sd;
  1344. break;
  1345. }
  1346. }
  1347. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1348. goto out_set_cpu;
  1349. /*
  1350. * Check for affine wakeup and passive balancing possibilities.
  1351. */
  1352. if (this_sd) {
  1353. int idx = this_sd->wake_idx;
  1354. unsigned int imbalance;
  1355. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1356. load = source_load(cpu, idx);
  1357. this_load = target_load(this_cpu, idx);
  1358. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1359. if (this_sd->flags & SD_WAKE_AFFINE) {
  1360. unsigned long tl = this_load;
  1361. unsigned long tl_per_task;
  1362. /*
  1363. * Attract cache-cold tasks on sync wakeups:
  1364. */
  1365. if (sync && !task_hot(p, rq->clock, this_sd))
  1366. goto out_set_cpu;
  1367. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1368. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1369. /*
  1370. * If sync wakeup then subtract the (maximum possible)
  1371. * effect of the currently running task from the load
  1372. * of the current CPU:
  1373. */
  1374. if (sync)
  1375. tl -= current->se.load.weight;
  1376. if ((tl <= load &&
  1377. tl + target_load(cpu, idx) <= tl_per_task) ||
  1378. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1379. /*
  1380. * This domain has SD_WAKE_AFFINE and
  1381. * p is cache cold in this domain, and
  1382. * there is no bad imbalance.
  1383. */
  1384. schedstat_inc(this_sd, ttwu_move_affine);
  1385. schedstat_inc(p, se.nr_wakeups_affine);
  1386. goto out_set_cpu;
  1387. }
  1388. }
  1389. /*
  1390. * Start passive balancing when half the imbalance_pct
  1391. * limit is reached.
  1392. */
  1393. if (this_sd->flags & SD_WAKE_BALANCE) {
  1394. if (imbalance*this_load <= 100*load) {
  1395. schedstat_inc(this_sd, ttwu_move_balance);
  1396. schedstat_inc(p, se.nr_wakeups_passive);
  1397. goto out_set_cpu;
  1398. }
  1399. }
  1400. }
  1401. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1402. out_set_cpu:
  1403. new_cpu = wake_idle(new_cpu, p);
  1404. if (new_cpu != cpu) {
  1405. set_task_cpu(p, new_cpu);
  1406. task_rq_unlock(rq, &flags);
  1407. /* might preempt at this point */
  1408. rq = task_rq_lock(p, &flags);
  1409. old_state = p->state;
  1410. if (!(old_state & state))
  1411. goto out;
  1412. if (p->se.on_rq)
  1413. goto out_running;
  1414. this_cpu = smp_processor_id();
  1415. cpu = task_cpu(p);
  1416. }
  1417. out_activate:
  1418. #endif /* CONFIG_SMP */
  1419. schedstat_inc(p, se.nr_wakeups);
  1420. if (sync)
  1421. schedstat_inc(p, se.nr_wakeups_sync);
  1422. if (orig_cpu != cpu)
  1423. schedstat_inc(p, se.nr_wakeups_migrate);
  1424. if (cpu == this_cpu)
  1425. schedstat_inc(p, se.nr_wakeups_local);
  1426. else
  1427. schedstat_inc(p, se.nr_wakeups_remote);
  1428. update_rq_clock(rq);
  1429. activate_task(rq, p, 1);
  1430. check_preempt_curr(rq, p);
  1431. success = 1;
  1432. out_running:
  1433. p->state = TASK_RUNNING;
  1434. out:
  1435. task_rq_unlock(rq, &flags);
  1436. return success;
  1437. }
  1438. int fastcall wake_up_process(struct task_struct *p)
  1439. {
  1440. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1441. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1442. }
  1443. EXPORT_SYMBOL(wake_up_process);
  1444. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1445. {
  1446. return try_to_wake_up(p, state, 0);
  1447. }
  1448. /*
  1449. * Perform scheduler related setup for a newly forked process p.
  1450. * p is forked by current.
  1451. *
  1452. * __sched_fork() is basic setup used by init_idle() too:
  1453. */
  1454. static void __sched_fork(struct task_struct *p)
  1455. {
  1456. p->se.exec_start = 0;
  1457. p->se.sum_exec_runtime = 0;
  1458. p->se.prev_sum_exec_runtime = 0;
  1459. #ifdef CONFIG_SCHEDSTATS
  1460. p->se.wait_start = 0;
  1461. p->se.sum_sleep_runtime = 0;
  1462. p->se.sleep_start = 0;
  1463. p->se.block_start = 0;
  1464. p->se.sleep_max = 0;
  1465. p->se.block_max = 0;
  1466. p->se.exec_max = 0;
  1467. p->se.slice_max = 0;
  1468. p->se.wait_max = 0;
  1469. #endif
  1470. INIT_LIST_HEAD(&p->run_list);
  1471. p->se.on_rq = 0;
  1472. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1473. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1474. #endif
  1475. /*
  1476. * We mark the process as running here, but have not actually
  1477. * inserted it onto the runqueue yet. This guarantees that
  1478. * nobody will actually run it, and a signal or other external
  1479. * event cannot wake it up and insert it on the runqueue either.
  1480. */
  1481. p->state = TASK_RUNNING;
  1482. }
  1483. /*
  1484. * fork()/clone()-time setup:
  1485. */
  1486. void sched_fork(struct task_struct *p, int clone_flags)
  1487. {
  1488. int cpu = get_cpu();
  1489. __sched_fork(p);
  1490. #ifdef CONFIG_SMP
  1491. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1492. #endif
  1493. set_task_cpu(p, cpu);
  1494. /*
  1495. * Make sure we do not leak PI boosting priority to the child:
  1496. */
  1497. p->prio = current->normal_prio;
  1498. if (!rt_prio(p->prio))
  1499. p->sched_class = &fair_sched_class;
  1500. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1501. if (likely(sched_info_on()))
  1502. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1503. #endif
  1504. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1505. p->oncpu = 0;
  1506. #endif
  1507. #ifdef CONFIG_PREEMPT
  1508. /* Want to start with kernel preemption disabled. */
  1509. task_thread_info(p)->preempt_count = 1;
  1510. #endif
  1511. put_cpu();
  1512. }
  1513. /*
  1514. * wake_up_new_task - wake up a newly created task for the first time.
  1515. *
  1516. * This function will do some initial scheduler statistics housekeeping
  1517. * that must be done for every newly created context, then puts the task
  1518. * on the runqueue and wakes it.
  1519. */
  1520. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1521. {
  1522. unsigned long flags;
  1523. struct rq *rq;
  1524. rq = task_rq_lock(p, &flags);
  1525. BUG_ON(p->state != TASK_RUNNING);
  1526. update_rq_clock(rq);
  1527. p->prio = effective_prio(p);
  1528. if (!p->sched_class->task_new || !current->se.on_rq) {
  1529. activate_task(rq, p, 0);
  1530. } else {
  1531. /*
  1532. * Let the scheduling class do new task startup
  1533. * management (if any):
  1534. */
  1535. p->sched_class->task_new(rq, p);
  1536. inc_nr_running(p, rq);
  1537. }
  1538. check_preempt_curr(rq, p);
  1539. task_rq_unlock(rq, &flags);
  1540. }
  1541. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1542. /**
  1543. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1544. * @notifier: notifier struct to register
  1545. */
  1546. void preempt_notifier_register(struct preempt_notifier *notifier)
  1547. {
  1548. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1549. }
  1550. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1551. /**
  1552. * preempt_notifier_unregister - no longer interested in preemption notifications
  1553. * @notifier: notifier struct to unregister
  1554. *
  1555. * This is safe to call from within a preemption notifier.
  1556. */
  1557. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1558. {
  1559. hlist_del(&notifier->link);
  1560. }
  1561. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1562. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1563. {
  1564. struct preempt_notifier *notifier;
  1565. struct hlist_node *node;
  1566. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1567. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1568. }
  1569. static void
  1570. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1571. struct task_struct *next)
  1572. {
  1573. struct preempt_notifier *notifier;
  1574. struct hlist_node *node;
  1575. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1576. notifier->ops->sched_out(notifier, next);
  1577. }
  1578. #else
  1579. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1580. {
  1581. }
  1582. static void
  1583. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1584. struct task_struct *next)
  1585. {
  1586. }
  1587. #endif
  1588. /**
  1589. * prepare_task_switch - prepare to switch tasks
  1590. * @rq: the runqueue preparing to switch
  1591. * @prev: the current task that is being switched out
  1592. * @next: the task we are going to switch to.
  1593. *
  1594. * This is called with the rq lock held and interrupts off. It must
  1595. * be paired with a subsequent finish_task_switch after the context
  1596. * switch.
  1597. *
  1598. * prepare_task_switch sets up locking and calls architecture specific
  1599. * hooks.
  1600. */
  1601. static inline void
  1602. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1603. struct task_struct *next)
  1604. {
  1605. fire_sched_out_preempt_notifiers(prev, next);
  1606. prepare_lock_switch(rq, next);
  1607. prepare_arch_switch(next);
  1608. }
  1609. /**
  1610. * finish_task_switch - clean up after a task-switch
  1611. * @rq: runqueue associated with task-switch
  1612. * @prev: the thread we just switched away from.
  1613. *
  1614. * finish_task_switch must be called after the context switch, paired
  1615. * with a prepare_task_switch call before the context switch.
  1616. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1617. * and do any other architecture-specific cleanup actions.
  1618. *
  1619. * Note that we may have delayed dropping an mm in context_switch(). If
  1620. * so, we finish that here outside of the runqueue lock. (Doing it
  1621. * with the lock held can cause deadlocks; see schedule() for
  1622. * details.)
  1623. */
  1624. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1625. __releases(rq->lock)
  1626. {
  1627. struct mm_struct *mm = rq->prev_mm;
  1628. long prev_state;
  1629. rq->prev_mm = NULL;
  1630. /*
  1631. * A task struct has one reference for the use as "current".
  1632. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1633. * schedule one last time. The schedule call will never return, and
  1634. * the scheduled task must drop that reference.
  1635. * The test for TASK_DEAD must occur while the runqueue locks are
  1636. * still held, otherwise prev could be scheduled on another cpu, die
  1637. * there before we look at prev->state, and then the reference would
  1638. * be dropped twice.
  1639. * Manfred Spraul <manfred@colorfullife.com>
  1640. */
  1641. prev_state = prev->state;
  1642. finish_arch_switch(prev);
  1643. finish_lock_switch(rq, prev);
  1644. fire_sched_in_preempt_notifiers(current);
  1645. if (mm)
  1646. mmdrop(mm);
  1647. if (unlikely(prev_state == TASK_DEAD)) {
  1648. /*
  1649. * Remove function-return probe instances associated with this
  1650. * task and put them back on the free list.
  1651. */
  1652. kprobe_flush_task(prev);
  1653. put_task_struct(prev);
  1654. }
  1655. }
  1656. /**
  1657. * schedule_tail - first thing a freshly forked thread must call.
  1658. * @prev: the thread we just switched away from.
  1659. */
  1660. asmlinkage void schedule_tail(struct task_struct *prev)
  1661. __releases(rq->lock)
  1662. {
  1663. struct rq *rq = this_rq();
  1664. finish_task_switch(rq, prev);
  1665. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1666. /* In this case, finish_task_switch does not reenable preemption */
  1667. preempt_enable();
  1668. #endif
  1669. if (current->set_child_tid)
  1670. put_user(task_pid_vnr(current), current->set_child_tid);
  1671. }
  1672. /*
  1673. * context_switch - switch to the new MM and the new
  1674. * thread's register state.
  1675. */
  1676. static inline void
  1677. context_switch(struct rq *rq, struct task_struct *prev,
  1678. struct task_struct *next)
  1679. {
  1680. struct mm_struct *mm, *oldmm;
  1681. prepare_task_switch(rq, prev, next);
  1682. mm = next->mm;
  1683. oldmm = prev->active_mm;
  1684. /*
  1685. * For paravirt, this is coupled with an exit in switch_to to
  1686. * combine the page table reload and the switch backend into
  1687. * one hypercall.
  1688. */
  1689. arch_enter_lazy_cpu_mode();
  1690. if (unlikely(!mm)) {
  1691. next->active_mm = oldmm;
  1692. atomic_inc(&oldmm->mm_count);
  1693. enter_lazy_tlb(oldmm, next);
  1694. } else
  1695. switch_mm(oldmm, mm, next);
  1696. if (unlikely(!prev->mm)) {
  1697. prev->active_mm = NULL;
  1698. rq->prev_mm = oldmm;
  1699. }
  1700. /*
  1701. * Since the runqueue lock will be released by the next
  1702. * task (which is an invalid locking op but in the case
  1703. * of the scheduler it's an obvious special-case), so we
  1704. * do an early lockdep release here:
  1705. */
  1706. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1707. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1708. #endif
  1709. /* Here we just switch the register state and the stack. */
  1710. switch_to(prev, next, prev);
  1711. barrier();
  1712. /*
  1713. * this_rq must be evaluated again because prev may have moved
  1714. * CPUs since it called schedule(), thus the 'rq' on its stack
  1715. * frame will be invalid.
  1716. */
  1717. finish_task_switch(this_rq(), prev);
  1718. }
  1719. /*
  1720. * nr_running, nr_uninterruptible and nr_context_switches:
  1721. *
  1722. * externally visible scheduler statistics: current number of runnable
  1723. * threads, current number of uninterruptible-sleeping threads, total
  1724. * number of context switches performed since bootup.
  1725. */
  1726. unsigned long nr_running(void)
  1727. {
  1728. unsigned long i, sum = 0;
  1729. for_each_online_cpu(i)
  1730. sum += cpu_rq(i)->nr_running;
  1731. return sum;
  1732. }
  1733. unsigned long nr_uninterruptible(void)
  1734. {
  1735. unsigned long i, sum = 0;
  1736. for_each_possible_cpu(i)
  1737. sum += cpu_rq(i)->nr_uninterruptible;
  1738. /*
  1739. * Since we read the counters lockless, it might be slightly
  1740. * inaccurate. Do not allow it to go below zero though:
  1741. */
  1742. if (unlikely((long)sum < 0))
  1743. sum = 0;
  1744. return sum;
  1745. }
  1746. unsigned long long nr_context_switches(void)
  1747. {
  1748. int i;
  1749. unsigned long long sum = 0;
  1750. for_each_possible_cpu(i)
  1751. sum += cpu_rq(i)->nr_switches;
  1752. return sum;
  1753. }
  1754. unsigned long nr_iowait(void)
  1755. {
  1756. unsigned long i, sum = 0;
  1757. for_each_possible_cpu(i)
  1758. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1759. return sum;
  1760. }
  1761. unsigned long nr_active(void)
  1762. {
  1763. unsigned long i, running = 0, uninterruptible = 0;
  1764. for_each_online_cpu(i) {
  1765. running += cpu_rq(i)->nr_running;
  1766. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1767. }
  1768. if (unlikely((long)uninterruptible < 0))
  1769. uninterruptible = 0;
  1770. return running + uninterruptible;
  1771. }
  1772. /*
  1773. * Update rq->cpu_load[] statistics. This function is usually called every
  1774. * scheduler tick (TICK_NSEC).
  1775. */
  1776. static void update_cpu_load(struct rq *this_rq)
  1777. {
  1778. unsigned long this_load = this_rq->load.weight;
  1779. int i, scale;
  1780. this_rq->nr_load_updates++;
  1781. /* Update our load: */
  1782. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1783. unsigned long old_load, new_load;
  1784. /* scale is effectively 1 << i now, and >> i divides by scale */
  1785. old_load = this_rq->cpu_load[i];
  1786. new_load = this_load;
  1787. /*
  1788. * Round up the averaging division if load is increasing. This
  1789. * prevents us from getting stuck on 9 if the load is 10, for
  1790. * example.
  1791. */
  1792. if (new_load > old_load)
  1793. new_load += scale-1;
  1794. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1795. }
  1796. }
  1797. #ifdef CONFIG_SMP
  1798. /*
  1799. * double_rq_lock - safely lock two runqueues
  1800. *
  1801. * Note this does not disable interrupts like task_rq_lock,
  1802. * you need to do so manually before calling.
  1803. */
  1804. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1805. __acquires(rq1->lock)
  1806. __acquires(rq2->lock)
  1807. {
  1808. BUG_ON(!irqs_disabled());
  1809. if (rq1 == rq2) {
  1810. spin_lock(&rq1->lock);
  1811. __acquire(rq2->lock); /* Fake it out ;) */
  1812. } else {
  1813. if (rq1 < rq2) {
  1814. spin_lock(&rq1->lock);
  1815. spin_lock(&rq2->lock);
  1816. } else {
  1817. spin_lock(&rq2->lock);
  1818. spin_lock(&rq1->lock);
  1819. }
  1820. }
  1821. update_rq_clock(rq1);
  1822. update_rq_clock(rq2);
  1823. }
  1824. /*
  1825. * double_rq_unlock - safely unlock two runqueues
  1826. *
  1827. * Note this does not restore interrupts like task_rq_unlock,
  1828. * you need to do so manually after calling.
  1829. */
  1830. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1831. __releases(rq1->lock)
  1832. __releases(rq2->lock)
  1833. {
  1834. spin_unlock(&rq1->lock);
  1835. if (rq1 != rq2)
  1836. spin_unlock(&rq2->lock);
  1837. else
  1838. __release(rq2->lock);
  1839. }
  1840. /*
  1841. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1842. */
  1843. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1844. __releases(this_rq->lock)
  1845. __acquires(busiest->lock)
  1846. __acquires(this_rq->lock)
  1847. {
  1848. if (unlikely(!irqs_disabled())) {
  1849. /* printk() doesn't work good under rq->lock */
  1850. spin_unlock(&this_rq->lock);
  1851. BUG_ON(1);
  1852. }
  1853. if (unlikely(!spin_trylock(&busiest->lock))) {
  1854. if (busiest < this_rq) {
  1855. spin_unlock(&this_rq->lock);
  1856. spin_lock(&busiest->lock);
  1857. spin_lock(&this_rq->lock);
  1858. } else
  1859. spin_lock(&busiest->lock);
  1860. }
  1861. }
  1862. /*
  1863. * If dest_cpu is allowed for this process, migrate the task to it.
  1864. * This is accomplished by forcing the cpu_allowed mask to only
  1865. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1866. * the cpu_allowed mask is restored.
  1867. */
  1868. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1869. {
  1870. struct migration_req req;
  1871. unsigned long flags;
  1872. struct rq *rq;
  1873. rq = task_rq_lock(p, &flags);
  1874. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1875. || unlikely(cpu_is_offline(dest_cpu)))
  1876. goto out;
  1877. /* force the process onto the specified CPU */
  1878. if (migrate_task(p, dest_cpu, &req)) {
  1879. /* Need to wait for migration thread (might exit: take ref). */
  1880. struct task_struct *mt = rq->migration_thread;
  1881. get_task_struct(mt);
  1882. task_rq_unlock(rq, &flags);
  1883. wake_up_process(mt);
  1884. put_task_struct(mt);
  1885. wait_for_completion(&req.done);
  1886. return;
  1887. }
  1888. out:
  1889. task_rq_unlock(rq, &flags);
  1890. }
  1891. /*
  1892. * sched_exec - execve() is a valuable balancing opportunity, because at
  1893. * this point the task has the smallest effective memory and cache footprint.
  1894. */
  1895. void sched_exec(void)
  1896. {
  1897. int new_cpu, this_cpu = get_cpu();
  1898. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1899. put_cpu();
  1900. if (new_cpu != this_cpu)
  1901. sched_migrate_task(current, new_cpu);
  1902. }
  1903. /*
  1904. * pull_task - move a task from a remote runqueue to the local runqueue.
  1905. * Both runqueues must be locked.
  1906. */
  1907. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1908. struct rq *this_rq, int this_cpu)
  1909. {
  1910. deactivate_task(src_rq, p, 0);
  1911. set_task_cpu(p, this_cpu);
  1912. activate_task(this_rq, p, 0);
  1913. /*
  1914. * Note that idle threads have a prio of MAX_PRIO, for this test
  1915. * to be always true for them.
  1916. */
  1917. check_preempt_curr(this_rq, p);
  1918. }
  1919. /*
  1920. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1921. */
  1922. static
  1923. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1924. struct sched_domain *sd, enum cpu_idle_type idle,
  1925. int *all_pinned)
  1926. {
  1927. /*
  1928. * We do not migrate tasks that are:
  1929. * 1) running (obviously), or
  1930. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1931. * 3) are cache-hot on their current CPU.
  1932. */
  1933. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1934. schedstat_inc(p, se.nr_failed_migrations_affine);
  1935. return 0;
  1936. }
  1937. *all_pinned = 0;
  1938. if (task_running(rq, p)) {
  1939. schedstat_inc(p, se.nr_failed_migrations_running);
  1940. return 0;
  1941. }
  1942. /*
  1943. * Aggressive migration if:
  1944. * 1) task is cache cold, or
  1945. * 2) too many balance attempts have failed.
  1946. */
  1947. if (!task_hot(p, rq->clock, sd) ||
  1948. sd->nr_balance_failed > sd->cache_nice_tries) {
  1949. #ifdef CONFIG_SCHEDSTATS
  1950. if (task_hot(p, rq->clock, sd)) {
  1951. schedstat_inc(sd, lb_hot_gained[idle]);
  1952. schedstat_inc(p, se.nr_forced_migrations);
  1953. }
  1954. #endif
  1955. return 1;
  1956. }
  1957. if (task_hot(p, rq->clock, sd)) {
  1958. schedstat_inc(p, se.nr_failed_migrations_hot);
  1959. return 0;
  1960. }
  1961. return 1;
  1962. }
  1963. static unsigned long
  1964. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1965. unsigned long max_load_move, struct sched_domain *sd,
  1966. enum cpu_idle_type idle, int *all_pinned,
  1967. int *this_best_prio, struct rq_iterator *iterator)
  1968. {
  1969. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  1970. struct task_struct *p;
  1971. long rem_load_move = max_load_move;
  1972. if (max_load_move == 0)
  1973. goto out;
  1974. pinned = 1;
  1975. /*
  1976. * Start the load-balancing iterator:
  1977. */
  1978. p = iterator->start(iterator->arg);
  1979. next:
  1980. if (!p || loops++ > sysctl_sched_nr_migrate)
  1981. goto out;
  1982. /*
  1983. * To help distribute high priority tasks across CPUs we don't
  1984. * skip a task if it will be the highest priority task (i.e. smallest
  1985. * prio value) on its new queue regardless of its load weight
  1986. */
  1987. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1988. SCHED_LOAD_SCALE_FUZZ;
  1989. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1990. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1991. p = iterator->next(iterator->arg);
  1992. goto next;
  1993. }
  1994. pull_task(busiest, p, this_rq, this_cpu);
  1995. pulled++;
  1996. rem_load_move -= p->se.load.weight;
  1997. /*
  1998. * We only want to steal up to the prescribed amount of weighted load.
  1999. */
  2000. if (rem_load_move > 0) {
  2001. if (p->prio < *this_best_prio)
  2002. *this_best_prio = p->prio;
  2003. p = iterator->next(iterator->arg);
  2004. goto next;
  2005. }
  2006. out:
  2007. /*
  2008. * Right now, this is one of only two places pull_task() is called,
  2009. * so we can safely collect pull_task() stats here rather than
  2010. * inside pull_task().
  2011. */
  2012. schedstat_add(sd, lb_gained[idle], pulled);
  2013. if (all_pinned)
  2014. *all_pinned = pinned;
  2015. return max_load_move - rem_load_move;
  2016. }
  2017. /*
  2018. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2019. * this_rq, as part of a balancing operation within domain "sd".
  2020. * Returns 1 if successful and 0 otherwise.
  2021. *
  2022. * Called with both runqueues locked.
  2023. */
  2024. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2025. unsigned long max_load_move,
  2026. struct sched_domain *sd, enum cpu_idle_type idle,
  2027. int *all_pinned)
  2028. {
  2029. const struct sched_class *class = sched_class_highest;
  2030. unsigned long total_load_moved = 0;
  2031. int this_best_prio = this_rq->curr->prio;
  2032. do {
  2033. total_load_moved +=
  2034. class->load_balance(this_rq, this_cpu, busiest,
  2035. max_load_move - total_load_moved,
  2036. sd, idle, all_pinned, &this_best_prio);
  2037. class = class->next;
  2038. } while (class && max_load_move > total_load_moved);
  2039. return total_load_moved > 0;
  2040. }
  2041. static int
  2042. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2043. struct sched_domain *sd, enum cpu_idle_type idle,
  2044. struct rq_iterator *iterator)
  2045. {
  2046. struct task_struct *p = iterator->start(iterator->arg);
  2047. int pinned = 0;
  2048. while (p) {
  2049. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2050. pull_task(busiest, p, this_rq, this_cpu);
  2051. /*
  2052. * Right now, this is only the second place pull_task()
  2053. * is called, so we can safely collect pull_task()
  2054. * stats here rather than inside pull_task().
  2055. */
  2056. schedstat_inc(sd, lb_gained[idle]);
  2057. return 1;
  2058. }
  2059. p = iterator->next(iterator->arg);
  2060. }
  2061. return 0;
  2062. }
  2063. /*
  2064. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2065. * part of active balancing operations within "domain".
  2066. * Returns 1 if successful and 0 otherwise.
  2067. *
  2068. * Called with both runqueues locked.
  2069. */
  2070. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2071. struct sched_domain *sd, enum cpu_idle_type idle)
  2072. {
  2073. const struct sched_class *class;
  2074. for (class = sched_class_highest; class; class = class->next)
  2075. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2076. return 1;
  2077. return 0;
  2078. }
  2079. /*
  2080. * find_busiest_group finds and returns the busiest CPU group within the
  2081. * domain. It calculates and returns the amount of weighted load which
  2082. * should be moved to restore balance via the imbalance parameter.
  2083. */
  2084. static struct sched_group *
  2085. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2086. unsigned long *imbalance, enum cpu_idle_type idle,
  2087. int *sd_idle, cpumask_t *cpus, int *balance)
  2088. {
  2089. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2090. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2091. unsigned long max_pull;
  2092. unsigned long busiest_load_per_task, busiest_nr_running;
  2093. unsigned long this_load_per_task, this_nr_running;
  2094. int load_idx, group_imb = 0;
  2095. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2096. int power_savings_balance = 1;
  2097. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2098. unsigned long min_nr_running = ULONG_MAX;
  2099. struct sched_group *group_min = NULL, *group_leader = NULL;
  2100. #endif
  2101. max_load = this_load = total_load = total_pwr = 0;
  2102. busiest_load_per_task = busiest_nr_running = 0;
  2103. this_load_per_task = this_nr_running = 0;
  2104. if (idle == CPU_NOT_IDLE)
  2105. load_idx = sd->busy_idx;
  2106. else if (idle == CPU_NEWLY_IDLE)
  2107. load_idx = sd->newidle_idx;
  2108. else
  2109. load_idx = sd->idle_idx;
  2110. do {
  2111. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2112. int local_group;
  2113. int i;
  2114. int __group_imb = 0;
  2115. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2116. unsigned long sum_nr_running, sum_weighted_load;
  2117. local_group = cpu_isset(this_cpu, group->cpumask);
  2118. if (local_group)
  2119. balance_cpu = first_cpu(group->cpumask);
  2120. /* Tally up the load of all CPUs in the group */
  2121. sum_weighted_load = sum_nr_running = avg_load = 0;
  2122. max_cpu_load = 0;
  2123. min_cpu_load = ~0UL;
  2124. for_each_cpu_mask(i, group->cpumask) {
  2125. struct rq *rq;
  2126. if (!cpu_isset(i, *cpus))
  2127. continue;
  2128. rq = cpu_rq(i);
  2129. if (*sd_idle && rq->nr_running)
  2130. *sd_idle = 0;
  2131. /* Bias balancing toward cpus of our domain */
  2132. if (local_group) {
  2133. if (idle_cpu(i) && !first_idle_cpu) {
  2134. first_idle_cpu = 1;
  2135. balance_cpu = i;
  2136. }
  2137. load = target_load(i, load_idx);
  2138. } else {
  2139. load = source_load(i, load_idx);
  2140. if (load > max_cpu_load)
  2141. max_cpu_load = load;
  2142. if (min_cpu_load > load)
  2143. min_cpu_load = load;
  2144. }
  2145. avg_load += load;
  2146. sum_nr_running += rq->nr_running;
  2147. sum_weighted_load += weighted_cpuload(i);
  2148. }
  2149. /*
  2150. * First idle cpu or the first cpu(busiest) in this sched group
  2151. * is eligible for doing load balancing at this and above
  2152. * domains. In the newly idle case, we will allow all the cpu's
  2153. * to do the newly idle load balance.
  2154. */
  2155. if (idle != CPU_NEWLY_IDLE && local_group &&
  2156. balance_cpu != this_cpu && balance) {
  2157. *balance = 0;
  2158. goto ret;
  2159. }
  2160. total_load += avg_load;
  2161. total_pwr += group->__cpu_power;
  2162. /* Adjust by relative CPU power of the group */
  2163. avg_load = sg_div_cpu_power(group,
  2164. avg_load * SCHED_LOAD_SCALE);
  2165. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2166. __group_imb = 1;
  2167. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2168. if (local_group) {
  2169. this_load = avg_load;
  2170. this = group;
  2171. this_nr_running = sum_nr_running;
  2172. this_load_per_task = sum_weighted_load;
  2173. } else if (avg_load > max_load &&
  2174. (sum_nr_running > group_capacity || __group_imb)) {
  2175. max_load = avg_load;
  2176. busiest = group;
  2177. busiest_nr_running = sum_nr_running;
  2178. busiest_load_per_task = sum_weighted_load;
  2179. group_imb = __group_imb;
  2180. }
  2181. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2182. /*
  2183. * Busy processors will not participate in power savings
  2184. * balance.
  2185. */
  2186. if (idle == CPU_NOT_IDLE ||
  2187. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2188. goto group_next;
  2189. /*
  2190. * If the local group is idle or completely loaded
  2191. * no need to do power savings balance at this domain
  2192. */
  2193. if (local_group && (this_nr_running >= group_capacity ||
  2194. !this_nr_running))
  2195. power_savings_balance = 0;
  2196. /*
  2197. * If a group is already running at full capacity or idle,
  2198. * don't include that group in power savings calculations
  2199. */
  2200. if (!power_savings_balance || sum_nr_running >= group_capacity
  2201. || !sum_nr_running)
  2202. goto group_next;
  2203. /*
  2204. * Calculate the group which has the least non-idle load.
  2205. * This is the group from where we need to pick up the load
  2206. * for saving power
  2207. */
  2208. if ((sum_nr_running < min_nr_running) ||
  2209. (sum_nr_running == min_nr_running &&
  2210. first_cpu(group->cpumask) <
  2211. first_cpu(group_min->cpumask))) {
  2212. group_min = group;
  2213. min_nr_running = sum_nr_running;
  2214. min_load_per_task = sum_weighted_load /
  2215. sum_nr_running;
  2216. }
  2217. /*
  2218. * Calculate the group which is almost near its
  2219. * capacity but still has some space to pick up some load
  2220. * from other group and save more power
  2221. */
  2222. if (sum_nr_running <= group_capacity - 1) {
  2223. if (sum_nr_running > leader_nr_running ||
  2224. (sum_nr_running == leader_nr_running &&
  2225. first_cpu(group->cpumask) >
  2226. first_cpu(group_leader->cpumask))) {
  2227. group_leader = group;
  2228. leader_nr_running = sum_nr_running;
  2229. }
  2230. }
  2231. group_next:
  2232. #endif
  2233. group = group->next;
  2234. } while (group != sd->groups);
  2235. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2236. goto out_balanced;
  2237. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2238. if (this_load >= avg_load ||
  2239. 100*max_load <= sd->imbalance_pct*this_load)
  2240. goto out_balanced;
  2241. busiest_load_per_task /= busiest_nr_running;
  2242. if (group_imb)
  2243. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2244. /*
  2245. * We're trying to get all the cpus to the average_load, so we don't
  2246. * want to push ourselves above the average load, nor do we wish to
  2247. * reduce the max loaded cpu below the average load, as either of these
  2248. * actions would just result in more rebalancing later, and ping-pong
  2249. * tasks around. Thus we look for the minimum possible imbalance.
  2250. * Negative imbalances (*we* are more loaded than anyone else) will
  2251. * be counted as no imbalance for these purposes -- we can't fix that
  2252. * by pulling tasks to us. Be careful of negative numbers as they'll
  2253. * appear as very large values with unsigned longs.
  2254. */
  2255. if (max_load <= busiest_load_per_task)
  2256. goto out_balanced;
  2257. /*
  2258. * In the presence of smp nice balancing, certain scenarios can have
  2259. * max load less than avg load(as we skip the groups at or below
  2260. * its cpu_power, while calculating max_load..)
  2261. */
  2262. if (max_load < avg_load) {
  2263. *imbalance = 0;
  2264. goto small_imbalance;
  2265. }
  2266. /* Don't want to pull so many tasks that a group would go idle */
  2267. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2268. /* How much load to actually move to equalise the imbalance */
  2269. *imbalance = min(max_pull * busiest->__cpu_power,
  2270. (avg_load - this_load) * this->__cpu_power)
  2271. / SCHED_LOAD_SCALE;
  2272. /*
  2273. * if *imbalance is less than the average load per runnable task
  2274. * there is no gaurantee that any tasks will be moved so we'll have
  2275. * a think about bumping its value to force at least one task to be
  2276. * moved
  2277. */
  2278. if (*imbalance < busiest_load_per_task) {
  2279. unsigned long tmp, pwr_now, pwr_move;
  2280. unsigned int imbn;
  2281. small_imbalance:
  2282. pwr_move = pwr_now = 0;
  2283. imbn = 2;
  2284. if (this_nr_running) {
  2285. this_load_per_task /= this_nr_running;
  2286. if (busiest_load_per_task > this_load_per_task)
  2287. imbn = 1;
  2288. } else
  2289. this_load_per_task = SCHED_LOAD_SCALE;
  2290. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2291. busiest_load_per_task * imbn) {
  2292. *imbalance = busiest_load_per_task;
  2293. return busiest;
  2294. }
  2295. /*
  2296. * OK, we don't have enough imbalance to justify moving tasks,
  2297. * however we may be able to increase total CPU power used by
  2298. * moving them.
  2299. */
  2300. pwr_now += busiest->__cpu_power *
  2301. min(busiest_load_per_task, max_load);
  2302. pwr_now += this->__cpu_power *
  2303. min(this_load_per_task, this_load);
  2304. pwr_now /= SCHED_LOAD_SCALE;
  2305. /* Amount of load we'd subtract */
  2306. tmp = sg_div_cpu_power(busiest,
  2307. busiest_load_per_task * SCHED_LOAD_SCALE);
  2308. if (max_load > tmp)
  2309. pwr_move += busiest->__cpu_power *
  2310. min(busiest_load_per_task, max_load - tmp);
  2311. /* Amount of load we'd add */
  2312. if (max_load * busiest->__cpu_power <
  2313. busiest_load_per_task * SCHED_LOAD_SCALE)
  2314. tmp = sg_div_cpu_power(this,
  2315. max_load * busiest->__cpu_power);
  2316. else
  2317. tmp = sg_div_cpu_power(this,
  2318. busiest_load_per_task * SCHED_LOAD_SCALE);
  2319. pwr_move += this->__cpu_power *
  2320. min(this_load_per_task, this_load + tmp);
  2321. pwr_move /= SCHED_LOAD_SCALE;
  2322. /* Move if we gain throughput */
  2323. if (pwr_move > pwr_now)
  2324. *imbalance = busiest_load_per_task;
  2325. }
  2326. return busiest;
  2327. out_balanced:
  2328. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2329. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2330. goto ret;
  2331. if (this == group_leader && group_leader != group_min) {
  2332. *imbalance = min_load_per_task;
  2333. return group_min;
  2334. }
  2335. #endif
  2336. ret:
  2337. *imbalance = 0;
  2338. return NULL;
  2339. }
  2340. /*
  2341. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2342. */
  2343. static struct rq *
  2344. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2345. unsigned long imbalance, cpumask_t *cpus)
  2346. {
  2347. struct rq *busiest = NULL, *rq;
  2348. unsigned long max_load = 0;
  2349. int i;
  2350. for_each_cpu_mask(i, group->cpumask) {
  2351. unsigned long wl;
  2352. if (!cpu_isset(i, *cpus))
  2353. continue;
  2354. rq = cpu_rq(i);
  2355. wl = weighted_cpuload(i);
  2356. if (rq->nr_running == 1 && wl > imbalance)
  2357. continue;
  2358. if (wl > max_load) {
  2359. max_load = wl;
  2360. busiest = rq;
  2361. }
  2362. }
  2363. return busiest;
  2364. }
  2365. /*
  2366. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2367. * so long as it is large enough.
  2368. */
  2369. #define MAX_PINNED_INTERVAL 512
  2370. /*
  2371. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2372. * tasks if there is an imbalance.
  2373. */
  2374. static int load_balance(int this_cpu, struct rq *this_rq,
  2375. struct sched_domain *sd, enum cpu_idle_type idle,
  2376. int *balance)
  2377. {
  2378. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2379. struct sched_group *group;
  2380. unsigned long imbalance;
  2381. struct rq *busiest;
  2382. cpumask_t cpus = CPU_MASK_ALL;
  2383. unsigned long flags;
  2384. /*
  2385. * When power savings policy is enabled for the parent domain, idle
  2386. * sibling can pick up load irrespective of busy siblings. In this case,
  2387. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2388. * portraying it as CPU_NOT_IDLE.
  2389. */
  2390. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2391. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2392. sd_idle = 1;
  2393. schedstat_inc(sd, lb_count[idle]);
  2394. redo:
  2395. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2396. &cpus, balance);
  2397. if (*balance == 0)
  2398. goto out_balanced;
  2399. if (!group) {
  2400. schedstat_inc(sd, lb_nobusyg[idle]);
  2401. goto out_balanced;
  2402. }
  2403. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2404. if (!busiest) {
  2405. schedstat_inc(sd, lb_nobusyq[idle]);
  2406. goto out_balanced;
  2407. }
  2408. BUG_ON(busiest == this_rq);
  2409. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2410. ld_moved = 0;
  2411. if (busiest->nr_running > 1) {
  2412. /*
  2413. * Attempt to move tasks. If find_busiest_group has found
  2414. * an imbalance but busiest->nr_running <= 1, the group is
  2415. * still unbalanced. ld_moved simply stays zero, so it is
  2416. * correctly treated as an imbalance.
  2417. */
  2418. local_irq_save(flags);
  2419. double_rq_lock(this_rq, busiest);
  2420. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2421. imbalance, sd, idle, &all_pinned);
  2422. double_rq_unlock(this_rq, busiest);
  2423. local_irq_restore(flags);
  2424. /*
  2425. * some other cpu did the load balance for us.
  2426. */
  2427. if (ld_moved && this_cpu != smp_processor_id())
  2428. resched_cpu(this_cpu);
  2429. /* All tasks on this runqueue were pinned by CPU affinity */
  2430. if (unlikely(all_pinned)) {
  2431. cpu_clear(cpu_of(busiest), cpus);
  2432. if (!cpus_empty(cpus))
  2433. goto redo;
  2434. goto out_balanced;
  2435. }
  2436. }
  2437. if (!ld_moved) {
  2438. schedstat_inc(sd, lb_failed[idle]);
  2439. sd->nr_balance_failed++;
  2440. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2441. spin_lock_irqsave(&busiest->lock, flags);
  2442. /* don't kick the migration_thread, if the curr
  2443. * task on busiest cpu can't be moved to this_cpu
  2444. */
  2445. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2446. spin_unlock_irqrestore(&busiest->lock, flags);
  2447. all_pinned = 1;
  2448. goto out_one_pinned;
  2449. }
  2450. if (!busiest->active_balance) {
  2451. busiest->active_balance = 1;
  2452. busiest->push_cpu = this_cpu;
  2453. active_balance = 1;
  2454. }
  2455. spin_unlock_irqrestore(&busiest->lock, flags);
  2456. if (active_balance)
  2457. wake_up_process(busiest->migration_thread);
  2458. /*
  2459. * We've kicked active balancing, reset the failure
  2460. * counter.
  2461. */
  2462. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2463. }
  2464. } else
  2465. sd->nr_balance_failed = 0;
  2466. if (likely(!active_balance)) {
  2467. /* We were unbalanced, so reset the balancing interval */
  2468. sd->balance_interval = sd->min_interval;
  2469. } else {
  2470. /*
  2471. * If we've begun active balancing, start to back off. This
  2472. * case may not be covered by the all_pinned logic if there
  2473. * is only 1 task on the busy runqueue (because we don't call
  2474. * move_tasks).
  2475. */
  2476. if (sd->balance_interval < sd->max_interval)
  2477. sd->balance_interval *= 2;
  2478. }
  2479. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2480. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2481. return -1;
  2482. return ld_moved;
  2483. out_balanced:
  2484. schedstat_inc(sd, lb_balanced[idle]);
  2485. sd->nr_balance_failed = 0;
  2486. out_one_pinned:
  2487. /* tune up the balancing interval */
  2488. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2489. (sd->balance_interval < sd->max_interval))
  2490. sd->balance_interval *= 2;
  2491. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2492. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2493. return -1;
  2494. return 0;
  2495. }
  2496. /*
  2497. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2498. * tasks if there is an imbalance.
  2499. *
  2500. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2501. * this_rq is locked.
  2502. */
  2503. static int
  2504. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2505. {
  2506. struct sched_group *group;
  2507. struct rq *busiest = NULL;
  2508. unsigned long imbalance;
  2509. int ld_moved = 0;
  2510. int sd_idle = 0;
  2511. int all_pinned = 0;
  2512. cpumask_t cpus = CPU_MASK_ALL;
  2513. /*
  2514. * When power savings policy is enabled for the parent domain, idle
  2515. * sibling can pick up load irrespective of busy siblings. In this case,
  2516. * let the state of idle sibling percolate up as IDLE, instead of
  2517. * portraying it as CPU_NOT_IDLE.
  2518. */
  2519. if (sd->flags & SD_SHARE_CPUPOWER &&
  2520. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2521. sd_idle = 1;
  2522. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2523. redo:
  2524. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2525. &sd_idle, &cpus, NULL);
  2526. if (!group) {
  2527. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2528. goto out_balanced;
  2529. }
  2530. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2531. &cpus);
  2532. if (!busiest) {
  2533. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2534. goto out_balanced;
  2535. }
  2536. BUG_ON(busiest == this_rq);
  2537. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2538. ld_moved = 0;
  2539. if (busiest->nr_running > 1) {
  2540. /* Attempt to move tasks */
  2541. double_lock_balance(this_rq, busiest);
  2542. /* this_rq->clock is already updated */
  2543. update_rq_clock(busiest);
  2544. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2545. imbalance, sd, CPU_NEWLY_IDLE,
  2546. &all_pinned);
  2547. spin_unlock(&busiest->lock);
  2548. if (unlikely(all_pinned)) {
  2549. cpu_clear(cpu_of(busiest), cpus);
  2550. if (!cpus_empty(cpus))
  2551. goto redo;
  2552. }
  2553. }
  2554. if (!ld_moved) {
  2555. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2556. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2557. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2558. return -1;
  2559. } else
  2560. sd->nr_balance_failed = 0;
  2561. return ld_moved;
  2562. out_balanced:
  2563. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2564. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2565. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2566. return -1;
  2567. sd->nr_balance_failed = 0;
  2568. return 0;
  2569. }
  2570. /*
  2571. * idle_balance is called by schedule() if this_cpu is about to become
  2572. * idle. Attempts to pull tasks from other CPUs.
  2573. */
  2574. static void idle_balance(int this_cpu, struct rq *this_rq)
  2575. {
  2576. struct sched_domain *sd;
  2577. int pulled_task = -1;
  2578. unsigned long next_balance = jiffies + HZ;
  2579. for_each_domain(this_cpu, sd) {
  2580. unsigned long interval;
  2581. if (!(sd->flags & SD_LOAD_BALANCE))
  2582. continue;
  2583. if (sd->flags & SD_BALANCE_NEWIDLE)
  2584. /* If we've pulled tasks over stop searching: */
  2585. pulled_task = load_balance_newidle(this_cpu,
  2586. this_rq, sd);
  2587. interval = msecs_to_jiffies(sd->balance_interval);
  2588. if (time_after(next_balance, sd->last_balance + interval))
  2589. next_balance = sd->last_balance + interval;
  2590. if (pulled_task)
  2591. break;
  2592. }
  2593. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2594. /*
  2595. * We are going idle. next_balance may be set based on
  2596. * a busy processor. So reset next_balance.
  2597. */
  2598. this_rq->next_balance = next_balance;
  2599. }
  2600. }
  2601. /*
  2602. * active_load_balance is run by migration threads. It pushes running tasks
  2603. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2604. * running on each physical CPU where possible, and avoids physical /
  2605. * logical imbalances.
  2606. *
  2607. * Called with busiest_rq locked.
  2608. */
  2609. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2610. {
  2611. int target_cpu = busiest_rq->push_cpu;
  2612. struct sched_domain *sd;
  2613. struct rq *target_rq;
  2614. /* Is there any task to move? */
  2615. if (busiest_rq->nr_running <= 1)
  2616. return;
  2617. target_rq = cpu_rq(target_cpu);
  2618. /*
  2619. * This condition is "impossible", if it occurs
  2620. * we need to fix it. Originally reported by
  2621. * Bjorn Helgaas on a 128-cpu setup.
  2622. */
  2623. BUG_ON(busiest_rq == target_rq);
  2624. /* move a task from busiest_rq to target_rq */
  2625. double_lock_balance(busiest_rq, target_rq);
  2626. update_rq_clock(busiest_rq);
  2627. update_rq_clock(target_rq);
  2628. /* Search for an sd spanning us and the target CPU. */
  2629. for_each_domain(target_cpu, sd) {
  2630. if ((sd->flags & SD_LOAD_BALANCE) &&
  2631. cpu_isset(busiest_cpu, sd->span))
  2632. break;
  2633. }
  2634. if (likely(sd)) {
  2635. schedstat_inc(sd, alb_count);
  2636. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2637. sd, CPU_IDLE))
  2638. schedstat_inc(sd, alb_pushed);
  2639. else
  2640. schedstat_inc(sd, alb_failed);
  2641. }
  2642. spin_unlock(&target_rq->lock);
  2643. }
  2644. #ifdef CONFIG_NO_HZ
  2645. static struct {
  2646. atomic_t load_balancer;
  2647. cpumask_t cpu_mask;
  2648. } nohz ____cacheline_aligned = {
  2649. .load_balancer = ATOMIC_INIT(-1),
  2650. .cpu_mask = CPU_MASK_NONE,
  2651. };
  2652. /*
  2653. * This routine will try to nominate the ilb (idle load balancing)
  2654. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2655. * load balancing on behalf of all those cpus. If all the cpus in the system
  2656. * go into this tickless mode, then there will be no ilb owner (as there is
  2657. * no need for one) and all the cpus will sleep till the next wakeup event
  2658. * arrives...
  2659. *
  2660. * For the ilb owner, tick is not stopped. And this tick will be used
  2661. * for idle load balancing. ilb owner will still be part of
  2662. * nohz.cpu_mask..
  2663. *
  2664. * While stopping the tick, this cpu will become the ilb owner if there
  2665. * is no other owner. And will be the owner till that cpu becomes busy
  2666. * or if all cpus in the system stop their ticks at which point
  2667. * there is no need for ilb owner.
  2668. *
  2669. * When the ilb owner becomes busy, it nominates another owner, during the
  2670. * next busy scheduler_tick()
  2671. */
  2672. int select_nohz_load_balancer(int stop_tick)
  2673. {
  2674. int cpu = smp_processor_id();
  2675. if (stop_tick) {
  2676. cpu_set(cpu, nohz.cpu_mask);
  2677. cpu_rq(cpu)->in_nohz_recently = 1;
  2678. /*
  2679. * If we are going offline and still the leader, give up!
  2680. */
  2681. if (cpu_is_offline(cpu) &&
  2682. atomic_read(&nohz.load_balancer) == cpu) {
  2683. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2684. BUG();
  2685. return 0;
  2686. }
  2687. /* time for ilb owner also to sleep */
  2688. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2689. if (atomic_read(&nohz.load_balancer) == cpu)
  2690. atomic_set(&nohz.load_balancer, -1);
  2691. return 0;
  2692. }
  2693. if (atomic_read(&nohz.load_balancer) == -1) {
  2694. /* make me the ilb owner */
  2695. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2696. return 1;
  2697. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2698. return 1;
  2699. } else {
  2700. if (!cpu_isset(cpu, nohz.cpu_mask))
  2701. return 0;
  2702. cpu_clear(cpu, nohz.cpu_mask);
  2703. if (atomic_read(&nohz.load_balancer) == cpu)
  2704. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2705. BUG();
  2706. }
  2707. return 0;
  2708. }
  2709. #endif
  2710. static DEFINE_SPINLOCK(balancing);
  2711. /*
  2712. * It checks each scheduling domain to see if it is due to be balanced,
  2713. * and initiates a balancing operation if so.
  2714. *
  2715. * Balancing parameters are set up in arch_init_sched_domains.
  2716. */
  2717. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2718. {
  2719. int balance = 1;
  2720. struct rq *rq = cpu_rq(cpu);
  2721. unsigned long interval;
  2722. struct sched_domain *sd;
  2723. /* Earliest time when we have to do rebalance again */
  2724. unsigned long next_balance = jiffies + 60*HZ;
  2725. int update_next_balance = 0;
  2726. for_each_domain(cpu, sd) {
  2727. if (!(sd->flags & SD_LOAD_BALANCE))
  2728. continue;
  2729. interval = sd->balance_interval;
  2730. if (idle != CPU_IDLE)
  2731. interval *= sd->busy_factor;
  2732. /* scale ms to jiffies */
  2733. interval = msecs_to_jiffies(interval);
  2734. if (unlikely(!interval))
  2735. interval = 1;
  2736. if (interval > HZ*NR_CPUS/10)
  2737. interval = HZ*NR_CPUS/10;
  2738. if (sd->flags & SD_SERIALIZE) {
  2739. if (!spin_trylock(&balancing))
  2740. goto out;
  2741. }
  2742. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2743. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2744. /*
  2745. * We've pulled tasks over so either we're no
  2746. * longer idle, or one of our SMT siblings is
  2747. * not idle.
  2748. */
  2749. idle = CPU_NOT_IDLE;
  2750. }
  2751. sd->last_balance = jiffies;
  2752. }
  2753. if (sd->flags & SD_SERIALIZE)
  2754. spin_unlock(&balancing);
  2755. out:
  2756. if (time_after(next_balance, sd->last_balance + interval)) {
  2757. next_balance = sd->last_balance + interval;
  2758. update_next_balance = 1;
  2759. }
  2760. /*
  2761. * Stop the load balance at this level. There is another
  2762. * CPU in our sched group which is doing load balancing more
  2763. * actively.
  2764. */
  2765. if (!balance)
  2766. break;
  2767. }
  2768. /*
  2769. * next_balance will be updated only when there is a need.
  2770. * When the cpu is attached to null domain for ex, it will not be
  2771. * updated.
  2772. */
  2773. if (likely(update_next_balance))
  2774. rq->next_balance = next_balance;
  2775. }
  2776. /*
  2777. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2778. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2779. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2780. */
  2781. static void run_rebalance_domains(struct softirq_action *h)
  2782. {
  2783. int this_cpu = smp_processor_id();
  2784. struct rq *this_rq = cpu_rq(this_cpu);
  2785. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2786. CPU_IDLE : CPU_NOT_IDLE;
  2787. rebalance_domains(this_cpu, idle);
  2788. #ifdef CONFIG_NO_HZ
  2789. /*
  2790. * If this cpu is the owner for idle load balancing, then do the
  2791. * balancing on behalf of the other idle cpus whose ticks are
  2792. * stopped.
  2793. */
  2794. if (this_rq->idle_at_tick &&
  2795. atomic_read(&nohz.load_balancer) == this_cpu) {
  2796. cpumask_t cpus = nohz.cpu_mask;
  2797. struct rq *rq;
  2798. int balance_cpu;
  2799. cpu_clear(this_cpu, cpus);
  2800. for_each_cpu_mask(balance_cpu, cpus) {
  2801. /*
  2802. * If this cpu gets work to do, stop the load balancing
  2803. * work being done for other cpus. Next load
  2804. * balancing owner will pick it up.
  2805. */
  2806. if (need_resched())
  2807. break;
  2808. rebalance_domains(balance_cpu, CPU_IDLE);
  2809. rq = cpu_rq(balance_cpu);
  2810. if (time_after(this_rq->next_balance, rq->next_balance))
  2811. this_rq->next_balance = rq->next_balance;
  2812. }
  2813. }
  2814. #endif
  2815. }
  2816. /*
  2817. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2818. *
  2819. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2820. * idle load balancing owner or decide to stop the periodic load balancing,
  2821. * if the whole system is idle.
  2822. */
  2823. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2824. {
  2825. #ifdef CONFIG_NO_HZ
  2826. /*
  2827. * If we were in the nohz mode recently and busy at the current
  2828. * scheduler tick, then check if we need to nominate new idle
  2829. * load balancer.
  2830. */
  2831. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2832. rq->in_nohz_recently = 0;
  2833. if (atomic_read(&nohz.load_balancer) == cpu) {
  2834. cpu_clear(cpu, nohz.cpu_mask);
  2835. atomic_set(&nohz.load_balancer, -1);
  2836. }
  2837. if (atomic_read(&nohz.load_balancer) == -1) {
  2838. /*
  2839. * simple selection for now: Nominate the
  2840. * first cpu in the nohz list to be the next
  2841. * ilb owner.
  2842. *
  2843. * TBD: Traverse the sched domains and nominate
  2844. * the nearest cpu in the nohz.cpu_mask.
  2845. */
  2846. int ilb = first_cpu(nohz.cpu_mask);
  2847. if (ilb != NR_CPUS)
  2848. resched_cpu(ilb);
  2849. }
  2850. }
  2851. /*
  2852. * If this cpu is idle and doing idle load balancing for all the
  2853. * cpus with ticks stopped, is it time for that to stop?
  2854. */
  2855. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2856. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2857. resched_cpu(cpu);
  2858. return;
  2859. }
  2860. /*
  2861. * If this cpu is idle and the idle load balancing is done by
  2862. * someone else, then no need raise the SCHED_SOFTIRQ
  2863. */
  2864. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2865. cpu_isset(cpu, nohz.cpu_mask))
  2866. return;
  2867. #endif
  2868. if (time_after_eq(jiffies, rq->next_balance))
  2869. raise_softirq(SCHED_SOFTIRQ);
  2870. }
  2871. #else /* CONFIG_SMP */
  2872. /*
  2873. * on UP we do not need to balance between CPUs:
  2874. */
  2875. static inline void idle_balance(int cpu, struct rq *rq)
  2876. {
  2877. }
  2878. #endif
  2879. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2880. EXPORT_PER_CPU_SYMBOL(kstat);
  2881. /*
  2882. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2883. * that have not yet been banked in case the task is currently running.
  2884. */
  2885. unsigned long long task_sched_runtime(struct task_struct *p)
  2886. {
  2887. unsigned long flags;
  2888. u64 ns, delta_exec;
  2889. struct rq *rq;
  2890. rq = task_rq_lock(p, &flags);
  2891. ns = p->se.sum_exec_runtime;
  2892. if (task_current(rq, p)) {
  2893. update_rq_clock(rq);
  2894. delta_exec = rq->clock - p->se.exec_start;
  2895. if ((s64)delta_exec > 0)
  2896. ns += delta_exec;
  2897. }
  2898. task_rq_unlock(rq, &flags);
  2899. return ns;
  2900. }
  2901. /*
  2902. * Account user cpu time to a process.
  2903. * @p: the process that the cpu time gets accounted to
  2904. * @cputime: the cpu time spent in user space since the last update
  2905. */
  2906. void account_user_time(struct task_struct *p, cputime_t cputime)
  2907. {
  2908. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2909. cputime64_t tmp;
  2910. p->utime = cputime_add(p->utime, cputime);
  2911. /* Add user time to cpustat. */
  2912. tmp = cputime_to_cputime64(cputime);
  2913. if (TASK_NICE(p) > 0)
  2914. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2915. else
  2916. cpustat->user = cputime64_add(cpustat->user, tmp);
  2917. }
  2918. /*
  2919. * Account guest cpu time to a process.
  2920. * @p: the process that the cpu time gets accounted to
  2921. * @cputime: the cpu time spent in virtual machine since the last update
  2922. */
  2923. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  2924. {
  2925. cputime64_t tmp;
  2926. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2927. tmp = cputime_to_cputime64(cputime);
  2928. p->utime = cputime_add(p->utime, cputime);
  2929. p->gtime = cputime_add(p->gtime, cputime);
  2930. cpustat->user = cputime64_add(cpustat->user, tmp);
  2931. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2932. }
  2933. /*
  2934. * Account scaled user cpu time to a process.
  2935. * @p: the process that the cpu time gets accounted to
  2936. * @cputime: the cpu time spent in user space since the last update
  2937. */
  2938. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2939. {
  2940. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2941. }
  2942. /*
  2943. * Account system cpu time to a process.
  2944. * @p: the process that the cpu time gets accounted to
  2945. * @hardirq_offset: the offset to subtract from hardirq_count()
  2946. * @cputime: the cpu time spent in kernel space since the last update
  2947. */
  2948. void account_system_time(struct task_struct *p, int hardirq_offset,
  2949. cputime_t cputime)
  2950. {
  2951. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2952. struct rq *rq = this_rq();
  2953. cputime64_t tmp;
  2954. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  2955. return account_guest_time(p, cputime);
  2956. p->stime = cputime_add(p->stime, cputime);
  2957. /* Add system time to cpustat. */
  2958. tmp = cputime_to_cputime64(cputime);
  2959. if (hardirq_count() - hardirq_offset)
  2960. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2961. else if (softirq_count())
  2962. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2963. else if (p != rq->idle)
  2964. cpustat->system = cputime64_add(cpustat->system, tmp);
  2965. else if (atomic_read(&rq->nr_iowait) > 0)
  2966. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2967. else
  2968. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2969. /* Account for system time used */
  2970. acct_update_integrals(p);
  2971. }
  2972. /*
  2973. * Account scaled system cpu time to a process.
  2974. * @p: the process that the cpu time gets accounted to
  2975. * @hardirq_offset: the offset to subtract from hardirq_count()
  2976. * @cputime: the cpu time spent in kernel space since the last update
  2977. */
  2978. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  2979. {
  2980. p->stimescaled = cputime_add(p->stimescaled, cputime);
  2981. }
  2982. /*
  2983. * Account for involuntary wait time.
  2984. * @p: the process from which the cpu time has been stolen
  2985. * @steal: the cpu time spent in involuntary wait
  2986. */
  2987. void account_steal_time(struct task_struct *p, cputime_t steal)
  2988. {
  2989. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2990. cputime64_t tmp = cputime_to_cputime64(steal);
  2991. struct rq *rq = this_rq();
  2992. if (p == rq->idle) {
  2993. p->stime = cputime_add(p->stime, steal);
  2994. if (atomic_read(&rq->nr_iowait) > 0)
  2995. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2996. else
  2997. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2998. } else
  2999. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3000. }
  3001. /*
  3002. * This function gets called by the timer code, with HZ frequency.
  3003. * We call it with interrupts disabled.
  3004. *
  3005. * It also gets called by the fork code, when changing the parent's
  3006. * timeslices.
  3007. */
  3008. void scheduler_tick(void)
  3009. {
  3010. int cpu = smp_processor_id();
  3011. struct rq *rq = cpu_rq(cpu);
  3012. struct task_struct *curr = rq->curr;
  3013. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3014. spin_lock(&rq->lock);
  3015. __update_rq_clock(rq);
  3016. /*
  3017. * Let rq->clock advance by at least TICK_NSEC:
  3018. */
  3019. if (unlikely(rq->clock < next_tick))
  3020. rq->clock = next_tick;
  3021. rq->tick_timestamp = rq->clock;
  3022. update_cpu_load(rq);
  3023. if (curr != rq->idle) /* FIXME: needed? */
  3024. curr->sched_class->task_tick(rq, curr);
  3025. spin_unlock(&rq->lock);
  3026. #ifdef CONFIG_SMP
  3027. rq->idle_at_tick = idle_cpu(cpu);
  3028. trigger_load_balance(rq, cpu);
  3029. #endif
  3030. }
  3031. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3032. void fastcall add_preempt_count(int val)
  3033. {
  3034. /*
  3035. * Underflow?
  3036. */
  3037. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3038. return;
  3039. preempt_count() += val;
  3040. /*
  3041. * Spinlock count overflowing soon?
  3042. */
  3043. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3044. PREEMPT_MASK - 10);
  3045. }
  3046. EXPORT_SYMBOL(add_preempt_count);
  3047. void fastcall sub_preempt_count(int val)
  3048. {
  3049. /*
  3050. * Underflow?
  3051. */
  3052. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3053. return;
  3054. /*
  3055. * Is the spinlock portion underflowing?
  3056. */
  3057. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3058. !(preempt_count() & PREEMPT_MASK)))
  3059. return;
  3060. preempt_count() -= val;
  3061. }
  3062. EXPORT_SYMBOL(sub_preempt_count);
  3063. #endif
  3064. /*
  3065. * Print scheduling while atomic bug:
  3066. */
  3067. static noinline void __schedule_bug(struct task_struct *prev)
  3068. {
  3069. struct pt_regs *regs = get_irq_regs();
  3070. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3071. prev->comm, prev->pid, preempt_count());
  3072. debug_show_held_locks(prev);
  3073. if (irqs_disabled())
  3074. print_irqtrace_events(prev);
  3075. if (regs)
  3076. show_regs(regs);
  3077. else
  3078. dump_stack();
  3079. }
  3080. /*
  3081. * Various schedule()-time debugging checks and statistics:
  3082. */
  3083. static inline void schedule_debug(struct task_struct *prev)
  3084. {
  3085. /*
  3086. * Test if we are atomic. Since do_exit() needs to call into
  3087. * schedule() atomically, we ignore that path for now.
  3088. * Otherwise, whine if we are scheduling when we should not be.
  3089. */
  3090. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3091. __schedule_bug(prev);
  3092. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3093. schedstat_inc(this_rq(), sched_count);
  3094. #ifdef CONFIG_SCHEDSTATS
  3095. if (unlikely(prev->lock_depth >= 0)) {
  3096. schedstat_inc(this_rq(), bkl_count);
  3097. schedstat_inc(prev, sched_info.bkl_count);
  3098. }
  3099. #endif
  3100. }
  3101. /*
  3102. * Pick up the highest-prio task:
  3103. */
  3104. static inline struct task_struct *
  3105. pick_next_task(struct rq *rq, struct task_struct *prev)
  3106. {
  3107. const struct sched_class *class;
  3108. struct task_struct *p;
  3109. /*
  3110. * Optimization: we know that if all tasks are in
  3111. * the fair class we can call that function directly:
  3112. */
  3113. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3114. p = fair_sched_class.pick_next_task(rq);
  3115. if (likely(p))
  3116. return p;
  3117. }
  3118. class = sched_class_highest;
  3119. for ( ; ; ) {
  3120. p = class->pick_next_task(rq);
  3121. if (p)
  3122. return p;
  3123. /*
  3124. * Will never be NULL as the idle class always
  3125. * returns a non-NULL p:
  3126. */
  3127. class = class->next;
  3128. }
  3129. }
  3130. /*
  3131. * schedule() is the main scheduler function.
  3132. */
  3133. asmlinkage void __sched schedule(void)
  3134. {
  3135. struct task_struct *prev, *next;
  3136. long *switch_count;
  3137. struct rq *rq;
  3138. int cpu;
  3139. need_resched:
  3140. preempt_disable();
  3141. cpu = smp_processor_id();
  3142. rq = cpu_rq(cpu);
  3143. rcu_qsctr_inc(cpu);
  3144. prev = rq->curr;
  3145. switch_count = &prev->nivcsw;
  3146. release_kernel_lock(prev);
  3147. need_resched_nonpreemptible:
  3148. schedule_debug(prev);
  3149. /*
  3150. * Do the rq-clock update outside the rq lock:
  3151. */
  3152. local_irq_disable();
  3153. __update_rq_clock(rq);
  3154. spin_lock(&rq->lock);
  3155. clear_tsk_need_resched(prev);
  3156. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3157. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3158. unlikely(signal_pending(prev)))) {
  3159. prev->state = TASK_RUNNING;
  3160. } else {
  3161. deactivate_task(rq, prev, 1);
  3162. }
  3163. switch_count = &prev->nvcsw;
  3164. }
  3165. if (unlikely(!rq->nr_running))
  3166. idle_balance(cpu, rq);
  3167. prev->sched_class->put_prev_task(rq, prev);
  3168. next = pick_next_task(rq, prev);
  3169. sched_info_switch(prev, next);
  3170. if (likely(prev != next)) {
  3171. rq->nr_switches++;
  3172. rq->curr = next;
  3173. ++*switch_count;
  3174. context_switch(rq, prev, next); /* unlocks the rq */
  3175. } else
  3176. spin_unlock_irq(&rq->lock);
  3177. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3178. cpu = smp_processor_id();
  3179. rq = cpu_rq(cpu);
  3180. goto need_resched_nonpreemptible;
  3181. }
  3182. preempt_enable_no_resched();
  3183. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3184. goto need_resched;
  3185. }
  3186. EXPORT_SYMBOL(schedule);
  3187. #ifdef CONFIG_PREEMPT
  3188. /*
  3189. * this is the entry point to schedule() from in-kernel preemption
  3190. * off of preempt_enable. Kernel preemptions off return from interrupt
  3191. * occur there and call schedule directly.
  3192. */
  3193. asmlinkage void __sched preempt_schedule(void)
  3194. {
  3195. struct thread_info *ti = current_thread_info();
  3196. #ifdef CONFIG_PREEMPT_BKL
  3197. struct task_struct *task = current;
  3198. int saved_lock_depth;
  3199. #endif
  3200. /*
  3201. * If there is a non-zero preempt_count or interrupts are disabled,
  3202. * we do not want to preempt the current task. Just return..
  3203. */
  3204. if (likely(ti->preempt_count || irqs_disabled()))
  3205. return;
  3206. do {
  3207. add_preempt_count(PREEMPT_ACTIVE);
  3208. /*
  3209. * We keep the big kernel semaphore locked, but we
  3210. * clear ->lock_depth so that schedule() doesnt
  3211. * auto-release the semaphore:
  3212. */
  3213. #ifdef CONFIG_PREEMPT_BKL
  3214. saved_lock_depth = task->lock_depth;
  3215. task->lock_depth = -1;
  3216. #endif
  3217. schedule();
  3218. #ifdef CONFIG_PREEMPT_BKL
  3219. task->lock_depth = saved_lock_depth;
  3220. #endif
  3221. sub_preempt_count(PREEMPT_ACTIVE);
  3222. /*
  3223. * Check again in case we missed a preemption opportunity
  3224. * between schedule and now.
  3225. */
  3226. barrier();
  3227. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3228. }
  3229. EXPORT_SYMBOL(preempt_schedule);
  3230. /*
  3231. * this is the entry point to schedule() from kernel preemption
  3232. * off of irq context.
  3233. * Note, that this is called and return with irqs disabled. This will
  3234. * protect us against recursive calling from irq.
  3235. */
  3236. asmlinkage void __sched preempt_schedule_irq(void)
  3237. {
  3238. struct thread_info *ti = current_thread_info();
  3239. #ifdef CONFIG_PREEMPT_BKL
  3240. struct task_struct *task = current;
  3241. int saved_lock_depth;
  3242. #endif
  3243. /* Catch callers which need to be fixed */
  3244. BUG_ON(ti->preempt_count || !irqs_disabled());
  3245. do {
  3246. add_preempt_count(PREEMPT_ACTIVE);
  3247. /*
  3248. * We keep the big kernel semaphore locked, but we
  3249. * clear ->lock_depth so that schedule() doesnt
  3250. * auto-release the semaphore:
  3251. */
  3252. #ifdef CONFIG_PREEMPT_BKL
  3253. saved_lock_depth = task->lock_depth;
  3254. task->lock_depth = -1;
  3255. #endif
  3256. local_irq_enable();
  3257. schedule();
  3258. local_irq_disable();
  3259. #ifdef CONFIG_PREEMPT_BKL
  3260. task->lock_depth = saved_lock_depth;
  3261. #endif
  3262. sub_preempt_count(PREEMPT_ACTIVE);
  3263. /*
  3264. * Check again in case we missed a preemption opportunity
  3265. * between schedule and now.
  3266. */
  3267. barrier();
  3268. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3269. }
  3270. #endif /* CONFIG_PREEMPT */
  3271. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3272. void *key)
  3273. {
  3274. return try_to_wake_up(curr->private, mode, sync);
  3275. }
  3276. EXPORT_SYMBOL(default_wake_function);
  3277. /*
  3278. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3279. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3280. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3281. *
  3282. * There are circumstances in which we can try to wake a task which has already
  3283. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3284. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3285. */
  3286. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3287. int nr_exclusive, int sync, void *key)
  3288. {
  3289. wait_queue_t *curr, *next;
  3290. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3291. unsigned flags = curr->flags;
  3292. if (curr->func(curr, mode, sync, key) &&
  3293. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3294. break;
  3295. }
  3296. }
  3297. /**
  3298. * __wake_up - wake up threads blocked on a waitqueue.
  3299. * @q: the waitqueue
  3300. * @mode: which threads
  3301. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3302. * @key: is directly passed to the wakeup function
  3303. */
  3304. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3305. int nr_exclusive, void *key)
  3306. {
  3307. unsigned long flags;
  3308. spin_lock_irqsave(&q->lock, flags);
  3309. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3310. spin_unlock_irqrestore(&q->lock, flags);
  3311. }
  3312. EXPORT_SYMBOL(__wake_up);
  3313. /*
  3314. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3315. */
  3316. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3317. {
  3318. __wake_up_common(q, mode, 1, 0, NULL);
  3319. }
  3320. /**
  3321. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3322. * @q: the waitqueue
  3323. * @mode: which threads
  3324. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3325. *
  3326. * The sync wakeup differs that the waker knows that it will schedule
  3327. * away soon, so while the target thread will be woken up, it will not
  3328. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3329. * with each other. This can prevent needless bouncing between CPUs.
  3330. *
  3331. * On UP it can prevent extra preemption.
  3332. */
  3333. void fastcall
  3334. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3335. {
  3336. unsigned long flags;
  3337. int sync = 1;
  3338. if (unlikely(!q))
  3339. return;
  3340. if (unlikely(!nr_exclusive))
  3341. sync = 0;
  3342. spin_lock_irqsave(&q->lock, flags);
  3343. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3344. spin_unlock_irqrestore(&q->lock, flags);
  3345. }
  3346. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3347. void complete(struct completion *x)
  3348. {
  3349. unsigned long flags;
  3350. spin_lock_irqsave(&x->wait.lock, flags);
  3351. x->done++;
  3352. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3353. 1, 0, NULL);
  3354. spin_unlock_irqrestore(&x->wait.lock, flags);
  3355. }
  3356. EXPORT_SYMBOL(complete);
  3357. void complete_all(struct completion *x)
  3358. {
  3359. unsigned long flags;
  3360. spin_lock_irqsave(&x->wait.lock, flags);
  3361. x->done += UINT_MAX/2;
  3362. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3363. 0, 0, NULL);
  3364. spin_unlock_irqrestore(&x->wait.lock, flags);
  3365. }
  3366. EXPORT_SYMBOL(complete_all);
  3367. static inline long __sched
  3368. do_wait_for_common(struct completion *x, long timeout, int state)
  3369. {
  3370. if (!x->done) {
  3371. DECLARE_WAITQUEUE(wait, current);
  3372. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3373. __add_wait_queue_tail(&x->wait, &wait);
  3374. do {
  3375. if (state == TASK_INTERRUPTIBLE &&
  3376. signal_pending(current)) {
  3377. __remove_wait_queue(&x->wait, &wait);
  3378. return -ERESTARTSYS;
  3379. }
  3380. __set_current_state(state);
  3381. spin_unlock_irq(&x->wait.lock);
  3382. timeout = schedule_timeout(timeout);
  3383. spin_lock_irq(&x->wait.lock);
  3384. if (!timeout) {
  3385. __remove_wait_queue(&x->wait, &wait);
  3386. return timeout;
  3387. }
  3388. } while (!x->done);
  3389. __remove_wait_queue(&x->wait, &wait);
  3390. }
  3391. x->done--;
  3392. return timeout;
  3393. }
  3394. static long __sched
  3395. wait_for_common(struct completion *x, long timeout, int state)
  3396. {
  3397. might_sleep();
  3398. spin_lock_irq(&x->wait.lock);
  3399. timeout = do_wait_for_common(x, timeout, state);
  3400. spin_unlock_irq(&x->wait.lock);
  3401. return timeout;
  3402. }
  3403. void __sched wait_for_completion(struct completion *x)
  3404. {
  3405. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3406. }
  3407. EXPORT_SYMBOL(wait_for_completion);
  3408. unsigned long __sched
  3409. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3410. {
  3411. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3412. }
  3413. EXPORT_SYMBOL(wait_for_completion_timeout);
  3414. int __sched wait_for_completion_interruptible(struct completion *x)
  3415. {
  3416. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3417. if (t == -ERESTARTSYS)
  3418. return t;
  3419. return 0;
  3420. }
  3421. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3422. unsigned long __sched
  3423. wait_for_completion_interruptible_timeout(struct completion *x,
  3424. unsigned long timeout)
  3425. {
  3426. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3427. }
  3428. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3429. static long __sched
  3430. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3431. {
  3432. unsigned long flags;
  3433. wait_queue_t wait;
  3434. init_waitqueue_entry(&wait, current);
  3435. __set_current_state(state);
  3436. spin_lock_irqsave(&q->lock, flags);
  3437. __add_wait_queue(q, &wait);
  3438. spin_unlock(&q->lock);
  3439. timeout = schedule_timeout(timeout);
  3440. spin_lock_irq(&q->lock);
  3441. __remove_wait_queue(q, &wait);
  3442. spin_unlock_irqrestore(&q->lock, flags);
  3443. return timeout;
  3444. }
  3445. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3446. {
  3447. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3448. }
  3449. EXPORT_SYMBOL(interruptible_sleep_on);
  3450. long __sched
  3451. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3452. {
  3453. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3454. }
  3455. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3456. void __sched sleep_on(wait_queue_head_t *q)
  3457. {
  3458. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3459. }
  3460. EXPORT_SYMBOL(sleep_on);
  3461. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3462. {
  3463. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3464. }
  3465. EXPORT_SYMBOL(sleep_on_timeout);
  3466. #ifdef CONFIG_RT_MUTEXES
  3467. /*
  3468. * rt_mutex_setprio - set the current priority of a task
  3469. * @p: task
  3470. * @prio: prio value (kernel-internal form)
  3471. *
  3472. * This function changes the 'effective' priority of a task. It does
  3473. * not touch ->normal_prio like __setscheduler().
  3474. *
  3475. * Used by the rt_mutex code to implement priority inheritance logic.
  3476. */
  3477. void rt_mutex_setprio(struct task_struct *p, int prio)
  3478. {
  3479. unsigned long flags;
  3480. int oldprio, on_rq, running;
  3481. struct rq *rq;
  3482. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3483. rq = task_rq_lock(p, &flags);
  3484. update_rq_clock(rq);
  3485. oldprio = p->prio;
  3486. on_rq = p->se.on_rq;
  3487. running = task_current(rq, p);
  3488. if (on_rq) {
  3489. dequeue_task(rq, p, 0);
  3490. if (running)
  3491. p->sched_class->put_prev_task(rq, p);
  3492. }
  3493. if (rt_prio(prio))
  3494. p->sched_class = &rt_sched_class;
  3495. else
  3496. p->sched_class = &fair_sched_class;
  3497. p->prio = prio;
  3498. if (on_rq) {
  3499. if (running)
  3500. p->sched_class->set_curr_task(rq);
  3501. enqueue_task(rq, p, 0);
  3502. /*
  3503. * Reschedule if we are currently running on this runqueue and
  3504. * our priority decreased, or if we are not currently running on
  3505. * this runqueue and our priority is higher than the current's
  3506. */
  3507. if (running) {
  3508. if (p->prio > oldprio)
  3509. resched_task(rq->curr);
  3510. } else {
  3511. check_preempt_curr(rq, p);
  3512. }
  3513. }
  3514. task_rq_unlock(rq, &flags);
  3515. }
  3516. #endif
  3517. void set_user_nice(struct task_struct *p, long nice)
  3518. {
  3519. int old_prio, delta, on_rq;
  3520. unsigned long flags;
  3521. struct rq *rq;
  3522. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3523. return;
  3524. /*
  3525. * We have to be careful, if called from sys_setpriority(),
  3526. * the task might be in the middle of scheduling on another CPU.
  3527. */
  3528. rq = task_rq_lock(p, &flags);
  3529. update_rq_clock(rq);
  3530. /*
  3531. * The RT priorities are set via sched_setscheduler(), but we still
  3532. * allow the 'normal' nice value to be set - but as expected
  3533. * it wont have any effect on scheduling until the task is
  3534. * SCHED_FIFO/SCHED_RR:
  3535. */
  3536. if (task_has_rt_policy(p)) {
  3537. p->static_prio = NICE_TO_PRIO(nice);
  3538. goto out_unlock;
  3539. }
  3540. on_rq = p->se.on_rq;
  3541. if (on_rq)
  3542. dequeue_task(rq, p, 0);
  3543. p->static_prio = NICE_TO_PRIO(nice);
  3544. set_load_weight(p);
  3545. old_prio = p->prio;
  3546. p->prio = effective_prio(p);
  3547. delta = p->prio - old_prio;
  3548. if (on_rq) {
  3549. enqueue_task(rq, p, 0);
  3550. /*
  3551. * If the task increased its priority or is running and
  3552. * lowered its priority, then reschedule its CPU:
  3553. */
  3554. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3555. resched_task(rq->curr);
  3556. }
  3557. out_unlock:
  3558. task_rq_unlock(rq, &flags);
  3559. }
  3560. EXPORT_SYMBOL(set_user_nice);
  3561. /*
  3562. * can_nice - check if a task can reduce its nice value
  3563. * @p: task
  3564. * @nice: nice value
  3565. */
  3566. int can_nice(const struct task_struct *p, const int nice)
  3567. {
  3568. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3569. int nice_rlim = 20 - nice;
  3570. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3571. capable(CAP_SYS_NICE));
  3572. }
  3573. #ifdef __ARCH_WANT_SYS_NICE
  3574. /*
  3575. * sys_nice - change the priority of the current process.
  3576. * @increment: priority increment
  3577. *
  3578. * sys_setpriority is a more generic, but much slower function that
  3579. * does similar things.
  3580. */
  3581. asmlinkage long sys_nice(int increment)
  3582. {
  3583. long nice, retval;
  3584. /*
  3585. * Setpriority might change our priority at the same moment.
  3586. * We don't have to worry. Conceptually one call occurs first
  3587. * and we have a single winner.
  3588. */
  3589. if (increment < -40)
  3590. increment = -40;
  3591. if (increment > 40)
  3592. increment = 40;
  3593. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3594. if (nice < -20)
  3595. nice = -20;
  3596. if (nice > 19)
  3597. nice = 19;
  3598. if (increment < 0 && !can_nice(current, nice))
  3599. return -EPERM;
  3600. retval = security_task_setnice(current, nice);
  3601. if (retval)
  3602. return retval;
  3603. set_user_nice(current, nice);
  3604. return 0;
  3605. }
  3606. #endif
  3607. /**
  3608. * task_prio - return the priority value of a given task.
  3609. * @p: the task in question.
  3610. *
  3611. * This is the priority value as seen by users in /proc.
  3612. * RT tasks are offset by -200. Normal tasks are centered
  3613. * around 0, value goes from -16 to +15.
  3614. */
  3615. int task_prio(const struct task_struct *p)
  3616. {
  3617. return p->prio - MAX_RT_PRIO;
  3618. }
  3619. /**
  3620. * task_nice - return the nice value of a given task.
  3621. * @p: the task in question.
  3622. */
  3623. int task_nice(const struct task_struct *p)
  3624. {
  3625. return TASK_NICE(p);
  3626. }
  3627. EXPORT_SYMBOL_GPL(task_nice);
  3628. /**
  3629. * idle_cpu - is a given cpu idle currently?
  3630. * @cpu: the processor in question.
  3631. */
  3632. int idle_cpu(int cpu)
  3633. {
  3634. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3635. }
  3636. /**
  3637. * idle_task - return the idle task for a given cpu.
  3638. * @cpu: the processor in question.
  3639. */
  3640. struct task_struct *idle_task(int cpu)
  3641. {
  3642. return cpu_rq(cpu)->idle;
  3643. }
  3644. /**
  3645. * find_process_by_pid - find a process with a matching PID value.
  3646. * @pid: the pid in question.
  3647. */
  3648. static struct task_struct *find_process_by_pid(pid_t pid)
  3649. {
  3650. return pid ? find_task_by_vpid(pid) : current;
  3651. }
  3652. /* Actually do priority change: must hold rq lock. */
  3653. static void
  3654. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3655. {
  3656. BUG_ON(p->se.on_rq);
  3657. p->policy = policy;
  3658. switch (p->policy) {
  3659. case SCHED_NORMAL:
  3660. case SCHED_BATCH:
  3661. case SCHED_IDLE:
  3662. p->sched_class = &fair_sched_class;
  3663. break;
  3664. case SCHED_FIFO:
  3665. case SCHED_RR:
  3666. p->sched_class = &rt_sched_class;
  3667. break;
  3668. }
  3669. p->rt_priority = prio;
  3670. p->normal_prio = normal_prio(p);
  3671. /* we are holding p->pi_lock already */
  3672. p->prio = rt_mutex_getprio(p);
  3673. set_load_weight(p);
  3674. }
  3675. /**
  3676. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3677. * @p: the task in question.
  3678. * @policy: new policy.
  3679. * @param: structure containing the new RT priority.
  3680. *
  3681. * NOTE that the task may be already dead.
  3682. */
  3683. int sched_setscheduler(struct task_struct *p, int policy,
  3684. struct sched_param *param)
  3685. {
  3686. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3687. unsigned long flags;
  3688. struct rq *rq;
  3689. /* may grab non-irq protected spin_locks */
  3690. BUG_ON(in_interrupt());
  3691. recheck:
  3692. /* double check policy once rq lock held */
  3693. if (policy < 0)
  3694. policy = oldpolicy = p->policy;
  3695. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3696. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3697. policy != SCHED_IDLE)
  3698. return -EINVAL;
  3699. /*
  3700. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3701. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3702. * SCHED_BATCH and SCHED_IDLE is 0.
  3703. */
  3704. if (param->sched_priority < 0 ||
  3705. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3706. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3707. return -EINVAL;
  3708. if (rt_policy(policy) != (param->sched_priority != 0))
  3709. return -EINVAL;
  3710. /*
  3711. * Allow unprivileged RT tasks to decrease priority:
  3712. */
  3713. if (!capable(CAP_SYS_NICE)) {
  3714. if (rt_policy(policy)) {
  3715. unsigned long rlim_rtprio;
  3716. if (!lock_task_sighand(p, &flags))
  3717. return -ESRCH;
  3718. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3719. unlock_task_sighand(p, &flags);
  3720. /* can't set/change the rt policy */
  3721. if (policy != p->policy && !rlim_rtprio)
  3722. return -EPERM;
  3723. /* can't increase priority */
  3724. if (param->sched_priority > p->rt_priority &&
  3725. param->sched_priority > rlim_rtprio)
  3726. return -EPERM;
  3727. }
  3728. /*
  3729. * Like positive nice levels, dont allow tasks to
  3730. * move out of SCHED_IDLE either:
  3731. */
  3732. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3733. return -EPERM;
  3734. /* can't change other user's priorities */
  3735. if ((current->euid != p->euid) &&
  3736. (current->euid != p->uid))
  3737. return -EPERM;
  3738. }
  3739. retval = security_task_setscheduler(p, policy, param);
  3740. if (retval)
  3741. return retval;
  3742. /*
  3743. * make sure no PI-waiters arrive (or leave) while we are
  3744. * changing the priority of the task:
  3745. */
  3746. spin_lock_irqsave(&p->pi_lock, flags);
  3747. /*
  3748. * To be able to change p->policy safely, the apropriate
  3749. * runqueue lock must be held.
  3750. */
  3751. rq = __task_rq_lock(p);
  3752. /* recheck policy now with rq lock held */
  3753. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3754. policy = oldpolicy = -1;
  3755. __task_rq_unlock(rq);
  3756. spin_unlock_irqrestore(&p->pi_lock, flags);
  3757. goto recheck;
  3758. }
  3759. update_rq_clock(rq);
  3760. on_rq = p->se.on_rq;
  3761. running = task_current(rq, p);
  3762. if (on_rq) {
  3763. deactivate_task(rq, p, 0);
  3764. if (running)
  3765. p->sched_class->put_prev_task(rq, p);
  3766. }
  3767. oldprio = p->prio;
  3768. __setscheduler(rq, p, policy, param->sched_priority);
  3769. if (on_rq) {
  3770. if (running)
  3771. p->sched_class->set_curr_task(rq);
  3772. activate_task(rq, p, 0);
  3773. /*
  3774. * Reschedule if we are currently running on this runqueue and
  3775. * our priority decreased, or if we are not currently running on
  3776. * this runqueue and our priority is higher than the current's
  3777. */
  3778. if (running) {
  3779. if (p->prio > oldprio)
  3780. resched_task(rq->curr);
  3781. } else {
  3782. check_preempt_curr(rq, p);
  3783. }
  3784. }
  3785. __task_rq_unlock(rq);
  3786. spin_unlock_irqrestore(&p->pi_lock, flags);
  3787. rt_mutex_adjust_pi(p);
  3788. return 0;
  3789. }
  3790. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3791. static int
  3792. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3793. {
  3794. struct sched_param lparam;
  3795. struct task_struct *p;
  3796. int retval;
  3797. if (!param || pid < 0)
  3798. return -EINVAL;
  3799. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3800. return -EFAULT;
  3801. rcu_read_lock();
  3802. retval = -ESRCH;
  3803. p = find_process_by_pid(pid);
  3804. if (p != NULL)
  3805. retval = sched_setscheduler(p, policy, &lparam);
  3806. rcu_read_unlock();
  3807. return retval;
  3808. }
  3809. /**
  3810. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3811. * @pid: the pid in question.
  3812. * @policy: new policy.
  3813. * @param: structure containing the new RT priority.
  3814. */
  3815. asmlinkage long
  3816. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3817. {
  3818. /* negative values for policy are not valid */
  3819. if (policy < 0)
  3820. return -EINVAL;
  3821. return do_sched_setscheduler(pid, policy, param);
  3822. }
  3823. /**
  3824. * sys_sched_setparam - set/change the RT priority of a thread
  3825. * @pid: the pid in question.
  3826. * @param: structure containing the new RT priority.
  3827. */
  3828. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3829. {
  3830. return do_sched_setscheduler(pid, -1, param);
  3831. }
  3832. /**
  3833. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3834. * @pid: the pid in question.
  3835. */
  3836. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3837. {
  3838. struct task_struct *p;
  3839. int retval;
  3840. if (pid < 0)
  3841. return -EINVAL;
  3842. retval = -ESRCH;
  3843. read_lock(&tasklist_lock);
  3844. p = find_process_by_pid(pid);
  3845. if (p) {
  3846. retval = security_task_getscheduler(p);
  3847. if (!retval)
  3848. retval = p->policy;
  3849. }
  3850. read_unlock(&tasklist_lock);
  3851. return retval;
  3852. }
  3853. /**
  3854. * sys_sched_getscheduler - get the RT priority of a thread
  3855. * @pid: the pid in question.
  3856. * @param: structure containing the RT priority.
  3857. */
  3858. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3859. {
  3860. struct sched_param lp;
  3861. struct task_struct *p;
  3862. int retval;
  3863. if (!param || pid < 0)
  3864. return -EINVAL;
  3865. read_lock(&tasklist_lock);
  3866. p = find_process_by_pid(pid);
  3867. retval = -ESRCH;
  3868. if (!p)
  3869. goto out_unlock;
  3870. retval = security_task_getscheduler(p);
  3871. if (retval)
  3872. goto out_unlock;
  3873. lp.sched_priority = p->rt_priority;
  3874. read_unlock(&tasklist_lock);
  3875. /*
  3876. * This one might sleep, we cannot do it with a spinlock held ...
  3877. */
  3878. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3879. return retval;
  3880. out_unlock:
  3881. read_unlock(&tasklist_lock);
  3882. return retval;
  3883. }
  3884. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3885. {
  3886. cpumask_t cpus_allowed;
  3887. struct task_struct *p;
  3888. int retval;
  3889. mutex_lock(&sched_hotcpu_mutex);
  3890. read_lock(&tasklist_lock);
  3891. p = find_process_by_pid(pid);
  3892. if (!p) {
  3893. read_unlock(&tasklist_lock);
  3894. mutex_unlock(&sched_hotcpu_mutex);
  3895. return -ESRCH;
  3896. }
  3897. /*
  3898. * It is not safe to call set_cpus_allowed with the
  3899. * tasklist_lock held. We will bump the task_struct's
  3900. * usage count and then drop tasklist_lock.
  3901. */
  3902. get_task_struct(p);
  3903. read_unlock(&tasklist_lock);
  3904. retval = -EPERM;
  3905. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3906. !capable(CAP_SYS_NICE))
  3907. goto out_unlock;
  3908. retval = security_task_setscheduler(p, 0, NULL);
  3909. if (retval)
  3910. goto out_unlock;
  3911. cpus_allowed = cpuset_cpus_allowed(p);
  3912. cpus_and(new_mask, new_mask, cpus_allowed);
  3913. again:
  3914. retval = set_cpus_allowed(p, new_mask);
  3915. if (!retval) {
  3916. cpus_allowed = cpuset_cpus_allowed(p);
  3917. if (!cpus_subset(new_mask, cpus_allowed)) {
  3918. /*
  3919. * We must have raced with a concurrent cpuset
  3920. * update. Just reset the cpus_allowed to the
  3921. * cpuset's cpus_allowed
  3922. */
  3923. new_mask = cpus_allowed;
  3924. goto again;
  3925. }
  3926. }
  3927. out_unlock:
  3928. put_task_struct(p);
  3929. mutex_unlock(&sched_hotcpu_mutex);
  3930. return retval;
  3931. }
  3932. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3933. cpumask_t *new_mask)
  3934. {
  3935. if (len < sizeof(cpumask_t)) {
  3936. memset(new_mask, 0, sizeof(cpumask_t));
  3937. } else if (len > sizeof(cpumask_t)) {
  3938. len = sizeof(cpumask_t);
  3939. }
  3940. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3941. }
  3942. /**
  3943. * sys_sched_setaffinity - set the cpu affinity of a process
  3944. * @pid: pid of the process
  3945. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3946. * @user_mask_ptr: user-space pointer to the new cpu mask
  3947. */
  3948. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3949. unsigned long __user *user_mask_ptr)
  3950. {
  3951. cpumask_t new_mask;
  3952. int retval;
  3953. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3954. if (retval)
  3955. return retval;
  3956. return sched_setaffinity(pid, new_mask);
  3957. }
  3958. /*
  3959. * Represents all cpu's present in the system
  3960. * In systems capable of hotplug, this map could dynamically grow
  3961. * as new cpu's are detected in the system via any platform specific
  3962. * method, such as ACPI for e.g.
  3963. */
  3964. cpumask_t cpu_present_map __read_mostly;
  3965. EXPORT_SYMBOL(cpu_present_map);
  3966. #ifndef CONFIG_SMP
  3967. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3968. EXPORT_SYMBOL(cpu_online_map);
  3969. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3970. EXPORT_SYMBOL(cpu_possible_map);
  3971. #endif
  3972. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3973. {
  3974. struct task_struct *p;
  3975. int retval;
  3976. mutex_lock(&sched_hotcpu_mutex);
  3977. read_lock(&tasklist_lock);
  3978. retval = -ESRCH;
  3979. p = find_process_by_pid(pid);
  3980. if (!p)
  3981. goto out_unlock;
  3982. retval = security_task_getscheduler(p);
  3983. if (retval)
  3984. goto out_unlock;
  3985. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3986. out_unlock:
  3987. read_unlock(&tasklist_lock);
  3988. mutex_unlock(&sched_hotcpu_mutex);
  3989. return retval;
  3990. }
  3991. /**
  3992. * sys_sched_getaffinity - get the cpu affinity of a process
  3993. * @pid: pid of the process
  3994. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3995. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3996. */
  3997. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3998. unsigned long __user *user_mask_ptr)
  3999. {
  4000. int ret;
  4001. cpumask_t mask;
  4002. if (len < sizeof(cpumask_t))
  4003. return -EINVAL;
  4004. ret = sched_getaffinity(pid, &mask);
  4005. if (ret < 0)
  4006. return ret;
  4007. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4008. return -EFAULT;
  4009. return sizeof(cpumask_t);
  4010. }
  4011. /**
  4012. * sys_sched_yield - yield the current processor to other threads.
  4013. *
  4014. * This function yields the current CPU to other tasks. If there are no
  4015. * other threads running on this CPU then this function will return.
  4016. */
  4017. asmlinkage long sys_sched_yield(void)
  4018. {
  4019. struct rq *rq = this_rq_lock();
  4020. schedstat_inc(rq, yld_count);
  4021. current->sched_class->yield_task(rq);
  4022. /*
  4023. * Since we are going to call schedule() anyway, there's
  4024. * no need to preempt or enable interrupts:
  4025. */
  4026. __release(rq->lock);
  4027. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4028. _raw_spin_unlock(&rq->lock);
  4029. preempt_enable_no_resched();
  4030. schedule();
  4031. return 0;
  4032. }
  4033. static void __cond_resched(void)
  4034. {
  4035. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4036. __might_sleep(__FILE__, __LINE__);
  4037. #endif
  4038. /*
  4039. * The BKS might be reacquired before we have dropped
  4040. * PREEMPT_ACTIVE, which could trigger a second
  4041. * cond_resched() call.
  4042. */
  4043. do {
  4044. add_preempt_count(PREEMPT_ACTIVE);
  4045. schedule();
  4046. sub_preempt_count(PREEMPT_ACTIVE);
  4047. } while (need_resched());
  4048. }
  4049. int __sched cond_resched(void)
  4050. {
  4051. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4052. system_state == SYSTEM_RUNNING) {
  4053. __cond_resched();
  4054. return 1;
  4055. }
  4056. return 0;
  4057. }
  4058. EXPORT_SYMBOL(cond_resched);
  4059. /*
  4060. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4061. * call schedule, and on return reacquire the lock.
  4062. *
  4063. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4064. * operations here to prevent schedule() from being called twice (once via
  4065. * spin_unlock(), once by hand).
  4066. */
  4067. int cond_resched_lock(spinlock_t *lock)
  4068. {
  4069. int ret = 0;
  4070. if (need_lockbreak(lock)) {
  4071. spin_unlock(lock);
  4072. cpu_relax();
  4073. ret = 1;
  4074. spin_lock(lock);
  4075. }
  4076. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4077. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4078. _raw_spin_unlock(lock);
  4079. preempt_enable_no_resched();
  4080. __cond_resched();
  4081. ret = 1;
  4082. spin_lock(lock);
  4083. }
  4084. return ret;
  4085. }
  4086. EXPORT_SYMBOL(cond_resched_lock);
  4087. int __sched cond_resched_softirq(void)
  4088. {
  4089. BUG_ON(!in_softirq());
  4090. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4091. local_bh_enable();
  4092. __cond_resched();
  4093. local_bh_disable();
  4094. return 1;
  4095. }
  4096. return 0;
  4097. }
  4098. EXPORT_SYMBOL(cond_resched_softirq);
  4099. /**
  4100. * yield - yield the current processor to other threads.
  4101. *
  4102. * This is a shortcut for kernel-space yielding - it marks the
  4103. * thread runnable and calls sys_sched_yield().
  4104. */
  4105. void __sched yield(void)
  4106. {
  4107. set_current_state(TASK_RUNNING);
  4108. sys_sched_yield();
  4109. }
  4110. EXPORT_SYMBOL(yield);
  4111. /*
  4112. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4113. * that process accounting knows that this is a task in IO wait state.
  4114. *
  4115. * But don't do that if it is a deliberate, throttling IO wait (this task
  4116. * has set its backing_dev_info: the queue against which it should throttle)
  4117. */
  4118. void __sched io_schedule(void)
  4119. {
  4120. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4121. delayacct_blkio_start();
  4122. atomic_inc(&rq->nr_iowait);
  4123. schedule();
  4124. atomic_dec(&rq->nr_iowait);
  4125. delayacct_blkio_end();
  4126. }
  4127. EXPORT_SYMBOL(io_schedule);
  4128. long __sched io_schedule_timeout(long timeout)
  4129. {
  4130. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4131. long ret;
  4132. delayacct_blkio_start();
  4133. atomic_inc(&rq->nr_iowait);
  4134. ret = schedule_timeout(timeout);
  4135. atomic_dec(&rq->nr_iowait);
  4136. delayacct_blkio_end();
  4137. return ret;
  4138. }
  4139. /**
  4140. * sys_sched_get_priority_max - return maximum RT priority.
  4141. * @policy: scheduling class.
  4142. *
  4143. * this syscall returns the maximum rt_priority that can be used
  4144. * by a given scheduling class.
  4145. */
  4146. asmlinkage long sys_sched_get_priority_max(int policy)
  4147. {
  4148. int ret = -EINVAL;
  4149. switch (policy) {
  4150. case SCHED_FIFO:
  4151. case SCHED_RR:
  4152. ret = MAX_USER_RT_PRIO-1;
  4153. break;
  4154. case SCHED_NORMAL:
  4155. case SCHED_BATCH:
  4156. case SCHED_IDLE:
  4157. ret = 0;
  4158. break;
  4159. }
  4160. return ret;
  4161. }
  4162. /**
  4163. * sys_sched_get_priority_min - return minimum RT priority.
  4164. * @policy: scheduling class.
  4165. *
  4166. * this syscall returns the minimum rt_priority that can be used
  4167. * by a given scheduling class.
  4168. */
  4169. asmlinkage long sys_sched_get_priority_min(int policy)
  4170. {
  4171. int ret = -EINVAL;
  4172. switch (policy) {
  4173. case SCHED_FIFO:
  4174. case SCHED_RR:
  4175. ret = 1;
  4176. break;
  4177. case SCHED_NORMAL:
  4178. case SCHED_BATCH:
  4179. case SCHED_IDLE:
  4180. ret = 0;
  4181. }
  4182. return ret;
  4183. }
  4184. /**
  4185. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4186. * @pid: pid of the process.
  4187. * @interval: userspace pointer to the timeslice value.
  4188. *
  4189. * this syscall writes the default timeslice value of a given process
  4190. * into the user-space timespec buffer. A value of '0' means infinity.
  4191. */
  4192. asmlinkage
  4193. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4194. {
  4195. struct task_struct *p;
  4196. unsigned int time_slice;
  4197. int retval;
  4198. struct timespec t;
  4199. if (pid < 0)
  4200. return -EINVAL;
  4201. retval = -ESRCH;
  4202. read_lock(&tasklist_lock);
  4203. p = find_process_by_pid(pid);
  4204. if (!p)
  4205. goto out_unlock;
  4206. retval = security_task_getscheduler(p);
  4207. if (retval)
  4208. goto out_unlock;
  4209. /*
  4210. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4211. * tasks that are on an otherwise idle runqueue:
  4212. */
  4213. time_slice = 0;
  4214. if (p->policy == SCHED_RR) {
  4215. time_slice = DEF_TIMESLICE;
  4216. } else {
  4217. struct sched_entity *se = &p->se;
  4218. unsigned long flags;
  4219. struct rq *rq;
  4220. rq = task_rq_lock(p, &flags);
  4221. if (rq->cfs.load.weight)
  4222. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4223. task_rq_unlock(rq, &flags);
  4224. }
  4225. read_unlock(&tasklist_lock);
  4226. jiffies_to_timespec(time_slice, &t);
  4227. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4228. return retval;
  4229. out_unlock:
  4230. read_unlock(&tasklist_lock);
  4231. return retval;
  4232. }
  4233. static const char stat_nam[] = "RSDTtZX";
  4234. static void show_task(struct task_struct *p)
  4235. {
  4236. unsigned long free = 0;
  4237. unsigned state;
  4238. state = p->state ? __ffs(p->state) + 1 : 0;
  4239. printk(KERN_INFO "%-13.13s %c", p->comm,
  4240. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4241. #if BITS_PER_LONG == 32
  4242. if (state == TASK_RUNNING)
  4243. printk(KERN_CONT " running ");
  4244. else
  4245. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4246. #else
  4247. if (state == TASK_RUNNING)
  4248. printk(KERN_CONT " running task ");
  4249. else
  4250. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4251. #endif
  4252. #ifdef CONFIG_DEBUG_STACK_USAGE
  4253. {
  4254. unsigned long *n = end_of_stack(p);
  4255. while (!*n)
  4256. n++;
  4257. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4258. }
  4259. #endif
  4260. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4261. task_pid_nr(p), task_pid_nr(p->real_parent));
  4262. if (state != TASK_RUNNING)
  4263. show_stack(p, NULL);
  4264. }
  4265. void show_state_filter(unsigned long state_filter)
  4266. {
  4267. struct task_struct *g, *p;
  4268. #if BITS_PER_LONG == 32
  4269. printk(KERN_INFO
  4270. " task PC stack pid father\n");
  4271. #else
  4272. printk(KERN_INFO
  4273. " task PC stack pid father\n");
  4274. #endif
  4275. read_lock(&tasklist_lock);
  4276. do_each_thread(g, p) {
  4277. /*
  4278. * reset the NMI-timeout, listing all files on a slow
  4279. * console might take alot of time:
  4280. */
  4281. touch_nmi_watchdog();
  4282. if (!state_filter || (p->state & state_filter))
  4283. show_task(p);
  4284. } while_each_thread(g, p);
  4285. touch_all_softlockup_watchdogs();
  4286. #ifdef CONFIG_SCHED_DEBUG
  4287. sysrq_sched_debug_show();
  4288. #endif
  4289. read_unlock(&tasklist_lock);
  4290. /*
  4291. * Only show locks if all tasks are dumped:
  4292. */
  4293. if (state_filter == -1)
  4294. debug_show_all_locks();
  4295. }
  4296. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4297. {
  4298. idle->sched_class = &idle_sched_class;
  4299. }
  4300. /**
  4301. * init_idle - set up an idle thread for a given CPU
  4302. * @idle: task in question
  4303. * @cpu: cpu the idle task belongs to
  4304. *
  4305. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4306. * flag, to make booting more robust.
  4307. */
  4308. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4309. {
  4310. struct rq *rq = cpu_rq(cpu);
  4311. unsigned long flags;
  4312. __sched_fork(idle);
  4313. idle->se.exec_start = sched_clock();
  4314. idle->prio = idle->normal_prio = MAX_PRIO;
  4315. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4316. __set_task_cpu(idle, cpu);
  4317. spin_lock_irqsave(&rq->lock, flags);
  4318. rq->curr = rq->idle = idle;
  4319. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4320. idle->oncpu = 1;
  4321. #endif
  4322. spin_unlock_irqrestore(&rq->lock, flags);
  4323. /* Set the preempt count _outside_ the spinlocks! */
  4324. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4325. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4326. #else
  4327. task_thread_info(idle)->preempt_count = 0;
  4328. #endif
  4329. /*
  4330. * The idle tasks have their own, simple scheduling class:
  4331. */
  4332. idle->sched_class = &idle_sched_class;
  4333. }
  4334. /*
  4335. * In a system that switches off the HZ timer nohz_cpu_mask
  4336. * indicates which cpus entered this state. This is used
  4337. * in the rcu update to wait only for active cpus. For system
  4338. * which do not switch off the HZ timer nohz_cpu_mask should
  4339. * always be CPU_MASK_NONE.
  4340. */
  4341. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4342. /*
  4343. * Increase the granularity value when there are more CPUs,
  4344. * because with more CPUs the 'effective latency' as visible
  4345. * to users decreases. But the relationship is not linear,
  4346. * so pick a second-best guess by going with the log2 of the
  4347. * number of CPUs.
  4348. *
  4349. * This idea comes from the SD scheduler of Con Kolivas:
  4350. */
  4351. static inline void sched_init_granularity(void)
  4352. {
  4353. unsigned int factor = 1 + ilog2(num_online_cpus());
  4354. const unsigned long limit = 200000000;
  4355. sysctl_sched_min_granularity *= factor;
  4356. if (sysctl_sched_min_granularity > limit)
  4357. sysctl_sched_min_granularity = limit;
  4358. sysctl_sched_latency *= factor;
  4359. if (sysctl_sched_latency > limit)
  4360. sysctl_sched_latency = limit;
  4361. sysctl_sched_wakeup_granularity *= factor;
  4362. sysctl_sched_batch_wakeup_granularity *= factor;
  4363. }
  4364. #ifdef CONFIG_SMP
  4365. /*
  4366. * This is how migration works:
  4367. *
  4368. * 1) we queue a struct migration_req structure in the source CPU's
  4369. * runqueue and wake up that CPU's migration thread.
  4370. * 2) we down() the locked semaphore => thread blocks.
  4371. * 3) migration thread wakes up (implicitly it forces the migrated
  4372. * thread off the CPU)
  4373. * 4) it gets the migration request and checks whether the migrated
  4374. * task is still in the wrong runqueue.
  4375. * 5) if it's in the wrong runqueue then the migration thread removes
  4376. * it and puts it into the right queue.
  4377. * 6) migration thread up()s the semaphore.
  4378. * 7) we wake up and the migration is done.
  4379. */
  4380. /*
  4381. * Change a given task's CPU affinity. Migrate the thread to a
  4382. * proper CPU and schedule it away if the CPU it's executing on
  4383. * is removed from the allowed bitmask.
  4384. *
  4385. * NOTE: the caller must have a valid reference to the task, the
  4386. * task must not exit() & deallocate itself prematurely. The
  4387. * call is not atomic; no spinlocks may be held.
  4388. */
  4389. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4390. {
  4391. struct migration_req req;
  4392. unsigned long flags;
  4393. struct rq *rq;
  4394. int ret = 0;
  4395. rq = task_rq_lock(p, &flags);
  4396. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4397. ret = -EINVAL;
  4398. goto out;
  4399. }
  4400. p->cpus_allowed = new_mask;
  4401. /* Can the task run on the task's current CPU? If so, we're done */
  4402. if (cpu_isset(task_cpu(p), new_mask))
  4403. goto out;
  4404. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4405. /* Need help from migration thread: drop lock and wait. */
  4406. task_rq_unlock(rq, &flags);
  4407. wake_up_process(rq->migration_thread);
  4408. wait_for_completion(&req.done);
  4409. tlb_migrate_finish(p->mm);
  4410. return 0;
  4411. }
  4412. out:
  4413. task_rq_unlock(rq, &flags);
  4414. return ret;
  4415. }
  4416. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4417. /*
  4418. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4419. * this because either it can't run here any more (set_cpus_allowed()
  4420. * away from this CPU, or CPU going down), or because we're
  4421. * attempting to rebalance this task on exec (sched_exec).
  4422. *
  4423. * So we race with normal scheduler movements, but that's OK, as long
  4424. * as the task is no longer on this CPU.
  4425. *
  4426. * Returns non-zero if task was successfully migrated.
  4427. */
  4428. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4429. {
  4430. struct rq *rq_dest, *rq_src;
  4431. int ret = 0, on_rq;
  4432. if (unlikely(cpu_is_offline(dest_cpu)))
  4433. return ret;
  4434. rq_src = cpu_rq(src_cpu);
  4435. rq_dest = cpu_rq(dest_cpu);
  4436. double_rq_lock(rq_src, rq_dest);
  4437. /* Already moved. */
  4438. if (task_cpu(p) != src_cpu)
  4439. goto out;
  4440. /* Affinity changed (again). */
  4441. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4442. goto out;
  4443. on_rq = p->se.on_rq;
  4444. if (on_rq)
  4445. deactivate_task(rq_src, p, 0);
  4446. set_task_cpu(p, dest_cpu);
  4447. if (on_rq) {
  4448. activate_task(rq_dest, p, 0);
  4449. check_preempt_curr(rq_dest, p);
  4450. }
  4451. ret = 1;
  4452. out:
  4453. double_rq_unlock(rq_src, rq_dest);
  4454. return ret;
  4455. }
  4456. /*
  4457. * migration_thread - this is a highprio system thread that performs
  4458. * thread migration by bumping thread off CPU then 'pushing' onto
  4459. * another runqueue.
  4460. */
  4461. static int migration_thread(void *data)
  4462. {
  4463. int cpu = (long)data;
  4464. struct rq *rq;
  4465. rq = cpu_rq(cpu);
  4466. BUG_ON(rq->migration_thread != current);
  4467. set_current_state(TASK_INTERRUPTIBLE);
  4468. while (!kthread_should_stop()) {
  4469. struct migration_req *req;
  4470. struct list_head *head;
  4471. spin_lock_irq(&rq->lock);
  4472. if (cpu_is_offline(cpu)) {
  4473. spin_unlock_irq(&rq->lock);
  4474. goto wait_to_die;
  4475. }
  4476. if (rq->active_balance) {
  4477. active_load_balance(rq, cpu);
  4478. rq->active_balance = 0;
  4479. }
  4480. head = &rq->migration_queue;
  4481. if (list_empty(head)) {
  4482. spin_unlock_irq(&rq->lock);
  4483. schedule();
  4484. set_current_state(TASK_INTERRUPTIBLE);
  4485. continue;
  4486. }
  4487. req = list_entry(head->next, struct migration_req, list);
  4488. list_del_init(head->next);
  4489. spin_unlock(&rq->lock);
  4490. __migrate_task(req->task, cpu, req->dest_cpu);
  4491. local_irq_enable();
  4492. complete(&req->done);
  4493. }
  4494. __set_current_state(TASK_RUNNING);
  4495. return 0;
  4496. wait_to_die:
  4497. /* Wait for kthread_stop */
  4498. set_current_state(TASK_INTERRUPTIBLE);
  4499. while (!kthread_should_stop()) {
  4500. schedule();
  4501. set_current_state(TASK_INTERRUPTIBLE);
  4502. }
  4503. __set_current_state(TASK_RUNNING);
  4504. return 0;
  4505. }
  4506. #ifdef CONFIG_HOTPLUG_CPU
  4507. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4508. {
  4509. int ret;
  4510. local_irq_disable();
  4511. ret = __migrate_task(p, src_cpu, dest_cpu);
  4512. local_irq_enable();
  4513. return ret;
  4514. }
  4515. /*
  4516. * Figure out where task on dead CPU should go, use force if necessary.
  4517. * NOTE: interrupts should be disabled by the caller
  4518. */
  4519. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4520. {
  4521. unsigned long flags;
  4522. cpumask_t mask;
  4523. struct rq *rq;
  4524. int dest_cpu;
  4525. do {
  4526. /* On same node? */
  4527. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4528. cpus_and(mask, mask, p->cpus_allowed);
  4529. dest_cpu = any_online_cpu(mask);
  4530. /* On any allowed CPU? */
  4531. if (dest_cpu == NR_CPUS)
  4532. dest_cpu = any_online_cpu(p->cpus_allowed);
  4533. /* No more Mr. Nice Guy. */
  4534. if (dest_cpu == NR_CPUS) {
  4535. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4536. /*
  4537. * Try to stay on the same cpuset, where the
  4538. * current cpuset may be a subset of all cpus.
  4539. * The cpuset_cpus_allowed_locked() variant of
  4540. * cpuset_cpus_allowed() will not block. It must be
  4541. * called within calls to cpuset_lock/cpuset_unlock.
  4542. */
  4543. rq = task_rq_lock(p, &flags);
  4544. p->cpus_allowed = cpus_allowed;
  4545. dest_cpu = any_online_cpu(p->cpus_allowed);
  4546. task_rq_unlock(rq, &flags);
  4547. /*
  4548. * Don't tell them about moving exiting tasks or
  4549. * kernel threads (both mm NULL), since they never
  4550. * leave kernel.
  4551. */
  4552. if (p->mm && printk_ratelimit()) {
  4553. printk(KERN_INFO "process %d (%s) no "
  4554. "longer affine to cpu%d\n",
  4555. task_pid_nr(p), p->comm, dead_cpu);
  4556. }
  4557. }
  4558. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4559. }
  4560. /*
  4561. * While a dead CPU has no uninterruptible tasks queued at this point,
  4562. * it might still have a nonzero ->nr_uninterruptible counter, because
  4563. * for performance reasons the counter is not stricly tracking tasks to
  4564. * their home CPUs. So we just add the counter to another CPU's counter,
  4565. * to keep the global sum constant after CPU-down:
  4566. */
  4567. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4568. {
  4569. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4570. unsigned long flags;
  4571. local_irq_save(flags);
  4572. double_rq_lock(rq_src, rq_dest);
  4573. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4574. rq_src->nr_uninterruptible = 0;
  4575. double_rq_unlock(rq_src, rq_dest);
  4576. local_irq_restore(flags);
  4577. }
  4578. /* Run through task list and migrate tasks from the dead cpu. */
  4579. static void migrate_live_tasks(int src_cpu)
  4580. {
  4581. struct task_struct *p, *t;
  4582. read_lock(&tasklist_lock);
  4583. do_each_thread(t, p) {
  4584. if (p == current)
  4585. continue;
  4586. if (task_cpu(p) == src_cpu)
  4587. move_task_off_dead_cpu(src_cpu, p);
  4588. } while_each_thread(t, p);
  4589. read_unlock(&tasklist_lock);
  4590. }
  4591. /*
  4592. * Schedules idle task to be the next runnable task on current CPU.
  4593. * It does so by boosting its priority to highest possible.
  4594. * Used by CPU offline code.
  4595. */
  4596. void sched_idle_next(void)
  4597. {
  4598. int this_cpu = smp_processor_id();
  4599. struct rq *rq = cpu_rq(this_cpu);
  4600. struct task_struct *p = rq->idle;
  4601. unsigned long flags;
  4602. /* cpu has to be offline */
  4603. BUG_ON(cpu_online(this_cpu));
  4604. /*
  4605. * Strictly not necessary since rest of the CPUs are stopped by now
  4606. * and interrupts disabled on the current cpu.
  4607. */
  4608. spin_lock_irqsave(&rq->lock, flags);
  4609. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4610. update_rq_clock(rq);
  4611. activate_task(rq, p, 0);
  4612. spin_unlock_irqrestore(&rq->lock, flags);
  4613. }
  4614. /*
  4615. * Ensures that the idle task is using init_mm right before its cpu goes
  4616. * offline.
  4617. */
  4618. void idle_task_exit(void)
  4619. {
  4620. struct mm_struct *mm = current->active_mm;
  4621. BUG_ON(cpu_online(smp_processor_id()));
  4622. if (mm != &init_mm)
  4623. switch_mm(mm, &init_mm, current);
  4624. mmdrop(mm);
  4625. }
  4626. /* called under rq->lock with disabled interrupts */
  4627. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4628. {
  4629. struct rq *rq = cpu_rq(dead_cpu);
  4630. /* Must be exiting, otherwise would be on tasklist. */
  4631. BUG_ON(!p->exit_state);
  4632. /* Cannot have done final schedule yet: would have vanished. */
  4633. BUG_ON(p->state == TASK_DEAD);
  4634. get_task_struct(p);
  4635. /*
  4636. * Drop lock around migration; if someone else moves it,
  4637. * that's OK. No task can be added to this CPU, so iteration is
  4638. * fine.
  4639. */
  4640. spin_unlock_irq(&rq->lock);
  4641. move_task_off_dead_cpu(dead_cpu, p);
  4642. spin_lock_irq(&rq->lock);
  4643. put_task_struct(p);
  4644. }
  4645. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4646. static void migrate_dead_tasks(unsigned int dead_cpu)
  4647. {
  4648. struct rq *rq = cpu_rq(dead_cpu);
  4649. struct task_struct *next;
  4650. for ( ; ; ) {
  4651. if (!rq->nr_running)
  4652. break;
  4653. update_rq_clock(rq);
  4654. next = pick_next_task(rq, rq->curr);
  4655. if (!next)
  4656. break;
  4657. migrate_dead(dead_cpu, next);
  4658. }
  4659. }
  4660. #endif /* CONFIG_HOTPLUG_CPU */
  4661. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4662. static struct ctl_table sd_ctl_dir[] = {
  4663. {
  4664. .procname = "sched_domain",
  4665. .mode = 0555,
  4666. },
  4667. {0, },
  4668. };
  4669. static struct ctl_table sd_ctl_root[] = {
  4670. {
  4671. .ctl_name = CTL_KERN,
  4672. .procname = "kernel",
  4673. .mode = 0555,
  4674. .child = sd_ctl_dir,
  4675. },
  4676. {0, },
  4677. };
  4678. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4679. {
  4680. struct ctl_table *entry =
  4681. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4682. return entry;
  4683. }
  4684. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4685. {
  4686. struct ctl_table *entry;
  4687. /*
  4688. * In the intermediate directories, both the child directory and
  4689. * procname are dynamically allocated and could fail but the mode
  4690. * will always be set. In the lowest directory the names are
  4691. * static strings and all have proc handlers.
  4692. */
  4693. for (entry = *tablep; entry->mode; entry++) {
  4694. if (entry->child)
  4695. sd_free_ctl_entry(&entry->child);
  4696. if (entry->proc_handler == NULL)
  4697. kfree(entry->procname);
  4698. }
  4699. kfree(*tablep);
  4700. *tablep = NULL;
  4701. }
  4702. static void
  4703. set_table_entry(struct ctl_table *entry,
  4704. const char *procname, void *data, int maxlen,
  4705. mode_t mode, proc_handler *proc_handler)
  4706. {
  4707. entry->procname = procname;
  4708. entry->data = data;
  4709. entry->maxlen = maxlen;
  4710. entry->mode = mode;
  4711. entry->proc_handler = proc_handler;
  4712. }
  4713. static struct ctl_table *
  4714. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4715. {
  4716. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4717. if (table == NULL)
  4718. return NULL;
  4719. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4720. sizeof(long), 0644, proc_doulongvec_minmax);
  4721. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4722. sizeof(long), 0644, proc_doulongvec_minmax);
  4723. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4724. sizeof(int), 0644, proc_dointvec_minmax);
  4725. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4726. sizeof(int), 0644, proc_dointvec_minmax);
  4727. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4728. sizeof(int), 0644, proc_dointvec_minmax);
  4729. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4730. sizeof(int), 0644, proc_dointvec_minmax);
  4731. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4732. sizeof(int), 0644, proc_dointvec_minmax);
  4733. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4734. sizeof(int), 0644, proc_dointvec_minmax);
  4735. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4736. sizeof(int), 0644, proc_dointvec_minmax);
  4737. set_table_entry(&table[9], "cache_nice_tries",
  4738. &sd->cache_nice_tries,
  4739. sizeof(int), 0644, proc_dointvec_minmax);
  4740. set_table_entry(&table[10], "flags", &sd->flags,
  4741. sizeof(int), 0644, proc_dointvec_minmax);
  4742. /* &table[11] is terminator */
  4743. return table;
  4744. }
  4745. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4746. {
  4747. struct ctl_table *entry, *table;
  4748. struct sched_domain *sd;
  4749. int domain_num = 0, i;
  4750. char buf[32];
  4751. for_each_domain(cpu, sd)
  4752. domain_num++;
  4753. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4754. if (table == NULL)
  4755. return NULL;
  4756. i = 0;
  4757. for_each_domain(cpu, sd) {
  4758. snprintf(buf, 32, "domain%d", i);
  4759. entry->procname = kstrdup(buf, GFP_KERNEL);
  4760. entry->mode = 0555;
  4761. entry->child = sd_alloc_ctl_domain_table(sd);
  4762. entry++;
  4763. i++;
  4764. }
  4765. return table;
  4766. }
  4767. static struct ctl_table_header *sd_sysctl_header;
  4768. static void register_sched_domain_sysctl(void)
  4769. {
  4770. int i, cpu_num = num_online_cpus();
  4771. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4772. char buf[32];
  4773. WARN_ON(sd_ctl_dir[0].child);
  4774. sd_ctl_dir[0].child = entry;
  4775. if (entry == NULL)
  4776. return;
  4777. for_each_online_cpu(i) {
  4778. snprintf(buf, 32, "cpu%d", i);
  4779. entry->procname = kstrdup(buf, GFP_KERNEL);
  4780. entry->mode = 0555;
  4781. entry->child = sd_alloc_ctl_cpu_table(i);
  4782. entry++;
  4783. }
  4784. WARN_ON(sd_sysctl_header);
  4785. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4786. }
  4787. /* may be called multiple times per register */
  4788. static void unregister_sched_domain_sysctl(void)
  4789. {
  4790. if (sd_sysctl_header)
  4791. unregister_sysctl_table(sd_sysctl_header);
  4792. sd_sysctl_header = NULL;
  4793. if (sd_ctl_dir[0].child)
  4794. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4795. }
  4796. #else
  4797. static void register_sched_domain_sysctl(void)
  4798. {
  4799. }
  4800. static void unregister_sched_domain_sysctl(void)
  4801. {
  4802. }
  4803. #endif
  4804. /*
  4805. * migration_call - callback that gets triggered when a CPU is added.
  4806. * Here we can start up the necessary migration thread for the new CPU.
  4807. */
  4808. static int __cpuinit
  4809. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4810. {
  4811. struct task_struct *p;
  4812. int cpu = (long)hcpu;
  4813. unsigned long flags;
  4814. struct rq *rq;
  4815. switch (action) {
  4816. case CPU_LOCK_ACQUIRE:
  4817. mutex_lock(&sched_hotcpu_mutex);
  4818. break;
  4819. case CPU_UP_PREPARE:
  4820. case CPU_UP_PREPARE_FROZEN:
  4821. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4822. if (IS_ERR(p))
  4823. return NOTIFY_BAD;
  4824. kthread_bind(p, cpu);
  4825. /* Must be high prio: stop_machine expects to yield to it. */
  4826. rq = task_rq_lock(p, &flags);
  4827. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4828. task_rq_unlock(rq, &flags);
  4829. cpu_rq(cpu)->migration_thread = p;
  4830. break;
  4831. case CPU_ONLINE:
  4832. case CPU_ONLINE_FROZEN:
  4833. /* Strictly unnecessary, as first user will wake it. */
  4834. wake_up_process(cpu_rq(cpu)->migration_thread);
  4835. break;
  4836. #ifdef CONFIG_HOTPLUG_CPU
  4837. case CPU_UP_CANCELED:
  4838. case CPU_UP_CANCELED_FROZEN:
  4839. if (!cpu_rq(cpu)->migration_thread)
  4840. break;
  4841. /* Unbind it from offline cpu so it can run. Fall thru. */
  4842. kthread_bind(cpu_rq(cpu)->migration_thread,
  4843. any_online_cpu(cpu_online_map));
  4844. kthread_stop(cpu_rq(cpu)->migration_thread);
  4845. cpu_rq(cpu)->migration_thread = NULL;
  4846. break;
  4847. case CPU_DEAD:
  4848. case CPU_DEAD_FROZEN:
  4849. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4850. migrate_live_tasks(cpu);
  4851. rq = cpu_rq(cpu);
  4852. kthread_stop(rq->migration_thread);
  4853. rq->migration_thread = NULL;
  4854. /* Idle task back to normal (off runqueue, low prio) */
  4855. spin_lock_irq(&rq->lock);
  4856. update_rq_clock(rq);
  4857. deactivate_task(rq, rq->idle, 0);
  4858. rq->idle->static_prio = MAX_PRIO;
  4859. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4860. rq->idle->sched_class = &idle_sched_class;
  4861. migrate_dead_tasks(cpu);
  4862. spin_unlock_irq(&rq->lock);
  4863. cpuset_unlock();
  4864. migrate_nr_uninterruptible(rq);
  4865. BUG_ON(rq->nr_running != 0);
  4866. /*
  4867. * No need to migrate the tasks: it was best-effort if
  4868. * they didn't take sched_hotcpu_mutex. Just wake up
  4869. * the requestors.
  4870. */
  4871. spin_lock_irq(&rq->lock);
  4872. while (!list_empty(&rq->migration_queue)) {
  4873. struct migration_req *req;
  4874. req = list_entry(rq->migration_queue.next,
  4875. struct migration_req, list);
  4876. list_del_init(&req->list);
  4877. complete(&req->done);
  4878. }
  4879. spin_unlock_irq(&rq->lock);
  4880. break;
  4881. #endif
  4882. case CPU_LOCK_RELEASE:
  4883. mutex_unlock(&sched_hotcpu_mutex);
  4884. break;
  4885. }
  4886. return NOTIFY_OK;
  4887. }
  4888. /* Register at highest priority so that task migration (migrate_all_tasks)
  4889. * happens before everything else.
  4890. */
  4891. static struct notifier_block __cpuinitdata migration_notifier = {
  4892. .notifier_call = migration_call,
  4893. .priority = 10
  4894. };
  4895. void __init migration_init(void)
  4896. {
  4897. void *cpu = (void *)(long)smp_processor_id();
  4898. int err;
  4899. /* Start one for the boot CPU: */
  4900. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4901. BUG_ON(err == NOTIFY_BAD);
  4902. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4903. register_cpu_notifier(&migration_notifier);
  4904. }
  4905. #endif
  4906. #ifdef CONFIG_SMP
  4907. /* Number of possible processor ids */
  4908. int nr_cpu_ids __read_mostly = NR_CPUS;
  4909. EXPORT_SYMBOL(nr_cpu_ids);
  4910. #ifdef CONFIG_SCHED_DEBUG
  4911. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  4912. {
  4913. struct sched_group *group = sd->groups;
  4914. cpumask_t groupmask;
  4915. char str[NR_CPUS];
  4916. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4917. cpus_clear(groupmask);
  4918. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4919. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4920. printk("does not load-balance\n");
  4921. if (sd->parent)
  4922. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4923. " has parent");
  4924. return -1;
  4925. }
  4926. printk(KERN_CONT "span %s\n", str);
  4927. if (!cpu_isset(cpu, sd->span)) {
  4928. printk(KERN_ERR "ERROR: domain->span does not contain "
  4929. "CPU%d\n", cpu);
  4930. }
  4931. if (!cpu_isset(cpu, group->cpumask)) {
  4932. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4933. " CPU%d\n", cpu);
  4934. }
  4935. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4936. do {
  4937. if (!group) {
  4938. printk("\n");
  4939. printk(KERN_ERR "ERROR: group is NULL\n");
  4940. break;
  4941. }
  4942. if (!group->__cpu_power) {
  4943. printk(KERN_CONT "\n");
  4944. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4945. "set\n");
  4946. break;
  4947. }
  4948. if (!cpus_weight(group->cpumask)) {
  4949. printk(KERN_CONT "\n");
  4950. printk(KERN_ERR "ERROR: empty group\n");
  4951. break;
  4952. }
  4953. if (cpus_intersects(groupmask, group->cpumask)) {
  4954. printk(KERN_CONT "\n");
  4955. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4956. break;
  4957. }
  4958. cpus_or(groupmask, groupmask, group->cpumask);
  4959. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4960. printk(KERN_CONT " %s", str);
  4961. group = group->next;
  4962. } while (group != sd->groups);
  4963. printk(KERN_CONT "\n");
  4964. if (!cpus_equal(sd->span, groupmask))
  4965. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4966. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  4967. printk(KERN_ERR "ERROR: parent span is not a superset "
  4968. "of domain->span\n");
  4969. return 0;
  4970. }
  4971. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4972. {
  4973. int level = 0;
  4974. if (!sd) {
  4975. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4976. return;
  4977. }
  4978. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4979. for (;;) {
  4980. if (sched_domain_debug_one(sd, cpu, level))
  4981. break;
  4982. level++;
  4983. sd = sd->parent;
  4984. if (!sd)
  4985. break;
  4986. }
  4987. }
  4988. #else
  4989. # define sched_domain_debug(sd, cpu) do { } while (0)
  4990. #endif
  4991. static int sd_degenerate(struct sched_domain *sd)
  4992. {
  4993. if (cpus_weight(sd->span) == 1)
  4994. return 1;
  4995. /* Following flags need at least 2 groups */
  4996. if (sd->flags & (SD_LOAD_BALANCE |
  4997. SD_BALANCE_NEWIDLE |
  4998. SD_BALANCE_FORK |
  4999. SD_BALANCE_EXEC |
  5000. SD_SHARE_CPUPOWER |
  5001. SD_SHARE_PKG_RESOURCES)) {
  5002. if (sd->groups != sd->groups->next)
  5003. return 0;
  5004. }
  5005. /* Following flags don't use groups */
  5006. if (sd->flags & (SD_WAKE_IDLE |
  5007. SD_WAKE_AFFINE |
  5008. SD_WAKE_BALANCE))
  5009. return 0;
  5010. return 1;
  5011. }
  5012. static int
  5013. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5014. {
  5015. unsigned long cflags = sd->flags, pflags = parent->flags;
  5016. if (sd_degenerate(parent))
  5017. return 1;
  5018. if (!cpus_equal(sd->span, parent->span))
  5019. return 0;
  5020. /* Does parent contain flags not in child? */
  5021. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5022. if (cflags & SD_WAKE_AFFINE)
  5023. pflags &= ~SD_WAKE_BALANCE;
  5024. /* Flags needing groups don't count if only 1 group in parent */
  5025. if (parent->groups == parent->groups->next) {
  5026. pflags &= ~(SD_LOAD_BALANCE |
  5027. SD_BALANCE_NEWIDLE |
  5028. SD_BALANCE_FORK |
  5029. SD_BALANCE_EXEC |
  5030. SD_SHARE_CPUPOWER |
  5031. SD_SHARE_PKG_RESOURCES);
  5032. }
  5033. if (~cflags & pflags)
  5034. return 0;
  5035. return 1;
  5036. }
  5037. /*
  5038. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5039. * hold the hotplug lock.
  5040. */
  5041. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  5042. {
  5043. struct rq *rq = cpu_rq(cpu);
  5044. struct sched_domain *tmp;
  5045. /* Remove the sched domains which do not contribute to scheduling. */
  5046. for (tmp = sd; tmp; tmp = tmp->parent) {
  5047. struct sched_domain *parent = tmp->parent;
  5048. if (!parent)
  5049. break;
  5050. if (sd_parent_degenerate(tmp, parent)) {
  5051. tmp->parent = parent->parent;
  5052. if (parent->parent)
  5053. parent->parent->child = tmp;
  5054. }
  5055. }
  5056. if (sd && sd_degenerate(sd)) {
  5057. sd = sd->parent;
  5058. if (sd)
  5059. sd->child = NULL;
  5060. }
  5061. sched_domain_debug(sd, cpu);
  5062. rcu_assign_pointer(rq->sd, sd);
  5063. }
  5064. /* cpus with isolated domains */
  5065. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5066. /* Setup the mask of cpus configured for isolated domains */
  5067. static int __init isolated_cpu_setup(char *str)
  5068. {
  5069. int ints[NR_CPUS], i;
  5070. str = get_options(str, ARRAY_SIZE(ints), ints);
  5071. cpus_clear(cpu_isolated_map);
  5072. for (i = 1; i <= ints[0]; i++)
  5073. if (ints[i] < NR_CPUS)
  5074. cpu_set(ints[i], cpu_isolated_map);
  5075. return 1;
  5076. }
  5077. __setup("isolcpus=", isolated_cpu_setup);
  5078. /*
  5079. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5080. * to a function which identifies what group(along with sched group) a CPU
  5081. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5082. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5083. *
  5084. * init_sched_build_groups will build a circular linked list of the groups
  5085. * covered by the given span, and will set each group's ->cpumask correctly,
  5086. * and ->cpu_power to 0.
  5087. */
  5088. static void
  5089. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5090. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5091. struct sched_group **sg))
  5092. {
  5093. struct sched_group *first = NULL, *last = NULL;
  5094. cpumask_t covered = CPU_MASK_NONE;
  5095. int i;
  5096. for_each_cpu_mask(i, span) {
  5097. struct sched_group *sg;
  5098. int group = group_fn(i, cpu_map, &sg);
  5099. int j;
  5100. if (cpu_isset(i, covered))
  5101. continue;
  5102. sg->cpumask = CPU_MASK_NONE;
  5103. sg->__cpu_power = 0;
  5104. for_each_cpu_mask(j, span) {
  5105. if (group_fn(j, cpu_map, NULL) != group)
  5106. continue;
  5107. cpu_set(j, covered);
  5108. cpu_set(j, sg->cpumask);
  5109. }
  5110. if (!first)
  5111. first = sg;
  5112. if (last)
  5113. last->next = sg;
  5114. last = sg;
  5115. }
  5116. last->next = first;
  5117. }
  5118. #define SD_NODES_PER_DOMAIN 16
  5119. #ifdef CONFIG_NUMA
  5120. /**
  5121. * find_next_best_node - find the next node to include in a sched_domain
  5122. * @node: node whose sched_domain we're building
  5123. * @used_nodes: nodes already in the sched_domain
  5124. *
  5125. * Find the next node to include in a given scheduling domain. Simply
  5126. * finds the closest node not already in the @used_nodes map.
  5127. *
  5128. * Should use nodemask_t.
  5129. */
  5130. static int find_next_best_node(int node, unsigned long *used_nodes)
  5131. {
  5132. int i, n, val, min_val, best_node = 0;
  5133. min_val = INT_MAX;
  5134. for (i = 0; i < MAX_NUMNODES; i++) {
  5135. /* Start at @node */
  5136. n = (node + i) % MAX_NUMNODES;
  5137. if (!nr_cpus_node(n))
  5138. continue;
  5139. /* Skip already used nodes */
  5140. if (test_bit(n, used_nodes))
  5141. continue;
  5142. /* Simple min distance search */
  5143. val = node_distance(node, n);
  5144. if (val < min_val) {
  5145. min_val = val;
  5146. best_node = n;
  5147. }
  5148. }
  5149. set_bit(best_node, used_nodes);
  5150. return best_node;
  5151. }
  5152. /**
  5153. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5154. * @node: node whose cpumask we're constructing
  5155. * @size: number of nodes to include in this span
  5156. *
  5157. * Given a node, construct a good cpumask for its sched_domain to span. It
  5158. * should be one that prevents unnecessary balancing, but also spreads tasks
  5159. * out optimally.
  5160. */
  5161. static cpumask_t sched_domain_node_span(int node)
  5162. {
  5163. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5164. cpumask_t span, nodemask;
  5165. int i;
  5166. cpus_clear(span);
  5167. bitmap_zero(used_nodes, MAX_NUMNODES);
  5168. nodemask = node_to_cpumask(node);
  5169. cpus_or(span, span, nodemask);
  5170. set_bit(node, used_nodes);
  5171. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5172. int next_node = find_next_best_node(node, used_nodes);
  5173. nodemask = node_to_cpumask(next_node);
  5174. cpus_or(span, span, nodemask);
  5175. }
  5176. return span;
  5177. }
  5178. #endif
  5179. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5180. /*
  5181. * SMT sched-domains:
  5182. */
  5183. #ifdef CONFIG_SCHED_SMT
  5184. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5185. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5186. static int
  5187. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5188. {
  5189. if (sg)
  5190. *sg = &per_cpu(sched_group_cpus, cpu);
  5191. return cpu;
  5192. }
  5193. #endif
  5194. /*
  5195. * multi-core sched-domains:
  5196. */
  5197. #ifdef CONFIG_SCHED_MC
  5198. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5199. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5200. #endif
  5201. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5202. static int
  5203. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5204. {
  5205. int group;
  5206. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5207. cpus_and(mask, mask, *cpu_map);
  5208. group = first_cpu(mask);
  5209. if (sg)
  5210. *sg = &per_cpu(sched_group_core, group);
  5211. return group;
  5212. }
  5213. #elif defined(CONFIG_SCHED_MC)
  5214. static int
  5215. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5216. {
  5217. if (sg)
  5218. *sg = &per_cpu(sched_group_core, cpu);
  5219. return cpu;
  5220. }
  5221. #endif
  5222. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5223. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5224. static int
  5225. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5226. {
  5227. int group;
  5228. #ifdef CONFIG_SCHED_MC
  5229. cpumask_t mask = cpu_coregroup_map(cpu);
  5230. cpus_and(mask, mask, *cpu_map);
  5231. group = first_cpu(mask);
  5232. #elif defined(CONFIG_SCHED_SMT)
  5233. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5234. cpus_and(mask, mask, *cpu_map);
  5235. group = first_cpu(mask);
  5236. #else
  5237. group = cpu;
  5238. #endif
  5239. if (sg)
  5240. *sg = &per_cpu(sched_group_phys, group);
  5241. return group;
  5242. }
  5243. #ifdef CONFIG_NUMA
  5244. /*
  5245. * The init_sched_build_groups can't handle what we want to do with node
  5246. * groups, so roll our own. Now each node has its own list of groups which
  5247. * gets dynamically allocated.
  5248. */
  5249. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5250. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5251. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5252. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5253. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5254. struct sched_group **sg)
  5255. {
  5256. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5257. int group;
  5258. cpus_and(nodemask, nodemask, *cpu_map);
  5259. group = first_cpu(nodemask);
  5260. if (sg)
  5261. *sg = &per_cpu(sched_group_allnodes, group);
  5262. return group;
  5263. }
  5264. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5265. {
  5266. struct sched_group *sg = group_head;
  5267. int j;
  5268. if (!sg)
  5269. return;
  5270. do {
  5271. for_each_cpu_mask(j, sg->cpumask) {
  5272. struct sched_domain *sd;
  5273. sd = &per_cpu(phys_domains, j);
  5274. if (j != first_cpu(sd->groups->cpumask)) {
  5275. /*
  5276. * Only add "power" once for each
  5277. * physical package.
  5278. */
  5279. continue;
  5280. }
  5281. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5282. }
  5283. sg = sg->next;
  5284. } while (sg != group_head);
  5285. }
  5286. #endif
  5287. #ifdef CONFIG_NUMA
  5288. /* Free memory allocated for various sched_group structures */
  5289. static void free_sched_groups(const cpumask_t *cpu_map)
  5290. {
  5291. int cpu, i;
  5292. for_each_cpu_mask(cpu, *cpu_map) {
  5293. struct sched_group **sched_group_nodes
  5294. = sched_group_nodes_bycpu[cpu];
  5295. if (!sched_group_nodes)
  5296. continue;
  5297. for (i = 0; i < MAX_NUMNODES; i++) {
  5298. cpumask_t nodemask = node_to_cpumask(i);
  5299. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5300. cpus_and(nodemask, nodemask, *cpu_map);
  5301. if (cpus_empty(nodemask))
  5302. continue;
  5303. if (sg == NULL)
  5304. continue;
  5305. sg = sg->next;
  5306. next_sg:
  5307. oldsg = sg;
  5308. sg = sg->next;
  5309. kfree(oldsg);
  5310. if (oldsg != sched_group_nodes[i])
  5311. goto next_sg;
  5312. }
  5313. kfree(sched_group_nodes);
  5314. sched_group_nodes_bycpu[cpu] = NULL;
  5315. }
  5316. }
  5317. #else
  5318. static void free_sched_groups(const cpumask_t *cpu_map)
  5319. {
  5320. }
  5321. #endif
  5322. /*
  5323. * Initialize sched groups cpu_power.
  5324. *
  5325. * cpu_power indicates the capacity of sched group, which is used while
  5326. * distributing the load between different sched groups in a sched domain.
  5327. * Typically cpu_power for all the groups in a sched domain will be same unless
  5328. * there are asymmetries in the topology. If there are asymmetries, group
  5329. * having more cpu_power will pickup more load compared to the group having
  5330. * less cpu_power.
  5331. *
  5332. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5333. * the maximum number of tasks a group can handle in the presence of other idle
  5334. * or lightly loaded groups in the same sched domain.
  5335. */
  5336. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5337. {
  5338. struct sched_domain *child;
  5339. struct sched_group *group;
  5340. WARN_ON(!sd || !sd->groups);
  5341. if (cpu != first_cpu(sd->groups->cpumask))
  5342. return;
  5343. child = sd->child;
  5344. sd->groups->__cpu_power = 0;
  5345. /*
  5346. * For perf policy, if the groups in child domain share resources
  5347. * (for example cores sharing some portions of the cache hierarchy
  5348. * or SMT), then set this domain groups cpu_power such that each group
  5349. * can handle only one task, when there are other idle groups in the
  5350. * same sched domain.
  5351. */
  5352. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5353. (child->flags &
  5354. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5355. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5356. return;
  5357. }
  5358. /*
  5359. * add cpu_power of each child group to this groups cpu_power
  5360. */
  5361. group = child->groups;
  5362. do {
  5363. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5364. group = group->next;
  5365. } while (group != child->groups);
  5366. }
  5367. /*
  5368. * Build sched domains for a given set of cpus and attach the sched domains
  5369. * to the individual cpus
  5370. */
  5371. static int build_sched_domains(const cpumask_t *cpu_map)
  5372. {
  5373. int i;
  5374. #ifdef CONFIG_NUMA
  5375. struct sched_group **sched_group_nodes = NULL;
  5376. int sd_allnodes = 0;
  5377. /*
  5378. * Allocate the per-node list of sched groups
  5379. */
  5380. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5381. GFP_KERNEL);
  5382. if (!sched_group_nodes) {
  5383. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5384. return -ENOMEM;
  5385. }
  5386. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5387. #endif
  5388. /*
  5389. * Set up domains for cpus specified by the cpu_map.
  5390. */
  5391. for_each_cpu_mask(i, *cpu_map) {
  5392. struct sched_domain *sd = NULL, *p;
  5393. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5394. cpus_and(nodemask, nodemask, *cpu_map);
  5395. #ifdef CONFIG_NUMA
  5396. if (cpus_weight(*cpu_map) >
  5397. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5398. sd = &per_cpu(allnodes_domains, i);
  5399. *sd = SD_ALLNODES_INIT;
  5400. sd->span = *cpu_map;
  5401. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5402. p = sd;
  5403. sd_allnodes = 1;
  5404. } else
  5405. p = NULL;
  5406. sd = &per_cpu(node_domains, i);
  5407. *sd = SD_NODE_INIT;
  5408. sd->span = sched_domain_node_span(cpu_to_node(i));
  5409. sd->parent = p;
  5410. if (p)
  5411. p->child = sd;
  5412. cpus_and(sd->span, sd->span, *cpu_map);
  5413. #endif
  5414. p = sd;
  5415. sd = &per_cpu(phys_domains, i);
  5416. *sd = SD_CPU_INIT;
  5417. sd->span = nodemask;
  5418. sd->parent = p;
  5419. if (p)
  5420. p->child = sd;
  5421. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5422. #ifdef CONFIG_SCHED_MC
  5423. p = sd;
  5424. sd = &per_cpu(core_domains, i);
  5425. *sd = SD_MC_INIT;
  5426. sd->span = cpu_coregroup_map(i);
  5427. cpus_and(sd->span, sd->span, *cpu_map);
  5428. sd->parent = p;
  5429. p->child = sd;
  5430. cpu_to_core_group(i, cpu_map, &sd->groups);
  5431. #endif
  5432. #ifdef CONFIG_SCHED_SMT
  5433. p = sd;
  5434. sd = &per_cpu(cpu_domains, i);
  5435. *sd = SD_SIBLING_INIT;
  5436. sd->span = per_cpu(cpu_sibling_map, i);
  5437. cpus_and(sd->span, sd->span, *cpu_map);
  5438. sd->parent = p;
  5439. p->child = sd;
  5440. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5441. #endif
  5442. }
  5443. #ifdef CONFIG_SCHED_SMT
  5444. /* Set up CPU (sibling) groups */
  5445. for_each_cpu_mask(i, *cpu_map) {
  5446. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5447. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5448. if (i != first_cpu(this_sibling_map))
  5449. continue;
  5450. init_sched_build_groups(this_sibling_map, cpu_map,
  5451. &cpu_to_cpu_group);
  5452. }
  5453. #endif
  5454. #ifdef CONFIG_SCHED_MC
  5455. /* Set up multi-core groups */
  5456. for_each_cpu_mask(i, *cpu_map) {
  5457. cpumask_t this_core_map = cpu_coregroup_map(i);
  5458. cpus_and(this_core_map, this_core_map, *cpu_map);
  5459. if (i != first_cpu(this_core_map))
  5460. continue;
  5461. init_sched_build_groups(this_core_map, cpu_map,
  5462. &cpu_to_core_group);
  5463. }
  5464. #endif
  5465. /* Set up physical groups */
  5466. for (i = 0; i < MAX_NUMNODES; i++) {
  5467. cpumask_t nodemask = node_to_cpumask(i);
  5468. cpus_and(nodemask, nodemask, *cpu_map);
  5469. if (cpus_empty(nodemask))
  5470. continue;
  5471. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5472. }
  5473. #ifdef CONFIG_NUMA
  5474. /* Set up node groups */
  5475. if (sd_allnodes)
  5476. init_sched_build_groups(*cpu_map, cpu_map,
  5477. &cpu_to_allnodes_group);
  5478. for (i = 0; i < MAX_NUMNODES; i++) {
  5479. /* Set up node groups */
  5480. struct sched_group *sg, *prev;
  5481. cpumask_t nodemask = node_to_cpumask(i);
  5482. cpumask_t domainspan;
  5483. cpumask_t covered = CPU_MASK_NONE;
  5484. int j;
  5485. cpus_and(nodemask, nodemask, *cpu_map);
  5486. if (cpus_empty(nodemask)) {
  5487. sched_group_nodes[i] = NULL;
  5488. continue;
  5489. }
  5490. domainspan = sched_domain_node_span(i);
  5491. cpus_and(domainspan, domainspan, *cpu_map);
  5492. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5493. if (!sg) {
  5494. printk(KERN_WARNING "Can not alloc domain group for "
  5495. "node %d\n", i);
  5496. goto error;
  5497. }
  5498. sched_group_nodes[i] = sg;
  5499. for_each_cpu_mask(j, nodemask) {
  5500. struct sched_domain *sd;
  5501. sd = &per_cpu(node_domains, j);
  5502. sd->groups = sg;
  5503. }
  5504. sg->__cpu_power = 0;
  5505. sg->cpumask = nodemask;
  5506. sg->next = sg;
  5507. cpus_or(covered, covered, nodemask);
  5508. prev = sg;
  5509. for (j = 0; j < MAX_NUMNODES; j++) {
  5510. cpumask_t tmp, notcovered;
  5511. int n = (i + j) % MAX_NUMNODES;
  5512. cpus_complement(notcovered, covered);
  5513. cpus_and(tmp, notcovered, *cpu_map);
  5514. cpus_and(tmp, tmp, domainspan);
  5515. if (cpus_empty(tmp))
  5516. break;
  5517. nodemask = node_to_cpumask(n);
  5518. cpus_and(tmp, tmp, nodemask);
  5519. if (cpus_empty(tmp))
  5520. continue;
  5521. sg = kmalloc_node(sizeof(struct sched_group),
  5522. GFP_KERNEL, i);
  5523. if (!sg) {
  5524. printk(KERN_WARNING
  5525. "Can not alloc domain group for node %d\n", j);
  5526. goto error;
  5527. }
  5528. sg->__cpu_power = 0;
  5529. sg->cpumask = tmp;
  5530. sg->next = prev->next;
  5531. cpus_or(covered, covered, tmp);
  5532. prev->next = sg;
  5533. prev = sg;
  5534. }
  5535. }
  5536. #endif
  5537. /* Calculate CPU power for physical packages and nodes */
  5538. #ifdef CONFIG_SCHED_SMT
  5539. for_each_cpu_mask(i, *cpu_map) {
  5540. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5541. init_sched_groups_power(i, sd);
  5542. }
  5543. #endif
  5544. #ifdef CONFIG_SCHED_MC
  5545. for_each_cpu_mask(i, *cpu_map) {
  5546. struct sched_domain *sd = &per_cpu(core_domains, i);
  5547. init_sched_groups_power(i, sd);
  5548. }
  5549. #endif
  5550. for_each_cpu_mask(i, *cpu_map) {
  5551. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5552. init_sched_groups_power(i, sd);
  5553. }
  5554. #ifdef CONFIG_NUMA
  5555. for (i = 0; i < MAX_NUMNODES; i++)
  5556. init_numa_sched_groups_power(sched_group_nodes[i]);
  5557. if (sd_allnodes) {
  5558. struct sched_group *sg;
  5559. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5560. init_numa_sched_groups_power(sg);
  5561. }
  5562. #endif
  5563. /* Attach the domains */
  5564. for_each_cpu_mask(i, *cpu_map) {
  5565. struct sched_domain *sd;
  5566. #ifdef CONFIG_SCHED_SMT
  5567. sd = &per_cpu(cpu_domains, i);
  5568. #elif defined(CONFIG_SCHED_MC)
  5569. sd = &per_cpu(core_domains, i);
  5570. #else
  5571. sd = &per_cpu(phys_domains, i);
  5572. #endif
  5573. cpu_attach_domain(sd, i);
  5574. }
  5575. return 0;
  5576. #ifdef CONFIG_NUMA
  5577. error:
  5578. free_sched_groups(cpu_map);
  5579. return -ENOMEM;
  5580. #endif
  5581. }
  5582. static cpumask_t *doms_cur; /* current sched domains */
  5583. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5584. /*
  5585. * Special case: If a kmalloc of a doms_cur partition (array of
  5586. * cpumask_t) fails, then fallback to a single sched domain,
  5587. * as determined by the single cpumask_t fallback_doms.
  5588. */
  5589. static cpumask_t fallback_doms;
  5590. /*
  5591. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5592. * For now this just excludes isolated cpus, but could be used to
  5593. * exclude other special cases in the future.
  5594. */
  5595. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5596. {
  5597. int err;
  5598. ndoms_cur = 1;
  5599. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5600. if (!doms_cur)
  5601. doms_cur = &fallback_doms;
  5602. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5603. err = build_sched_domains(doms_cur);
  5604. register_sched_domain_sysctl();
  5605. return err;
  5606. }
  5607. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5608. {
  5609. free_sched_groups(cpu_map);
  5610. }
  5611. /*
  5612. * Detach sched domains from a group of cpus specified in cpu_map
  5613. * These cpus will now be attached to the NULL domain
  5614. */
  5615. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5616. {
  5617. int i;
  5618. unregister_sched_domain_sysctl();
  5619. for_each_cpu_mask(i, *cpu_map)
  5620. cpu_attach_domain(NULL, i);
  5621. synchronize_sched();
  5622. arch_destroy_sched_domains(cpu_map);
  5623. }
  5624. /*
  5625. * Partition sched domains as specified by the 'ndoms_new'
  5626. * cpumasks in the array doms_new[] of cpumasks. This compares
  5627. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5628. * It destroys each deleted domain and builds each new domain.
  5629. *
  5630. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5631. * The masks don't intersect (don't overlap.) We should setup one
  5632. * sched domain for each mask. CPUs not in any of the cpumasks will
  5633. * not be load balanced. If the same cpumask appears both in the
  5634. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5635. * it as it is.
  5636. *
  5637. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5638. * ownership of it and will kfree it when done with it. If the caller
  5639. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5640. * and partition_sched_domains() will fallback to the single partition
  5641. * 'fallback_doms'.
  5642. *
  5643. * Call with hotplug lock held
  5644. */
  5645. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5646. {
  5647. int i, j;
  5648. lock_doms_cur();
  5649. /* always unregister in case we don't destroy any domains */
  5650. unregister_sched_domain_sysctl();
  5651. if (doms_new == NULL) {
  5652. ndoms_new = 1;
  5653. doms_new = &fallback_doms;
  5654. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5655. }
  5656. /* Destroy deleted domains */
  5657. for (i = 0; i < ndoms_cur; i++) {
  5658. for (j = 0; j < ndoms_new; j++) {
  5659. if (cpus_equal(doms_cur[i], doms_new[j]))
  5660. goto match1;
  5661. }
  5662. /* no match - a current sched domain not in new doms_new[] */
  5663. detach_destroy_domains(doms_cur + i);
  5664. match1:
  5665. ;
  5666. }
  5667. /* Build new domains */
  5668. for (i = 0; i < ndoms_new; i++) {
  5669. for (j = 0; j < ndoms_cur; j++) {
  5670. if (cpus_equal(doms_new[i], doms_cur[j]))
  5671. goto match2;
  5672. }
  5673. /* no match - add a new doms_new */
  5674. build_sched_domains(doms_new + i);
  5675. match2:
  5676. ;
  5677. }
  5678. /* Remember the new sched domains */
  5679. if (doms_cur != &fallback_doms)
  5680. kfree(doms_cur);
  5681. doms_cur = doms_new;
  5682. ndoms_cur = ndoms_new;
  5683. register_sched_domain_sysctl();
  5684. unlock_doms_cur();
  5685. }
  5686. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5687. static int arch_reinit_sched_domains(void)
  5688. {
  5689. int err;
  5690. mutex_lock(&sched_hotcpu_mutex);
  5691. detach_destroy_domains(&cpu_online_map);
  5692. err = arch_init_sched_domains(&cpu_online_map);
  5693. mutex_unlock(&sched_hotcpu_mutex);
  5694. return err;
  5695. }
  5696. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5697. {
  5698. int ret;
  5699. if (buf[0] != '0' && buf[0] != '1')
  5700. return -EINVAL;
  5701. if (smt)
  5702. sched_smt_power_savings = (buf[0] == '1');
  5703. else
  5704. sched_mc_power_savings = (buf[0] == '1');
  5705. ret = arch_reinit_sched_domains();
  5706. return ret ? ret : count;
  5707. }
  5708. #ifdef CONFIG_SCHED_MC
  5709. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5710. {
  5711. return sprintf(page, "%u\n", sched_mc_power_savings);
  5712. }
  5713. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5714. const char *buf, size_t count)
  5715. {
  5716. return sched_power_savings_store(buf, count, 0);
  5717. }
  5718. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5719. sched_mc_power_savings_store);
  5720. #endif
  5721. #ifdef CONFIG_SCHED_SMT
  5722. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5723. {
  5724. return sprintf(page, "%u\n", sched_smt_power_savings);
  5725. }
  5726. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5727. const char *buf, size_t count)
  5728. {
  5729. return sched_power_savings_store(buf, count, 1);
  5730. }
  5731. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5732. sched_smt_power_savings_store);
  5733. #endif
  5734. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5735. {
  5736. int err = 0;
  5737. #ifdef CONFIG_SCHED_SMT
  5738. if (smt_capable())
  5739. err = sysfs_create_file(&cls->kset.kobj,
  5740. &attr_sched_smt_power_savings.attr);
  5741. #endif
  5742. #ifdef CONFIG_SCHED_MC
  5743. if (!err && mc_capable())
  5744. err = sysfs_create_file(&cls->kset.kobj,
  5745. &attr_sched_mc_power_savings.attr);
  5746. #endif
  5747. return err;
  5748. }
  5749. #endif
  5750. /*
  5751. * Force a reinitialization of the sched domains hierarchy. The domains
  5752. * and groups cannot be updated in place without racing with the balancing
  5753. * code, so we temporarily attach all running cpus to the NULL domain
  5754. * which will prevent rebalancing while the sched domains are recalculated.
  5755. */
  5756. static int update_sched_domains(struct notifier_block *nfb,
  5757. unsigned long action, void *hcpu)
  5758. {
  5759. switch (action) {
  5760. case CPU_UP_PREPARE:
  5761. case CPU_UP_PREPARE_FROZEN:
  5762. case CPU_DOWN_PREPARE:
  5763. case CPU_DOWN_PREPARE_FROZEN:
  5764. detach_destroy_domains(&cpu_online_map);
  5765. return NOTIFY_OK;
  5766. case CPU_UP_CANCELED:
  5767. case CPU_UP_CANCELED_FROZEN:
  5768. case CPU_DOWN_FAILED:
  5769. case CPU_DOWN_FAILED_FROZEN:
  5770. case CPU_ONLINE:
  5771. case CPU_ONLINE_FROZEN:
  5772. case CPU_DEAD:
  5773. case CPU_DEAD_FROZEN:
  5774. /*
  5775. * Fall through and re-initialise the domains.
  5776. */
  5777. break;
  5778. default:
  5779. return NOTIFY_DONE;
  5780. }
  5781. /* The hotplug lock is already held by cpu_up/cpu_down */
  5782. arch_init_sched_domains(&cpu_online_map);
  5783. return NOTIFY_OK;
  5784. }
  5785. void __init sched_init_smp(void)
  5786. {
  5787. cpumask_t non_isolated_cpus;
  5788. mutex_lock(&sched_hotcpu_mutex);
  5789. arch_init_sched_domains(&cpu_online_map);
  5790. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5791. if (cpus_empty(non_isolated_cpus))
  5792. cpu_set(smp_processor_id(), non_isolated_cpus);
  5793. mutex_unlock(&sched_hotcpu_mutex);
  5794. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5795. hotcpu_notifier(update_sched_domains, 0);
  5796. /* Move init over to a non-isolated CPU */
  5797. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5798. BUG();
  5799. sched_init_granularity();
  5800. }
  5801. #else
  5802. void __init sched_init_smp(void)
  5803. {
  5804. sched_init_granularity();
  5805. }
  5806. #endif /* CONFIG_SMP */
  5807. int in_sched_functions(unsigned long addr)
  5808. {
  5809. return in_lock_functions(addr) ||
  5810. (addr >= (unsigned long)__sched_text_start
  5811. && addr < (unsigned long)__sched_text_end);
  5812. }
  5813. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5814. {
  5815. cfs_rq->tasks_timeline = RB_ROOT;
  5816. #ifdef CONFIG_FAIR_GROUP_SCHED
  5817. cfs_rq->rq = rq;
  5818. #endif
  5819. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5820. }
  5821. void __init sched_init(void)
  5822. {
  5823. int highest_cpu = 0;
  5824. int i, j;
  5825. for_each_possible_cpu(i) {
  5826. struct rt_prio_array *array;
  5827. struct rq *rq;
  5828. rq = cpu_rq(i);
  5829. spin_lock_init(&rq->lock);
  5830. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5831. rq->nr_running = 0;
  5832. rq->clock = 1;
  5833. init_cfs_rq(&rq->cfs, rq);
  5834. #ifdef CONFIG_FAIR_GROUP_SCHED
  5835. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5836. {
  5837. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5838. struct sched_entity *se =
  5839. &per_cpu(init_sched_entity, i);
  5840. init_cfs_rq_p[i] = cfs_rq;
  5841. init_cfs_rq(cfs_rq, rq);
  5842. cfs_rq->tg = &init_task_group;
  5843. list_add(&cfs_rq->leaf_cfs_rq_list,
  5844. &rq->leaf_cfs_rq_list);
  5845. init_sched_entity_p[i] = se;
  5846. se->cfs_rq = &rq->cfs;
  5847. se->my_q = cfs_rq;
  5848. se->load.weight = init_task_group_load;
  5849. se->load.inv_weight =
  5850. div64_64(1ULL<<32, init_task_group_load);
  5851. se->parent = NULL;
  5852. }
  5853. init_task_group.shares = init_task_group_load;
  5854. #endif
  5855. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5856. rq->cpu_load[j] = 0;
  5857. #ifdef CONFIG_SMP
  5858. rq->sd = NULL;
  5859. rq->active_balance = 0;
  5860. rq->next_balance = jiffies;
  5861. rq->push_cpu = 0;
  5862. rq->cpu = i;
  5863. rq->migration_thread = NULL;
  5864. INIT_LIST_HEAD(&rq->migration_queue);
  5865. #endif
  5866. atomic_set(&rq->nr_iowait, 0);
  5867. array = &rq->rt.active;
  5868. for (j = 0; j < MAX_RT_PRIO; j++) {
  5869. INIT_LIST_HEAD(array->queue + j);
  5870. __clear_bit(j, array->bitmap);
  5871. }
  5872. highest_cpu = i;
  5873. /* delimiter for bitsearch: */
  5874. __set_bit(MAX_RT_PRIO, array->bitmap);
  5875. }
  5876. set_load_weight(&init_task);
  5877. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5878. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5879. #endif
  5880. #ifdef CONFIG_SMP
  5881. nr_cpu_ids = highest_cpu + 1;
  5882. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5883. #endif
  5884. #ifdef CONFIG_RT_MUTEXES
  5885. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5886. #endif
  5887. /*
  5888. * The boot idle thread does lazy MMU switching as well:
  5889. */
  5890. atomic_inc(&init_mm.mm_count);
  5891. enter_lazy_tlb(&init_mm, current);
  5892. /*
  5893. * Make us the idle thread. Technically, schedule() should not be
  5894. * called from this thread, however somewhere below it might be,
  5895. * but because we are the idle thread, we just pick up running again
  5896. * when this runqueue becomes "idle".
  5897. */
  5898. init_idle(current, smp_processor_id());
  5899. /*
  5900. * During early bootup we pretend to be a normal task:
  5901. */
  5902. current->sched_class = &fair_sched_class;
  5903. }
  5904. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5905. void __might_sleep(char *file, int line)
  5906. {
  5907. #ifdef in_atomic
  5908. static unsigned long prev_jiffy; /* ratelimiting */
  5909. if ((in_atomic() || irqs_disabled()) &&
  5910. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5911. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5912. return;
  5913. prev_jiffy = jiffies;
  5914. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5915. " context at %s:%d\n", file, line);
  5916. printk("in_atomic():%d, irqs_disabled():%d\n",
  5917. in_atomic(), irqs_disabled());
  5918. debug_show_held_locks(current);
  5919. if (irqs_disabled())
  5920. print_irqtrace_events(current);
  5921. dump_stack();
  5922. }
  5923. #endif
  5924. }
  5925. EXPORT_SYMBOL(__might_sleep);
  5926. #endif
  5927. #ifdef CONFIG_MAGIC_SYSRQ
  5928. static void normalize_task(struct rq *rq, struct task_struct *p)
  5929. {
  5930. int on_rq;
  5931. update_rq_clock(rq);
  5932. on_rq = p->se.on_rq;
  5933. if (on_rq)
  5934. deactivate_task(rq, p, 0);
  5935. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5936. if (on_rq) {
  5937. activate_task(rq, p, 0);
  5938. resched_task(rq->curr);
  5939. }
  5940. }
  5941. void normalize_rt_tasks(void)
  5942. {
  5943. struct task_struct *g, *p;
  5944. unsigned long flags;
  5945. struct rq *rq;
  5946. read_lock_irq(&tasklist_lock);
  5947. do_each_thread(g, p) {
  5948. /*
  5949. * Only normalize user tasks:
  5950. */
  5951. if (!p->mm)
  5952. continue;
  5953. p->se.exec_start = 0;
  5954. #ifdef CONFIG_SCHEDSTATS
  5955. p->se.wait_start = 0;
  5956. p->se.sleep_start = 0;
  5957. p->se.block_start = 0;
  5958. #endif
  5959. task_rq(p)->clock = 0;
  5960. if (!rt_task(p)) {
  5961. /*
  5962. * Renice negative nice level userspace
  5963. * tasks back to 0:
  5964. */
  5965. if (TASK_NICE(p) < 0 && p->mm)
  5966. set_user_nice(p, 0);
  5967. continue;
  5968. }
  5969. spin_lock_irqsave(&p->pi_lock, flags);
  5970. rq = __task_rq_lock(p);
  5971. normalize_task(rq, p);
  5972. __task_rq_unlock(rq);
  5973. spin_unlock_irqrestore(&p->pi_lock, flags);
  5974. } while_each_thread(g, p);
  5975. read_unlock_irq(&tasklist_lock);
  5976. }
  5977. #endif /* CONFIG_MAGIC_SYSRQ */
  5978. #ifdef CONFIG_IA64
  5979. /*
  5980. * These functions are only useful for the IA64 MCA handling.
  5981. *
  5982. * They can only be called when the whole system has been
  5983. * stopped - every CPU needs to be quiescent, and no scheduling
  5984. * activity can take place. Using them for anything else would
  5985. * be a serious bug, and as a result, they aren't even visible
  5986. * under any other configuration.
  5987. */
  5988. /**
  5989. * curr_task - return the current task for a given cpu.
  5990. * @cpu: the processor in question.
  5991. *
  5992. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5993. */
  5994. struct task_struct *curr_task(int cpu)
  5995. {
  5996. return cpu_curr(cpu);
  5997. }
  5998. /**
  5999. * set_curr_task - set the current task for a given cpu.
  6000. * @cpu: the processor in question.
  6001. * @p: the task pointer to set.
  6002. *
  6003. * Description: This function must only be used when non-maskable interrupts
  6004. * are serviced on a separate stack. It allows the architecture to switch the
  6005. * notion of the current task on a cpu in a non-blocking manner. This function
  6006. * must be called with all CPU's synchronized, and interrupts disabled, the
  6007. * and caller must save the original value of the current task (see
  6008. * curr_task() above) and restore that value before reenabling interrupts and
  6009. * re-starting the system.
  6010. *
  6011. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6012. */
  6013. void set_curr_task(int cpu, struct task_struct *p)
  6014. {
  6015. cpu_curr(cpu) = p;
  6016. }
  6017. #endif
  6018. #ifdef CONFIG_FAIR_GROUP_SCHED
  6019. /* allocate runqueue etc for a new task group */
  6020. struct task_group *sched_create_group(void)
  6021. {
  6022. struct task_group *tg;
  6023. struct cfs_rq *cfs_rq;
  6024. struct sched_entity *se;
  6025. struct rq *rq;
  6026. int i;
  6027. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6028. if (!tg)
  6029. return ERR_PTR(-ENOMEM);
  6030. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6031. if (!tg->cfs_rq)
  6032. goto err;
  6033. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6034. if (!tg->se)
  6035. goto err;
  6036. for_each_possible_cpu(i) {
  6037. rq = cpu_rq(i);
  6038. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  6039. cpu_to_node(i));
  6040. if (!cfs_rq)
  6041. goto err;
  6042. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  6043. cpu_to_node(i));
  6044. if (!se)
  6045. goto err;
  6046. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  6047. memset(se, 0, sizeof(struct sched_entity));
  6048. tg->cfs_rq[i] = cfs_rq;
  6049. init_cfs_rq(cfs_rq, rq);
  6050. cfs_rq->tg = tg;
  6051. tg->se[i] = se;
  6052. se->cfs_rq = &rq->cfs;
  6053. se->my_q = cfs_rq;
  6054. se->load.weight = NICE_0_LOAD;
  6055. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  6056. se->parent = NULL;
  6057. }
  6058. tg->shares = NICE_0_LOAD;
  6059. lock_task_group_list();
  6060. for_each_possible_cpu(i) {
  6061. rq = cpu_rq(i);
  6062. cfs_rq = tg->cfs_rq[i];
  6063. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6064. }
  6065. unlock_task_group_list();
  6066. return tg;
  6067. err:
  6068. for_each_possible_cpu(i) {
  6069. if (tg->cfs_rq)
  6070. kfree(tg->cfs_rq[i]);
  6071. if (tg->se)
  6072. kfree(tg->se[i]);
  6073. }
  6074. kfree(tg->cfs_rq);
  6075. kfree(tg->se);
  6076. kfree(tg);
  6077. return ERR_PTR(-ENOMEM);
  6078. }
  6079. /* rcu callback to free various structures associated with a task group */
  6080. static void free_sched_group(struct rcu_head *rhp)
  6081. {
  6082. struct task_group *tg = container_of(rhp, struct task_group, rcu);
  6083. struct cfs_rq *cfs_rq;
  6084. struct sched_entity *se;
  6085. int i;
  6086. /* now it should be safe to free those cfs_rqs */
  6087. for_each_possible_cpu(i) {
  6088. cfs_rq = tg->cfs_rq[i];
  6089. kfree(cfs_rq);
  6090. se = tg->se[i];
  6091. kfree(se);
  6092. }
  6093. kfree(tg->cfs_rq);
  6094. kfree(tg->se);
  6095. kfree(tg);
  6096. }
  6097. /* Destroy runqueue etc associated with a task group */
  6098. void sched_destroy_group(struct task_group *tg)
  6099. {
  6100. struct cfs_rq *cfs_rq = NULL;
  6101. int i;
  6102. lock_task_group_list();
  6103. for_each_possible_cpu(i) {
  6104. cfs_rq = tg->cfs_rq[i];
  6105. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6106. }
  6107. unlock_task_group_list();
  6108. BUG_ON(!cfs_rq);
  6109. /* wait for possible concurrent references to cfs_rqs complete */
  6110. call_rcu(&tg->rcu, free_sched_group);
  6111. }
  6112. /* change task's runqueue when it moves between groups.
  6113. * The caller of this function should have put the task in its new group
  6114. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6115. * reflect its new group.
  6116. */
  6117. void sched_move_task(struct task_struct *tsk)
  6118. {
  6119. int on_rq, running;
  6120. unsigned long flags;
  6121. struct rq *rq;
  6122. rq = task_rq_lock(tsk, &flags);
  6123. if (tsk->sched_class != &fair_sched_class) {
  6124. set_task_cfs_rq(tsk, task_cpu(tsk));
  6125. goto done;
  6126. }
  6127. update_rq_clock(rq);
  6128. running = task_current(rq, tsk);
  6129. on_rq = tsk->se.on_rq;
  6130. if (on_rq) {
  6131. dequeue_task(rq, tsk, 0);
  6132. if (unlikely(running))
  6133. tsk->sched_class->put_prev_task(rq, tsk);
  6134. }
  6135. set_task_cfs_rq(tsk, task_cpu(tsk));
  6136. if (on_rq) {
  6137. if (unlikely(running))
  6138. tsk->sched_class->set_curr_task(rq);
  6139. enqueue_task(rq, tsk, 0);
  6140. }
  6141. done:
  6142. task_rq_unlock(rq, &flags);
  6143. }
  6144. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6145. {
  6146. struct cfs_rq *cfs_rq = se->cfs_rq;
  6147. struct rq *rq = cfs_rq->rq;
  6148. int on_rq;
  6149. spin_lock_irq(&rq->lock);
  6150. on_rq = se->on_rq;
  6151. if (on_rq)
  6152. dequeue_entity(cfs_rq, se, 0);
  6153. se->load.weight = shares;
  6154. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6155. if (on_rq)
  6156. enqueue_entity(cfs_rq, se, 0);
  6157. spin_unlock_irq(&rq->lock);
  6158. }
  6159. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6160. {
  6161. int i;
  6162. /*
  6163. * A weight of 0 or 1 can cause arithmetics problems.
  6164. * (The default weight is 1024 - so there's no practical
  6165. * limitation from this.)
  6166. */
  6167. if (shares < 2)
  6168. shares = 2;
  6169. lock_task_group_list();
  6170. if (tg->shares == shares)
  6171. goto done;
  6172. tg->shares = shares;
  6173. for_each_possible_cpu(i)
  6174. set_se_shares(tg->se[i], shares);
  6175. done:
  6176. unlock_task_group_list();
  6177. return 0;
  6178. }
  6179. unsigned long sched_group_shares(struct task_group *tg)
  6180. {
  6181. return tg->shares;
  6182. }
  6183. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6184. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6185. /* return corresponding task_group object of a cgroup */
  6186. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6187. {
  6188. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6189. struct task_group, css);
  6190. }
  6191. static struct cgroup_subsys_state *
  6192. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6193. {
  6194. struct task_group *tg;
  6195. if (!cgrp->parent) {
  6196. /* This is early initialization for the top cgroup */
  6197. init_task_group.css.cgroup = cgrp;
  6198. return &init_task_group.css;
  6199. }
  6200. /* we support only 1-level deep hierarchical scheduler atm */
  6201. if (cgrp->parent->parent)
  6202. return ERR_PTR(-EINVAL);
  6203. tg = sched_create_group();
  6204. if (IS_ERR(tg))
  6205. return ERR_PTR(-ENOMEM);
  6206. /* Bind the cgroup to task_group object we just created */
  6207. tg->css.cgroup = cgrp;
  6208. return &tg->css;
  6209. }
  6210. static void
  6211. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6212. {
  6213. struct task_group *tg = cgroup_tg(cgrp);
  6214. sched_destroy_group(tg);
  6215. }
  6216. static int
  6217. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6218. struct task_struct *tsk)
  6219. {
  6220. /* We don't support RT-tasks being in separate groups */
  6221. if (tsk->sched_class != &fair_sched_class)
  6222. return -EINVAL;
  6223. return 0;
  6224. }
  6225. static void
  6226. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6227. struct cgroup *old_cont, struct task_struct *tsk)
  6228. {
  6229. sched_move_task(tsk);
  6230. }
  6231. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6232. u64 shareval)
  6233. {
  6234. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6235. }
  6236. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6237. {
  6238. struct task_group *tg = cgroup_tg(cgrp);
  6239. return (u64) tg->shares;
  6240. }
  6241. static struct cftype cpu_files[] = {
  6242. {
  6243. .name = "shares",
  6244. .read_uint = cpu_shares_read_uint,
  6245. .write_uint = cpu_shares_write_uint,
  6246. },
  6247. };
  6248. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6249. {
  6250. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6251. }
  6252. struct cgroup_subsys cpu_cgroup_subsys = {
  6253. .name = "cpu",
  6254. .create = cpu_cgroup_create,
  6255. .destroy = cpu_cgroup_destroy,
  6256. .can_attach = cpu_cgroup_can_attach,
  6257. .attach = cpu_cgroup_attach,
  6258. .populate = cpu_cgroup_populate,
  6259. .subsys_id = cpu_cgroup_subsys_id,
  6260. .early_init = 1,
  6261. };
  6262. #endif /* CONFIG_FAIR_CGROUP_SCHED */
  6263. #ifdef CONFIG_CGROUP_CPUACCT
  6264. /*
  6265. * CPU accounting code for task groups.
  6266. *
  6267. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6268. * (balbir@in.ibm.com).
  6269. */
  6270. /* track cpu usage of a group of tasks */
  6271. struct cpuacct {
  6272. struct cgroup_subsys_state css;
  6273. /* cpuusage holds pointer to a u64-type object on every cpu */
  6274. u64 *cpuusage;
  6275. };
  6276. struct cgroup_subsys cpuacct_subsys;
  6277. /* return cpu accounting group corresponding to this container */
  6278. static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
  6279. {
  6280. return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
  6281. struct cpuacct, css);
  6282. }
  6283. /* return cpu accounting group to which this task belongs */
  6284. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  6285. {
  6286. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  6287. struct cpuacct, css);
  6288. }
  6289. /* create a new cpu accounting group */
  6290. static struct cgroup_subsys_state *cpuacct_create(
  6291. struct cgroup_subsys *ss, struct cgroup *cont)
  6292. {
  6293. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6294. if (!ca)
  6295. return ERR_PTR(-ENOMEM);
  6296. ca->cpuusage = alloc_percpu(u64);
  6297. if (!ca->cpuusage) {
  6298. kfree(ca);
  6299. return ERR_PTR(-ENOMEM);
  6300. }
  6301. return &ca->css;
  6302. }
  6303. /* destroy an existing cpu accounting group */
  6304. static void
  6305. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  6306. {
  6307. struct cpuacct *ca = cgroup_ca(cont);
  6308. free_percpu(ca->cpuusage);
  6309. kfree(ca);
  6310. }
  6311. /* return total cpu usage (in nanoseconds) of a group */
  6312. static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
  6313. {
  6314. struct cpuacct *ca = cgroup_ca(cont);
  6315. u64 totalcpuusage = 0;
  6316. int i;
  6317. for_each_possible_cpu(i) {
  6318. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  6319. /*
  6320. * Take rq->lock to make 64-bit addition safe on 32-bit
  6321. * platforms.
  6322. */
  6323. spin_lock_irq(&cpu_rq(i)->lock);
  6324. totalcpuusage += *cpuusage;
  6325. spin_unlock_irq(&cpu_rq(i)->lock);
  6326. }
  6327. return totalcpuusage;
  6328. }
  6329. static struct cftype files[] = {
  6330. {
  6331. .name = "usage",
  6332. .read_uint = cpuusage_read,
  6333. },
  6334. };
  6335. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6336. {
  6337. return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  6338. }
  6339. /*
  6340. * charge this task's execution time to its accounting group.
  6341. *
  6342. * called with rq->lock held.
  6343. */
  6344. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6345. {
  6346. struct cpuacct *ca;
  6347. if (!cpuacct_subsys.active)
  6348. return;
  6349. ca = task_ca(tsk);
  6350. if (ca) {
  6351. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  6352. *cpuusage += cputime;
  6353. }
  6354. }
  6355. struct cgroup_subsys cpuacct_subsys = {
  6356. .name = "cpuacct",
  6357. .create = cpuacct_create,
  6358. .destroy = cpuacct_destroy,
  6359. .populate = cpuacct_populate,
  6360. .subsys_id = cpuacct_subsys_id,
  6361. };
  6362. #endif /* CONFIG_CGROUP_CPUACCT */