md.c 151 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/kernel.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/buffer_head.h> /* for invalidate_bdev */
  34. #include <linux/poll.h>
  35. #include <linux/mutex.h>
  36. #include <linux/ctype.h>
  37. #include <linux/freezer.h>
  38. #include <linux/init.h>
  39. #include <linux/file.h>
  40. #ifdef CONFIG_KMOD
  41. #include <linux/kmod.h>
  42. #endif
  43. #include <asm/unaligned.h>
  44. #define MAJOR_NR MD_MAJOR
  45. #define MD_DRIVER
  46. /* 63 partitions with the alternate major number (mdp) */
  47. #define MdpMinorShift 6
  48. #define DEBUG 0
  49. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  50. #ifndef MODULE
  51. static void autostart_arrays (int part);
  52. #endif
  53. static LIST_HEAD(pers_list);
  54. static DEFINE_SPINLOCK(pers_lock);
  55. static void md_print_devices(void);
  56. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  57. /*
  58. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  59. * is 1000 KB/sec, so the extra system load does not show up that much.
  60. * Increase it if you want to have more _guaranteed_ speed. Note that
  61. * the RAID driver will use the maximum available bandwidth if the IO
  62. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  63. * speed limit - in case reconstruction slows down your system despite
  64. * idle IO detection.
  65. *
  66. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  67. * or /sys/block/mdX/md/sync_speed_{min,max}
  68. */
  69. static int sysctl_speed_limit_min = 1000;
  70. static int sysctl_speed_limit_max = 200000;
  71. static inline int speed_min(mddev_t *mddev)
  72. {
  73. return mddev->sync_speed_min ?
  74. mddev->sync_speed_min : sysctl_speed_limit_min;
  75. }
  76. static inline int speed_max(mddev_t *mddev)
  77. {
  78. return mddev->sync_speed_max ?
  79. mddev->sync_speed_max : sysctl_speed_limit_max;
  80. }
  81. static struct ctl_table_header *raid_table_header;
  82. static ctl_table raid_table[] = {
  83. {
  84. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  85. .procname = "speed_limit_min",
  86. .data = &sysctl_speed_limit_min,
  87. .maxlen = sizeof(int),
  88. .mode = S_IRUGO|S_IWUSR,
  89. .proc_handler = &proc_dointvec,
  90. },
  91. {
  92. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  93. .procname = "speed_limit_max",
  94. .data = &sysctl_speed_limit_max,
  95. .maxlen = sizeof(int),
  96. .mode = S_IRUGO|S_IWUSR,
  97. .proc_handler = &proc_dointvec,
  98. },
  99. { .ctl_name = 0 }
  100. };
  101. static ctl_table raid_dir_table[] = {
  102. {
  103. .ctl_name = DEV_RAID,
  104. .procname = "raid",
  105. .maxlen = 0,
  106. .mode = S_IRUGO|S_IXUGO,
  107. .child = raid_table,
  108. },
  109. { .ctl_name = 0 }
  110. };
  111. static ctl_table raid_root_table[] = {
  112. {
  113. .ctl_name = CTL_DEV,
  114. .procname = "dev",
  115. .maxlen = 0,
  116. .mode = 0555,
  117. .child = raid_dir_table,
  118. },
  119. { .ctl_name = 0 }
  120. };
  121. static struct block_device_operations md_fops;
  122. static int start_readonly;
  123. /*
  124. * We have a system wide 'event count' that is incremented
  125. * on any 'interesting' event, and readers of /proc/mdstat
  126. * can use 'poll' or 'select' to find out when the event
  127. * count increases.
  128. *
  129. * Events are:
  130. * start array, stop array, error, add device, remove device,
  131. * start build, activate spare
  132. */
  133. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  134. static atomic_t md_event_count;
  135. void md_new_event(mddev_t *mddev)
  136. {
  137. atomic_inc(&md_event_count);
  138. wake_up(&md_event_waiters);
  139. sysfs_notify(&mddev->kobj, NULL, "sync_action");
  140. }
  141. EXPORT_SYMBOL_GPL(md_new_event);
  142. /* Alternate version that can be called from interrupts
  143. * when calling sysfs_notify isn't needed.
  144. */
  145. static void md_new_event_inintr(mddev_t *mddev)
  146. {
  147. atomic_inc(&md_event_count);
  148. wake_up(&md_event_waiters);
  149. }
  150. /*
  151. * Enables to iterate over all existing md arrays
  152. * all_mddevs_lock protects this list.
  153. */
  154. static LIST_HEAD(all_mddevs);
  155. static DEFINE_SPINLOCK(all_mddevs_lock);
  156. /*
  157. * iterates through all used mddevs in the system.
  158. * We take care to grab the all_mddevs_lock whenever navigating
  159. * the list, and to always hold a refcount when unlocked.
  160. * Any code which breaks out of this loop while own
  161. * a reference to the current mddev and must mddev_put it.
  162. */
  163. #define ITERATE_MDDEV(mddev,tmp) \
  164. \
  165. for (({ spin_lock(&all_mddevs_lock); \
  166. tmp = all_mddevs.next; \
  167. mddev = NULL;}); \
  168. ({ if (tmp != &all_mddevs) \
  169. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  170. spin_unlock(&all_mddevs_lock); \
  171. if (mddev) mddev_put(mddev); \
  172. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  173. tmp != &all_mddevs;}); \
  174. ({ spin_lock(&all_mddevs_lock); \
  175. tmp = tmp->next;}) \
  176. )
  177. static int md_fail_request (struct request_queue *q, struct bio *bio)
  178. {
  179. bio_io_error(bio);
  180. return 0;
  181. }
  182. static inline mddev_t *mddev_get(mddev_t *mddev)
  183. {
  184. atomic_inc(&mddev->active);
  185. return mddev;
  186. }
  187. static void mddev_put(mddev_t *mddev)
  188. {
  189. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  190. return;
  191. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  192. list_del(&mddev->all_mddevs);
  193. spin_unlock(&all_mddevs_lock);
  194. blk_cleanup_queue(mddev->queue);
  195. kobject_put(&mddev->kobj);
  196. } else
  197. spin_unlock(&all_mddevs_lock);
  198. }
  199. static mddev_t * mddev_find(dev_t unit)
  200. {
  201. mddev_t *mddev, *new = NULL;
  202. retry:
  203. spin_lock(&all_mddevs_lock);
  204. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  205. if (mddev->unit == unit) {
  206. mddev_get(mddev);
  207. spin_unlock(&all_mddevs_lock);
  208. kfree(new);
  209. return mddev;
  210. }
  211. if (new) {
  212. list_add(&new->all_mddevs, &all_mddevs);
  213. spin_unlock(&all_mddevs_lock);
  214. return new;
  215. }
  216. spin_unlock(&all_mddevs_lock);
  217. new = kzalloc(sizeof(*new), GFP_KERNEL);
  218. if (!new)
  219. return NULL;
  220. new->unit = unit;
  221. if (MAJOR(unit) == MD_MAJOR)
  222. new->md_minor = MINOR(unit);
  223. else
  224. new->md_minor = MINOR(unit) >> MdpMinorShift;
  225. mutex_init(&new->reconfig_mutex);
  226. INIT_LIST_HEAD(&new->disks);
  227. INIT_LIST_HEAD(&new->all_mddevs);
  228. init_timer(&new->safemode_timer);
  229. atomic_set(&new->active, 1);
  230. spin_lock_init(&new->write_lock);
  231. init_waitqueue_head(&new->sb_wait);
  232. new->reshape_position = MaxSector;
  233. new->resync_max = MaxSector;
  234. new->queue = blk_alloc_queue(GFP_KERNEL);
  235. if (!new->queue) {
  236. kfree(new);
  237. return NULL;
  238. }
  239. set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
  240. blk_queue_make_request(new->queue, md_fail_request);
  241. goto retry;
  242. }
  243. static inline int mddev_lock(mddev_t * mddev)
  244. {
  245. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  246. }
  247. static inline int mddev_trylock(mddev_t * mddev)
  248. {
  249. return mutex_trylock(&mddev->reconfig_mutex);
  250. }
  251. static inline void mddev_unlock(mddev_t * mddev)
  252. {
  253. mutex_unlock(&mddev->reconfig_mutex);
  254. md_wakeup_thread(mddev->thread);
  255. }
  256. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  257. {
  258. mdk_rdev_t * rdev;
  259. struct list_head *tmp;
  260. ITERATE_RDEV(mddev,rdev,tmp) {
  261. if (rdev->desc_nr == nr)
  262. return rdev;
  263. }
  264. return NULL;
  265. }
  266. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  267. {
  268. struct list_head *tmp;
  269. mdk_rdev_t *rdev;
  270. ITERATE_RDEV(mddev,rdev,tmp) {
  271. if (rdev->bdev->bd_dev == dev)
  272. return rdev;
  273. }
  274. return NULL;
  275. }
  276. static struct mdk_personality *find_pers(int level, char *clevel)
  277. {
  278. struct mdk_personality *pers;
  279. list_for_each_entry(pers, &pers_list, list) {
  280. if (level != LEVEL_NONE && pers->level == level)
  281. return pers;
  282. if (strcmp(pers->name, clevel)==0)
  283. return pers;
  284. }
  285. return NULL;
  286. }
  287. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  288. {
  289. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  290. return MD_NEW_SIZE_BLOCKS(size);
  291. }
  292. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  293. {
  294. sector_t size;
  295. size = rdev->sb_offset;
  296. if (chunk_size)
  297. size &= ~((sector_t)chunk_size/1024 - 1);
  298. return size;
  299. }
  300. static int alloc_disk_sb(mdk_rdev_t * rdev)
  301. {
  302. if (rdev->sb_page)
  303. MD_BUG();
  304. rdev->sb_page = alloc_page(GFP_KERNEL);
  305. if (!rdev->sb_page) {
  306. printk(KERN_ALERT "md: out of memory.\n");
  307. return -EINVAL;
  308. }
  309. return 0;
  310. }
  311. static void free_disk_sb(mdk_rdev_t * rdev)
  312. {
  313. if (rdev->sb_page) {
  314. put_page(rdev->sb_page);
  315. rdev->sb_loaded = 0;
  316. rdev->sb_page = NULL;
  317. rdev->sb_offset = 0;
  318. rdev->size = 0;
  319. }
  320. }
  321. static void super_written(struct bio *bio, int error)
  322. {
  323. mdk_rdev_t *rdev = bio->bi_private;
  324. mddev_t *mddev = rdev->mddev;
  325. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  326. printk("md: super_written gets error=%d, uptodate=%d\n",
  327. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  328. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  329. md_error(mddev, rdev);
  330. }
  331. if (atomic_dec_and_test(&mddev->pending_writes))
  332. wake_up(&mddev->sb_wait);
  333. bio_put(bio);
  334. }
  335. static void super_written_barrier(struct bio *bio, int error)
  336. {
  337. struct bio *bio2 = bio->bi_private;
  338. mdk_rdev_t *rdev = bio2->bi_private;
  339. mddev_t *mddev = rdev->mddev;
  340. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  341. error == -EOPNOTSUPP) {
  342. unsigned long flags;
  343. /* barriers don't appear to be supported :-( */
  344. set_bit(BarriersNotsupp, &rdev->flags);
  345. mddev->barriers_work = 0;
  346. spin_lock_irqsave(&mddev->write_lock, flags);
  347. bio2->bi_next = mddev->biolist;
  348. mddev->biolist = bio2;
  349. spin_unlock_irqrestore(&mddev->write_lock, flags);
  350. wake_up(&mddev->sb_wait);
  351. bio_put(bio);
  352. } else {
  353. bio_put(bio2);
  354. bio->bi_private = rdev;
  355. super_written(bio, error);
  356. }
  357. }
  358. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  359. sector_t sector, int size, struct page *page)
  360. {
  361. /* write first size bytes of page to sector of rdev
  362. * Increment mddev->pending_writes before returning
  363. * and decrement it on completion, waking up sb_wait
  364. * if zero is reached.
  365. * If an error occurred, call md_error
  366. *
  367. * As we might need to resubmit the request if BIO_RW_BARRIER
  368. * causes ENOTSUPP, we allocate a spare bio...
  369. */
  370. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  371. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  372. bio->bi_bdev = rdev->bdev;
  373. bio->bi_sector = sector;
  374. bio_add_page(bio, page, size, 0);
  375. bio->bi_private = rdev;
  376. bio->bi_end_io = super_written;
  377. bio->bi_rw = rw;
  378. atomic_inc(&mddev->pending_writes);
  379. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  380. struct bio *rbio;
  381. rw |= (1<<BIO_RW_BARRIER);
  382. rbio = bio_clone(bio, GFP_NOIO);
  383. rbio->bi_private = bio;
  384. rbio->bi_end_io = super_written_barrier;
  385. submit_bio(rw, rbio);
  386. } else
  387. submit_bio(rw, bio);
  388. }
  389. void md_super_wait(mddev_t *mddev)
  390. {
  391. /* wait for all superblock writes that were scheduled to complete.
  392. * if any had to be retried (due to BARRIER problems), retry them
  393. */
  394. DEFINE_WAIT(wq);
  395. for(;;) {
  396. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  397. if (atomic_read(&mddev->pending_writes)==0)
  398. break;
  399. while (mddev->biolist) {
  400. struct bio *bio;
  401. spin_lock_irq(&mddev->write_lock);
  402. bio = mddev->biolist;
  403. mddev->biolist = bio->bi_next ;
  404. bio->bi_next = NULL;
  405. spin_unlock_irq(&mddev->write_lock);
  406. submit_bio(bio->bi_rw, bio);
  407. }
  408. schedule();
  409. }
  410. finish_wait(&mddev->sb_wait, &wq);
  411. }
  412. static void bi_complete(struct bio *bio, int error)
  413. {
  414. complete((struct completion*)bio->bi_private);
  415. }
  416. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  417. struct page *page, int rw)
  418. {
  419. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  420. struct completion event;
  421. int ret;
  422. rw |= (1 << BIO_RW_SYNC);
  423. bio->bi_bdev = bdev;
  424. bio->bi_sector = sector;
  425. bio_add_page(bio, page, size, 0);
  426. init_completion(&event);
  427. bio->bi_private = &event;
  428. bio->bi_end_io = bi_complete;
  429. submit_bio(rw, bio);
  430. wait_for_completion(&event);
  431. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  432. bio_put(bio);
  433. return ret;
  434. }
  435. EXPORT_SYMBOL_GPL(sync_page_io);
  436. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  437. {
  438. char b[BDEVNAME_SIZE];
  439. if (!rdev->sb_page) {
  440. MD_BUG();
  441. return -EINVAL;
  442. }
  443. if (rdev->sb_loaded)
  444. return 0;
  445. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  446. goto fail;
  447. rdev->sb_loaded = 1;
  448. return 0;
  449. fail:
  450. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  451. bdevname(rdev->bdev,b));
  452. return -EINVAL;
  453. }
  454. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  455. {
  456. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  457. (sb1->set_uuid1 == sb2->set_uuid1) &&
  458. (sb1->set_uuid2 == sb2->set_uuid2) &&
  459. (sb1->set_uuid3 == sb2->set_uuid3))
  460. return 1;
  461. return 0;
  462. }
  463. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  464. {
  465. int ret;
  466. mdp_super_t *tmp1, *tmp2;
  467. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  468. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  469. if (!tmp1 || !tmp2) {
  470. ret = 0;
  471. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  472. goto abort;
  473. }
  474. *tmp1 = *sb1;
  475. *tmp2 = *sb2;
  476. /*
  477. * nr_disks is not constant
  478. */
  479. tmp1->nr_disks = 0;
  480. tmp2->nr_disks = 0;
  481. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  482. ret = 0;
  483. else
  484. ret = 1;
  485. abort:
  486. kfree(tmp1);
  487. kfree(tmp2);
  488. return ret;
  489. }
  490. static u32 md_csum_fold(u32 csum)
  491. {
  492. csum = (csum & 0xffff) + (csum >> 16);
  493. return (csum & 0xffff) + (csum >> 16);
  494. }
  495. static unsigned int calc_sb_csum(mdp_super_t * sb)
  496. {
  497. u64 newcsum = 0;
  498. u32 *sb32 = (u32*)sb;
  499. int i;
  500. unsigned int disk_csum, csum;
  501. disk_csum = sb->sb_csum;
  502. sb->sb_csum = 0;
  503. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  504. newcsum += sb32[i];
  505. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  506. #ifdef CONFIG_ALPHA
  507. /* This used to use csum_partial, which was wrong for several
  508. * reasons including that different results are returned on
  509. * different architectures. It isn't critical that we get exactly
  510. * the same return value as before (we always csum_fold before
  511. * testing, and that removes any differences). However as we
  512. * know that csum_partial always returned a 16bit value on
  513. * alphas, do a fold to maximise conformity to previous behaviour.
  514. */
  515. sb->sb_csum = md_csum_fold(disk_csum);
  516. #else
  517. sb->sb_csum = disk_csum;
  518. #endif
  519. return csum;
  520. }
  521. /*
  522. * Handle superblock details.
  523. * We want to be able to handle multiple superblock formats
  524. * so we have a common interface to them all, and an array of
  525. * different handlers.
  526. * We rely on user-space to write the initial superblock, and support
  527. * reading and updating of superblocks.
  528. * Interface methods are:
  529. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  530. * loads and validates a superblock on dev.
  531. * if refdev != NULL, compare superblocks on both devices
  532. * Return:
  533. * 0 - dev has a superblock that is compatible with refdev
  534. * 1 - dev has a superblock that is compatible and newer than refdev
  535. * so dev should be used as the refdev in future
  536. * -EINVAL superblock incompatible or invalid
  537. * -othererror e.g. -EIO
  538. *
  539. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  540. * Verify that dev is acceptable into mddev.
  541. * The first time, mddev->raid_disks will be 0, and data from
  542. * dev should be merged in. Subsequent calls check that dev
  543. * is new enough. Return 0 or -EINVAL
  544. *
  545. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  546. * Update the superblock for rdev with data in mddev
  547. * This does not write to disc.
  548. *
  549. */
  550. struct super_type {
  551. char *name;
  552. struct module *owner;
  553. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  554. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  555. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  556. };
  557. /*
  558. * load_super for 0.90.0
  559. */
  560. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  561. {
  562. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  563. mdp_super_t *sb;
  564. int ret;
  565. sector_t sb_offset;
  566. /*
  567. * Calculate the position of the superblock,
  568. * it's at the end of the disk.
  569. *
  570. * It also happens to be a multiple of 4Kb.
  571. */
  572. sb_offset = calc_dev_sboffset(rdev->bdev);
  573. rdev->sb_offset = sb_offset;
  574. ret = read_disk_sb(rdev, MD_SB_BYTES);
  575. if (ret) return ret;
  576. ret = -EINVAL;
  577. bdevname(rdev->bdev, b);
  578. sb = (mdp_super_t*)page_address(rdev->sb_page);
  579. if (sb->md_magic != MD_SB_MAGIC) {
  580. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  581. b);
  582. goto abort;
  583. }
  584. if (sb->major_version != 0 ||
  585. sb->minor_version < 90 ||
  586. sb->minor_version > 91) {
  587. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  588. sb->major_version, sb->minor_version,
  589. b);
  590. goto abort;
  591. }
  592. if (sb->raid_disks <= 0)
  593. goto abort;
  594. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  595. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  596. b);
  597. goto abort;
  598. }
  599. rdev->preferred_minor = sb->md_minor;
  600. rdev->data_offset = 0;
  601. rdev->sb_size = MD_SB_BYTES;
  602. if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
  603. if (sb->level != 1 && sb->level != 4
  604. && sb->level != 5 && sb->level != 6
  605. && sb->level != 10) {
  606. /* FIXME use a better test */
  607. printk(KERN_WARNING
  608. "md: bitmaps not supported for this level.\n");
  609. goto abort;
  610. }
  611. }
  612. if (sb->level == LEVEL_MULTIPATH)
  613. rdev->desc_nr = -1;
  614. else
  615. rdev->desc_nr = sb->this_disk.number;
  616. if (refdev == 0)
  617. ret = 1;
  618. else {
  619. __u64 ev1, ev2;
  620. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  621. if (!uuid_equal(refsb, sb)) {
  622. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  623. b, bdevname(refdev->bdev,b2));
  624. goto abort;
  625. }
  626. if (!sb_equal(refsb, sb)) {
  627. printk(KERN_WARNING "md: %s has same UUID"
  628. " but different superblock to %s\n",
  629. b, bdevname(refdev->bdev, b2));
  630. goto abort;
  631. }
  632. ev1 = md_event(sb);
  633. ev2 = md_event(refsb);
  634. if (ev1 > ev2)
  635. ret = 1;
  636. else
  637. ret = 0;
  638. }
  639. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  640. if (rdev->size < sb->size && sb->level > 1)
  641. /* "this cannot possibly happen" ... */
  642. ret = -EINVAL;
  643. abort:
  644. return ret;
  645. }
  646. /*
  647. * validate_super for 0.90.0
  648. */
  649. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  650. {
  651. mdp_disk_t *desc;
  652. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  653. __u64 ev1 = md_event(sb);
  654. rdev->raid_disk = -1;
  655. clear_bit(Faulty, &rdev->flags);
  656. clear_bit(In_sync, &rdev->flags);
  657. clear_bit(WriteMostly, &rdev->flags);
  658. clear_bit(BarriersNotsupp, &rdev->flags);
  659. if (mddev->raid_disks == 0) {
  660. mddev->major_version = 0;
  661. mddev->minor_version = sb->minor_version;
  662. mddev->patch_version = sb->patch_version;
  663. mddev->external = 0;
  664. mddev->chunk_size = sb->chunk_size;
  665. mddev->ctime = sb->ctime;
  666. mddev->utime = sb->utime;
  667. mddev->level = sb->level;
  668. mddev->clevel[0] = 0;
  669. mddev->layout = sb->layout;
  670. mddev->raid_disks = sb->raid_disks;
  671. mddev->size = sb->size;
  672. mddev->events = ev1;
  673. mddev->bitmap_offset = 0;
  674. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  675. if (mddev->minor_version >= 91) {
  676. mddev->reshape_position = sb->reshape_position;
  677. mddev->delta_disks = sb->delta_disks;
  678. mddev->new_level = sb->new_level;
  679. mddev->new_layout = sb->new_layout;
  680. mddev->new_chunk = sb->new_chunk;
  681. } else {
  682. mddev->reshape_position = MaxSector;
  683. mddev->delta_disks = 0;
  684. mddev->new_level = mddev->level;
  685. mddev->new_layout = mddev->layout;
  686. mddev->new_chunk = mddev->chunk_size;
  687. }
  688. if (sb->state & (1<<MD_SB_CLEAN))
  689. mddev->recovery_cp = MaxSector;
  690. else {
  691. if (sb->events_hi == sb->cp_events_hi &&
  692. sb->events_lo == sb->cp_events_lo) {
  693. mddev->recovery_cp = sb->recovery_cp;
  694. } else
  695. mddev->recovery_cp = 0;
  696. }
  697. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  698. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  699. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  700. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  701. mddev->max_disks = MD_SB_DISKS;
  702. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  703. mddev->bitmap_file == NULL)
  704. mddev->bitmap_offset = mddev->default_bitmap_offset;
  705. } else if (mddev->pers == NULL) {
  706. /* Insist on good event counter while assembling */
  707. ++ev1;
  708. if (ev1 < mddev->events)
  709. return -EINVAL;
  710. } else if (mddev->bitmap) {
  711. /* if adding to array with a bitmap, then we can accept an
  712. * older device ... but not too old.
  713. */
  714. if (ev1 < mddev->bitmap->events_cleared)
  715. return 0;
  716. } else {
  717. if (ev1 < mddev->events)
  718. /* just a hot-add of a new device, leave raid_disk at -1 */
  719. return 0;
  720. }
  721. if (mddev->level != LEVEL_MULTIPATH) {
  722. desc = sb->disks + rdev->desc_nr;
  723. if (desc->state & (1<<MD_DISK_FAULTY))
  724. set_bit(Faulty, &rdev->flags);
  725. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  726. desc->raid_disk < mddev->raid_disks */) {
  727. set_bit(In_sync, &rdev->flags);
  728. rdev->raid_disk = desc->raid_disk;
  729. }
  730. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  731. set_bit(WriteMostly, &rdev->flags);
  732. } else /* MULTIPATH are always insync */
  733. set_bit(In_sync, &rdev->flags);
  734. return 0;
  735. }
  736. /*
  737. * sync_super for 0.90.0
  738. */
  739. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  740. {
  741. mdp_super_t *sb;
  742. struct list_head *tmp;
  743. mdk_rdev_t *rdev2;
  744. int next_spare = mddev->raid_disks;
  745. /* make rdev->sb match mddev data..
  746. *
  747. * 1/ zero out disks
  748. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  749. * 3/ any empty disks < next_spare become removed
  750. *
  751. * disks[0] gets initialised to REMOVED because
  752. * we cannot be sure from other fields if it has
  753. * been initialised or not.
  754. */
  755. int i;
  756. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  757. rdev->sb_size = MD_SB_BYTES;
  758. sb = (mdp_super_t*)page_address(rdev->sb_page);
  759. memset(sb, 0, sizeof(*sb));
  760. sb->md_magic = MD_SB_MAGIC;
  761. sb->major_version = mddev->major_version;
  762. sb->patch_version = mddev->patch_version;
  763. sb->gvalid_words = 0; /* ignored */
  764. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  765. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  766. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  767. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  768. sb->ctime = mddev->ctime;
  769. sb->level = mddev->level;
  770. sb->size = mddev->size;
  771. sb->raid_disks = mddev->raid_disks;
  772. sb->md_minor = mddev->md_minor;
  773. sb->not_persistent = 0;
  774. sb->utime = mddev->utime;
  775. sb->state = 0;
  776. sb->events_hi = (mddev->events>>32);
  777. sb->events_lo = (u32)mddev->events;
  778. if (mddev->reshape_position == MaxSector)
  779. sb->minor_version = 90;
  780. else {
  781. sb->minor_version = 91;
  782. sb->reshape_position = mddev->reshape_position;
  783. sb->new_level = mddev->new_level;
  784. sb->delta_disks = mddev->delta_disks;
  785. sb->new_layout = mddev->new_layout;
  786. sb->new_chunk = mddev->new_chunk;
  787. }
  788. mddev->minor_version = sb->minor_version;
  789. if (mddev->in_sync)
  790. {
  791. sb->recovery_cp = mddev->recovery_cp;
  792. sb->cp_events_hi = (mddev->events>>32);
  793. sb->cp_events_lo = (u32)mddev->events;
  794. if (mddev->recovery_cp == MaxSector)
  795. sb->state = (1<< MD_SB_CLEAN);
  796. } else
  797. sb->recovery_cp = 0;
  798. sb->layout = mddev->layout;
  799. sb->chunk_size = mddev->chunk_size;
  800. if (mddev->bitmap && mddev->bitmap_file == NULL)
  801. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  802. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  803. ITERATE_RDEV(mddev,rdev2,tmp) {
  804. mdp_disk_t *d;
  805. int desc_nr;
  806. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  807. && !test_bit(Faulty, &rdev2->flags))
  808. desc_nr = rdev2->raid_disk;
  809. else
  810. desc_nr = next_spare++;
  811. rdev2->desc_nr = desc_nr;
  812. d = &sb->disks[rdev2->desc_nr];
  813. nr_disks++;
  814. d->number = rdev2->desc_nr;
  815. d->major = MAJOR(rdev2->bdev->bd_dev);
  816. d->minor = MINOR(rdev2->bdev->bd_dev);
  817. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  818. && !test_bit(Faulty, &rdev2->flags))
  819. d->raid_disk = rdev2->raid_disk;
  820. else
  821. d->raid_disk = rdev2->desc_nr; /* compatibility */
  822. if (test_bit(Faulty, &rdev2->flags))
  823. d->state = (1<<MD_DISK_FAULTY);
  824. else if (test_bit(In_sync, &rdev2->flags)) {
  825. d->state = (1<<MD_DISK_ACTIVE);
  826. d->state |= (1<<MD_DISK_SYNC);
  827. active++;
  828. working++;
  829. } else {
  830. d->state = 0;
  831. spare++;
  832. working++;
  833. }
  834. if (test_bit(WriteMostly, &rdev2->flags))
  835. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  836. }
  837. /* now set the "removed" and "faulty" bits on any missing devices */
  838. for (i=0 ; i < mddev->raid_disks ; i++) {
  839. mdp_disk_t *d = &sb->disks[i];
  840. if (d->state == 0 && d->number == 0) {
  841. d->number = i;
  842. d->raid_disk = i;
  843. d->state = (1<<MD_DISK_REMOVED);
  844. d->state |= (1<<MD_DISK_FAULTY);
  845. failed++;
  846. }
  847. }
  848. sb->nr_disks = nr_disks;
  849. sb->active_disks = active;
  850. sb->working_disks = working;
  851. sb->failed_disks = failed;
  852. sb->spare_disks = spare;
  853. sb->this_disk = sb->disks[rdev->desc_nr];
  854. sb->sb_csum = calc_sb_csum(sb);
  855. }
  856. /*
  857. * version 1 superblock
  858. */
  859. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  860. {
  861. __le32 disk_csum;
  862. u32 csum;
  863. unsigned long long newcsum;
  864. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  865. __le32 *isuper = (__le32*)sb;
  866. int i;
  867. disk_csum = sb->sb_csum;
  868. sb->sb_csum = 0;
  869. newcsum = 0;
  870. for (i=0; size>=4; size -= 4 )
  871. newcsum += le32_to_cpu(*isuper++);
  872. if (size == 2)
  873. newcsum += le16_to_cpu(*(__le16*) isuper);
  874. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  875. sb->sb_csum = disk_csum;
  876. return cpu_to_le32(csum);
  877. }
  878. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  879. {
  880. struct mdp_superblock_1 *sb;
  881. int ret;
  882. sector_t sb_offset;
  883. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  884. int bmask;
  885. /*
  886. * Calculate the position of the superblock.
  887. * It is always aligned to a 4K boundary and
  888. * depeding on minor_version, it can be:
  889. * 0: At least 8K, but less than 12K, from end of device
  890. * 1: At start of device
  891. * 2: 4K from start of device.
  892. */
  893. switch(minor_version) {
  894. case 0:
  895. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  896. sb_offset -= 8*2;
  897. sb_offset &= ~(sector_t)(4*2-1);
  898. /* convert from sectors to K */
  899. sb_offset /= 2;
  900. break;
  901. case 1:
  902. sb_offset = 0;
  903. break;
  904. case 2:
  905. sb_offset = 4;
  906. break;
  907. default:
  908. return -EINVAL;
  909. }
  910. rdev->sb_offset = sb_offset;
  911. /* superblock is rarely larger than 1K, but it can be larger,
  912. * and it is safe to read 4k, so we do that
  913. */
  914. ret = read_disk_sb(rdev, 4096);
  915. if (ret) return ret;
  916. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  917. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  918. sb->major_version != cpu_to_le32(1) ||
  919. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  920. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  921. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  922. return -EINVAL;
  923. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  924. printk("md: invalid superblock checksum on %s\n",
  925. bdevname(rdev->bdev,b));
  926. return -EINVAL;
  927. }
  928. if (le64_to_cpu(sb->data_size) < 10) {
  929. printk("md: data_size too small on %s\n",
  930. bdevname(rdev->bdev,b));
  931. return -EINVAL;
  932. }
  933. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
  934. if (sb->level != cpu_to_le32(1) &&
  935. sb->level != cpu_to_le32(4) &&
  936. sb->level != cpu_to_le32(5) &&
  937. sb->level != cpu_to_le32(6) &&
  938. sb->level != cpu_to_le32(10)) {
  939. printk(KERN_WARNING
  940. "md: bitmaps not supported for this level.\n");
  941. return -EINVAL;
  942. }
  943. }
  944. rdev->preferred_minor = 0xffff;
  945. rdev->data_offset = le64_to_cpu(sb->data_offset);
  946. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  947. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  948. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  949. if (rdev->sb_size & bmask)
  950. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  951. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  952. rdev->desc_nr = -1;
  953. else
  954. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  955. if (refdev == 0)
  956. ret = 1;
  957. else {
  958. __u64 ev1, ev2;
  959. struct mdp_superblock_1 *refsb =
  960. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  961. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  962. sb->level != refsb->level ||
  963. sb->layout != refsb->layout ||
  964. sb->chunksize != refsb->chunksize) {
  965. printk(KERN_WARNING "md: %s has strangely different"
  966. " superblock to %s\n",
  967. bdevname(rdev->bdev,b),
  968. bdevname(refdev->bdev,b2));
  969. return -EINVAL;
  970. }
  971. ev1 = le64_to_cpu(sb->events);
  972. ev2 = le64_to_cpu(refsb->events);
  973. if (ev1 > ev2)
  974. ret = 1;
  975. else
  976. ret = 0;
  977. }
  978. if (minor_version)
  979. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  980. else
  981. rdev->size = rdev->sb_offset;
  982. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  983. return -EINVAL;
  984. rdev->size = le64_to_cpu(sb->data_size)/2;
  985. if (le32_to_cpu(sb->chunksize))
  986. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  987. if (le64_to_cpu(sb->size) > rdev->size*2)
  988. return -EINVAL;
  989. return ret;
  990. }
  991. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  992. {
  993. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  994. __u64 ev1 = le64_to_cpu(sb->events);
  995. rdev->raid_disk = -1;
  996. clear_bit(Faulty, &rdev->flags);
  997. clear_bit(In_sync, &rdev->flags);
  998. clear_bit(WriteMostly, &rdev->flags);
  999. clear_bit(BarriersNotsupp, &rdev->flags);
  1000. if (mddev->raid_disks == 0) {
  1001. mddev->major_version = 1;
  1002. mddev->patch_version = 0;
  1003. mddev->external = 0;
  1004. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  1005. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1006. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1007. mddev->level = le32_to_cpu(sb->level);
  1008. mddev->clevel[0] = 0;
  1009. mddev->layout = le32_to_cpu(sb->layout);
  1010. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1011. mddev->size = le64_to_cpu(sb->size)/2;
  1012. mddev->events = ev1;
  1013. mddev->bitmap_offset = 0;
  1014. mddev->default_bitmap_offset = 1024 >> 9;
  1015. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1016. memcpy(mddev->uuid, sb->set_uuid, 16);
  1017. mddev->max_disks = (4096-256)/2;
  1018. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1019. mddev->bitmap_file == NULL )
  1020. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  1021. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1022. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1023. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1024. mddev->new_level = le32_to_cpu(sb->new_level);
  1025. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1026. mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
  1027. } else {
  1028. mddev->reshape_position = MaxSector;
  1029. mddev->delta_disks = 0;
  1030. mddev->new_level = mddev->level;
  1031. mddev->new_layout = mddev->layout;
  1032. mddev->new_chunk = mddev->chunk_size;
  1033. }
  1034. } else if (mddev->pers == NULL) {
  1035. /* Insist of good event counter while assembling */
  1036. ++ev1;
  1037. if (ev1 < mddev->events)
  1038. return -EINVAL;
  1039. } else if (mddev->bitmap) {
  1040. /* If adding to array with a bitmap, then we can accept an
  1041. * older device, but not too old.
  1042. */
  1043. if (ev1 < mddev->bitmap->events_cleared)
  1044. return 0;
  1045. } else {
  1046. if (ev1 < mddev->events)
  1047. /* just a hot-add of a new device, leave raid_disk at -1 */
  1048. return 0;
  1049. }
  1050. if (mddev->level != LEVEL_MULTIPATH) {
  1051. int role;
  1052. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1053. switch(role) {
  1054. case 0xffff: /* spare */
  1055. break;
  1056. case 0xfffe: /* faulty */
  1057. set_bit(Faulty, &rdev->flags);
  1058. break;
  1059. default:
  1060. if ((le32_to_cpu(sb->feature_map) &
  1061. MD_FEATURE_RECOVERY_OFFSET))
  1062. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1063. else
  1064. set_bit(In_sync, &rdev->flags);
  1065. rdev->raid_disk = role;
  1066. break;
  1067. }
  1068. if (sb->devflags & WriteMostly1)
  1069. set_bit(WriteMostly, &rdev->flags);
  1070. } else /* MULTIPATH are always insync */
  1071. set_bit(In_sync, &rdev->flags);
  1072. return 0;
  1073. }
  1074. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1075. {
  1076. struct mdp_superblock_1 *sb;
  1077. struct list_head *tmp;
  1078. mdk_rdev_t *rdev2;
  1079. int max_dev, i;
  1080. /* make rdev->sb match mddev and rdev data. */
  1081. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1082. sb->feature_map = 0;
  1083. sb->pad0 = 0;
  1084. sb->recovery_offset = cpu_to_le64(0);
  1085. memset(sb->pad1, 0, sizeof(sb->pad1));
  1086. memset(sb->pad2, 0, sizeof(sb->pad2));
  1087. memset(sb->pad3, 0, sizeof(sb->pad3));
  1088. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1089. sb->events = cpu_to_le64(mddev->events);
  1090. if (mddev->in_sync)
  1091. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1092. else
  1093. sb->resync_offset = cpu_to_le64(0);
  1094. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1095. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1096. sb->size = cpu_to_le64(mddev->size<<1);
  1097. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1098. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1099. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1100. }
  1101. if (rdev->raid_disk >= 0 &&
  1102. !test_bit(In_sync, &rdev->flags) &&
  1103. rdev->recovery_offset > 0) {
  1104. sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1105. sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
  1106. }
  1107. if (mddev->reshape_position != MaxSector) {
  1108. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1109. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1110. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1111. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1112. sb->new_level = cpu_to_le32(mddev->new_level);
  1113. sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
  1114. }
  1115. max_dev = 0;
  1116. ITERATE_RDEV(mddev,rdev2,tmp)
  1117. if (rdev2->desc_nr+1 > max_dev)
  1118. max_dev = rdev2->desc_nr+1;
  1119. if (max_dev > le32_to_cpu(sb->max_dev))
  1120. sb->max_dev = cpu_to_le32(max_dev);
  1121. for (i=0; i<max_dev;i++)
  1122. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1123. ITERATE_RDEV(mddev,rdev2,tmp) {
  1124. i = rdev2->desc_nr;
  1125. if (test_bit(Faulty, &rdev2->flags))
  1126. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1127. else if (test_bit(In_sync, &rdev2->flags))
  1128. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1129. else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
  1130. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1131. else
  1132. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1133. }
  1134. sb->sb_csum = calc_sb_1_csum(sb);
  1135. }
  1136. static struct super_type super_types[] = {
  1137. [0] = {
  1138. .name = "0.90.0",
  1139. .owner = THIS_MODULE,
  1140. .load_super = super_90_load,
  1141. .validate_super = super_90_validate,
  1142. .sync_super = super_90_sync,
  1143. },
  1144. [1] = {
  1145. .name = "md-1",
  1146. .owner = THIS_MODULE,
  1147. .load_super = super_1_load,
  1148. .validate_super = super_1_validate,
  1149. .sync_super = super_1_sync,
  1150. },
  1151. };
  1152. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1153. {
  1154. struct list_head *tmp, *tmp2;
  1155. mdk_rdev_t *rdev, *rdev2;
  1156. ITERATE_RDEV(mddev1,rdev,tmp)
  1157. ITERATE_RDEV(mddev2, rdev2, tmp2)
  1158. if (rdev->bdev->bd_contains ==
  1159. rdev2->bdev->bd_contains)
  1160. return 1;
  1161. return 0;
  1162. }
  1163. static LIST_HEAD(pending_raid_disks);
  1164. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1165. {
  1166. char b[BDEVNAME_SIZE];
  1167. struct kobject *ko;
  1168. char *s;
  1169. int err;
  1170. if (rdev->mddev) {
  1171. MD_BUG();
  1172. return -EINVAL;
  1173. }
  1174. /* make sure rdev->size exceeds mddev->size */
  1175. if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
  1176. if (mddev->pers) {
  1177. /* Cannot change size, so fail
  1178. * If mddev->level <= 0, then we don't care
  1179. * about aligning sizes (e.g. linear)
  1180. */
  1181. if (mddev->level > 0)
  1182. return -ENOSPC;
  1183. } else
  1184. mddev->size = rdev->size;
  1185. }
  1186. /* Verify rdev->desc_nr is unique.
  1187. * If it is -1, assign a free number, else
  1188. * check number is not in use
  1189. */
  1190. if (rdev->desc_nr < 0) {
  1191. int choice = 0;
  1192. if (mddev->pers) choice = mddev->raid_disks;
  1193. while (find_rdev_nr(mddev, choice))
  1194. choice++;
  1195. rdev->desc_nr = choice;
  1196. } else {
  1197. if (find_rdev_nr(mddev, rdev->desc_nr))
  1198. return -EBUSY;
  1199. }
  1200. bdevname(rdev->bdev,b);
  1201. while ( (s=strchr(b, '/')) != NULL)
  1202. *s = '!';
  1203. rdev->mddev = mddev;
  1204. printk(KERN_INFO "md: bind<%s>\n", b);
  1205. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1206. goto fail;
  1207. if (rdev->bdev->bd_part)
  1208. ko = &rdev->bdev->bd_part->dev.kobj;
  1209. else
  1210. ko = &rdev->bdev->bd_disk->dev.kobj;
  1211. if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
  1212. kobject_del(&rdev->kobj);
  1213. goto fail;
  1214. }
  1215. list_add(&rdev->same_set, &mddev->disks);
  1216. bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
  1217. return 0;
  1218. fail:
  1219. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1220. b, mdname(mddev));
  1221. return err;
  1222. }
  1223. static void delayed_delete(struct work_struct *ws)
  1224. {
  1225. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1226. kobject_del(&rdev->kobj);
  1227. }
  1228. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1229. {
  1230. char b[BDEVNAME_SIZE];
  1231. if (!rdev->mddev) {
  1232. MD_BUG();
  1233. return;
  1234. }
  1235. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1236. list_del_init(&rdev->same_set);
  1237. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1238. rdev->mddev = NULL;
  1239. sysfs_remove_link(&rdev->kobj, "block");
  1240. /* We need to delay this, otherwise we can deadlock when
  1241. * writing to 'remove' to "dev/state"
  1242. */
  1243. INIT_WORK(&rdev->del_work, delayed_delete);
  1244. schedule_work(&rdev->del_work);
  1245. }
  1246. /*
  1247. * prevent the device from being mounted, repartitioned or
  1248. * otherwise reused by a RAID array (or any other kernel
  1249. * subsystem), by bd_claiming the device.
  1250. */
  1251. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
  1252. {
  1253. int err = 0;
  1254. struct block_device *bdev;
  1255. char b[BDEVNAME_SIZE];
  1256. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1257. if (IS_ERR(bdev)) {
  1258. printk(KERN_ERR "md: could not open %s.\n",
  1259. __bdevname(dev, b));
  1260. return PTR_ERR(bdev);
  1261. }
  1262. err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
  1263. if (err) {
  1264. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1265. bdevname(bdev, b));
  1266. blkdev_put(bdev);
  1267. return err;
  1268. }
  1269. if (!shared)
  1270. set_bit(AllReserved, &rdev->flags);
  1271. rdev->bdev = bdev;
  1272. return err;
  1273. }
  1274. static void unlock_rdev(mdk_rdev_t *rdev)
  1275. {
  1276. struct block_device *bdev = rdev->bdev;
  1277. rdev->bdev = NULL;
  1278. if (!bdev)
  1279. MD_BUG();
  1280. bd_release(bdev);
  1281. blkdev_put(bdev);
  1282. }
  1283. void md_autodetect_dev(dev_t dev);
  1284. static void export_rdev(mdk_rdev_t * rdev)
  1285. {
  1286. char b[BDEVNAME_SIZE];
  1287. printk(KERN_INFO "md: export_rdev(%s)\n",
  1288. bdevname(rdev->bdev,b));
  1289. if (rdev->mddev)
  1290. MD_BUG();
  1291. free_disk_sb(rdev);
  1292. list_del_init(&rdev->same_set);
  1293. #ifndef MODULE
  1294. md_autodetect_dev(rdev->bdev->bd_dev);
  1295. #endif
  1296. unlock_rdev(rdev);
  1297. kobject_put(&rdev->kobj);
  1298. }
  1299. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1300. {
  1301. unbind_rdev_from_array(rdev);
  1302. export_rdev(rdev);
  1303. }
  1304. static void export_array(mddev_t *mddev)
  1305. {
  1306. struct list_head *tmp;
  1307. mdk_rdev_t *rdev;
  1308. ITERATE_RDEV(mddev,rdev,tmp) {
  1309. if (!rdev->mddev) {
  1310. MD_BUG();
  1311. continue;
  1312. }
  1313. kick_rdev_from_array(rdev);
  1314. }
  1315. if (!list_empty(&mddev->disks))
  1316. MD_BUG();
  1317. mddev->raid_disks = 0;
  1318. mddev->major_version = 0;
  1319. }
  1320. static void print_desc(mdp_disk_t *desc)
  1321. {
  1322. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1323. desc->major,desc->minor,desc->raid_disk,desc->state);
  1324. }
  1325. static void print_sb(mdp_super_t *sb)
  1326. {
  1327. int i;
  1328. printk(KERN_INFO
  1329. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1330. sb->major_version, sb->minor_version, sb->patch_version,
  1331. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1332. sb->ctime);
  1333. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1334. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1335. sb->md_minor, sb->layout, sb->chunk_size);
  1336. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1337. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1338. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1339. sb->failed_disks, sb->spare_disks,
  1340. sb->sb_csum, (unsigned long)sb->events_lo);
  1341. printk(KERN_INFO);
  1342. for (i = 0; i < MD_SB_DISKS; i++) {
  1343. mdp_disk_t *desc;
  1344. desc = sb->disks + i;
  1345. if (desc->number || desc->major || desc->minor ||
  1346. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1347. printk(" D %2d: ", i);
  1348. print_desc(desc);
  1349. }
  1350. }
  1351. printk(KERN_INFO "md: THIS: ");
  1352. print_desc(&sb->this_disk);
  1353. }
  1354. static void print_rdev(mdk_rdev_t *rdev)
  1355. {
  1356. char b[BDEVNAME_SIZE];
  1357. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1358. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1359. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1360. rdev->desc_nr);
  1361. if (rdev->sb_loaded) {
  1362. printk(KERN_INFO "md: rdev superblock:\n");
  1363. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1364. } else
  1365. printk(KERN_INFO "md: no rdev superblock!\n");
  1366. }
  1367. static void md_print_devices(void)
  1368. {
  1369. struct list_head *tmp, *tmp2;
  1370. mdk_rdev_t *rdev;
  1371. mddev_t *mddev;
  1372. char b[BDEVNAME_SIZE];
  1373. printk("\n");
  1374. printk("md: **********************************\n");
  1375. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1376. printk("md: **********************************\n");
  1377. ITERATE_MDDEV(mddev,tmp) {
  1378. if (mddev->bitmap)
  1379. bitmap_print_sb(mddev->bitmap);
  1380. else
  1381. printk("%s: ", mdname(mddev));
  1382. ITERATE_RDEV(mddev,rdev,tmp2)
  1383. printk("<%s>", bdevname(rdev->bdev,b));
  1384. printk("\n");
  1385. ITERATE_RDEV(mddev,rdev,tmp2)
  1386. print_rdev(rdev);
  1387. }
  1388. printk("md: **********************************\n");
  1389. printk("\n");
  1390. }
  1391. static void sync_sbs(mddev_t * mddev, int nospares)
  1392. {
  1393. /* Update each superblock (in-memory image), but
  1394. * if we are allowed to, skip spares which already
  1395. * have the right event counter, or have one earlier
  1396. * (which would mean they aren't being marked as dirty
  1397. * with the rest of the array)
  1398. */
  1399. mdk_rdev_t *rdev;
  1400. struct list_head *tmp;
  1401. ITERATE_RDEV(mddev,rdev,tmp) {
  1402. if (rdev->sb_events == mddev->events ||
  1403. (nospares &&
  1404. rdev->raid_disk < 0 &&
  1405. (rdev->sb_events&1)==0 &&
  1406. rdev->sb_events+1 == mddev->events)) {
  1407. /* Don't update this superblock */
  1408. rdev->sb_loaded = 2;
  1409. } else {
  1410. super_types[mddev->major_version].
  1411. sync_super(mddev, rdev);
  1412. rdev->sb_loaded = 1;
  1413. }
  1414. }
  1415. }
  1416. static void md_update_sb(mddev_t * mddev, int force_change)
  1417. {
  1418. struct list_head *tmp;
  1419. mdk_rdev_t *rdev;
  1420. int sync_req;
  1421. int nospares = 0;
  1422. repeat:
  1423. spin_lock_irq(&mddev->write_lock);
  1424. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1425. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1426. force_change = 1;
  1427. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1428. /* just a clean<-> dirty transition, possibly leave spares alone,
  1429. * though if events isn't the right even/odd, we will have to do
  1430. * spares after all
  1431. */
  1432. nospares = 1;
  1433. if (force_change)
  1434. nospares = 0;
  1435. if (mddev->degraded)
  1436. /* If the array is degraded, then skipping spares is both
  1437. * dangerous and fairly pointless.
  1438. * Dangerous because a device that was removed from the array
  1439. * might have a event_count that still looks up-to-date,
  1440. * so it can be re-added without a resync.
  1441. * Pointless because if there are any spares to skip,
  1442. * then a recovery will happen and soon that array won't
  1443. * be degraded any more and the spare can go back to sleep then.
  1444. */
  1445. nospares = 0;
  1446. sync_req = mddev->in_sync;
  1447. mddev->utime = get_seconds();
  1448. /* If this is just a dirty<->clean transition, and the array is clean
  1449. * and 'events' is odd, we can roll back to the previous clean state */
  1450. if (nospares
  1451. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1452. && (mddev->events & 1)
  1453. && mddev->events != 1)
  1454. mddev->events--;
  1455. else {
  1456. /* otherwise we have to go forward and ... */
  1457. mddev->events ++;
  1458. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1459. /* .. if the array isn't clean, insist on an odd 'events' */
  1460. if ((mddev->events&1)==0) {
  1461. mddev->events++;
  1462. nospares = 0;
  1463. }
  1464. } else {
  1465. /* otherwise insist on an even 'events' (for clean states) */
  1466. if ((mddev->events&1)) {
  1467. mddev->events++;
  1468. nospares = 0;
  1469. }
  1470. }
  1471. }
  1472. if (!mddev->events) {
  1473. /*
  1474. * oops, this 64-bit counter should never wrap.
  1475. * Either we are in around ~1 trillion A.C., assuming
  1476. * 1 reboot per second, or we have a bug:
  1477. */
  1478. MD_BUG();
  1479. mddev->events --;
  1480. }
  1481. /*
  1482. * do not write anything to disk if using
  1483. * nonpersistent superblocks
  1484. */
  1485. if (!mddev->persistent) {
  1486. if (!mddev->external)
  1487. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1488. spin_unlock_irq(&mddev->write_lock);
  1489. wake_up(&mddev->sb_wait);
  1490. return;
  1491. }
  1492. sync_sbs(mddev, nospares);
  1493. spin_unlock_irq(&mddev->write_lock);
  1494. dprintk(KERN_INFO
  1495. "md: updating %s RAID superblock on device (in sync %d)\n",
  1496. mdname(mddev),mddev->in_sync);
  1497. bitmap_update_sb(mddev->bitmap);
  1498. ITERATE_RDEV(mddev,rdev,tmp) {
  1499. char b[BDEVNAME_SIZE];
  1500. dprintk(KERN_INFO "md: ");
  1501. if (rdev->sb_loaded != 1)
  1502. continue; /* no noise on spare devices */
  1503. if (test_bit(Faulty, &rdev->flags))
  1504. dprintk("(skipping faulty ");
  1505. dprintk("%s ", bdevname(rdev->bdev,b));
  1506. if (!test_bit(Faulty, &rdev->flags)) {
  1507. md_super_write(mddev,rdev,
  1508. rdev->sb_offset<<1, rdev->sb_size,
  1509. rdev->sb_page);
  1510. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1511. bdevname(rdev->bdev,b),
  1512. (unsigned long long)rdev->sb_offset);
  1513. rdev->sb_events = mddev->events;
  1514. } else
  1515. dprintk(")\n");
  1516. if (mddev->level == LEVEL_MULTIPATH)
  1517. /* only need to write one superblock... */
  1518. break;
  1519. }
  1520. md_super_wait(mddev);
  1521. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  1522. spin_lock_irq(&mddev->write_lock);
  1523. if (mddev->in_sync != sync_req ||
  1524. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  1525. /* have to write it out again */
  1526. spin_unlock_irq(&mddev->write_lock);
  1527. goto repeat;
  1528. }
  1529. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1530. spin_unlock_irq(&mddev->write_lock);
  1531. wake_up(&mddev->sb_wait);
  1532. }
  1533. /* words written to sysfs files may, or my not, be \n terminated.
  1534. * We want to accept with case. For this we use cmd_match.
  1535. */
  1536. static int cmd_match(const char *cmd, const char *str)
  1537. {
  1538. /* See if cmd, written into a sysfs file, matches
  1539. * str. They must either be the same, or cmd can
  1540. * have a trailing newline
  1541. */
  1542. while (*cmd && *str && *cmd == *str) {
  1543. cmd++;
  1544. str++;
  1545. }
  1546. if (*cmd == '\n')
  1547. cmd++;
  1548. if (*str || *cmd)
  1549. return 0;
  1550. return 1;
  1551. }
  1552. struct rdev_sysfs_entry {
  1553. struct attribute attr;
  1554. ssize_t (*show)(mdk_rdev_t *, char *);
  1555. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1556. };
  1557. static ssize_t
  1558. state_show(mdk_rdev_t *rdev, char *page)
  1559. {
  1560. char *sep = "";
  1561. int len=0;
  1562. if (test_bit(Faulty, &rdev->flags)) {
  1563. len+= sprintf(page+len, "%sfaulty",sep);
  1564. sep = ",";
  1565. }
  1566. if (test_bit(In_sync, &rdev->flags)) {
  1567. len += sprintf(page+len, "%sin_sync",sep);
  1568. sep = ",";
  1569. }
  1570. if (test_bit(WriteMostly, &rdev->flags)) {
  1571. len += sprintf(page+len, "%swrite_mostly",sep);
  1572. sep = ",";
  1573. }
  1574. if (!test_bit(Faulty, &rdev->flags) &&
  1575. !test_bit(In_sync, &rdev->flags)) {
  1576. len += sprintf(page+len, "%sspare", sep);
  1577. sep = ",";
  1578. }
  1579. return len+sprintf(page+len, "\n");
  1580. }
  1581. static ssize_t
  1582. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1583. {
  1584. /* can write
  1585. * faulty - simulates and error
  1586. * remove - disconnects the device
  1587. * writemostly - sets write_mostly
  1588. * -writemostly - clears write_mostly
  1589. */
  1590. int err = -EINVAL;
  1591. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  1592. md_error(rdev->mddev, rdev);
  1593. err = 0;
  1594. } else if (cmd_match(buf, "remove")) {
  1595. if (rdev->raid_disk >= 0)
  1596. err = -EBUSY;
  1597. else {
  1598. mddev_t *mddev = rdev->mddev;
  1599. kick_rdev_from_array(rdev);
  1600. if (mddev->pers)
  1601. md_update_sb(mddev, 1);
  1602. md_new_event(mddev);
  1603. err = 0;
  1604. }
  1605. } else if (cmd_match(buf, "writemostly")) {
  1606. set_bit(WriteMostly, &rdev->flags);
  1607. err = 0;
  1608. } else if (cmd_match(buf, "-writemostly")) {
  1609. clear_bit(WriteMostly, &rdev->flags);
  1610. err = 0;
  1611. }
  1612. return err ? err : len;
  1613. }
  1614. static struct rdev_sysfs_entry rdev_state =
  1615. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  1616. static ssize_t
  1617. super_show(mdk_rdev_t *rdev, char *page)
  1618. {
  1619. if (rdev->sb_loaded && rdev->sb_size) {
  1620. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1621. return rdev->sb_size;
  1622. } else
  1623. return 0;
  1624. }
  1625. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1626. static ssize_t
  1627. errors_show(mdk_rdev_t *rdev, char *page)
  1628. {
  1629. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1630. }
  1631. static ssize_t
  1632. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1633. {
  1634. char *e;
  1635. unsigned long n = simple_strtoul(buf, &e, 10);
  1636. if (*buf && (*e == 0 || *e == '\n')) {
  1637. atomic_set(&rdev->corrected_errors, n);
  1638. return len;
  1639. }
  1640. return -EINVAL;
  1641. }
  1642. static struct rdev_sysfs_entry rdev_errors =
  1643. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  1644. static ssize_t
  1645. slot_show(mdk_rdev_t *rdev, char *page)
  1646. {
  1647. if (rdev->raid_disk < 0)
  1648. return sprintf(page, "none\n");
  1649. else
  1650. return sprintf(page, "%d\n", rdev->raid_disk);
  1651. }
  1652. static ssize_t
  1653. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1654. {
  1655. char *e;
  1656. int err;
  1657. char nm[20];
  1658. int slot = simple_strtoul(buf, &e, 10);
  1659. if (strncmp(buf, "none", 4)==0)
  1660. slot = -1;
  1661. else if (e==buf || (*e && *e!= '\n'))
  1662. return -EINVAL;
  1663. if (rdev->mddev->pers) {
  1664. /* Setting 'slot' on an active array requires also
  1665. * updating the 'rd%d' link, and communicating
  1666. * with the personality with ->hot_*_disk.
  1667. * For now we only support removing
  1668. * failed/spare devices. This normally happens automatically,
  1669. * but not when the metadata is externally managed.
  1670. */
  1671. if (slot != -1)
  1672. return -EBUSY;
  1673. if (rdev->raid_disk == -1)
  1674. return -EEXIST;
  1675. /* personality does all needed checks */
  1676. if (rdev->mddev->pers->hot_add_disk == NULL)
  1677. return -EINVAL;
  1678. err = rdev->mddev->pers->
  1679. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  1680. if (err)
  1681. return err;
  1682. sprintf(nm, "rd%d", rdev->raid_disk);
  1683. sysfs_remove_link(&rdev->mddev->kobj, nm);
  1684. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  1685. md_wakeup_thread(rdev->mddev->thread);
  1686. } else {
  1687. if (slot >= rdev->mddev->raid_disks)
  1688. return -ENOSPC;
  1689. rdev->raid_disk = slot;
  1690. /* assume it is working */
  1691. clear_bit(Faulty, &rdev->flags);
  1692. clear_bit(WriteMostly, &rdev->flags);
  1693. set_bit(In_sync, &rdev->flags);
  1694. }
  1695. return len;
  1696. }
  1697. static struct rdev_sysfs_entry rdev_slot =
  1698. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  1699. static ssize_t
  1700. offset_show(mdk_rdev_t *rdev, char *page)
  1701. {
  1702. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1703. }
  1704. static ssize_t
  1705. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1706. {
  1707. char *e;
  1708. unsigned long long offset = simple_strtoull(buf, &e, 10);
  1709. if (e==buf || (*e && *e != '\n'))
  1710. return -EINVAL;
  1711. if (rdev->mddev->pers)
  1712. return -EBUSY;
  1713. if (rdev->size && rdev->mddev->external)
  1714. /* Must set offset before size, so overlap checks
  1715. * can be sane */
  1716. return -EBUSY;
  1717. rdev->data_offset = offset;
  1718. return len;
  1719. }
  1720. static struct rdev_sysfs_entry rdev_offset =
  1721. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  1722. static ssize_t
  1723. rdev_size_show(mdk_rdev_t *rdev, char *page)
  1724. {
  1725. return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
  1726. }
  1727. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  1728. {
  1729. /* check if two start/length pairs overlap */
  1730. if (s1+l1 <= s2)
  1731. return 0;
  1732. if (s2+l2 <= s1)
  1733. return 0;
  1734. return 1;
  1735. }
  1736. static ssize_t
  1737. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1738. {
  1739. char *e;
  1740. unsigned long long size = simple_strtoull(buf, &e, 10);
  1741. unsigned long long oldsize = rdev->size;
  1742. if (e==buf || (*e && *e != '\n'))
  1743. return -EINVAL;
  1744. if (rdev->mddev->pers)
  1745. return -EBUSY;
  1746. rdev->size = size;
  1747. if (size > oldsize && rdev->mddev->external) {
  1748. /* need to check that all other rdevs with the same ->bdev
  1749. * do not overlap. We need to unlock the mddev to avoid
  1750. * a deadlock. We have already changed rdev->size, and if
  1751. * we have to change it back, we will have the lock again.
  1752. */
  1753. mddev_t *mddev;
  1754. int overlap = 0;
  1755. struct list_head *tmp, *tmp2;
  1756. mddev_unlock(rdev->mddev);
  1757. ITERATE_MDDEV(mddev, tmp) {
  1758. mdk_rdev_t *rdev2;
  1759. mddev_lock(mddev);
  1760. ITERATE_RDEV(mddev, rdev2, tmp2)
  1761. if (test_bit(AllReserved, &rdev2->flags) ||
  1762. (rdev->bdev == rdev2->bdev &&
  1763. rdev != rdev2 &&
  1764. overlaps(rdev->data_offset, rdev->size,
  1765. rdev2->data_offset, rdev2->size))) {
  1766. overlap = 1;
  1767. break;
  1768. }
  1769. mddev_unlock(mddev);
  1770. if (overlap) {
  1771. mddev_put(mddev);
  1772. break;
  1773. }
  1774. }
  1775. mddev_lock(rdev->mddev);
  1776. if (overlap) {
  1777. /* Someone else could have slipped in a size
  1778. * change here, but doing so is just silly.
  1779. * We put oldsize back because we *know* it is
  1780. * safe, and trust userspace not to race with
  1781. * itself
  1782. */
  1783. rdev->size = oldsize;
  1784. return -EBUSY;
  1785. }
  1786. }
  1787. if (size < rdev->mddev->size || rdev->mddev->size == 0)
  1788. rdev->mddev->size = size;
  1789. return len;
  1790. }
  1791. static struct rdev_sysfs_entry rdev_size =
  1792. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  1793. static struct attribute *rdev_default_attrs[] = {
  1794. &rdev_state.attr,
  1795. &rdev_super.attr,
  1796. &rdev_errors.attr,
  1797. &rdev_slot.attr,
  1798. &rdev_offset.attr,
  1799. &rdev_size.attr,
  1800. NULL,
  1801. };
  1802. static ssize_t
  1803. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1804. {
  1805. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1806. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1807. if (!entry->show)
  1808. return -EIO;
  1809. return entry->show(rdev, page);
  1810. }
  1811. static ssize_t
  1812. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1813. const char *page, size_t length)
  1814. {
  1815. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1816. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1817. int rv;
  1818. if (!entry->store)
  1819. return -EIO;
  1820. if (!capable(CAP_SYS_ADMIN))
  1821. return -EACCES;
  1822. rv = mddev_lock(rdev->mddev);
  1823. if (!rv) {
  1824. rv = entry->store(rdev, page, length);
  1825. mddev_unlock(rdev->mddev);
  1826. }
  1827. return rv;
  1828. }
  1829. static void rdev_free(struct kobject *ko)
  1830. {
  1831. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1832. kfree(rdev);
  1833. }
  1834. static struct sysfs_ops rdev_sysfs_ops = {
  1835. .show = rdev_attr_show,
  1836. .store = rdev_attr_store,
  1837. };
  1838. static struct kobj_type rdev_ktype = {
  1839. .release = rdev_free,
  1840. .sysfs_ops = &rdev_sysfs_ops,
  1841. .default_attrs = rdev_default_attrs,
  1842. };
  1843. /*
  1844. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1845. *
  1846. * mark the device faulty if:
  1847. *
  1848. * - the device is nonexistent (zero size)
  1849. * - the device has no valid superblock
  1850. *
  1851. * a faulty rdev _never_ has rdev->sb set.
  1852. */
  1853. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1854. {
  1855. char b[BDEVNAME_SIZE];
  1856. int err;
  1857. mdk_rdev_t *rdev;
  1858. sector_t size;
  1859. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  1860. if (!rdev) {
  1861. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1862. return ERR_PTR(-ENOMEM);
  1863. }
  1864. if ((err = alloc_disk_sb(rdev)))
  1865. goto abort_free;
  1866. err = lock_rdev(rdev, newdev, super_format == -2);
  1867. if (err)
  1868. goto abort_free;
  1869. kobject_init(&rdev->kobj, &rdev_ktype);
  1870. rdev->desc_nr = -1;
  1871. rdev->saved_raid_disk = -1;
  1872. rdev->raid_disk = -1;
  1873. rdev->flags = 0;
  1874. rdev->data_offset = 0;
  1875. rdev->sb_events = 0;
  1876. atomic_set(&rdev->nr_pending, 0);
  1877. atomic_set(&rdev->read_errors, 0);
  1878. atomic_set(&rdev->corrected_errors, 0);
  1879. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1880. if (!size) {
  1881. printk(KERN_WARNING
  1882. "md: %s has zero or unknown size, marking faulty!\n",
  1883. bdevname(rdev->bdev,b));
  1884. err = -EINVAL;
  1885. goto abort_free;
  1886. }
  1887. if (super_format >= 0) {
  1888. err = super_types[super_format].
  1889. load_super(rdev, NULL, super_minor);
  1890. if (err == -EINVAL) {
  1891. printk(KERN_WARNING
  1892. "md: %s does not have a valid v%d.%d "
  1893. "superblock, not importing!\n",
  1894. bdevname(rdev->bdev,b),
  1895. super_format, super_minor);
  1896. goto abort_free;
  1897. }
  1898. if (err < 0) {
  1899. printk(KERN_WARNING
  1900. "md: could not read %s's sb, not importing!\n",
  1901. bdevname(rdev->bdev,b));
  1902. goto abort_free;
  1903. }
  1904. }
  1905. INIT_LIST_HEAD(&rdev->same_set);
  1906. return rdev;
  1907. abort_free:
  1908. if (rdev->sb_page) {
  1909. if (rdev->bdev)
  1910. unlock_rdev(rdev);
  1911. free_disk_sb(rdev);
  1912. }
  1913. kfree(rdev);
  1914. return ERR_PTR(err);
  1915. }
  1916. /*
  1917. * Check a full RAID array for plausibility
  1918. */
  1919. static void analyze_sbs(mddev_t * mddev)
  1920. {
  1921. int i;
  1922. struct list_head *tmp;
  1923. mdk_rdev_t *rdev, *freshest;
  1924. char b[BDEVNAME_SIZE];
  1925. freshest = NULL;
  1926. ITERATE_RDEV(mddev,rdev,tmp)
  1927. switch (super_types[mddev->major_version].
  1928. load_super(rdev, freshest, mddev->minor_version)) {
  1929. case 1:
  1930. freshest = rdev;
  1931. break;
  1932. case 0:
  1933. break;
  1934. default:
  1935. printk( KERN_ERR \
  1936. "md: fatal superblock inconsistency in %s"
  1937. " -- removing from array\n",
  1938. bdevname(rdev->bdev,b));
  1939. kick_rdev_from_array(rdev);
  1940. }
  1941. super_types[mddev->major_version].
  1942. validate_super(mddev, freshest);
  1943. i = 0;
  1944. ITERATE_RDEV(mddev,rdev,tmp) {
  1945. if (rdev != freshest)
  1946. if (super_types[mddev->major_version].
  1947. validate_super(mddev, rdev)) {
  1948. printk(KERN_WARNING "md: kicking non-fresh %s"
  1949. " from array!\n",
  1950. bdevname(rdev->bdev,b));
  1951. kick_rdev_from_array(rdev);
  1952. continue;
  1953. }
  1954. if (mddev->level == LEVEL_MULTIPATH) {
  1955. rdev->desc_nr = i++;
  1956. rdev->raid_disk = rdev->desc_nr;
  1957. set_bit(In_sync, &rdev->flags);
  1958. } else if (rdev->raid_disk >= mddev->raid_disks) {
  1959. rdev->raid_disk = -1;
  1960. clear_bit(In_sync, &rdev->flags);
  1961. }
  1962. }
  1963. if (mddev->recovery_cp != MaxSector &&
  1964. mddev->level >= 1)
  1965. printk(KERN_ERR "md: %s: raid array is not clean"
  1966. " -- starting background reconstruction\n",
  1967. mdname(mddev));
  1968. }
  1969. static ssize_t
  1970. safe_delay_show(mddev_t *mddev, char *page)
  1971. {
  1972. int msec = (mddev->safemode_delay*1000)/HZ;
  1973. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  1974. }
  1975. static ssize_t
  1976. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  1977. {
  1978. int scale=1;
  1979. int dot=0;
  1980. int i;
  1981. unsigned long msec;
  1982. char buf[30];
  1983. char *e;
  1984. /* remove a period, and count digits after it */
  1985. if (len >= sizeof(buf))
  1986. return -EINVAL;
  1987. strlcpy(buf, cbuf, len);
  1988. buf[len] = 0;
  1989. for (i=0; i<len; i++) {
  1990. if (dot) {
  1991. if (isdigit(buf[i])) {
  1992. buf[i-1] = buf[i];
  1993. scale *= 10;
  1994. }
  1995. buf[i] = 0;
  1996. } else if (buf[i] == '.') {
  1997. dot=1;
  1998. buf[i] = 0;
  1999. }
  2000. }
  2001. msec = simple_strtoul(buf, &e, 10);
  2002. if (e == buf || (*e && *e != '\n'))
  2003. return -EINVAL;
  2004. msec = (msec * 1000) / scale;
  2005. if (msec == 0)
  2006. mddev->safemode_delay = 0;
  2007. else {
  2008. mddev->safemode_delay = (msec*HZ)/1000;
  2009. if (mddev->safemode_delay == 0)
  2010. mddev->safemode_delay = 1;
  2011. }
  2012. return len;
  2013. }
  2014. static struct md_sysfs_entry md_safe_delay =
  2015. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2016. static ssize_t
  2017. level_show(mddev_t *mddev, char *page)
  2018. {
  2019. struct mdk_personality *p = mddev->pers;
  2020. if (p)
  2021. return sprintf(page, "%s\n", p->name);
  2022. else if (mddev->clevel[0])
  2023. return sprintf(page, "%s\n", mddev->clevel);
  2024. else if (mddev->level != LEVEL_NONE)
  2025. return sprintf(page, "%d\n", mddev->level);
  2026. else
  2027. return 0;
  2028. }
  2029. static ssize_t
  2030. level_store(mddev_t *mddev, const char *buf, size_t len)
  2031. {
  2032. int rv = len;
  2033. if (mddev->pers)
  2034. return -EBUSY;
  2035. if (len == 0)
  2036. return 0;
  2037. if (len >= sizeof(mddev->clevel))
  2038. return -ENOSPC;
  2039. strncpy(mddev->clevel, buf, len);
  2040. if (mddev->clevel[len-1] == '\n')
  2041. len--;
  2042. mddev->clevel[len] = 0;
  2043. mddev->level = LEVEL_NONE;
  2044. return rv;
  2045. }
  2046. static struct md_sysfs_entry md_level =
  2047. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  2048. static ssize_t
  2049. layout_show(mddev_t *mddev, char *page)
  2050. {
  2051. /* just a number, not meaningful for all levels */
  2052. if (mddev->reshape_position != MaxSector &&
  2053. mddev->layout != mddev->new_layout)
  2054. return sprintf(page, "%d (%d)\n",
  2055. mddev->new_layout, mddev->layout);
  2056. return sprintf(page, "%d\n", mddev->layout);
  2057. }
  2058. static ssize_t
  2059. layout_store(mddev_t *mddev, const char *buf, size_t len)
  2060. {
  2061. char *e;
  2062. unsigned long n = simple_strtoul(buf, &e, 10);
  2063. if (!*buf || (*e && *e != '\n'))
  2064. return -EINVAL;
  2065. if (mddev->pers)
  2066. return -EBUSY;
  2067. if (mddev->reshape_position != MaxSector)
  2068. mddev->new_layout = n;
  2069. else
  2070. mddev->layout = n;
  2071. return len;
  2072. }
  2073. static struct md_sysfs_entry md_layout =
  2074. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  2075. static ssize_t
  2076. raid_disks_show(mddev_t *mddev, char *page)
  2077. {
  2078. if (mddev->raid_disks == 0)
  2079. return 0;
  2080. if (mddev->reshape_position != MaxSector &&
  2081. mddev->delta_disks != 0)
  2082. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  2083. mddev->raid_disks - mddev->delta_disks);
  2084. return sprintf(page, "%d\n", mddev->raid_disks);
  2085. }
  2086. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  2087. static ssize_t
  2088. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  2089. {
  2090. char *e;
  2091. int rv = 0;
  2092. unsigned long n = simple_strtoul(buf, &e, 10);
  2093. if (!*buf || (*e && *e != '\n'))
  2094. return -EINVAL;
  2095. if (mddev->pers)
  2096. rv = update_raid_disks(mddev, n);
  2097. else if (mddev->reshape_position != MaxSector) {
  2098. int olddisks = mddev->raid_disks - mddev->delta_disks;
  2099. mddev->delta_disks = n - olddisks;
  2100. mddev->raid_disks = n;
  2101. } else
  2102. mddev->raid_disks = n;
  2103. return rv ? rv : len;
  2104. }
  2105. static struct md_sysfs_entry md_raid_disks =
  2106. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  2107. static ssize_t
  2108. chunk_size_show(mddev_t *mddev, char *page)
  2109. {
  2110. if (mddev->reshape_position != MaxSector &&
  2111. mddev->chunk_size != mddev->new_chunk)
  2112. return sprintf(page, "%d (%d)\n", mddev->new_chunk,
  2113. mddev->chunk_size);
  2114. return sprintf(page, "%d\n", mddev->chunk_size);
  2115. }
  2116. static ssize_t
  2117. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  2118. {
  2119. /* can only set chunk_size if array is not yet active */
  2120. char *e;
  2121. unsigned long n = simple_strtoul(buf, &e, 10);
  2122. if (!*buf || (*e && *e != '\n'))
  2123. return -EINVAL;
  2124. if (mddev->pers)
  2125. return -EBUSY;
  2126. else if (mddev->reshape_position != MaxSector)
  2127. mddev->new_chunk = n;
  2128. else
  2129. mddev->chunk_size = n;
  2130. return len;
  2131. }
  2132. static struct md_sysfs_entry md_chunk_size =
  2133. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  2134. static ssize_t
  2135. resync_start_show(mddev_t *mddev, char *page)
  2136. {
  2137. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  2138. }
  2139. static ssize_t
  2140. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  2141. {
  2142. /* can only set chunk_size if array is not yet active */
  2143. char *e;
  2144. unsigned long long n = simple_strtoull(buf, &e, 10);
  2145. if (mddev->pers)
  2146. return -EBUSY;
  2147. if (!*buf || (*e && *e != '\n'))
  2148. return -EINVAL;
  2149. mddev->recovery_cp = n;
  2150. return len;
  2151. }
  2152. static struct md_sysfs_entry md_resync_start =
  2153. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2154. /*
  2155. * The array state can be:
  2156. *
  2157. * clear
  2158. * No devices, no size, no level
  2159. * Equivalent to STOP_ARRAY ioctl
  2160. * inactive
  2161. * May have some settings, but array is not active
  2162. * all IO results in error
  2163. * When written, doesn't tear down array, but just stops it
  2164. * suspended (not supported yet)
  2165. * All IO requests will block. The array can be reconfigured.
  2166. * Writing this, if accepted, will block until array is quiessent
  2167. * readonly
  2168. * no resync can happen. no superblocks get written.
  2169. * write requests fail
  2170. * read-auto
  2171. * like readonly, but behaves like 'clean' on a write request.
  2172. *
  2173. * clean - no pending writes, but otherwise active.
  2174. * When written to inactive array, starts without resync
  2175. * If a write request arrives then
  2176. * if metadata is known, mark 'dirty' and switch to 'active'.
  2177. * if not known, block and switch to write-pending
  2178. * If written to an active array that has pending writes, then fails.
  2179. * active
  2180. * fully active: IO and resync can be happening.
  2181. * When written to inactive array, starts with resync
  2182. *
  2183. * write-pending
  2184. * clean, but writes are blocked waiting for 'active' to be written.
  2185. *
  2186. * active-idle
  2187. * like active, but no writes have been seen for a while (100msec).
  2188. *
  2189. */
  2190. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2191. write_pending, active_idle, bad_word};
  2192. static char *array_states[] = {
  2193. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2194. "write-pending", "active-idle", NULL };
  2195. static int match_word(const char *word, char **list)
  2196. {
  2197. int n;
  2198. for (n=0; list[n]; n++)
  2199. if (cmd_match(word, list[n]))
  2200. break;
  2201. return n;
  2202. }
  2203. static ssize_t
  2204. array_state_show(mddev_t *mddev, char *page)
  2205. {
  2206. enum array_state st = inactive;
  2207. if (mddev->pers)
  2208. switch(mddev->ro) {
  2209. case 1:
  2210. st = readonly;
  2211. break;
  2212. case 2:
  2213. st = read_auto;
  2214. break;
  2215. case 0:
  2216. if (mddev->in_sync)
  2217. st = clean;
  2218. else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2219. st = write_pending;
  2220. else if (mddev->safemode)
  2221. st = active_idle;
  2222. else
  2223. st = active;
  2224. }
  2225. else {
  2226. if (list_empty(&mddev->disks) &&
  2227. mddev->raid_disks == 0 &&
  2228. mddev->size == 0)
  2229. st = clear;
  2230. else
  2231. st = inactive;
  2232. }
  2233. return sprintf(page, "%s\n", array_states[st]);
  2234. }
  2235. static int do_md_stop(mddev_t * mddev, int ro);
  2236. static int do_md_run(mddev_t * mddev);
  2237. static int restart_array(mddev_t *mddev);
  2238. static ssize_t
  2239. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2240. {
  2241. int err = -EINVAL;
  2242. enum array_state st = match_word(buf, array_states);
  2243. switch(st) {
  2244. case bad_word:
  2245. break;
  2246. case clear:
  2247. /* stopping an active array */
  2248. if (atomic_read(&mddev->active) > 1)
  2249. return -EBUSY;
  2250. err = do_md_stop(mddev, 0);
  2251. break;
  2252. case inactive:
  2253. /* stopping an active array */
  2254. if (mddev->pers) {
  2255. if (atomic_read(&mddev->active) > 1)
  2256. return -EBUSY;
  2257. err = do_md_stop(mddev, 2);
  2258. } else
  2259. err = 0; /* already inactive */
  2260. break;
  2261. case suspended:
  2262. break; /* not supported yet */
  2263. case readonly:
  2264. if (mddev->pers)
  2265. err = do_md_stop(mddev, 1);
  2266. else {
  2267. mddev->ro = 1;
  2268. err = do_md_run(mddev);
  2269. }
  2270. break;
  2271. case read_auto:
  2272. /* stopping an active array */
  2273. if (mddev->pers) {
  2274. err = do_md_stop(mddev, 1);
  2275. if (err == 0)
  2276. mddev->ro = 2; /* FIXME mark devices writable */
  2277. } else {
  2278. mddev->ro = 2;
  2279. err = do_md_run(mddev);
  2280. }
  2281. break;
  2282. case clean:
  2283. if (mddev->pers) {
  2284. restart_array(mddev);
  2285. spin_lock_irq(&mddev->write_lock);
  2286. if (atomic_read(&mddev->writes_pending) == 0) {
  2287. if (mddev->in_sync == 0) {
  2288. mddev->in_sync = 1;
  2289. if (mddev->persistent)
  2290. set_bit(MD_CHANGE_CLEAN,
  2291. &mddev->flags);
  2292. }
  2293. err = 0;
  2294. } else
  2295. err = -EBUSY;
  2296. spin_unlock_irq(&mddev->write_lock);
  2297. } else {
  2298. mddev->ro = 0;
  2299. mddev->recovery_cp = MaxSector;
  2300. err = do_md_run(mddev);
  2301. }
  2302. break;
  2303. case active:
  2304. if (mddev->pers) {
  2305. restart_array(mddev);
  2306. if (mddev->external)
  2307. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2308. wake_up(&mddev->sb_wait);
  2309. err = 0;
  2310. } else {
  2311. mddev->ro = 0;
  2312. err = do_md_run(mddev);
  2313. }
  2314. break;
  2315. case write_pending:
  2316. case active_idle:
  2317. /* these cannot be set */
  2318. break;
  2319. }
  2320. if (err)
  2321. return err;
  2322. else
  2323. return len;
  2324. }
  2325. static struct md_sysfs_entry md_array_state =
  2326. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  2327. static ssize_t
  2328. null_show(mddev_t *mddev, char *page)
  2329. {
  2330. return -EINVAL;
  2331. }
  2332. static ssize_t
  2333. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  2334. {
  2335. /* buf must be %d:%d\n? giving major and minor numbers */
  2336. /* The new device is added to the array.
  2337. * If the array has a persistent superblock, we read the
  2338. * superblock to initialise info and check validity.
  2339. * Otherwise, only checking done is that in bind_rdev_to_array,
  2340. * which mainly checks size.
  2341. */
  2342. char *e;
  2343. int major = simple_strtoul(buf, &e, 10);
  2344. int minor;
  2345. dev_t dev;
  2346. mdk_rdev_t *rdev;
  2347. int err;
  2348. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  2349. return -EINVAL;
  2350. minor = simple_strtoul(e+1, &e, 10);
  2351. if (*e && *e != '\n')
  2352. return -EINVAL;
  2353. dev = MKDEV(major, minor);
  2354. if (major != MAJOR(dev) ||
  2355. minor != MINOR(dev))
  2356. return -EOVERFLOW;
  2357. if (mddev->persistent) {
  2358. rdev = md_import_device(dev, mddev->major_version,
  2359. mddev->minor_version);
  2360. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  2361. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2362. mdk_rdev_t, same_set);
  2363. err = super_types[mddev->major_version]
  2364. .load_super(rdev, rdev0, mddev->minor_version);
  2365. if (err < 0)
  2366. goto out;
  2367. }
  2368. } else if (mddev->external)
  2369. rdev = md_import_device(dev, -2, -1);
  2370. else
  2371. rdev = md_import_device(dev, -1, -1);
  2372. if (IS_ERR(rdev))
  2373. return PTR_ERR(rdev);
  2374. err = bind_rdev_to_array(rdev, mddev);
  2375. out:
  2376. if (err)
  2377. export_rdev(rdev);
  2378. return err ? err : len;
  2379. }
  2380. static struct md_sysfs_entry md_new_device =
  2381. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  2382. static ssize_t
  2383. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  2384. {
  2385. char *end;
  2386. unsigned long chunk, end_chunk;
  2387. if (!mddev->bitmap)
  2388. goto out;
  2389. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  2390. while (*buf) {
  2391. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  2392. if (buf == end) break;
  2393. if (*end == '-') { /* range */
  2394. buf = end + 1;
  2395. end_chunk = simple_strtoul(buf, &end, 0);
  2396. if (buf == end) break;
  2397. }
  2398. if (*end && !isspace(*end)) break;
  2399. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  2400. buf = end;
  2401. while (isspace(*buf)) buf++;
  2402. }
  2403. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  2404. out:
  2405. return len;
  2406. }
  2407. static struct md_sysfs_entry md_bitmap =
  2408. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  2409. static ssize_t
  2410. size_show(mddev_t *mddev, char *page)
  2411. {
  2412. return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
  2413. }
  2414. static int update_size(mddev_t *mddev, unsigned long size);
  2415. static ssize_t
  2416. size_store(mddev_t *mddev, const char *buf, size_t len)
  2417. {
  2418. /* If array is inactive, we can reduce the component size, but
  2419. * not increase it (except from 0).
  2420. * If array is active, we can try an on-line resize
  2421. */
  2422. char *e;
  2423. int err = 0;
  2424. unsigned long long size = simple_strtoull(buf, &e, 10);
  2425. if (!*buf || *buf == '\n' ||
  2426. (*e && *e != '\n'))
  2427. return -EINVAL;
  2428. if (mddev->pers) {
  2429. err = update_size(mddev, size);
  2430. md_update_sb(mddev, 1);
  2431. } else {
  2432. if (mddev->size == 0 ||
  2433. mddev->size > size)
  2434. mddev->size = size;
  2435. else
  2436. err = -ENOSPC;
  2437. }
  2438. return err ? err : len;
  2439. }
  2440. static struct md_sysfs_entry md_size =
  2441. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  2442. /* Metdata version.
  2443. * This is one of
  2444. * 'none' for arrays with no metadata (good luck...)
  2445. * 'external' for arrays with externally managed metadata,
  2446. * or N.M for internally known formats
  2447. */
  2448. static ssize_t
  2449. metadata_show(mddev_t *mddev, char *page)
  2450. {
  2451. if (mddev->persistent)
  2452. return sprintf(page, "%d.%d\n",
  2453. mddev->major_version, mddev->minor_version);
  2454. else if (mddev->external)
  2455. return sprintf(page, "external:%s\n", mddev->metadata_type);
  2456. else
  2457. return sprintf(page, "none\n");
  2458. }
  2459. static ssize_t
  2460. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  2461. {
  2462. int major, minor;
  2463. char *e;
  2464. if (!list_empty(&mddev->disks))
  2465. return -EBUSY;
  2466. if (cmd_match(buf, "none")) {
  2467. mddev->persistent = 0;
  2468. mddev->external = 0;
  2469. mddev->major_version = 0;
  2470. mddev->minor_version = 90;
  2471. return len;
  2472. }
  2473. if (strncmp(buf, "external:", 9) == 0) {
  2474. int namelen = len-9;
  2475. if (namelen >= sizeof(mddev->metadata_type))
  2476. namelen = sizeof(mddev->metadata_type)-1;
  2477. strncpy(mddev->metadata_type, buf+9, namelen);
  2478. mddev->metadata_type[namelen] = 0;
  2479. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  2480. mddev->metadata_type[--namelen] = 0;
  2481. mddev->persistent = 0;
  2482. mddev->external = 1;
  2483. mddev->major_version = 0;
  2484. mddev->minor_version = 90;
  2485. return len;
  2486. }
  2487. major = simple_strtoul(buf, &e, 10);
  2488. if (e==buf || *e != '.')
  2489. return -EINVAL;
  2490. buf = e+1;
  2491. minor = simple_strtoul(buf, &e, 10);
  2492. if (e==buf || (*e && *e != '\n') )
  2493. return -EINVAL;
  2494. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  2495. return -ENOENT;
  2496. mddev->major_version = major;
  2497. mddev->minor_version = minor;
  2498. mddev->persistent = 1;
  2499. mddev->external = 0;
  2500. return len;
  2501. }
  2502. static struct md_sysfs_entry md_metadata =
  2503. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  2504. static ssize_t
  2505. action_show(mddev_t *mddev, char *page)
  2506. {
  2507. char *type = "idle";
  2508. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2509. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  2510. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2511. type = "reshape";
  2512. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2513. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2514. type = "resync";
  2515. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  2516. type = "check";
  2517. else
  2518. type = "repair";
  2519. } else
  2520. type = "recover";
  2521. }
  2522. return sprintf(page, "%s\n", type);
  2523. }
  2524. static ssize_t
  2525. action_store(mddev_t *mddev, const char *page, size_t len)
  2526. {
  2527. if (!mddev->pers || !mddev->pers->sync_request)
  2528. return -EINVAL;
  2529. if (cmd_match(page, "idle")) {
  2530. if (mddev->sync_thread) {
  2531. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2532. md_unregister_thread(mddev->sync_thread);
  2533. mddev->sync_thread = NULL;
  2534. mddev->recovery = 0;
  2535. }
  2536. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2537. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  2538. return -EBUSY;
  2539. else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
  2540. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2541. else if (cmd_match(page, "reshape")) {
  2542. int err;
  2543. if (mddev->pers->start_reshape == NULL)
  2544. return -EINVAL;
  2545. err = mddev->pers->start_reshape(mddev);
  2546. if (err)
  2547. return err;
  2548. } else {
  2549. if (cmd_match(page, "check"))
  2550. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  2551. else if (!cmd_match(page, "repair"))
  2552. return -EINVAL;
  2553. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  2554. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  2555. }
  2556. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2557. md_wakeup_thread(mddev->thread);
  2558. return len;
  2559. }
  2560. static ssize_t
  2561. mismatch_cnt_show(mddev_t *mddev, char *page)
  2562. {
  2563. return sprintf(page, "%llu\n",
  2564. (unsigned long long) mddev->resync_mismatches);
  2565. }
  2566. static struct md_sysfs_entry md_scan_mode =
  2567. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  2568. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  2569. static ssize_t
  2570. sync_min_show(mddev_t *mddev, char *page)
  2571. {
  2572. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  2573. mddev->sync_speed_min ? "local": "system");
  2574. }
  2575. static ssize_t
  2576. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  2577. {
  2578. int min;
  2579. char *e;
  2580. if (strncmp(buf, "system", 6)==0) {
  2581. mddev->sync_speed_min = 0;
  2582. return len;
  2583. }
  2584. min = simple_strtoul(buf, &e, 10);
  2585. if (buf == e || (*e && *e != '\n') || min <= 0)
  2586. return -EINVAL;
  2587. mddev->sync_speed_min = min;
  2588. return len;
  2589. }
  2590. static struct md_sysfs_entry md_sync_min =
  2591. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  2592. static ssize_t
  2593. sync_max_show(mddev_t *mddev, char *page)
  2594. {
  2595. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  2596. mddev->sync_speed_max ? "local": "system");
  2597. }
  2598. static ssize_t
  2599. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  2600. {
  2601. int max;
  2602. char *e;
  2603. if (strncmp(buf, "system", 6)==0) {
  2604. mddev->sync_speed_max = 0;
  2605. return len;
  2606. }
  2607. max = simple_strtoul(buf, &e, 10);
  2608. if (buf == e || (*e && *e != '\n') || max <= 0)
  2609. return -EINVAL;
  2610. mddev->sync_speed_max = max;
  2611. return len;
  2612. }
  2613. static struct md_sysfs_entry md_sync_max =
  2614. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  2615. static ssize_t
  2616. degraded_show(mddev_t *mddev, char *page)
  2617. {
  2618. return sprintf(page, "%d\n", mddev->degraded);
  2619. }
  2620. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  2621. static ssize_t
  2622. sync_speed_show(mddev_t *mddev, char *page)
  2623. {
  2624. unsigned long resync, dt, db;
  2625. resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
  2626. dt = ((jiffies - mddev->resync_mark) / HZ);
  2627. if (!dt) dt++;
  2628. db = resync - (mddev->resync_mark_cnt);
  2629. return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
  2630. }
  2631. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  2632. static ssize_t
  2633. sync_completed_show(mddev_t *mddev, char *page)
  2634. {
  2635. unsigned long max_blocks, resync;
  2636. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2637. max_blocks = mddev->resync_max_sectors;
  2638. else
  2639. max_blocks = mddev->size << 1;
  2640. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
  2641. return sprintf(page, "%lu / %lu\n", resync, max_blocks);
  2642. }
  2643. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  2644. static ssize_t
  2645. max_sync_show(mddev_t *mddev, char *page)
  2646. {
  2647. if (mddev->resync_max == MaxSector)
  2648. return sprintf(page, "max\n");
  2649. else
  2650. return sprintf(page, "%llu\n",
  2651. (unsigned long long)mddev->resync_max);
  2652. }
  2653. static ssize_t
  2654. max_sync_store(mddev_t *mddev, const char *buf, size_t len)
  2655. {
  2656. if (strncmp(buf, "max", 3) == 0)
  2657. mddev->resync_max = MaxSector;
  2658. else {
  2659. char *ep;
  2660. unsigned long long max = simple_strtoull(buf, &ep, 10);
  2661. if (ep == buf || (*ep != 0 && *ep != '\n'))
  2662. return -EINVAL;
  2663. if (max < mddev->resync_max &&
  2664. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2665. return -EBUSY;
  2666. /* Must be a multiple of chunk_size */
  2667. if (mddev->chunk_size) {
  2668. if (max & (sector_t)((mddev->chunk_size>>9)-1))
  2669. return -EINVAL;
  2670. }
  2671. mddev->resync_max = max;
  2672. }
  2673. wake_up(&mddev->recovery_wait);
  2674. return len;
  2675. }
  2676. static struct md_sysfs_entry md_max_sync =
  2677. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  2678. static ssize_t
  2679. suspend_lo_show(mddev_t *mddev, char *page)
  2680. {
  2681. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  2682. }
  2683. static ssize_t
  2684. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  2685. {
  2686. char *e;
  2687. unsigned long long new = simple_strtoull(buf, &e, 10);
  2688. if (mddev->pers->quiesce == NULL)
  2689. return -EINVAL;
  2690. if (buf == e || (*e && *e != '\n'))
  2691. return -EINVAL;
  2692. if (new >= mddev->suspend_hi ||
  2693. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  2694. mddev->suspend_lo = new;
  2695. mddev->pers->quiesce(mddev, 2);
  2696. return len;
  2697. } else
  2698. return -EINVAL;
  2699. }
  2700. static struct md_sysfs_entry md_suspend_lo =
  2701. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  2702. static ssize_t
  2703. suspend_hi_show(mddev_t *mddev, char *page)
  2704. {
  2705. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  2706. }
  2707. static ssize_t
  2708. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  2709. {
  2710. char *e;
  2711. unsigned long long new = simple_strtoull(buf, &e, 10);
  2712. if (mddev->pers->quiesce == NULL)
  2713. return -EINVAL;
  2714. if (buf == e || (*e && *e != '\n'))
  2715. return -EINVAL;
  2716. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  2717. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  2718. mddev->suspend_hi = new;
  2719. mddev->pers->quiesce(mddev, 1);
  2720. mddev->pers->quiesce(mddev, 0);
  2721. return len;
  2722. } else
  2723. return -EINVAL;
  2724. }
  2725. static struct md_sysfs_entry md_suspend_hi =
  2726. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  2727. static ssize_t
  2728. reshape_position_show(mddev_t *mddev, char *page)
  2729. {
  2730. if (mddev->reshape_position != MaxSector)
  2731. return sprintf(page, "%llu\n",
  2732. (unsigned long long)mddev->reshape_position);
  2733. strcpy(page, "none\n");
  2734. return 5;
  2735. }
  2736. static ssize_t
  2737. reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
  2738. {
  2739. char *e;
  2740. unsigned long long new = simple_strtoull(buf, &e, 10);
  2741. if (mddev->pers)
  2742. return -EBUSY;
  2743. if (buf == e || (*e && *e != '\n'))
  2744. return -EINVAL;
  2745. mddev->reshape_position = new;
  2746. mddev->delta_disks = 0;
  2747. mddev->new_level = mddev->level;
  2748. mddev->new_layout = mddev->layout;
  2749. mddev->new_chunk = mddev->chunk_size;
  2750. return len;
  2751. }
  2752. static struct md_sysfs_entry md_reshape_position =
  2753. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  2754. reshape_position_store);
  2755. static struct attribute *md_default_attrs[] = {
  2756. &md_level.attr,
  2757. &md_layout.attr,
  2758. &md_raid_disks.attr,
  2759. &md_chunk_size.attr,
  2760. &md_size.attr,
  2761. &md_resync_start.attr,
  2762. &md_metadata.attr,
  2763. &md_new_device.attr,
  2764. &md_safe_delay.attr,
  2765. &md_array_state.attr,
  2766. &md_reshape_position.attr,
  2767. NULL,
  2768. };
  2769. static struct attribute *md_redundancy_attrs[] = {
  2770. &md_scan_mode.attr,
  2771. &md_mismatches.attr,
  2772. &md_sync_min.attr,
  2773. &md_sync_max.attr,
  2774. &md_sync_speed.attr,
  2775. &md_sync_completed.attr,
  2776. &md_max_sync.attr,
  2777. &md_suspend_lo.attr,
  2778. &md_suspend_hi.attr,
  2779. &md_bitmap.attr,
  2780. &md_degraded.attr,
  2781. NULL,
  2782. };
  2783. static struct attribute_group md_redundancy_group = {
  2784. .name = NULL,
  2785. .attrs = md_redundancy_attrs,
  2786. };
  2787. static ssize_t
  2788. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2789. {
  2790. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2791. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2792. ssize_t rv;
  2793. if (!entry->show)
  2794. return -EIO;
  2795. rv = mddev_lock(mddev);
  2796. if (!rv) {
  2797. rv = entry->show(mddev, page);
  2798. mddev_unlock(mddev);
  2799. }
  2800. return rv;
  2801. }
  2802. static ssize_t
  2803. md_attr_store(struct kobject *kobj, struct attribute *attr,
  2804. const char *page, size_t length)
  2805. {
  2806. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2807. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2808. ssize_t rv;
  2809. if (!entry->store)
  2810. return -EIO;
  2811. if (!capable(CAP_SYS_ADMIN))
  2812. return -EACCES;
  2813. rv = mddev_lock(mddev);
  2814. if (!rv) {
  2815. rv = entry->store(mddev, page, length);
  2816. mddev_unlock(mddev);
  2817. }
  2818. return rv;
  2819. }
  2820. static void md_free(struct kobject *ko)
  2821. {
  2822. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  2823. kfree(mddev);
  2824. }
  2825. static struct sysfs_ops md_sysfs_ops = {
  2826. .show = md_attr_show,
  2827. .store = md_attr_store,
  2828. };
  2829. static struct kobj_type md_ktype = {
  2830. .release = md_free,
  2831. .sysfs_ops = &md_sysfs_ops,
  2832. .default_attrs = md_default_attrs,
  2833. };
  2834. int mdp_major = 0;
  2835. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  2836. {
  2837. static DEFINE_MUTEX(disks_mutex);
  2838. mddev_t *mddev = mddev_find(dev);
  2839. struct gendisk *disk;
  2840. int partitioned = (MAJOR(dev) != MD_MAJOR);
  2841. int shift = partitioned ? MdpMinorShift : 0;
  2842. int unit = MINOR(dev) >> shift;
  2843. int error;
  2844. if (!mddev)
  2845. return NULL;
  2846. mutex_lock(&disks_mutex);
  2847. if (mddev->gendisk) {
  2848. mutex_unlock(&disks_mutex);
  2849. mddev_put(mddev);
  2850. return NULL;
  2851. }
  2852. disk = alloc_disk(1 << shift);
  2853. if (!disk) {
  2854. mutex_unlock(&disks_mutex);
  2855. mddev_put(mddev);
  2856. return NULL;
  2857. }
  2858. disk->major = MAJOR(dev);
  2859. disk->first_minor = unit << shift;
  2860. if (partitioned)
  2861. sprintf(disk->disk_name, "md_d%d", unit);
  2862. else
  2863. sprintf(disk->disk_name, "md%d", unit);
  2864. disk->fops = &md_fops;
  2865. disk->private_data = mddev;
  2866. disk->queue = mddev->queue;
  2867. add_disk(disk);
  2868. mddev->gendisk = disk;
  2869. mutex_unlock(&disks_mutex);
  2870. error = kobject_init_and_add(&mddev->kobj, &md_ktype, &disk->dev.kobj,
  2871. "%s", "md");
  2872. if (error)
  2873. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  2874. disk->disk_name);
  2875. else
  2876. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  2877. return NULL;
  2878. }
  2879. static void md_safemode_timeout(unsigned long data)
  2880. {
  2881. mddev_t *mddev = (mddev_t *) data;
  2882. mddev->safemode = 1;
  2883. md_wakeup_thread(mddev->thread);
  2884. }
  2885. static int start_dirty_degraded;
  2886. static int do_md_run(mddev_t * mddev)
  2887. {
  2888. int err;
  2889. int chunk_size;
  2890. struct list_head *tmp;
  2891. mdk_rdev_t *rdev;
  2892. struct gendisk *disk;
  2893. struct mdk_personality *pers;
  2894. char b[BDEVNAME_SIZE];
  2895. if (list_empty(&mddev->disks))
  2896. /* cannot run an array with no devices.. */
  2897. return -EINVAL;
  2898. if (mddev->pers)
  2899. return -EBUSY;
  2900. /*
  2901. * Analyze all RAID superblock(s)
  2902. */
  2903. if (!mddev->raid_disks) {
  2904. if (!mddev->persistent)
  2905. return -EINVAL;
  2906. analyze_sbs(mddev);
  2907. }
  2908. chunk_size = mddev->chunk_size;
  2909. if (chunk_size) {
  2910. if (chunk_size > MAX_CHUNK_SIZE) {
  2911. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  2912. chunk_size, MAX_CHUNK_SIZE);
  2913. return -EINVAL;
  2914. }
  2915. /*
  2916. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  2917. */
  2918. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  2919. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  2920. return -EINVAL;
  2921. }
  2922. if (chunk_size < PAGE_SIZE) {
  2923. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  2924. chunk_size, PAGE_SIZE);
  2925. return -EINVAL;
  2926. }
  2927. /* devices must have minimum size of one chunk */
  2928. ITERATE_RDEV(mddev,rdev,tmp) {
  2929. if (test_bit(Faulty, &rdev->flags))
  2930. continue;
  2931. if (rdev->size < chunk_size / 1024) {
  2932. printk(KERN_WARNING
  2933. "md: Dev %s smaller than chunk_size:"
  2934. " %lluk < %dk\n",
  2935. bdevname(rdev->bdev,b),
  2936. (unsigned long long)rdev->size,
  2937. chunk_size / 1024);
  2938. return -EINVAL;
  2939. }
  2940. }
  2941. }
  2942. #ifdef CONFIG_KMOD
  2943. if (mddev->level != LEVEL_NONE)
  2944. request_module("md-level-%d", mddev->level);
  2945. else if (mddev->clevel[0])
  2946. request_module("md-%s", mddev->clevel);
  2947. #endif
  2948. /*
  2949. * Drop all container device buffers, from now on
  2950. * the only valid external interface is through the md
  2951. * device.
  2952. */
  2953. ITERATE_RDEV(mddev,rdev,tmp) {
  2954. if (test_bit(Faulty, &rdev->flags))
  2955. continue;
  2956. sync_blockdev(rdev->bdev);
  2957. invalidate_bdev(rdev->bdev);
  2958. /* perform some consistency tests on the device.
  2959. * We don't want the data to overlap the metadata,
  2960. * Internal Bitmap issues has handled elsewhere.
  2961. */
  2962. if (rdev->data_offset < rdev->sb_offset) {
  2963. if (mddev->size &&
  2964. rdev->data_offset + mddev->size*2
  2965. > rdev->sb_offset*2) {
  2966. printk("md: %s: data overlaps metadata\n",
  2967. mdname(mddev));
  2968. return -EINVAL;
  2969. }
  2970. } else {
  2971. if (rdev->sb_offset*2 + rdev->sb_size/512
  2972. > rdev->data_offset) {
  2973. printk("md: %s: metadata overlaps data\n",
  2974. mdname(mddev));
  2975. return -EINVAL;
  2976. }
  2977. }
  2978. }
  2979. md_probe(mddev->unit, NULL, NULL);
  2980. disk = mddev->gendisk;
  2981. if (!disk)
  2982. return -ENOMEM;
  2983. spin_lock(&pers_lock);
  2984. pers = find_pers(mddev->level, mddev->clevel);
  2985. if (!pers || !try_module_get(pers->owner)) {
  2986. spin_unlock(&pers_lock);
  2987. if (mddev->level != LEVEL_NONE)
  2988. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  2989. mddev->level);
  2990. else
  2991. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  2992. mddev->clevel);
  2993. return -EINVAL;
  2994. }
  2995. mddev->pers = pers;
  2996. spin_unlock(&pers_lock);
  2997. mddev->level = pers->level;
  2998. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2999. if (mddev->reshape_position != MaxSector &&
  3000. pers->start_reshape == NULL) {
  3001. /* This personality cannot handle reshaping... */
  3002. mddev->pers = NULL;
  3003. module_put(pers->owner);
  3004. return -EINVAL;
  3005. }
  3006. if (pers->sync_request) {
  3007. /* Warn if this is a potentially silly
  3008. * configuration.
  3009. */
  3010. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3011. mdk_rdev_t *rdev2;
  3012. struct list_head *tmp2;
  3013. int warned = 0;
  3014. ITERATE_RDEV(mddev, rdev, tmp) {
  3015. ITERATE_RDEV(mddev, rdev2, tmp2) {
  3016. if (rdev < rdev2 &&
  3017. rdev->bdev->bd_contains ==
  3018. rdev2->bdev->bd_contains) {
  3019. printk(KERN_WARNING
  3020. "%s: WARNING: %s appears to be"
  3021. " on the same physical disk as"
  3022. " %s.\n",
  3023. mdname(mddev),
  3024. bdevname(rdev->bdev,b),
  3025. bdevname(rdev2->bdev,b2));
  3026. warned = 1;
  3027. }
  3028. }
  3029. }
  3030. if (warned)
  3031. printk(KERN_WARNING
  3032. "True protection against single-disk"
  3033. " failure might be compromised.\n");
  3034. }
  3035. mddev->recovery = 0;
  3036. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  3037. mddev->barriers_work = 1;
  3038. mddev->ok_start_degraded = start_dirty_degraded;
  3039. if (start_readonly)
  3040. mddev->ro = 2; /* read-only, but switch on first write */
  3041. err = mddev->pers->run(mddev);
  3042. if (!err && mddev->pers->sync_request) {
  3043. err = bitmap_create(mddev);
  3044. if (err) {
  3045. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  3046. mdname(mddev), err);
  3047. mddev->pers->stop(mddev);
  3048. }
  3049. }
  3050. if (err) {
  3051. printk(KERN_ERR "md: pers->run() failed ...\n");
  3052. module_put(mddev->pers->owner);
  3053. mddev->pers = NULL;
  3054. bitmap_destroy(mddev);
  3055. return err;
  3056. }
  3057. if (mddev->pers->sync_request) {
  3058. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3059. printk(KERN_WARNING
  3060. "md: cannot register extra attributes for %s\n",
  3061. mdname(mddev));
  3062. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  3063. mddev->ro = 0;
  3064. atomic_set(&mddev->writes_pending,0);
  3065. mddev->safemode = 0;
  3066. mddev->safemode_timer.function = md_safemode_timeout;
  3067. mddev->safemode_timer.data = (unsigned long) mddev;
  3068. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  3069. mddev->in_sync = 1;
  3070. ITERATE_RDEV(mddev,rdev,tmp)
  3071. if (rdev->raid_disk >= 0) {
  3072. char nm[20];
  3073. sprintf(nm, "rd%d", rdev->raid_disk);
  3074. if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
  3075. printk("md: cannot register %s for %s\n",
  3076. nm, mdname(mddev));
  3077. }
  3078. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3079. if (mddev->flags)
  3080. md_update_sb(mddev, 0);
  3081. set_capacity(disk, mddev->array_size<<1);
  3082. /* If we call blk_queue_make_request here, it will
  3083. * re-initialise max_sectors etc which may have been
  3084. * refined inside -> run. So just set the bits we need to set.
  3085. * Most initialisation happended when we called
  3086. * blk_queue_make_request(..., md_fail_request)
  3087. * earlier.
  3088. */
  3089. mddev->queue->queuedata = mddev;
  3090. mddev->queue->make_request_fn = mddev->pers->make_request;
  3091. /* If there is a partially-recovered drive we need to
  3092. * start recovery here. If we leave it to md_check_recovery,
  3093. * it will remove the drives and not do the right thing
  3094. */
  3095. if (mddev->degraded && !mddev->sync_thread) {
  3096. struct list_head *rtmp;
  3097. int spares = 0;
  3098. ITERATE_RDEV(mddev,rdev,rtmp)
  3099. if (rdev->raid_disk >= 0 &&
  3100. !test_bit(In_sync, &rdev->flags) &&
  3101. !test_bit(Faulty, &rdev->flags))
  3102. /* complete an interrupted recovery */
  3103. spares++;
  3104. if (spares && mddev->pers->sync_request) {
  3105. mddev->recovery = 0;
  3106. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3107. mddev->sync_thread = md_register_thread(md_do_sync,
  3108. mddev,
  3109. "%s_resync");
  3110. if (!mddev->sync_thread) {
  3111. printk(KERN_ERR "%s: could not start resync"
  3112. " thread...\n",
  3113. mdname(mddev));
  3114. /* leave the spares where they are, it shouldn't hurt */
  3115. mddev->recovery = 0;
  3116. }
  3117. }
  3118. }
  3119. md_wakeup_thread(mddev->thread);
  3120. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  3121. mddev->changed = 1;
  3122. md_new_event(mddev);
  3123. kobject_uevent(&mddev->gendisk->dev.kobj, KOBJ_CHANGE);
  3124. return 0;
  3125. }
  3126. static int restart_array(mddev_t *mddev)
  3127. {
  3128. struct gendisk *disk = mddev->gendisk;
  3129. int err;
  3130. /*
  3131. * Complain if it has no devices
  3132. */
  3133. err = -ENXIO;
  3134. if (list_empty(&mddev->disks))
  3135. goto out;
  3136. if (mddev->pers) {
  3137. err = -EBUSY;
  3138. if (!mddev->ro)
  3139. goto out;
  3140. mddev->safemode = 0;
  3141. mddev->ro = 0;
  3142. set_disk_ro(disk, 0);
  3143. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  3144. mdname(mddev));
  3145. /*
  3146. * Kick recovery or resync if necessary
  3147. */
  3148. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3149. md_wakeup_thread(mddev->thread);
  3150. md_wakeup_thread(mddev->sync_thread);
  3151. err = 0;
  3152. } else
  3153. err = -EINVAL;
  3154. out:
  3155. return err;
  3156. }
  3157. /* similar to deny_write_access, but accounts for our holding a reference
  3158. * to the file ourselves */
  3159. static int deny_bitmap_write_access(struct file * file)
  3160. {
  3161. struct inode *inode = file->f_mapping->host;
  3162. spin_lock(&inode->i_lock);
  3163. if (atomic_read(&inode->i_writecount) > 1) {
  3164. spin_unlock(&inode->i_lock);
  3165. return -ETXTBSY;
  3166. }
  3167. atomic_set(&inode->i_writecount, -1);
  3168. spin_unlock(&inode->i_lock);
  3169. return 0;
  3170. }
  3171. static void restore_bitmap_write_access(struct file *file)
  3172. {
  3173. struct inode *inode = file->f_mapping->host;
  3174. spin_lock(&inode->i_lock);
  3175. atomic_set(&inode->i_writecount, 1);
  3176. spin_unlock(&inode->i_lock);
  3177. }
  3178. /* mode:
  3179. * 0 - completely stop and dis-assemble array
  3180. * 1 - switch to readonly
  3181. * 2 - stop but do not disassemble array
  3182. */
  3183. static int do_md_stop(mddev_t * mddev, int mode)
  3184. {
  3185. int err = 0;
  3186. struct gendisk *disk = mddev->gendisk;
  3187. if (mddev->pers) {
  3188. if (atomic_read(&mddev->active)>2) {
  3189. printk("md: %s still in use.\n",mdname(mddev));
  3190. return -EBUSY;
  3191. }
  3192. if (mddev->sync_thread) {
  3193. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3194. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3195. md_unregister_thread(mddev->sync_thread);
  3196. mddev->sync_thread = NULL;
  3197. }
  3198. del_timer_sync(&mddev->safemode_timer);
  3199. invalidate_partition(disk, 0);
  3200. switch(mode) {
  3201. case 1: /* readonly */
  3202. err = -ENXIO;
  3203. if (mddev->ro==1)
  3204. goto out;
  3205. mddev->ro = 1;
  3206. break;
  3207. case 0: /* disassemble */
  3208. case 2: /* stop */
  3209. bitmap_flush(mddev);
  3210. md_super_wait(mddev);
  3211. if (mddev->ro)
  3212. set_disk_ro(disk, 0);
  3213. blk_queue_make_request(mddev->queue, md_fail_request);
  3214. mddev->pers->stop(mddev);
  3215. mddev->queue->merge_bvec_fn = NULL;
  3216. mddev->queue->unplug_fn = NULL;
  3217. mddev->queue->backing_dev_info.congested_fn = NULL;
  3218. if (mddev->pers->sync_request)
  3219. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  3220. module_put(mddev->pers->owner);
  3221. mddev->pers = NULL;
  3222. set_capacity(disk, 0);
  3223. mddev->changed = 1;
  3224. if (mddev->ro)
  3225. mddev->ro = 0;
  3226. }
  3227. if (!mddev->in_sync || mddev->flags) {
  3228. /* mark array as shutdown cleanly */
  3229. mddev->in_sync = 1;
  3230. md_update_sb(mddev, 1);
  3231. }
  3232. if (mode == 1)
  3233. set_disk_ro(disk, 1);
  3234. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3235. }
  3236. /*
  3237. * Free resources if final stop
  3238. */
  3239. if (mode == 0) {
  3240. mdk_rdev_t *rdev;
  3241. struct list_head *tmp;
  3242. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  3243. bitmap_destroy(mddev);
  3244. if (mddev->bitmap_file) {
  3245. restore_bitmap_write_access(mddev->bitmap_file);
  3246. fput(mddev->bitmap_file);
  3247. mddev->bitmap_file = NULL;
  3248. }
  3249. mddev->bitmap_offset = 0;
  3250. ITERATE_RDEV(mddev,rdev,tmp)
  3251. if (rdev->raid_disk >= 0) {
  3252. char nm[20];
  3253. sprintf(nm, "rd%d", rdev->raid_disk);
  3254. sysfs_remove_link(&mddev->kobj, nm);
  3255. }
  3256. /* make sure all delayed_delete calls have finished */
  3257. flush_scheduled_work();
  3258. export_array(mddev);
  3259. mddev->array_size = 0;
  3260. mddev->size = 0;
  3261. mddev->raid_disks = 0;
  3262. mddev->recovery_cp = 0;
  3263. mddev->resync_max = MaxSector;
  3264. mddev->reshape_position = MaxSector;
  3265. mddev->external = 0;
  3266. mddev->persistent = 0;
  3267. } else if (mddev->pers)
  3268. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  3269. mdname(mddev));
  3270. err = 0;
  3271. md_new_event(mddev);
  3272. out:
  3273. return err;
  3274. }
  3275. #ifndef MODULE
  3276. static void autorun_array(mddev_t *mddev)
  3277. {
  3278. mdk_rdev_t *rdev;
  3279. struct list_head *tmp;
  3280. int err;
  3281. if (list_empty(&mddev->disks))
  3282. return;
  3283. printk(KERN_INFO "md: running: ");
  3284. ITERATE_RDEV(mddev,rdev,tmp) {
  3285. char b[BDEVNAME_SIZE];
  3286. printk("<%s>", bdevname(rdev->bdev,b));
  3287. }
  3288. printk("\n");
  3289. err = do_md_run (mddev);
  3290. if (err) {
  3291. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  3292. do_md_stop (mddev, 0);
  3293. }
  3294. }
  3295. /*
  3296. * lets try to run arrays based on all disks that have arrived
  3297. * until now. (those are in pending_raid_disks)
  3298. *
  3299. * the method: pick the first pending disk, collect all disks with
  3300. * the same UUID, remove all from the pending list and put them into
  3301. * the 'same_array' list. Then order this list based on superblock
  3302. * update time (freshest comes first), kick out 'old' disks and
  3303. * compare superblocks. If everything's fine then run it.
  3304. *
  3305. * If "unit" is allocated, then bump its reference count
  3306. */
  3307. static void autorun_devices(int part)
  3308. {
  3309. struct list_head *tmp;
  3310. mdk_rdev_t *rdev0, *rdev;
  3311. mddev_t *mddev;
  3312. char b[BDEVNAME_SIZE];
  3313. printk(KERN_INFO "md: autorun ...\n");
  3314. while (!list_empty(&pending_raid_disks)) {
  3315. int unit;
  3316. dev_t dev;
  3317. LIST_HEAD(candidates);
  3318. rdev0 = list_entry(pending_raid_disks.next,
  3319. mdk_rdev_t, same_set);
  3320. printk(KERN_INFO "md: considering %s ...\n",
  3321. bdevname(rdev0->bdev,b));
  3322. INIT_LIST_HEAD(&candidates);
  3323. ITERATE_RDEV_PENDING(rdev,tmp)
  3324. if (super_90_load(rdev, rdev0, 0) >= 0) {
  3325. printk(KERN_INFO "md: adding %s ...\n",
  3326. bdevname(rdev->bdev,b));
  3327. list_move(&rdev->same_set, &candidates);
  3328. }
  3329. /*
  3330. * now we have a set of devices, with all of them having
  3331. * mostly sane superblocks. It's time to allocate the
  3332. * mddev.
  3333. */
  3334. if (part) {
  3335. dev = MKDEV(mdp_major,
  3336. rdev0->preferred_minor << MdpMinorShift);
  3337. unit = MINOR(dev) >> MdpMinorShift;
  3338. } else {
  3339. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  3340. unit = MINOR(dev);
  3341. }
  3342. if (rdev0->preferred_minor != unit) {
  3343. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  3344. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  3345. break;
  3346. }
  3347. md_probe(dev, NULL, NULL);
  3348. mddev = mddev_find(dev);
  3349. if (!mddev) {
  3350. printk(KERN_ERR
  3351. "md: cannot allocate memory for md drive.\n");
  3352. break;
  3353. }
  3354. if (mddev_lock(mddev))
  3355. printk(KERN_WARNING "md: %s locked, cannot run\n",
  3356. mdname(mddev));
  3357. else if (mddev->raid_disks || mddev->major_version
  3358. || !list_empty(&mddev->disks)) {
  3359. printk(KERN_WARNING
  3360. "md: %s already running, cannot run %s\n",
  3361. mdname(mddev), bdevname(rdev0->bdev,b));
  3362. mddev_unlock(mddev);
  3363. } else {
  3364. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  3365. mddev->persistent = 1;
  3366. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  3367. list_del_init(&rdev->same_set);
  3368. if (bind_rdev_to_array(rdev, mddev))
  3369. export_rdev(rdev);
  3370. }
  3371. autorun_array(mddev);
  3372. mddev_unlock(mddev);
  3373. }
  3374. /* on success, candidates will be empty, on error
  3375. * it won't...
  3376. */
  3377. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  3378. export_rdev(rdev);
  3379. mddev_put(mddev);
  3380. }
  3381. printk(KERN_INFO "md: ... autorun DONE.\n");
  3382. }
  3383. #endif /* !MODULE */
  3384. static int get_version(void __user * arg)
  3385. {
  3386. mdu_version_t ver;
  3387. ver.major = MD_MAJOR_VERSION;
  3388. ver.minor = MD_MINOR_VERSION;
  3389. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  3390. if (copy_to_user(arg, &ver, sizeof(ver)))
  3391. return -EFAULT;
  3392. return 0;
  3393. }
  3394. static int get_array_info(mddev_t * mddev, void __user * arg)
  3395. {
  3396. mdu_array_info_t info;
  3397. int nr,working,active,failed,spare;
  3398. mdk_rdev_t *rdev;
  3399. struct list_head *tmp;
  3400. nr=working=active=failed=spare=0;
  3401. ITERATE_RDEV(mddev,rdev,tmp) {
  3402. nr++;
  3403. if (test_bit(Faulty, &rdev->flags))
  3404. failed++;
  3405. else {
  3406. working++;
  3407. if (test_bit(In_sync, &rdev->flags))
  3408. active++;
  3409. else
  3410. spare++;
  3411. }
  3412. }
  3413. info.major_version = mddev->major_version;
  3414. info.minor_version = mddev->minor_version;
  3415. info.patch_version = MD_PATCHLEVEL_VERSION;
  3416. info.ctime = mddev->ctime;
  3417. info.level = mddev->level;
  3418. info.size = mddev->size;
  3419. if (info.size != mddev->size) /* overflow */
  3420. info.size = -1;
  3421. info.nr_disks = nr;
  3422. info.raid_disks = mddev->raid_disks;
  3423. info.md_minor = mddev->md_minor;
  3424. info.not_persistent= !mddev->persistent;
  3425. info.utime = mddev->utime;
  3426. info.state = 0;
  3427. if (mddev->in_sync)
  3428. info.state = (1<<MD_SB_CLEAN);
  3429. if (mddev->bitmap && mddev->bitmap_offset)
  3430. info.state = (1<<MD_SB_BITMAP_PRESENT);
  3431. info.active_disks = active;
  3432. info.working_disks = working;
  3433. info.failed_disks = failed;
  3434. info.spare_disks = spare;
  3435. info.layout = mddev->layout;
  3436. info.chunk_size = mddev->chunk_size;
  3437. if (copy_to_user(arg, &info, sizeof(info)))
  3438. return -EFAULT;
  3439. return 0;
  3440. }
  3441. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  3442. {
  3443. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  3444. char *ptr, *buf = NULL;
  3445. int err = -ENOMEM;
  3446. md_allow_write(mddev);
  3447. file = kmalloc(sizeof(*file), GFP_KERNEL);
  3448. if (!file)
  3449. goto out;
  3450. /* bitmap disabled, zero the first byte and copy out */
  3451. if (!mddev->bitmap || !mddev->bitmap->file) {
  3452. file->pathname[0] = '\0';
  3453. goto copy_out;
  3454. }
  3455. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  3456. if (!buf)
  3457. goto out;
  3458. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  3459. if (!ptr)
  3460. goto out;
  3461. strcpy(file->pathname, ptr);
  3462. copy_out:
  3463. err = 0;
  3464. if (copy_to_user(arg, file, sizeof(*file)))
  3465. err = -EFAULT;
  3466. out:
  3467. kfree(buf);
  3468. kfree(file);
  3469. return err;
  3470. }
  3471. static int get_disk_info(mddev_t * mddev, void __user * arg)
  3472. {
  3473. mdu_disk_info_t info;
  3474. unsigned int nr;
  3475. mdk_rdev_t *rdev;
  3476. if (copy_from_user(&info, arg, sizeof(info)))
  3477. return -EFAULT;
  3478. nr = info.number;
  3479. rdev = find_rdev_nr(mddev, nr);
  3480. if (rdev) {
  3481. info.major = MAJOR(rdev->bdev->bd_dev);
  3482. info.minor = MINOR(rdev->bdev->bd_dev);
  3483. info.raid_disk = rdev->raid_disk;
  3484. info.state = 0;
  3485. if (test_bit(Faulty, &rdev->flags))
  3486. info.state |= (1<<MD_DISK_FAULTY);
  3487. else if (test_bit(In_sync, &rdev->flags)) {
  3488. info.state |= (1<<MD_DISK_ACTIVE);
  3489. info.state |= (1<<MD_DISK_SYNC);
  3490. }
  3491. if (test_bit(WriteMostly, &rdev->flags))
  3492. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  3493. } else {
  3494. info.major = info.minor = 0;
  3495. info.raid_disk = -1;
  3496. info.state = (1<<MD_DISK_REMOVED);
  3497. }
  3498. if (copy_to_user(arg, &info, sizeof(info)))
  3499. return -EFAULT;
  3500. return 0;
  3501. }
  3502. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  3503. {
  3504. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3505. mdk_rdev_t *rdev;
  3506. dev_t dev = MKDEV(info->major,info->minor);
  3507. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  3508. return -EOVERFLOW;
  3509. if (!mddev->raid_disks) {
  3510. int err;
  3511. /* expecting a device which has a superblock */
  3512. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  3513. if (IS_ERR(rdev)) {
  3514. printk(KERN_WARNING
  3515. "md: md_import_device returned %ld\n",
  3516. PTR_ERR(rdev));
  3517. return PTR_ERR(rdev);
  3518. }
  3519. if (!list_empty(&mddev->disks)) {
  3520. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3521. mdk_rdev_t, same_set);
  3522. int err = super_types[mddev->major_version]
  3523. .load_super(rdev, rdev0, mddev->minor_version);
  3524. if (err < 0) {
  3525. printk(KERN_WARNING
  3526. "md: %s has different UUID to %s\n",
  3527. bdevname(rdev->bdev,b),
  3528. bdevname(rdev0->bdev,b2));
  3529. export_rdev(rdev);
  3530. return -EINVAL;
  3531. }
  3532. }
  3533. err = bind_rdev_to_array(rdev, mddev);
  3534. if (err)
  3535. export_rdev(rdev);
  3536. return err;
  3537. }
  3538. /*
  3539. * add_new_disk can be used once the array is assembled
  3540. * to add "hot spares". They must already have a superblock
  3541. * written
  3542. */
  3543. if (mddev->pers) {
  3544. int err;
  3545. if (!mddev->pers->hot_add_disk) {
  3546. printk(KERN_WARNING
  3547. "%s: personality does not support diskops!\n",
  3548. mdname(mddev));
  3549. return -EINVAL;
  3550. }
  3551. if (mddev->persistent)
  3552. rdev = md_import_device(dev, mddev->major_version,
  3553. mddev->minor_version);
  3554. else
  3555. rdev = md_import_device(dev, -1, -1);
  3556. if (IS_ERR(rdev)) {
  3557. printk(KERN_WARNING
  3558. "md: md_import_device returned %ld\n",
  3559. PTR_ERR(rdev));
  3560. return PTR_ERR(rdev);
  3561. }
  3562. /* set save_raid_disk if appropriate */
  3563. if (!mddev->persistent) {
  3564. if (info->state & (1<<MD_DISK_SYNC) &&
  3565. info->raid_disk < mddev->raid_disks)
  3566. rdev->raid_disk = info->raid_disk;
  3567. else
  3568. rdev->raid_disk = -1;
  3569. } else
  3570. super_types[mddev->major_version].
  3571. validate_super(mddev, rdev);
  3572. rdev->saved_raid_disk = rdev->raid_disk;
  3573. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  3574. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3575. set_bit(WriteMostly, &rdev->flags);
  3576. rdev->raid_disk = -1;
  3577. err = bind_rdev_to_array(rdev, mddev);
  3578. if (!err && !mddev->pers->hot_remove_disk) {
  3579. /* If there is hot_add_disk but no hot_remove_disk
  3580. * then added disks for geometry changes,
  3581. * and should be added immediately.
  3582. */
  3583. super_types[mddev->major_version].
  3584. validate_super(mddev, rdev);
  3585. err = mddev->pers->hot_add_disk(mddev, rdev);
  3586. if (err)
  3587. unbind_rdev_from_array(rdev);
  3588. }
  3589. if (err)
  3590. export_rdev(rdev);
  3591. md_update_sb(mddev, 1);
  3592. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3593. md_wakeup_thread(mddev->thread);
  3594. return err;
  3595. }
  3596. /* otherwise, add_new_disk is only allowed
  3597. * for major_version==0 superblocks
  3598. */
  3599. if (mddev->major_version != 0) {
  3600. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  3601. mdname(mddev));
  3602. return -EINVAL;
  3603. }
  3604. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  3605. int err;
  3606. rdev = md_import_device (dev, -1, 0);
  3607. if (IS_ERR(rdev)) {
  3608. printk(KERN_WARNING
  3609. "md: error, md_import_device() returned %ld\n",
  3610. PTR_ERR(rdev));
  3611. return PTR_ERR(rdev);
  3612. }
  3613. rdev->desc_nr = info->number;
  3614. if (info->raid_disk < mddev->raid_disks)
  3615. rdev->raid_disk = info->raid_disk;
  3616. else
  3617. rdev->raid_disk = -1;
  3618. if (rdev->raid_disk < mddev->raid_disks)
  3619. if (info->state & (1<<MD_DISK_SYNC))
  3620. set_bit(In_sync, &rdev->flags);
  3621. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3622. set_bit(WriteMostly, &rdev->flags);
  3623. if (!mddev->persistent) {
  3624. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  3625. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3626. } else
  3627. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3628. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  3629. err = bind_rdev_to_array(rdev, mddev);
  3630. if (err) {
  3631. export_rdev(rdev);
  3632. return err;
  3633. }
  3634. }
  3635. return 0;
  3636. }
  3637. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  3638. {
  3639. char b[BDEVNAME_SIZE];
  3640. mdk_rdev_t *rdev;
  3641. if (!mddev->pers)
  3642. return -ENODEV;
  3643. rdev = find_rdev(mddev, dev);
  3644. if (!rdev)
  3645. return -ENXIO;
  3646. if (rdev->raid_disk >= 0)
  3647. goto busy;
  3648. kick_rdev_from_array(rdev);
  3649. md_update_sb(mddev, 1);
  3650. md_new_event(mddev);
  3651. return 0;
  3652. busy:
  3653. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  3654. bdevname(rdev->bdev,b), mdname(mddev));
  3655. return -EBUSY;
  3656. }
  3657. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  3658. {
  3659. char b[BDEVNAME_SIZE];
  3660. int err;
  3661. unsigned int size;
  3662. mdk_rdev_t *rdev;
  3663. if (!mddev->pers)
  3664. return -ENODEV;
  3665. if (mddev->major_version != 0) {
  3666. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  3667. " version-0 superblocks.\n",
  3668. mdname(mddev));
  3669. return -EINVAL;
  3670. }
  3671. if (!mddev->pers->hot_add_disk) {
  3672. printk(KERN_WARNING
  3673. "%s: personality does not support diskops!\n",
  3674. mdname(mddev));
  3675. return -EINVAL;
  3676. }
  3677. rdev = md_import_device (dev, -1, 0);
  3678. if (IS_ERR(rdev)) {
  3679. printk(KERN_WARNING
  3680. "md: error, md_import_device() returned %ld\n",
  3681. PTR_ERR(rdev));
  3682. return -EINVAL;
  3683. }
  3684. if (mddev->persistent)
  3685. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3686. else
  3687. rdev->sb_offset =
  3688. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3689. size = calc_dev_size(rdev, mddev->chunk_size);
  3690. rdev->size = size;
  3691. if (test_bit(Faulty, &rdev->flags)) {
  3692. printk(KERN_WARNING
  3693. "md: can not hot-add faulty %s disk to %s!\n",
  3694. bdevname(rdev->bdev,b), mdname(mddev));
  3695. err = -EINVAL;
  3696. goto abort_export;
  3697. }
  3698. clear_bit(In_sync, &rdev->flags);
  3699. rdev->desc_nr = -1;
  3700. rdev->saved_raid_disk = -1;
  3701. err = bind_rdev_to_array(rdev, mddev);
  3702. if (err)
  3703. goto abort_export;
  3704. /*
  3705. * The rest should better be atomic, we can have disk failures
  3706. * noticed in interrupt contexts ...
  3707. */
  3708. if (rdev->desc_nr == mddev->max_disks) {
  3709. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  3710. mdname(mddev));
  3711. err = -EBUSY;
  3712. goto abort_unbind_export;
  3713. }
  3714. rdev->raid_disk = -1;
  3715. md_update_sb(mddev, 1);
  3716. /*
  3717. * Kick recovery, maybe this spare has to be added to the
  3718. * array immediately.
  3719. */
  3720. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3721. md_wakeup_thread(mddev->thread);
  3722. md_new_event(mddev);
  3723. return 0;
  3724. abort_unbind_export:
  3725. unbind_rdev_from_array(rdev);
  3726. abort_export:
  3727. export_rdev(rdev);
  3728. return err;
  3729. }
  3730. static int set_bitmap_file(mddev_t *mddev, int fd)
  3731. {
  3732. int err;
  3733. if (mddev->pers) {
  3734. if (!mddev->pers->quiesce)
  3735. return -EBUSY;
  3736. if (mddev->recovery || mddev->sync_thread)
  3737. return -EBUSY;
  3738. /* we should be able to change the bitmap.. */
  3739. }
  3740. if (fd >= 0) {
  3741. if (mddev->bitmap)
  3742. return -EEXIST; /* cannot add when bitmap is present */
  3743. mddev->bitmap_file = fget(fd);
  3744. if (mddev->bitmap_file == NULL) {
  3745. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  3746. mdname(mddev));
  3747. return -EBADF;
  3748. }
  3749. err = deny_bitmap_write_access(mddev->bitmap_file);
  3750. if (err) {
  3751. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  3752. mdname(mddev));
  3753. fput(mddev->bitmap_file);
  3754. mddev->bitmap_file = NULL;
  3755. return err;
  3756. }
  3757. mddev->bitmap_offset = 0; /* file overrides offset */
  3758. } else if (mddev->bitmap == NULL)
  3759. return -ENOENT; /* cannot remove what isn't there */
  3760. err = 0;
  3761. if (mddev->pers) {
  3762. mddev->pers->quiesce(mddev, 1);
  3763. if (fd >= 0)
  3764. err = bitmap_create(mddev);
  3765. if (fd < 0 || err) {
  3766. bitmap_destroy(mddev);
  3767. fd = -1; /* make sure to put the file */
  3768. }
  3769. mddev->pers->quiesce(mddev, 0);
  3770. }
  3771. if (fd < 0) {
  3772. if (mddev->bitmap_file) {
  3773. restore_bitmap_write_access(mddev->bitmap_file);
  3774. fput(mddev->bitmap_file);
  3775. }
  3776. mddev->bitmap_file = NULL;
  3777. }
  3778. return err;
  3779. }
  3780. /*
  3781. * set_array_info is used two different ways
  3782. * The original usage is when creating a new array.
  3783. * In this usage, raid_disks is > 0 and it together with
  3784. * level, size, not_persistent,layout,chunksize determine the
  3785. * shape of the array.
  3786. * This will always create an array with a type-0.90.0 superblock.
  3787. * The newer usage is when assembling an array.
  3788. * In this case raid_disks will be 0, and the major_version field is
  3789. * use to determine which style super-blocks are to be found on the devices.
  3790. * The minor and patch _version numbers are also kept incase the
  3791. * super_block handler wishes to interpret them.
  3792. */
  3793. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  3794. {
  3795. if (info->raid_disks == 0) {
  3796. /* just setting version number for superblock loading */
  3797. if (info->major_version < 0 ||
  3798. info->major_version >= ARRAY_SIZE(super_types) ||
  3799. super_types[info->major_version].name == NULL) {
  3800. /* maybe try to auto-load a module? */
  3801. printk(KERN_INFO
  3802. "md: superblock version %d not known\n",
  3803. info->major_version);
  3804. return -EINVAL;
  3805. }
  3806. mddev->major_version = info->major_version;
  3807. mddev->minor_version = info->minor_version;
  3808. mddev->patch_version = info->patch_version;
  3809. mddev->persistent = !info->not_persistent;
  3810. return 0;
  3811. }
  3812. mddev->major_version = MD_MAJOR_VERSION;
  3813. mddev->minor_version = MD_MINOR_VERSION;
  3814. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  3815. mddev->ctime = get_seconds();
  3816. mddev->level = info->level;
  3817. mddev->clevel[0] = 0;
  3818. mddev->size = info->size;
  3819. mddev->raid_disks = info->raid_disks;
  3820. /* don't set md_minor, it is determined by which /dev/md* was
  3821. * openned
  3822. */
  3823. if (info->state & (1<<MD_SB_CLEAN))
  3824. mddev->recovery_cp = MaxSector;
  3825. else
  3826. mddev->recovery_cp = 0;
  3827. mddev->persistent = ! info->not_persistent;
  3828. mddev->external = 0;
  3829. mddev->layout = info->layout;
  3830. mddev->chunk_size = info->chunk_size;
  3831. mddev->max_disks = MD_SB_DISKS;
  3832. if (mddev->persistent)
  3833. mddev->flags = 0;
  3834. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3835. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  3836. mddev->bitmap_offset = 0;
  3837. mddev->reshape_position = MaxSector;
  3838. /*
  3839. * Generate a 128 bit UUID
  3840. */
  3841. get_random_bytes(mddev->uuid, 16);
  3842. mddev->new_level = mddev->level;
  3843. mddev->new_chunk = mddev->chunk_size;
  3844. mddev->new_layout = mddev->layout;
  3845. mddev->delta_disks = 0;
  3846. return 0;
  3847. }
  3848. static int update_size(mddev_t *mddev, unsigned long size)
  3849. {
  3850. mdk_rdev_t * rdev;
  3851. int rv;
  3852. struct list_head *tmp;
  3853. int fit = (size == 0);
  3854. if (mddev->pers->resize == NULL)
  3855. return -EINVAL;
  3856. /* The "size" is the amount of each device that is used.
  3857. * This can only make sense for arrays with redundancy.
  3858. * linear and raid0 always use whatever space is available
  3859. * We can only consider changing the size if no resync
  3860. * or reconstruction is happening, and if the new size
  3861. * is acceptable. It must fit before the sb_offset or,
  3862. * if that is <data_offset, it must fit before the
  3863. * size of each device.
  3864. * If size is zero, we find the largest size that fits.
  3865. */
  3866. if (mddev->sync_thread)
  3867. return -EBUSY;
  3868. ITERATE_RDEV(mddev,rdev,tmp) {
  3869. sector_t avail;
  3870. avail = rdev->size * 2;
  3871. if (fit && (size == 0 || size > avail/2))
  3872. size = avail/2;
  3873. if (avail < ((sector_t)size << 1))
  3874. return -ENOSPC;
  3875. }
  3876. rv = mddev->pers->resize(mddev, (sector_t)size *2);
  3877. if (!rv) {
  3878. struct block_device *bdev;
  3879. bdev = bdget_disk(mddev->gendisk, 0);
  3880. if (bdev) {
  3881. mutex_lock(&bdev->bd_inode->i_mutex);
  3882. i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
  3883. mutex_unlock(&bdev->bd_inode->i_mutex);
  3884. bdput(bdev);
  3885. }
  3886. }
  3887. return rv;
  3888. }
  3889. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  3890. {
  3891. int rv;
  3892. /* change the number of raid disks */
  3893. if (mddev->pers->check_reshape == NULL)
  3894. return -EINVAL;
  3895. if (raid_disks <= 0 ||
  3896. raid_disks >= mddev->max_disks)
  3897. return -EINVAL;
  3898. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  3899. return -EBUSY;
  3900. mddev->delta_disks = raid_disks - mddev->raid_disks;
  3901. rv = mddev->pers->check_reshape(mddev);
  3902. return rv;
  3903. }
  3904. /*
  3905. * update_array_info is used to change the configuration of an
  3906. * on-line array.
  3907. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  3908. * fields in the info are checked against the array.
  3909. * Any differences that cannot be handled will cause an error.
  3910. * Normally, only one change can be managed at a time.
  3911. */
  3912. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  3913. {
  3914. int rv = 0;
  3915. int cnt = 0;
  3916. int state = 0;
  3917. /* calculate expected state,ignoring low bits */
  3918. if (mddev->bitmap && mddev->bitmap_offset)
  3919. state |= (1 << MD_SB_BITMAP_PRESENT);
  3920. if (mddev->major_version != info->major_version ||
  3921. mddev->minor_version != info->minor_version ||
  3922. /* mddev->patch_version != info->patch_version || */
  3923. mddev->ctime != info->ctime ||
  3924. mddev->level != info->level ||
  3925. /* mddev->layout != info->layout || */
  3926. !mddev->persistent != info->not_persistent||
  3927. mddev->chunk_size != info->chunk_size ||
  3928. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  3929. ((state^info->state) & 0xfffffe00)
  3930. )
  3931. return -EINVAL;
  3932. /* Check there is only one change */
  3933. if (info->size >= 0 && mddev->size != info->size) cnt++;
  3934. if (mddev->raid_disks != info->raid_disks) cnt++;
  3935. if (mddev->layout != info->layout) cnt++;
  3936. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  3937. if (cnt == 0) return 0;
  3938. if (cnt > 1) return -EINVAL;
  3939. if (mddev->layout != info->layout) {
  3940. /* Change layout
  3941. * we don't need to do anything at the md level, the
  3942. * personality will take care of it all.
  3943. */
  3944. if (mddev->pers->reconfig == NULL)
  3945. return -EINVAL;
  3946. else
  3947. return mddev->pers->reconfig(mddev, info->layout, -1);
  3948. }
  3949. if (info->size >= 0 && mddev->size != info->size)
  3950. rv = update_size(mddev, info->size);
  3951. if (mddev->raid_disks != info->raid_disks)
  3952. rv = update_raid_disks(mddev, info->raid_disks);
  3953. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  3954. if (mddev->pers->quiesce == NULL)
  3955. return -EINVAL;
  3956. if (mddev->recovery || mddev->sync_thread)
  3957. return -EBUSY;
  3958. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  3959. /* add the bitmap */
  3960. if (mddev->bitmap)
  3961. return -EEXIST;
  3962. if (mddev->default_bitmap_offset == 0)
  3963. return -EINVAL;
  3964. mddev->bitmap_offset = mddev->default_bitmap_offset;
  3965. mddev->pers->quiesce(mddev, 1);
  3966. rv = bitmap_create(mddev);
  3967. if (rv)
  3968. bitmap_destroy(mddev);
  3969. mddev->pers->quiesce(mddev, 0);
  3970. } else {
  3971. /* remove the bitmap */
  3972. if (!mddev->bitmap)
  3973. return -ENOENT;
  3974. if (mddev->bitmap->file)
  3975. return -EINVAL;
  3976. mddev->pers->quiesce(mddev, 1);
  3977. bitmap_destroy(mddev);
  3978. mddev->pers->quiesce(mddev, 0);
  3979. mddev->bitmap_offset = 0;
  3980. }
  3981. }
  3982. md_update_sb(mddev, 1);
  3983. return rv;
  3984. }
  3985. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  3986. {
  3987. mdk_rdev_t *rdev;
  3988. if (mddev->pers == NULL)
  3989. return -ENODEV;
  3990. rdev = find_rdev(mddev, dev);
  3991. if (!rdev)
  3992. return -ENODEV;
  3993. md_error(mddev, rdev);
  3994. return 0;
  3995. }
  3996. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  3997. {
  3998. mddev_t *mddev = bdev->bd_disk->private_data;
  3999. geo->heads = 2;
  4000. geo->sectors = 4;
  4001. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  4002. return 0;
  4003. }
  4004. static int md_ioctl(struct inode *inode, struct file *file,
  4005. unsigned int cmd, unsigned long arg)
  4006. {
  4007. int err = 0;
  4008. void __user *argp = (void __user *)arg;
  4009. mddev_t *mddev = NULL;
  4010. if (!capable(CAP_SYS_ADMIN))
  4011. return -EACCES;
  4012. /*
  4013. * Commands dealing with the RAID driver but not any
  4014. * particular array:
  4015. */
  4016. switch (cmd)
  4017. {
  4018. case RAID_VERSION:
  4019. err = get_version(argp);
  4020. goto done;
  4021. case PRINT_RAID_DEBUG:
  4022. err = 0;
  4023. md_print_devices();
  4024. goto done;
  4025. #ifndef MODULE
  4026. case RAID_AUTORUN:
  4027. err = 0;
  4028. autostart_arrays(arg);
  4029. goto done;
  4030. #endif
  4031. default:;
  4032. }
  4033. /*
  4034. * Commands creating/starting a new array:
  4035. */
  4036. mddev = inode->i_bdev->bd_disk->private_data;
  4037. if (!mddev) {
  4038. BUG();
  4039. goto abort;
  4040. }
  4041. err = mddev_lock(mddev);
  4042. if (err) {
  4043. printk(KERN_INFO
  4044. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  4045. err, cmd);
  4046. goto abort;
  4047. }
  4048. switch (cmd)
  4049. {
  4050. case SET_ARRAY_INFO:
  4051. {
  4052. mdu_array_info_t info;
  4053. if (!arg)
  4054. memset(&info, 0, sizeof(info));
  4055. else if (copy_from_user(&info, argp, sizeof(info))) {
  4056. err = -EFAULT;
  4057. goto abort_unlock;
  4058. }
  4059. if (mddev->pers) {
  4060. err = update_array_info(mddev, &info);
  4061. if (err) {
  4062. printk(KERN_WARNING "md: couldn't update"
  4063. " array info. %d\n", err);
  4064. goto abort_unlock;
  4065. }
  4066. goto done_unlock;
  4067. }
  4068. if (!list_empty(&mddev->disks)) {
  4069. printk(KERN_WARNING
  4070. "md: array %s already has disks!\n",
  4071. mdname(mddev));
  4072. err = -EBUSY;
  4073. goto abort_unlock;
  4074. }
  4075. if (mddev->raid_disks) {
  4076. printk(KERN_WARNING
  4077. "md: array %s already initialised!\n",
  4078. mdname(mddev));
  4079. err = -EBUSY;
  4080. goto abort_unlock;
  4081. }
  4082. err = set_array_info(mddev, &info);
  4083. if (err) {
  4084. printk(KERN_WARNING "md: couldn't set"
  4085. " array info. %d\n", err);
  4086. goto abort_unlock;
  4087. }
  4088. }
  4089. goto done_unlock;
  4090. default:;
  4091. }
  4092. /*
  4093. * Commands querying/configuring an existing array:
  4094. */
  4095. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  4096. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  4097. if ((!mddev->raid_disks && !mddev->external)
  4098. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  4099. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  4100. && cmd != GET_BITMAP_FILE) {
  4101. err = -ENODEV;
  4102. goto abort_unlock;
  4103. }
  4104. /*
  4105. * Commands even a read-only array can execute:
  4106. */
  4107. switch (cmd)
  4108. {
  4109. case GET_ARRAY_INFO:
  4110. err = get_array_info(mddev, argp);
  4111. goto done_unlock;
  4112. case GET_BITMAP_FILE:
  4113. err = get_bitmap_file(mddev, argp);
  4114. goto done_unlock;
  4115. case GET_DISK_INFO:
  4116. err = get_disk_info(mddev, argp);
  4117. goto done_unlock;
  4118. case RESTART_ARRAY_RW:
  4119. err = restart_array(mddev);
  4120. goto done_unlock;
  4121. case STOP_ARRAY:
  4122. err = do_md_stop (mddev, 0);
  4123. goto done_unlock;
  4124. case STOP_ARRAY_RO:
  4125. err = do_md_stop (mddev, 1);
  4126. goto done_unlock;
  4127. /*
  4128. * We have a problem here : there is no easy way to give a CHS
  4129. * virtual geometry. We currently pretend that we have a 2 heads
  4130. * 4 sectors (with a BIG number of cylinders...). This drives
  4131. * dosfs just mad... ;-)
  4132. */
  4133. }
  4134. /*
  4135. * The remaining ioctls are changing the state of the
  4136. * superblock, so we do not allow them on read-only arrays.
  4137. * However non-MD ioctls (e.g. get-size) will still come through
  4138. * here and hit the 'default' below, so only disallow
  4139. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  4140. */
  4141. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  4142. mddev->ro && mddev->pers) {
  4143. if (mddev->ro == 2) {
  4144. mddev->ro = 0;
  4145. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4146. md_wakeup_thread(mddev->thread);
  4147. } else {
  4148. err = -EROFS;
  4149. goto abort_unlock;
  4150. }
  4151. }
  4152. switch (cmd)
  4153. {
  4154. case ADD_NEW_DISK:
  4155. {
  4156. mdu_disk_info_t info;
  4157. if (copy_from_user(&info, argp, sizeof(info)))
  4158. err = -EFAULT;
  4159. else
  4160. err = add_new_disk(mddev, &info);
  4161. goto done_unlock;
  4162. }
  4163. case HOT_REMOVE_DISK:
  4164. err = hot_remove_disk(mddev, new_decode_dev(arg));
  4165. goto done_unlock;
  4166. case HOT_ADD_DISK:
  4167. err = hot_add_disk(mddev, new_decode_dev(arg));
  4168. goto done_unlock;
  4169. case SET_DISK_FAULTY:
  4170. err = set_disk_faulty(mddev, new_decode_dev(arg));
  4171. goto done_unlock;
  4172. case RUN_ARRAY:
  4173. err = do_md_run (mddev);
  4174. goto done_unlock;
  4175. case SET_BITMAP_FILE:
  4176. err = set_bitmap_file(mddev, (int)arg);
  4177. goto done_unlock;
  4178. default:
  4179. err = -EINVAL;
  4180. goto abort_unlock;
  4181. }
  4182. done_unlock:
  4183. abort_unlock:
  4184. mddev_unlock(mddev);
  4185. return err;
  4186. done:
  4187. if (err)
  4188. MD_BUG();
  4189. abort:
  4190. return err;
  4191. }
  4192. static int md_open(struct inode *inode, struct file *file)
  4193. {
  4194. /*
  4195. * Succeed if we can lock the mddev, which confirms that
  4196. * it isn't being stopped right now.
  4197. */
  4198. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  4199. int err;
  4200. if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
  4201. goto out;
  4202. err = 0;
  4203. mddev_get(mddev);
  4204. mddev_unlock(mddev);
  4205. check_disk_change(inode->i_bdev);
  4206. out:
  4207. return err;
  4208. }
  4209. static int md_release(struct inode *inode, struct file * file)
  4210. {
  4211. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  4212. BUG_ON(!mddev);
  4213. mddev_put(mddev);
  4214. return 0;
  4215. }
  4216. static int md_media_changed(struct gendisk *disk)
  4217. {
  4218. mddev_t *mddev = disk->private_data;
  4219. return mddev->changed;
  4220. }
  4221. static int md_revalidate(struct gendisk *disk)
  4222. {
  4223. mddev_t *mddev = disk->private_data;
  4224. mddev->changed = 0;
  4225. return 0;
  4226. }
  4227. static struct block_device_operations md_fops =
  4228. {
  4229. .owner = THIS_MODULE,
  4230. .open = md_open,
  4231. .release = md_release,
  4232. .ioctl = md_ioctl,
  4233. .getgeo = md_getgeo,
  4234. .media_changed = md_media_changed,
  4235. .revalidate_disk= md_revalidate,
  4236. };
  4237. static int md_thread(void * arg)
  4238. {
  4239. mdk_thread_t *thread = arg;
  4240. /*
  4241. * md_thread is a 'system-thread', it's priority should be very
  4242. * high. We avoid resource deadlocks individually in each
  4243. * raid personality. (RAID5 does preallocation) We also use RR and
  4244. * the very same RT priority as kswapd, thus we will never get
  4245. * into a priority inversion deadlock.
  4246. *
  4247. * we definitely have to have equal or higher priority than
  4248. * bdflush, otherwise bdflush will deadlock if there are too
  4249. * many dirty RAID5 blocks.
  4250. */
  4251. allow_signal(SIGKILL);
  4252. while (!kthread_should_stop()) {
  4253. /* We need to wait INTERRUPTIBLE so that
  4254. * we don't add to the load-average.
  4255. * That means we need to be sure no signals are
  4256. * pending
  4257. */
  4258. if (signal_pending(current))
  4259. flush_signals(current);
  4260. wait_event_interruptible_timeout
  4261. (thread->wqueue,
  4262. test_bit(THREAD_WAKEUP, &thread->flags)
  4263. || kthread_should_stop(),
  4264. thread->timeout);
  4265. clear_bit(THREAD_WAKEUP, &thread->flags);
  4266. thread->run(thread->mddev);
  4267. }
  4268. return 0;
  4269. }
  4270. void md_wakeup_thread(mdk_thread_t *thread)
  4271. {
  4272. if (thread) {
  4273. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  4274. set_bit(THREAD_WAKEUP, &thread->flags);
  4275. wake_up(&thread->wqueue);
  4276. }
  4277. }
  4278. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  4279. const char *name)
  4280. {
  4281. mdk_thread_t *thread;
  4282. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  4283. if (!thread)
  4284. return NULL;
  4285. init_waitqueue_head(&thread->wqueue);
  4286. thread->run = run;
  4287. thread->mddev = mddev;
  4288. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  4289. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  4290. if (IS_ERR(thread->tsk)) {
  4291. kfree(thread);
  4292. return NULL;
  4293. }
  4294. return thread;
  4295. }
  4296. void md_unregister_thread(mdk_thread_t *thread)
  4297. {
  4298. dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  4299. kthread_stop(thread->tsk);
  4300. kfree(thread);
  4301. }
  4302. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  4303. {
  4304. if (!mddev) {
  4305. MD_BUG();
  4306. return;
  4307. }
  4308. if (!rdev || test_bit(Faulty, &rdev->flags))
  4309. return;
  4310. /*
  4311. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  4312. mdname(mddev),
  4313. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  4314. __builtin_return_address(0),__builtin_return_address(1),
  4315. __builtin_return_address(2),__builtin_return_address(3));
  4316. */
  4317. if (!mddev->pers)
  4318. return;
  4319. if (!mddev->pers->error_handler)
  4320. return;
  4321. mddev->pers->error_handler(mddev,rdev);
  4322. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4323. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4324. md_wakeup_thread(mddev->thread);
  4325. md_new_event_inintr(mddev);
  4326. }
  4327. /* seq_file implementation /proc/mdstat */
  4328. static void status_unused(struct seq_file *seq)
  4329. {
  4330. int i = 0;
  4331. mdk_rdev_t *rdev;
  4332. struct list_head *tmp;
  4333. seq_printf(seq, "unused devices: ");
  4334. ITERATE_RDEV_PENDING(rdev,tmp) {
  4335. char b[BDEVNAME_SIZE];
  4336. i++;
  4337. seq_printf(seq, "%s ",
  4338. bdevname(rdev->bdev,b));
  4339. }
  4340. if (!i)
  4341. seq_printf(seq, "<none>");
  4342. seq_printf(seq, "\n");
  4343. }
  4344. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  4345. {
  4346. sector_t max_blocks, resync, res;
  4347. unsigned long dt, db, rt;
  4348. int scale;
  4349. unsigned int per_milli;
  4350. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  4351. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4352. max_blocks = mddev->resync_max_sectors >> 1;
  4353. else
  4354. max_blocks = mddev->size;
  4355. /*
  4356. * Should not happen.
  4357. */
  4358. if (!max_blocks) {
  4359. MD_BUG();
  4360. return;
  4361. }
  4362. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  4363. * in a sector_t, and (max_blocks>>scale) will fit in a
  4364. * u32, as those are the requirements for sector_div.
  4365. * Thus 'scale' must be at least 10
  4366. */
  4367. scale = 10;
  4368. if (sizeof(sector_t) > sizeof(unsigned long)) {
  4369. while ( max_blocks/2 > (1ULL<<(scale+32)))
  4370. scale++;
  4371. }
  4372. res = (resync>>scale)*1000;
  4373. sector_div(res, (u32)((max_blocks>>scale)+1));
  4374. per_milli = res;
  4375. {
  4376. int i, x = per_milli/50, y = 20-x;
  4377. seq_printf(seq, "[");
  4378. for (i = 0; i < x; i++)
  4379. seq_printf(seq, "=");
  4380. seq_printf(seq, ">");
  4381. for (i = 0; i < y; i++)
  4382. seq_printf(seq, ".");
  4383. seq_printf(seq, "] ");
  4384. }
  4385. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  4386. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  4387. "reshape" :
  4388. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  4389. "check" :
  4390. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  4391. "resync" : "recovery"))),
  4392. per_milli/10, per_milli % 10,
  4393. (unsigned long long) resync,
  4394. (unsigned long long) max_blocks);
  4395. /*
  4396. * We do not want to overflow, so the order of operands and
  4397. * the * 100 / 100 trick are important. We do a +1 to be
  4398. * safe against division by zero. We only estimate anyway.
  4399. *
  4400. * dt: time from mark until now
  4401. * db: blocks written from mark until now
  4402. * rt: remaining time
  4403. */
  4404. dt = ((jiffies - mddev->resync_mark) / HZ);
  4405. if (!dt) dt++;
  4406. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  4407. - mddev->resync_mark_cnt;
  4408. rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
  4409. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  4410. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  4411. }
  4412. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  4413. {
  4414. struct list_head *tmp;
  4415. loff_t l = *pos;
  4416. mddev_t *mddev;
  4417. if (l >= 0x10000)
  4418. return NULL;
  4419. if (!l--)
  4420. /* header */
  4421. return (void*)1;
  4422. spin_lock(&all_mddevs_lock);
  4423. list_for_each(tmp,&all_mddevs)
  4424. if (!l--) {
  4425. mddev = list_entry(tmp, mddev_t, all_mddevs);
  4426. mddev_get(mddev);
  4427. spin_unlock(&all_mddevs_lock);
  4428. return mddev;
  4429. }
  4430. spin_unlock(&all_mddevs_lock);
  4431. if (!l--)
  4432. return (void*)2;/* tail */
  4433. return NULL;
  4434. }
  4435. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  4436. {
  4437. struct list_head *tmp;
  4438. mddev_t *next_mddev, *mddev = v;
  4439. ++*pos;
  4440. if (v == (void*)2)
  4441. return NULL;
  4442. spin_lock(&all_mddevs_lock);
  4443. if (v == (void*)1)
  4444. tmp = all_mddevs.next;
  4445. else
  4446. tmp = mddev->all_mddevs.next;
  4447. if (tmp != &all_mddevs)
  4448. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  4449. else {
  4450. next_mddev = (void*)2;
  4451. *pos = 0x10000;
  4452. }
  4453. spin_unlock(&all_mddevs_lock);
  4454. if (v != (void*)1)
  4455. mddev_put(mddev);
  4456. return next_mddev;
  4457. }
  4458. static void md_seq_stop(struct seq_file *seq, void *v)
  4459. {
  4460. mddev_t *mddev = v;
  4461. if (mddev && v != (void*)1 && v != (void*)2)
  4462. mddev_put(mddev);
  4463. }
  4464. struct mdstat_info {
  4465. int event;
  4466. };
  4467. static int md_seq_show(struct seq_file *seq, void *v)
  4468. {
  4469. mddev_t *mddev = v;
  4470. sector_t size;
  4471. struct list_head *tmp2;
  4472. mdk_rdev_t *rdev;
  4473. struct mdstat_info *mi = seq->private;
  4474. struct bitmap *bitmap;
  4475. if (v == (void*)1) {
  4476. struct mdk_personality *pers;
  4477. seq_printf(seq, "Personalities : ");
  4478. spin_lock(&pers_lock);
  4479. list_for_each_entry(pers, &pers_list, list)
  4480. seq_printf(seq, "[%s] ", pers->name);
  4481. spin_unlock(&pers_lock);
  4482. seq_printf(seq, "\n");
  4483. mi->event = atomic_read(&md_event_count);
  4484. return 0;
  4485. }
  4486. if (v == (void*)2) {
  4487. status_unused(seq);
  4488. return 0;
  4489. }
  4490. if (mddev_lock(mddev) < 0)
  4491. return -EINTR;
  4492. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  4493. seq_printf(seq, "%s : %sactive", mdname(mddev),
  4494. mddev->pers ? "" : "in");
  4495. if (mddev->pers) {
  4496. if (mddev->ro==1)
  4497. seq_printf(seq, " (read-only)");
  4498. if (mddev->ro==2)
  4499. seq_printf(seq, "(auto-read-only)");
  4500. seq_printf(seq, " %s", mddev->pers->name);
  4501. }
  4502. size = 0;
  4503. ITERATE_RDEV(mddev,rdev,tmp2) {
  4504. char b[BDEVNAME_SIZE];
  4505. seq_printf(seq, " %s[%d]",
  4506. bdevname(rdev->bdev,b), rdev->desc_nr);
  4507. if (test_bit(WriteMostly, &rdev->flags))
  4508. seq_printf(seq, "(W)");
  4509. if (test_bit(Faulty, &rdev->flags)) {
  4510. seq_printf(seq, "(F)");
  4511. continue;
  4512. } else if (rdev->raid_disk < 0)
  4513. seq_printf(seq, "(S)"); /* spare */
  4514. size += rdev->size;
  4515. }
  4516. if (!list_empty(&mddev->disks)) {
  4517. if (mddev->pers)
  4518. seq_printf(seq, "\n %llu blocks",
  4519. (unsigned long long)mddev->array_size);
  4520. else
  4521. seq_printf(seq, "\n %llu blocks",
  4522. (unsigned long long)size);
  4523. }
  4524. if (mddev->persistent) {
  4525. if (mddev->major_version != 0 ||
  4526. mddev->minor_version != 90) {
  4527. seq_printf(seq," super %d.%d",
  4528. mddev->major_version,
  4529. mddev->minor_version);
  4530. }
  4531. } else if (mddev->external)
  4532. seq_printf(seq, " super external:%s",
  4533. mddev->metadata_type);
  4534. else
  4535. seq_printf(seq, " super non-persistent");
  4536. if (mddev->pers) {
  4537. mddev->pers->status (seq, mddev);
  4538. seq_printf(seq, "\n ");
  4539. if (mddev->pers->sync_request) {
  4540. if (mddev->curr_resync > 2) {
  4541. status_resync (seq, mddev);
  4542. seq_printf(seq, "\n ");
  4543. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  4544. seq_printf(seq, "\tresync=DELAYED\n ");
  4545. else if (mddev->recovery_cp < MaxSector)
  4546. seq_printf(seq, "\tresync=PENDING\n ");
  4547. }
  4548. } else
  4549. seq_printf(seq, "\n ");
  4550. if ((bitmap = mddev->bitmap)) {
  4551. unsigned long chunk_kb;
  4552. unsigned long flags;
  4553. spin_lock_irqsave(&bitmap->lock, flags);
  4554. chunk_kb = bitmap->chunksize >> 10;
  4555. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  4556. "%lu%s chunk",
  4557. bitmap->pages - bitmap->missing_pages,
  4558. bitmap->pages,
  4559. (bitmap->pages - bitmap->missing_pages)
  4560. << (PAGE_SHIFT - 10),
  4561. chunk_kb ? chunk_kb : bitmap->chunksize,
  4562. chunk_kb ? "KB" : "B");
  4563. if (bitmap->file) {
  4564. seq_printf(seq, ", file: ");
  4565. seq_path(seq, bitmap->file->f_path.mnt,
  4566. bitmap->file->f_path.dentry," \t\n");
  4567. }
  4568. seq_printf(seq, "\n");
  4569. spin_unlock_irqrestore(&bitmap->lock, flags);
  4570. }
  4571. seq_printf(seq, "\n");
  4572. }
  4573. mddev_unlock(mddev);
  4574. return 0;
  4575. }
  4576. static struct seq_operations md_seq_ops = {
  4577. .start = md_seq_start,
  4578. .next = md_seq_next,
  4579. .stop = md_seq_stop,
  4580. .show = md_seq_show,
  4581. };
  4582. static int md_seq_open(struct inode *inode, struct file *file)
  4583. {
  4584. int error;
  4585. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  4586. if (mi == NULL)
  4587. return -ENOMEM;
  4588. error = seq_open(file, &md_seq_ops);
  4589. if (error)
  4590. kfree(mi);
  4591. else {
  4592. struct seq_file *p = file->private_data;
  4593. p->private = mi;
  4594. mi->event = atomic_read(&md_event_count);
  4595. }
  4596. return error;
  4597. }
  4598. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  4599. {
  4600. struct seq_file *m = filp->private_data;
  4601. struct mdstat_info *mi = m->private;
  4602. int mask;
  4603. poll_wait(filp, &md_event_waiters, wait);
  4604. /* always allow read */
  4605. mask = POLLIN | POLLRDNORM;
  4606. if (mi->event != atomic_read(&md_event_count))
  4607. mask |= POLLERR | POLLPRI;
  4608. return mask;
  4609. }
  4610. static const struct file_operations md_seq_fops = {
  4611. .owner = THIS_MODULE,
  4612. .open = md_seq_open,
  4613. .read = seq_read,
  4614. .llseek = seq_lseek,
  4615. .release = seq_release_private,
  4616. .poll = mdstat_poll,
  4617. };
  4618. int register_md_personality(struct mdk_personality *p)
  4619. {
  4620. spin_lock(&pers_lock);
  4621. list_add_tail(&p->list, &pers_list);
  4622. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  4623. spin_unlock(&pers_lock);
  4624. return 0;
  4625. }
  4626. int unregister_md_personality(struct mdk_personality *p)
  4627. {
  4628. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  4629. spin_lock(&pers_lock);
  4630. list_del_init(&p->list);
  4631. spin_unlock(&pers_lock);
  4632. return 0;
  4633. }
  4634. static int is_mddev_idle(mddev_t *mddev)
  4635. {
  4636. mdk_rdev_t * rdev;
  4637. struct list_head *tmp;
  4638. int idle;
  4639. long curr_events;
  4640. idle = 1;
  4641. ITERATE_RDEV(mddev,rdev,tmp) {
  4642. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  4643. curr_events = disk_stat_read(disk, sectors[0]) +
  4644. disk_stat_read(disk, sectors[1]) -
  4645. atomic_read(&disk->sync_io);
  4646. /* sync IO will cause sync_io to increase before the disk_stats
  4647. * as sync_io is counted when a request starts, and
  4648. * disk_stats is counted when it completes.
  4649. * So resync activity will cause curr_events to be smaller than
  4650. * when there was no such activity.
  4651. * non-sync IO will cause disk_stat to increase without
  4652. * increasing sync_io so curr_events will (eventually)
  4653. * be larger than it was before. Once it becomes
  4654. * substantially larger, the test below will cause
  4655. * the array to appear non-idle, and resync will slow
  4656. * down.
  4657. * If there is a lot of outstanding resync activity when
  4658. * we set last_event to curr_events, then all that activity
  4659. * completing might cause the array to appear non-idle
  4660. * and resync will be slowed down even though there might
  4661. * not have been non-resync activity. This will only
  4662. * happen once though. 'last_events' will soon reflect
  4663. * the state where there is little or no outstanding
  4664. * resync requests, and further resync activity will
  4665. * always make curr_events less than last_events.
  4666. *
  4667. */
  4668. if (curr_events - rdev->last_events > 4096) {
  4669. rdev->last_events = curr_events;
  4670. idle = 0;
  4671. }
  4672. }
  4673. return idle;
  4674. }
  4675. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  4676. {
  4677. /* another "blocks" (512byte) blocks have been synced */
  4678. atomic_sub(blocks, &mddev->recovery_active);
  4679. wake_up(&mddev->recovery_wait);
  4680. if (!ok) {
  4681. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4682. md_wakeup_thread(mddev->thread);
  4683. // stop recovery, signal do_sync ....
  4684. }
  4685. }
  4686. /* md_write_start(mddev, bi)
  4687. * If we need to update some array metadata (e.g. 'active' flag
  4688. * in superblock) before writing, schedule a superblock update
  4689. * and wait for it to complete.
  4690. */
  4691. void md_write_start(mddev_t *mddev, struct bio *bi)
  4692. {
  4693. if (bio_data_dir(bi) != WRITE)
  4694. return;
  4695. BUG_ON(mddev->ro == 1);
  4696. if (mddev->ro == 2) {
  4697. /* need to switch to read/write */
  4698. mddev->ro = 0;
  4699. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4700. md_wakeup_thread(mddev->thread);
  4701. }
  4702. atomic_inc(&mddev->writes_pending);
  4703. if (mddev->in_sync) {
  4704. spin_lock_irq(&mddev->write_lock);
  4705. if (mddev->in_sync) {
  4706. mddev->in_sync = 0;
  4707. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4708. md_wakeup_thread(mddev->thread);
  4709. }
  4710. spin_unlock_irq(&mddev->write_lock);
  4711. }
  4712. wait_event(mddev->sb_wait, mddev->flags==0);
  4713. }
  4714. void md_write_end(mddev_t *mddev)
  4715. {
  4716. if (atomic_dec_and_test(&mddev->writes_pending)) {
  4717. if (mddev->safemode == 2)
  4718. md_wakeup_thread(mddev->thread);
  4719. else if (mddev->safemode_delay)
  4720. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  4721. }
  4722. }
  4723. /* md_allow_write(mddev)
  4724. * Calling this ensures that the array is marked 'active' so that writes
  4725. * may proceed without blocking. It is important to call this before
  4726. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  4727. * Must be called with mddev_lock held.
  4728. */
  4729. void md_allow_write(mddev_t *mddev)
  4730. {
  4731. if (!mddev->pers)
  4732. return;
  4733. if (mddev->ro)
  4734. return;
  4735. spin_lock_irq(&mddev->write_lock);
  4736. if (mddev->in_sync) {
  4737. mddev->in_sync = 0;
  4738. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4739. if (mddev->safemode_delay &&
  4740. mddev->safemode == 0)
  4741. mddev->safemode = 1;
  4742. spin_unlock_irq(&mddev->write_lock);
  4743. md_update_sb(mddev, 0);
  4744. } else
  4745. spin_unlock_irq(&mddev->write_lock);
  4746. }
  4747. EXPORT_SYMBOL_GPL(md_allow_write);
  4748. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  4749. #define SYNC_MARKS 10
  4750. #define SYNC_MARK_STEP (3*HZ)
  4751. void md_do_sync(mddev_t *mddev)
  4752. {
  4753. mddev_t *mddev2;
  4754. unsigned int currspeed = 0,
  4755. window;
  4756. sector_t max_sectors,j, io_sectors;
  4757. unsigned long mark[SYNC_MARKS];
  4758. sector_t mark_cnt[SYNC_MARKS];
  4759. int last_mark,m;
  4760. struct list_head *tmp;
  4761. sector_t last_check;
  4762. int skipped = 0;
  4763. struct list_head *rtmp;
  4764. mdk_rdev_t *rdev;
  4765. char *desc;
  4766. /* just incase thread restarts... */
  4767. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  4768. return;
  4769. if (mddev->ro) /* never try to sync a read-only array */
  4770. return;
  4771. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4772. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  4773. desc = "data-check";
  4774. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4775. desc = "requested-resync";
  4776. else
  4777. desc = "resync";
  4778. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4779. desc = "reshape";
  4780. else
  4781. desc = "recovery";
  4782. /* we overload curr_resync somewhat here.
  4783. * 0 == not engaged in resync at all
  4784. * 2 == checking that there is no conflict with another sync
  4785. * 1 == like 2, but have yielded to allow conflicting resync to
  4786. * commense
  4787. * other == active in resync - this many blocks
  4788. *
  4789. * Before starting a resync we must have set curr_resync to
  4790. * 2, and then checked that every "conflicting" array has curr_resync
  4791. * less than ours. When we find one that is the same or higher
  4792. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  4793. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  4794. * This will mean we have to start checking from the beginning again.
  4795. *
  4796. */
  4797. do {
  4798. mddev->curr_resync = 2;
  4799. try_again:
  4800. if (kthread_should_stop()) {
  4801. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4802. goto skip;
  4803. }
  4804. ITERATE_MDDEV(mddev2,tmp) {
  4805. if (mddev2 == mddev)
  4806. continue;
  4807. if (mddev2->curr_resync &&
  4808. match_mddev_units(mddev,mddev2)) {
  4809. DEFINE_WAIT(wq);
  4810. if (mddev < mddev2 && mddev->curr_resync == 2) {
  4811. /* arbitrarily yield */
  4812. mddev->curr_resync = 1;
  4813. wake_up(&resync_wait);
  4814. }
  4815. if (mddev > mddev2 && mddev->curr_resync == 1)
  4816. /* no need to wait here, we can wait the next
  4817. * time 'round when curr_resync == 2
  4818. */
  4819. continue;
  4820. prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
  4821. if (!kthread_should_stop() &&
  4822. mddev2->curr_resync >= mddev->curr_resync) {
  4823. printk(KERN_INFO "md: delaying %s of %s"
  4824. " until %s has finished (they"
  4825. " share one or more physical units)\n",
  4826. desc, mdname(mddev), mdname(mddev2));
  4827. mddev_put(mddev2);
  4828. schedule();
  4829. finish_wait(&resync_wait, &wq);
  4830. goto try_again;
  4831. }
  4832. finish_wait(&resync_wait, &wq);
  4833. }
  4834. }
  4835. } while (mddev->curr_resync < 2);
  4836. j = 0;
  4837. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4838. /* resync follows the size requested by the personality,
  4839. * which defaults to physical size, but can be virtual size
  4840. */
  4841. max_sectors = mddev->resync_max_sectors;
  4842. mddev->resync_mismatches = 0;
  4843. /* we don't use the checkpoint if there's a bitmap */
  4844. if (!mddev->bitmap &&
  4845. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4846. j = mddev->recovery_cp;
  4847. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4848. max_sectors = mddev->size << 1;
  4849. else {
  4850. /* recovery follows the physical size of devices */
  4851. max_sectors = mddev->size << 1;
  4852. j = MaxSector;
  4853. ITERATE_RDEV(mddev,rdev,rtmp)
  4854. if (rdev->raid_disk >= 0 &&
  4855. !test_bit(Faulty, &rdev->flags) &&
  4856. !test_bit(In_sync, &rdev->flags) &&
  4857. rdev->recovery_offset < j)
  4858. j = rdev->recovery_offset;
  4859. }
  4860. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  4861. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  4862. " %d KB/sec/disk.\n", speed_min(mddev));
  4863. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  4864. "(but not more than %d KB/sec) for %s.\n",
  4865. speed_max(mddev), desc);
  4866. is_mddev_idle(mddev); /* this also initializes IO event counters */
  4867. io_sectors = 0;
  4868. for (m = 0; m < SYNC_MARKS; m++) {
  4869. mark[m] = jiffies;
  4870. mark_cnt[m] = io_sectors;
  4871. }
  4872. last_mark = 0;
  4873. mddev->resync_mark = mark[last_mark];
  4874. mddev->resync_mark_cnt = mark_cnt[last_mark];
  4875. /*
  4876. * Tune reconstruction:
  4877. */
  4878. window = 32*(PAGE_SIZE/512);
  4879. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  4880. window/2,(unsigned long long) max_sectors/2);
  4881. atomic_set(&mddev->recovery_active, 0);
  4882. init_waitqueue_head(&mddev->recovery_wait);
  4883. last_check = 0;
  4884. if (j>2) {
  4885. printk(KERN_INFO
  4886. "md: resuming %s of %s from checkpoint.\n",
  4887. desc, mdname(mddev));
  4888. mddev->curr_resync = j;
  4889. }
  4890. while (j < max_sectors) {
  4891. sector_t sectors;
  4892. skipped = 0;
  4893. if (j >= mddev->resync_max) {
  4894. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  4895. wait_event(mddev->recovery_wait,
  4896. mddev->resync_max > j
  4897. || kthread_should_stop());
  4898. }
  4899. if (kthread_should_stop())
  4900. goto interrupted;
  4901. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  4902. currspeed < speed_min(mddev));
  4903. if (sectors == 0) {
  4904. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4905. goto out;
  4906. }
  4907. if (!skipped) { /* actual IO requested */
  4908. io_sectors += sectors;
  4909. atomic_add(sectors, &mddev->recovery_active);
  4910. }
  4911. j += sectors;
  4912. if (j>1) mddev->curr_resync = j;
  4913. mddev->curr_mark_cnt = io_sectors;
  4914. if (last_check == 0)
  4915. /* this is the earliers that rebuilt will be
  4916. * visible in /proc/mdstat
  4917. */
  4918. md_new_event(mddev);
  4919. if (last_check + window > io_sectors || j == max_sectors)
  4920. continue;
  4921. last_check = io_sectors;
  4922. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  4923. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  4924. break;
  4925. repeat:
  4926. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  4927. /* step marks */
  4928. int next = (last_mark+1) % SYNC_MARKS;
  4929. mddev->resync_mark = mark[next];
  4930. mddev->resync_mark_cnt = mark_cnt[next];
  4931. mark[next] = jiffies;
  4932. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  4933. last_mark = next;
  4934. }
  4935. if (kthread_should_stop())
  4936. goto interrupted;
  4937. /*
  4938. * this loop exits only if either when we are slower than
  4939. * the 'hard' speed limit, or the system was IO-idle for
  4940. * a jiffy.
  4941. * the system might be non-idle CPU-wise, but we only care
  4942. * about not overloading the IO subsystem. (things like an
  4943. * e2fsck being done on the RAID array should execute fast)
  4944. */
  4945. blk_unplug(mddev->queue);
  4946. cond_resched();
  4947. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  4948. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  4949. if (currspeed > speed_min(mddev)) {
  4950. if ((currspeed > speed_max(mddev)) ||
  4951. !is_mddev_idle(mddev)) {
  4952. msleep(500);
  4953. goto repeat;
  4954. }
  4955. }
  4956. }
  4957. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  4958. /*
  4959. * this also signals 'finished resyncing' to md_stop
  4960. */
  4961. out:
  4962. blk_unplug(mddev->queue);
  4963. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  4964. /* tell personality that we are finished */
  4965. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  4966. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4967. !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  4968. mddev->curr_resync > 2) {
  4969. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4970. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4971. if (mddev->curr_resync >= mddev->recovery_cp) {
  4972. printk(KERN_INFO
  4973. "md: checkpointing %s of %s.\n",
  4974. desc, mdname(mddev));
  4975. mddev->recovery_cp = mddev->curr_resync;
  4976. }
  4977. } else
  4978. mddev->recovery_cp = MaxSector;
  4979. } else {
  4980. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  4981. mddev->curr_resync = MaxSector;
  4982. ITERATE_RDEV(mddev,rdev,rtmp)
  4983. if (rdev->raid_disk >= 0 &&
  4984. !test_bit(Faulty, &rdev->flags) &&
  4985. !test_bit(In_sync, &rdev->flags) &&
  4986. rdev->recovery_offset < mddev->curr_resync)
  4987. rdev->recovery_offset = mddev->curr_resync;
  4988. }
  4989. }
  4990. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4991. skip:
  4992. mddev->curr_resync = 0;
  4993. mddev->resync_max = MaxSector;
  4994. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  4995. wake_up(&resync_wait);
  4996. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4997. md_wakeup_thread(mddev->thread);
  4998. return;
  4999. interrupted:
  5000. /*
  5001. * got a signal, exit.
  5002. */
  5003. printk(KERN_INFO
  5004. "md: md_do_sync() got signal ... exiting\n");
  5005. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5006. goto out;
  5007. }
  5008. EXPORT_SYMBOL_GPL(md_do_sync);
  5009. static int remove_and_add_spares(mddev_t *mddev)
  5010. {
  5011. mdk_rdev_t *rdev;
  5012. struct list_head *rtmp;
  5013. int spares = 0;
  5014. ITERATE_RDEV(mddev,rdev,rtmp)
  5015. if (rdev->raid_disk >= 0 &&
  5016. !mddev->external &&
  5017. (test_bit(Faulty, &rdev->flags) ||
  5018. ! test_bit(In_sync, &rdev->flags)) &&
  5019. atomic_read(&rdev->nr_pending)==0) {
  5020. if (mddev->pers->hot_remove_disk(
  5021. mddev, rdev->raid_disk)==0) {
  5022. char nm[20];
  5023. sprintf(nm,"rd%d", rdev->raid_disk);
  5024. sysfs_remove_link(&mddev->kobj, nm);
  5025. rdev->raid_disk = -1;
  5026. }
  5027. }
  5028. if (mddev->degraded) {
  5029. ITERATE_RDEV(mddev,rdev,rtmp)
  5030. if (rdev->raid_disk < 0
  5031. && !test_bit(Faulty, &rdev->flags)) {
  5032. rdev->recovery_offset = 0;
  5033. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  5034. char nm[20];
  5035. sprintf(nm, "rd%d", rdev->raid_disk);
  5036. if (sysfs_create_link(&mddev->kobj,
  5037. &rdev->kobj, nm))
  5038. printk(KERN_WARNING
  5039. "md: cannot register "
  5040. "%s for %s\n",
  5041. nm, mdname(mddev));
  5042. spares++;
  5043. md_new_event(mddev);
  5044. } else
  5045. break;
  5046. }
  5047. }
  5048. return spares;
  5049. }
  5050. /*
  5051. * This routine is regularly called by all per-raid-array threads to
  5052. * deal with generic issues like resync and super-block update.
  5053. * Raid personalities that don't have a thread (linear/raid0) do not
  5054. * need this as they never do any recovery or update the superblock.
  5055. *
  5056. * It does not do any resync itself, but rather "forks" off other threads
  5057. * to do that as needed.
  5058. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  5059. * "->recovery" and create a thread at ->sync_thread.
  5060. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  5061. * and wakeups up this thread which will reap the thread and finish up.
  5062. * This thread also removes any faulty devices (with nr_pending == 0).
  5063. *
  5064. * The overall approach is:
  5065. * 1/ if the superblock needs updating, update it.
  5066. * 2/ If a recovery thread is running, don't do anything else.
  5067. * 3/ If recovery has finished, clean up, possibly marking spares active.
  5068. * 4/ If there are any faulty devices, remove them.
  5069. * 5/ If array is degraded, try to add spares devices
  5070. * 6/ If array has spares or is not in-sync, start a resync thread.
  5071. */
  5072. void md_check_recovery(mddev_t *mddev)
  5073. {
  5074. mdk_rdev_t *rdev;
  5075. struct list_head *rtmp;
  5076. if (mddev->bitmap)
  5077. bitmap_daemon_work(mddev->bitmap);
  5078. if (mddev->ro)
  5079. return;
  5080. if (signal_pending(current)) {
  5081. if (mddev->pers->sync_request) {
  5082. printk(KERN_INFO "md: %s in immediate safe mode\n",
  5083. mdname(mddev));
  5084. mddev->safemode = 2;
  5085. }
  5086. flush_signals(current);
  5087. }
  5088. if ( ! (
  5089. (mddev->flags && !mddev->external) ||
  5090. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  5091. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  5092. (mddev->safemode == 1) ||
  5093. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  5094. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  5095. ))
  5096. return;
  5097. if (mddev_trylock(mddev)) {
  5098. int spares = 0;
  5099. spin_lock_irq(&mddev->write_lock);
  5100. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  5101. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  5102. mddev->in_sync = 1;
  5103. if (mddev->persistent)
  5104. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5105. }
  5106. if (mddev->safemode == 1)
  5107. mddev->safemode = 0;
  5108. spin_unlock_irq(&mddev->write_lock);
  5109. if (mddev->flags)
  5110. md_update_sb(mddev, 0);
  5111. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  5112. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  5113. /* resync/recovery still happening */
  5114. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5115. goto unlock;
  5116. }
  5117. if (mddev->sync_thread) {
  5118. /* resync has finished, collect result */
  5119. md_unregister_thread(mddev->sync_thread);
  5120. mddev->sync_thread = NULL;
  5121. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  5122. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  5123. /* success...*/
  5124. /* activate any spares */
  5125. mddev->pers->spare_active(mddev);
  5126. }
  5127. md_update_sb(mddev, 1);
  5128. /* if array is no-longer degraded, then any saved_raid_disk
  5129. * information must be scrapped
  5130. */
  5131. if (!mddev->degraded)
  5132. ITERATE_RDEV(mddev,rdev,rtmp)
  5133. rdev->saved_raid_disk = -1;
  5134. mddev->recovery = 0;
  5135. /* flag recovery needed just to double check */
  5136. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5137. md_new_event(mddev);
  5138. goto unlock;
  5139. }
  5140. /* Clear some bits that don't mean anything, but
  5141. * might be left set
  5142. */
  5143. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5144. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  5145. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5146. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  5147. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  5148. goto unlock;
  5149. /* no recovery is running.
  5150. * remove any failed drives, then
  5151. * add spares if possible.
  5152. * Spare are also removed and re-added, to allow
  5153. * the personality to fail the re-add.
  5154. */
  5155. if (mddev->reshape_position != MaxSector) {
  5156. if (mddev->pers->check_reshape(mddev) != 0)
  5157. /* Cannot proceed */
  5158. goto unlock;
  5159. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  5160. } else if ((spares = remove_and_add_spares(mddev))) {
  5161. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  5162. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  5163. } else if (mddev->recovery_cp < MaxSector) {
  5164. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  5165. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5166. /* nothing to be done ... */
  5167. goto unlock;
  5168. if (mddev->pers->sync_request) {
  5169. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  5170. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  5171. /* We are adding a device or devices to an array
  5172. * which has the bitmap stored on all devices.
  5173. * So make sure all bitmap pages get written
  5174. */
  5175. bitmap_write_all(mddev->bitmap);
  5176. }
  5177. mddev->sync_thread = md_register_thread(md_do_sync,
  5178. mddev,
  5179. "%s_resync");
  5180. if (!mddev->sync_thread) {
  5181. printk(KERN_ERR "%s: could not start resync"
  5182. " thread...\n",
  5183. mdname(mddev));
  5184. /* leave the spares where they are, it shouldn't hurt */
  5185. mddev->recovery = 0;
  5186. } else
  5187. md_wakeup_thread(mddev->sync_thread);
  5188. md_new_event(mddev);
  5189. }
  5190. unlock:
  5191. mddev_unlock(mddev);
  5192. }
  5193. }
  5194. static int md_notify_reboot(struct notifier_block *this,
  5195. unsigned long code, void *x)
  5196. {
  5197. struct list_head *tmp;
  5198. mddev_t *mddev;
  5199. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  5200. printk(KERN_INFO "md: stopping all md devices.\n");
  5201. ITERATE_MDDEV(mddev,tmp)
  5202. if (mddev_trylock(mddev)) {
  5203. do_md_stop (mddev, 1);
  5204. mddev_unlock(mddev);
  5205. }
  5206. /*
  5207. * certain more exotic SCSI devices are known to be
  5208. * volatile wrt too early system reboots. While the
  5209. * right place to handle this issue is the given
  5210. * driver, we do want to have a safe RAID driver ...
  5211. */
  5212. mdelay(1000*1);
  5213. }
  5214. return NOTIFY_DONE;
  5215. }
  5216. static struct notifier_block md_notifier = {
  5217. .notifier_call = md_notify_reboot,
  5218. .next = NULL,
  5219. .priority = INT_MAX, /* before any real devices */
  5220. };
  5221. static void md_geninit(void)
  5222. {
  5223. struct proc_dir_entry *p;
  5224. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  5225. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  5226. if (p)
  5227. p->proc_fops = &md_seq_fops;
  5228. }
  5229. static int __init md_init(void)
  5230. {
  5231. if (register_blkdev(MAJOR_NR, "md"))
  5232. return -1;
  5233. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  5234. unregister_blkdev(MAJOR_NR, "md");
  5235. return -1;
  5236. }
  5237. blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
  5238. md_probe, NULL, NULL);
  5239. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  5240. md_probe, NULL, NULL);
  5241. register_reboot_notifier(&md_notifier);
  5242. raid_table_header = register_sysctl_table(raid_root_table);
  5243. md_geninit();
  5244. return (0);
  5245. }
  5246. #ifndef MODULE
  5247. /*
  5248. * Searches all registered partitions for autorun RAID arrays
  5249. * at boot time.
  5250. */
  5251. static LIST_HEAD(all_detected_devices);
  5252. struct detected_devices_node {
  5253. struct list_head list;
  5254. dev_t dev;
  5255. };
  5256. void md_autodetect_dev(dev_t dev)
  5257. {
  5258. struct detected_devices_node *node_detected_dev;
  5259. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  5260. if (node_detected_dev) {
  5261. node_detected_dev->dev = dev;
  5262. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  5263. } else {
  5264. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  5265. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  5266. }
  5267. }
  5268. static void autostart_arrays(int part)
  5269. {
  5270. mdk_rdev_t *rdev;
  5271. struct detected_devices_node *node_detected_dev;
  5272. dev_t dev;
  5273. int i_scanned, i_passed;
  5274. i_scanned = 0;
  5275. i_passed = 0;
  5276. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  5277. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  5278. i_scanned++;
  5279. node_detected_dev = list_entry(all_detected_devices.next,
  5280. struct detected_devices_node, list);
  5281. list_del(&node_detected_dev->list);
  5282. dev = node_detected_dev->dev;
  5283. kfree(node_detected_dev);
  5284. rdev = md_import_device(dev,0, 90);
  5285. if (IS_ERR(rdev))
  5286. continue;
  5287. if (test_bit(Faulty, &rdev->flags)) {
  5288. MD_BUG();
  5289. continue;
  5290. }
  5291. list_add(&rdev->same_set, &pending_raid_disks);
  5292. i_passed++;
  5293. }
  5294. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  5295. i_scanned, i_passed);
  5296. autorun_devices(part);
  5297. }
  5298. #endif /* !MODULE */
  5299. static __exit void md_exit(void)
  5300. {
  5301. mddev_t *mddev;
  5302. struct list_head *tmp;
  5303. blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
  5304. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  5305. unregister_blkdev(MAJOR_NR,"md");
  5306. unregister_blkdev(mdp_major, "mdp");
  5307. unregister_reboot_notifier(&md_notifier);
  5308. unregister_sysctl_table(raid_table_header);
  5309. remove_proc_entry("mdstat", NULL);
  5310. ITERATE_MDDEV(mddev,tmp) {
  5311. struct gendisk *disk = mddev->gendisk;
  5312. if (!disk)
  5313. continue;
  5314. export_array(mddev);
  5315. del_gendisk(disk);
  5316. put_disk(disk);
  5317. mddev->gendisk = NULL;
  5318. mddev_put(mddev);
  5319. }
  5320. }
  5321. subsys_initcall(md_init);
  5322. module_exit(md_exit)
  5323. static int get_ro(char *buffer, struct kernel_param *kp)
  5324. {
  5325. return sprintf(buffer, "%d", start_readonly);
  5326. }
  5327. static int set_ro(const char *val, struct kernel_param *kp)
  5328. {
  5329. char *e;
  5330. int num = simple_strtoul(val, &e, 10);
  5331. if (*val && (*e == '\0' || *e == '\n')) {
  5332. start_readonly = num;
  5333. return 0;
  5334. }
  5335. return -EINVAL;
  5336. }
  5337. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  5338. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  5339. EXPORT_SYMBOL(register_md_personality);
  5340. EXPORT_SYMBOL(unregister_md_personality);
  5341. EXPORT_SYMBOL(md_error);
  5342. EXPORT_SYMBOL(md_done_sync);
  5343. EXPORT_SYMBOL(md_write_start);
  5344. EXPORT_SYMBOL(md_write_end);
  5345. EXPORT_SYMBOL(md_register_thread);
  5346. EXPORT_SYMBOL(md_unregister_thread);
  5347. EXPORT_SYMBOL(md_wakeup_thread);
  5348. EXPORT_SYMBOL(md_check_recovery);
  5349. MODULE_LICENSE("GPL");
  5350. MODULE_ALIAS("md");
  5351. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);