efx.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2005-2011 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/delay.h>
  15. #include <linux/notifier.h>
  16. #include <linux/ip.h>
  17. #include <linux/tcp.h>
  18. #include <linux/in.h>
  19. #include <linux/crc32.h>
  20. #include <linux/ethtool.h>
  21. #include <linux/topology.h>
  22. #include <linux/gfp.h>
  23. #include <linux/cpu_rmap.h>
  24. #include "net_driver.h"
  25. #include "efx.h"
  26. #include "nic.h"
  27. #include "mcdi.h"
  28. #include "workarounds.h"
  29. /**************************************************************************
  30. *
  31. * Type name strings
  32. *
  33. **************************************************************************
  34. */
  35. /* Loopback mode names (see LOOPBACK_MODE()) */
  36. const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
  37. const char *const efx_loopback_mode_names[] = {
  38. [LOOPBACK_NONE] = "NONE",
  39. [LOOPBACK_DATA] = "DATAPATH",
  40. [LOOPBACK_GMAC] = "GMAC",
  41. [LOOPBACK_XGMII] = "XGMII",
  42. [LOOPBACK_XGXS] = "XGXS",
  43. [LOOPBACK_XAUI] = "XAUI",
  44. [LOOPBACK_GMII] = "GMII",
  45. [LOOPBACK_SGMII] = "SGMII",
  46. [LOOPBACK_XGBR] = "XGBR",
  47. [LOOPBACK_XFI] = "XFI",
  48. [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
  49. [LOOPBACK_GMII_FAR] = "GMII_FAR",
  50. [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
  51. [LOOPBACK_XFI_FAR] = "XFI_FAR",
  52. [LOOPBACK_GPHY] = "GPHY",
  53. [LOOPBACK_PHYXS] = "PHYXS",
  54. [LOOPBACK_PCS] = "PCS",
  55. [LOOPBACK_PMAPMD] = "PMA/PMD",
  56. [LOOPBACK_XPORT] = "XPORT",
  57. [LOOPBACK_XGMII_WS] = "XGMII_WS",
  58. [LOOPBACK_XAUI_WS] = "XAUI_WS",
  59. [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
  60. [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
  61. [LOOPBACK_GMII_WS] = "GMII_WS",
  62. [LOOPBACK_XFI_WS] = "XFI_WS",
  63. [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
  64. [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
  65. };
  66. const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
  67. const char *const efx_reset_type_names[] = {
  68. [RESET_TYPE_INVISIBLE] = "INVISIBLE",
  69. [RESET_TYPE_ALL] = "ALL",
  70. [RESET_TYPE_WORLD] = "WORLD",
  71. [RESET_TYPE_DISABLE] = "DISABLE",
  72. [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
  73. [RESET_TYPE_INT_ERROR] = "INT_ERROR",
  74. [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
  75. [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
  76. [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
  77. [RESET_TYPE_TX_SKIP] = "TX_SKIP",
  78. [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
  79. };
  80. #define EFX_MAX_MTU (9 * 1024)
  81. /* Reset workqueue. If any NIC has a hardware failure then a reset will be
  82. * queued onto this work queue. This is not a per-nic work queue, because
  83. * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
  84. */
  85. static struct workqueue_struct *reset_workqueue;
  86. /**************************************************************************
  87. *
  88. * Configurable values
  89. *
  90. *************************************************************************/
  91. /*
  92. * Use separate channels for TX and RX events
  93. *
  94. * Set this to 1 to use separate channels for TX and RX. It allows us
  95. * to control interrupt affinity separately for TX and RX.
  96. *
  97. * This is only used in MSI-X interrupt mode
  98. */
  99. static unsigned int separate_tx_channels;
  100. module_param(separate_tx_channels, uint, 0444);
  101. MODULE_PARM_DESC(separate_tx_channels,
  102. "Use separate channels for TX and RX");
  103. /* This is the weight assigned to each of the (per-channel) virtual
  104. * NAPI devices.
  105. */
  106. static int napi_weight = 64;
  107. /* This is the time (in jiffies) between invocations of the hardware
  108. * monitor. On Falcon-based NICs, this will:
  109. * - Check the on-board hardware monitor;
  110. * - Poll the link state and reconfigure the hardware as necessary.
  111. */
  112. static unsigned int efx_monitor_interval = 1 * HZ;
  113. /* Initial interrupt moderation settings. They can be modified after
  114. * module load with ethtool.
  115. *
  116. * The default for RX should strike a balance between increasing the
  117. * round-trip latency and reducing overhead.
  118. */
  119. static unsigned int rx_irq_mod_usec = 60;
  120. /* Initial interrupt moderation settings. They can be modified after
  121. * module load with ethtool.
  122. *
  123. * This default is chosen to ensure that a 10G link does not go idle
  124. * while a TX queue is stopped after it has become full. A queue is
  125. * restarted when it drops below half full. The time this takes (assuming
  126. * worst case 3 descriptors per packet and 1024 descriptors) is
  127. * 512 / 3 * 1.2 = 205 usec.
  128. */
  129. static unsigned int tx_irq_mod_usec = 150;
  130. /* This is the first interrupt mode to try out of:
  131. * 0 => MSI-X
  132. * 1 => MSI
  133. * 2 => legacy
  134. */
  135. static unsigned int interrupt_mode;
  136. /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
  137. * i.e. the number of CPUs among which we may distribute simultaneous
  138. * interrupt handling.
  139. *
  140. * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
  141. * The default (0) means to assign an interrupt to each core.
  142. */
  143. static unsigned int rss_cpus;
  144. module_param(rss_cpus, uint, 0444);
  145. MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
  146. static int phy_flash_cfg;
  147. module_param(phy_flash_cfg, int, 0644);
  148. MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
  149. static unsigned irq_adapt_low_thresh = 10000;
  150. module_param(irq_adapt_low_thresh, uint, 0644);
  151. MODULE_PARM_DESC(irq_adapt_low_thresh,
  152. "Threshold score for reducing IRQ moderation");
  153. static unsigned irq_adapt_high_thresh = 20000;
  154. module_param(irq_adapt_high_thresh, uint, 0644);
  155. MODULE_PARM_DESC(irq_adapt_high_thresh,
  156. "Threshold score for increasing IRQ moderation");
  157. static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  158. NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
  159. NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
  160. NETIF_MSG_TX_ERR | NETIF_MSG_HW);
  161. module_param(debug, uint, 0);
  162. MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
  163. /**************************************************************************
  164. *
  165. * Utility functions and prototypes
  166. *
  167. *************************************************************************/
  168. static void efx_start_interrupts(struct efx_nic *efx);
  169. static void efx_stop_interrupts(struct efx_nic *efx);
  170. static void efx_remove_channels(struct efx_nic *efx);
  171. static void efx_remove_port(struct efx_nic *efx);
  172. static void efx_init_napi(struct efx_nic *efx);
  173. static void efx_fini_napi(struct efx_nic *efx);
  174. static void efx_fini_napi_channel(struct efx_channel *channel);
  175. static void efx_fini_struct(struct efx_nic *efx);
  176. static void efx_start_all(struct efx_nic *efx);
  177. static void efx_stop_all(struct efx_nic *efx);
  178. #define EFX_ASSERT_RESET_SERIALISED(efx) \
  179. do { \
  180. if ((efx->state == STATE_RUNNING) || \
  181. (efx->state == STATE_DISABLED)) \
  182. ASSERT_RTNL(); \
  183. } while (0)
  184. /**************************************************************************
  185. *
  186. * Event queue processing
  187. *
  188. *************************************************************************/
  189. /* Process channel's event queue
  190. *
  191. * This function is responsible for processing the event queue of a
  192. * single channel. The caller must guarantee that this function will
  193. * never be concurrently called more than once on the same channel,
  194. * though different channels may be being processed concurrently.
  195. */
  196. static int efx_process_channel(struct efx_channel *channel, int budget)
  197. {
  198. int spent;
  199. if (unlikely(!channel->enabled))
  200. return 0;
  201. spent = efx_nic_process_eventq(channel, budget);
  202. if (spent && efx_channel_has_rx_queue(channel)) {
  203. struct efx_rx_queue *rx_queue =
  204. efx_channel_get_rx_queue(channel);
  205. /* Deliver last RX packet. */
  206. if (channel->rx_pkt) {
  207. __efx_rx_packet(channel, channel->rx_pkt);
  208. channel->rx_pkt = NULL;
  209. }
  210. if (rx_queue->enabled) {
  211. efx_rx_strategy(channel);
  212. efx_fast_push_rx_descriptors(rx_queue);
  213. }
  214. }
  215. return spent;
  216. }
  217. /* Mark channel as finished processing
  218. *
  219. * Note that since we will not receive further interrupts for this
  220. * channel before we finish processing and call the eventq_read_ack()
  221. * method, there is no need to use the interrupt hold-off timers.
  222. */
  223. static inline void efx_channel_processed(struct efx_channel *channel)
  224. {
  225. /* The interrupt handler for this channel may set work_pending
  226. * as soon as we acknowledge the events we've seen. Make sure
  227. * it's cleared before then. */
  228. channel->work_pending = false;
  229. smp_wmb();
  230. efx_nic_eventq_read_ack(channel);
  231. }
  232. /* NAPI poll handler
  233. *
  234. * NAPI guarantees serialisation of polls of the same device, which
  235. * provides the guarantee required by efx_process_channel().
  236. */
  237. static int efx_poll(struct napi_struct *napi, int budget)
  238. {
  239. struct efx_channel *channel =
  240. container_of(napi, struct efx_channel, napi_str);
  241. struct efx_nic *efx = channel->efx;
  242. int spent;
  243. netif_vdbg(efx, intr, efx->net_dev,
  244. "channel %d NAPI poll executing on CPU %d\n",
  245. channel->channel, raw_smp_processor_id());
  246. spent = efx_process_channel(channel, budget);
  247. if (spent < budget) {
  248. if (efx_channel_has_rx_queue(channel) &&
  249. efx->irq_rx_adaptive &&
  250. unlikely(++channel->irq_count == 1000)) {
  251. if (unlikely(channel->irq_mod_score <
  252. irq_adapt_low_thresh)) {
  253. if (channel->irq_moderation > 1) {
  254. channel->irq_moderation -= 1;
  255. efx->type->push_irq_moderation(channel);
  256. }
  257. } else if (unlikely(channel->irq_mod_score >
  258. irq_adapt_high_thresh)) {
  259. if (channel->irq_moderation <
  260. efx->irq_rx_moderation) {
  261. channel->irq_moderation += 1;
  262. efx->type->push_irq_moderation(channel);
  263. }
  264. }
  265. channel->irq_count = 0;
  266. channel->irq_mod_score = 0;
  267. }
  268. efx_filter_rfs_expire(channel);
  269. /* There is no race here; although napi_disable() will
  270. * only wait for napi_complete(), this isn't a problem
  271. * since efx_channel_processed() will have no effect if
  272. * interrupts have already been disabled.
  273. */
  274. napi_complete(napi);
  275. efx_channel_processed(channel);
  276. }
  277. return spent;
  278. }
  279. /* Process the eventq of the specified channel immediately on this CPU
  280. *
  281. * Disable hardware generated interrupts, wait for any existing
  282. * processing to finish, then directly poll (and ack ) the eventq.
  283. * Finally reenable NAPI and interrupts.
  284. *
  285. * This is for use only during a loopback self-test. It must not
  286. * deliver any packets up the stack as this can result in deadlock.
  287. */
  288. void efx_process_channel_now(struct efx_channel *channel)
  289. {
  290. struct efx_nic *efx = channel->efx;
  291. BUG_ON(channel->channel >= efx->n_channels);
  292. BUG_ON(!channel->enabled);
  293. BUG_ON(!efx->loopback_selftest);
  294. /* Disable interrupts and wait for ISRs to complete */
  295. efx_nic_disable_interrupts(efx);
  296. if (efx->legacy_irq) {
  297. synchronize_irq(efx->legacy_irq);
  298. efx->legacy_irq_enabled = false;
  299. }
  300. if (channel->irq)
  301. synchronize_irq(channel->irq);
  302. /* Wait for any NAPI processing to complete */
  303. napi_disable(&channel->napi_str);
  304. /* Poll the channel */
  305. efx_process_channel(channel, channel->eventq_mask + 1);
  306. /* Ack the eventq. This may cause an interrupt to be generated
  307. * when they are reenabled */
  308. efx_channel_processed(channel);
  309. napi_enable(&channel->napi_str);
  310. if (efx->legacy_irq)
  311. efx->legacy_irq_enabled = true;
  312. efx_nic_enable_interrupts(efx);
  313. }
  314. /* Create event queue
  315. * Event queue memory allocations are done only once. If the channel
  316. * is reset, the memory buffer will be reused; this guards against
  317. * errors during channel reset and also simplifies interrupt handling.
  318. */
  319. static int efx_probe_eventq(struct efx_channel *channel)
  320. {
  321. struct efx_nic *efx = channel->efx;
  322. unsigned long entries;
  323. netif_dbg(efx, probe, efx->net_dev,
  324. "chan %d create event queue\n", channel->channel);
  325. /* Build an event queue with room for one event per tx and rx buffer,
  326. * plus some extra for link state events and MCDI completions. */
  327. entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
  328. EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
  329. channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
  330. return efx_nic_probe_eventq(channel);
  331. }
  332. /* Prepare channel's event queue */
  333. static void efx_init_eventq(struct efx_channel *channel)
  334. {
  335. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  336. "chan %d init event queue\n", channel->channel);
  337. channel->eventq_read_ptr = 0;
  338. efx_nic_init_eventq(channel);
  339. }
  340. /* Enable event queue processing and NAPI */
  341. static void efx_start_eventq(struct efx_channel *channel)
  342. {
  343. netif_dbg(channel->efx, ifup, channel->efx->net_dev,
  344. "chan %d start event queue\n", channel->channel);
  345. /* The interrupt handler for this channel may set work_pending
  346. * as soon as we enable it. Make sure it's cleared before
  347. * then. Similarly, make sure it sees the enabled flag set.
  348. */
  349. channel->work_pending = false;
  350. channel->enabled = true;
  351. smp_wmb();
  352. napi_enable(&channel->napi_str);
  353. efx_nic_eventq_read_ack(channel);
  354. }
  355. /* Disable event queue processing and NAPI */
  356. static void efx_stop_eventq(struct efx_channel *channel)
  357. {
  358. if (!channel->enabled)
  359. return;
  360. napi_disable(&channel->napi_str);
  361. channel->enabled = false;
  362. }
  363. static void efx_fini_eventq(struct efx_channel *channel)
  364. {
  365. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  366. "chan %d fini event queue\n", channel->channel);
  367. efx_nic_fini_eventq(channel);
  368. }
  369. static void efx_remove_eventq(struct efx_channel *channel)
  370. {
  371. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  372. "chan %d remove event queue\n", channel->channel);
  373. efx_nic_remove_eventq(channel);
  374. }
  375. /**************************************************************************
  376. *
  377. * Channel handling
  378. *
  379. *************************************************************************/
  380. /* Allocate and initialise a channel structure, optionally copying
  381. * parameters (but not resources) from an old channel structure. */
  382. static struct efx_channel *
  383. efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
  384. {
  385. struct efx_channel *channel;
  386. struct efx_rx_queue *rx_queue;
  387. struct efx_tx_queue *tx_queue;
  388. int j;
  389. if (old_channel) {
  390. channel = kmalloc(sizeof(*channel), GFP_KERNEL);
  391. if (!channel)
  392. return NULL;
  393. *channel = *old_channel;
  394. channel->napi_dev = NULL;
  395. memset(&channel->eventq, 0, sizeof(channel->eventq));
  396. rx_queue = &channel->rx_queue;
  397. rx_queue->buffer = NULL;
  398. memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
  399. for (j = 0; j < EFX_TXQ_TYPES; j++) {
  400. tx_queue = &channel->tx_queue[j];
  401. if (tx_queue->channel)
  402. tx_queue->channel = channel;
  403. tx_queue->buffer = NULL;
  404. memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
  405. }
  406. } else {
  407. channel = kzalloc(sizeof(*channel), GFP_KERNEL);
  408. if (!channel)
  409. return NULL;
  410. channel->efx = efx;
  411. channel->channel = i;
  412. for (j = 0; j < EFX_TXQ_TYPES; j++) {
  413. tx_queue = &channel->tx_queue[j];
  414. tx_queue->efx = efx;
  415. tx_queue->queue = i * EFX_TXQ_TYPES + j;
  416. tx_queue->channel = channel;
  417. }
  418. }
  419. rx_queue = &channel->rx_queue;
  420. rx_queue->efx = efx;
  421. setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
  422. (unsigned long)rx_queue);
  423. return channel;
  424. }
  425. static int efx_probe_channel(struct efx_channel *channel)
  426. {
  427. struct efx_tx_queue *tx_queue;
  428. struct efx_rx_queue *rx_queue;
  429. int rc;
  430. netif_dbg(channel->efx, probe, channel->efx->net_dev,
  431. "creating channel %d\n", channel->channel);
  432. rc = efx_probe_eventq(channel);
  433. if (rc)
  434. goto fail1;
  435. efx_for_each_channel_tx_queue(tx_queue, channel) {
  436. rc = efx_probe_tx_queue(tx_queue);
  437. if (rc)
  438. goto fail2;
  439. }
  440. efx_for_each_channel_rx_queue(rx_queue, channel) {
  441. rc = efx_probe_rx_queue(rx_queue);
  442. if (rc)
  443. goto fail3;
  444. }
  445. channel->n_rx_frm_trunc = 0;
  446. return 0;
  447. fail3:
  448. efx_for_each_channel_rx_queue(rx_queue, channel)
  449. efx_remove_rx_queue(rx_queue);
  450. fail2:
  451. efx_for_each_channel_tx_queue(tx_queue, channel)
  452. efx_remove_tx_queue(tx_queue);
  453. fail1:
  454. return rc;
  455. }
  456. static void efx_set_channel_names(struct efx_nic *efx)
  457. {
  458. struct efx_channel *channel;
  459. const char *type = "";
  460. int number;
  461. efx_for_each_channel(channel, efx) {
  462. number = channel->channel;
  463. if (efx->n_channels > efx->n_rx_channels) {
  464. if (channel->channel < efx->n_rx_channels) {
  465. type = "-rx";
  466. } else {
  467. type = "-tx";
  468. number -= efx->n_rx_channels;
  469. }
  470. }
  471. snprintf(efx->channel_name[channel->channel],
  472. sizeof(efx->channel_name[0]),
  473. "%s%s-%d", efx->name, type, number);
  474. }
  475. }
  476. static int efx_probe_channels(struct efx_nic *efx)
  477. {
  478. struct efx_channel *channel;
  479. int rc;
  480. /* Restart special buffer allocation */
  481. efx->next_buffer_table = 0;
  482. efx_for_each_channel(channel, efx) {
  483. rc = efx_probe_channel(channel);
  484. if (rc) {
  485. netif_err(efx, probe, efx->net_dev,
  486. "failed to create channel %d\n",
  487. channel->channel);
  488. goto fail;
  489. }
  490. }
  491. efx_set_channel_names(efx);
  492. return 0;
  493. fail:
  494. efx_remove_channels(efx);
  495. return rc;
  496. }
  497. /* Channels are shutdown and reinitialised whilst the NIC is running
  498. * to propagate configuration changes (mtu, checksum offload), or
  499. * to clear hardware error conditions
  500. */
  501. static void efx_start_datapath(struct efx_nic *efx)
  502. {
  503. struct efx_tx_queue *tx_queue;
  504. struct efx_rx_queue *rx_queue;
  505. struct efx_channel *channel;
  506. /* Calculate the rx buffer allocation parameters required to
  507. * support the current MTU, including padding for header
  508. * alignment and overruns.
  509. */
  510. efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
  511. EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
  512. efx->type->rx_buffer_hash_size +
  513. efx->type->rx_buffer_padding);
  514. efx->rx_buffer_order = get_order(efx->rx_buffer_len +
  515. sizeof(struct efx_rx_page_state));
  516. /* Initialise the channels */
  517. efx_for_each_channel(channel, efx) {
  518. efx_for_each_channel_tx_queue(tx_queue, channel)
  519. efx_init_tx_queue(tx_queue);
  520. /* The rx buffer allocation strategy is MTU dependent */
  521. efx_rx_strategy(channel);
  522. efx_for_each_channel_rx_queue(rx_queue, channel) {
  523. efx_init_rx_queue(rx_queue);
  524. efx_nic_generate_fill_event(rx_queue);
  525. }
  526. WARN_ON(channel->rx_pkt != NULL);
  527. efx_rx_strategy(channel);
  528. }
  529. if (netif_device_present(efx->net_dev))
  530. netif_tx_wake_all_queues(efx->net_dev);
  531. }
  532. static void efx_stop_datapath(struct efx_nic *efx)
  533. {
  534. struct efx_channel *channel;
  535. struct efx_tx_queue *tx_queue;
  536. struct efx_rx_queue *rx_queue;
  537. int rc;
  538. EFX_ASSERT_RESET_SERIALISED(efx);
  539. BUG_ON(efx->port_enabled);
  540. rc = efx_nic_flush_queues(efx);
  541. if (rc && EFX_WORKAROUND_7803(efx)) {
  542. /* Schedule a reset to recover from the flush failure. The
  543. * descriptor caches reference memory we're about to free,
  544. * but falcon_reconfigure_mac_wrapper() won't reconnect
  545. * the MACs because of the pending reset. */
  546. netif_err(efx, drv, efx->net_dev,
  547. "Resetting to recover from flush failure\n");
  548. efx_schedule_reset(efx, RESET_TYPE_ALL);
  549. } else if (rc) {
  550. netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
  551. } else {
  552. netif_dbg(efx, drv, efx->net_dev,
  553. "successfully flushed all queues\n");
  554. }
  555. efx_for_each_channel(channel, efx) {
  556. /* RX packet processing is pipelined, so wait for the
  557. * NAPI handler to complete. At least event queue 0
  558. * might be kept active by non-data events, so don't
  559. * use napi_synchronize() but actually disable NAPI
  560. * temporarily.
  561. */
  562. if (efx_channel_has_rx_queue(channel)) {
  563. efx_stop_eventq(channel);
  564. efx_start_eventq(channel);
  565. }
  566. efx_for_each_channel_rx_queue(rx_queue, channel)
  567. efx_fini_rx_queue(rx_queue);
  568. efx_for_each_possible_channel_tx_queue(tx_queue, channel)
  569. efx_fini_tx_queue(tx_queue);
  570. }
  571. }
  572. static void efx_remove_channel(struct efx_channel *channel)
  573. {
  574. struct efx_tx_queue *tx_queue;
  575. struct efx_rx_queue *rx_queue;
  576. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  577. "destroy chan %d\n", channel->channel);
  578. efx_for_each_channel_rx_queue(rx_queue, channel)
  579. efx_remove_rx_queue(rx_queue);
  580. efx_for_each_possible_channel_tx_queue(tx_queue, channel)
  581. efx_remove_tx_queue(tx_queue);
  582. efx_remove_eventq(channel);
  583. }
  584. static void efx_remove_channels(struct efx_nic *efx)
  585. {
  586. struct efx_channel *channel;
  587. efx_for_each_channel(channel, efx)
  588. efx_remove_channel(channel);
  589. }
  590. int
  591. efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
  592. {
  593. struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
  594. u32 old_rxq_entries, old_txq_entries;
  595. unsigned i;
  596. int rc;
  597. efx_stop_all(efx);
  598. efx_stop_interrupts(efx);
  599. /* Clone channels */
  600. memset(other_channel, 0, sizeof(other_channel));
  601. for (i = 0; i < efx->n_channels; i++) {
  602. channel = efx_alloc_channel(efx, i, efx->channel[i]);
  603. if (!channel) {
  604. rc = -ENOMEM;
  605. goto out;
  606. }
  607. other_channel[i] = channel;
  608. }
  609. /* Swap entry counts and channel pointers */
  610. old_rxq_entries = efx->rxq_entries;
  611. old_txq_entries = efx->txq_entries;
  612. efx->rxq_entries = rxq_entries;
  613. efx->txq_entries = txq_entries;
  614. for (i = 0; i < efx->n_channels; i++) {
  615. channel = efx->channel[i];
  616. efx->channel[i] = other_channel[i];
  617. other_channel[i] = channel;
  618. }
  619. rc = efx_probe_channels(efx);
  620. if (rc)
  621. goto rollback;
  622. efx_init_napi(efx);
  623. /* Destroy old channels */
  624. for (i = 0; i < efx->n_channels; i++) {
  625. efx_fini_napi_channel(other_channel[i]);
  626. efx_remove_channel(other_channel[i]);
  627. }
  628. out:
  629. /* Free unused channel structures */
  630. for (i = 0; i < efx->n_channels; i++)
  631. kfree(other_channel[i]);
  632. efx_start_interrupts(efx);
  633. efx_start_all(efx);
  634. return rc;
  635. rollback:
  636. /* Swap back */
  637. efx->rxq_entries = old_rxq_entries;
  638. efx->txq_entries = old_txq_entries;
  639. for (i = 0; i < efx->n_channels; i++) {
  640. channel = efx->channel[i];
  641. efx->channel[i] = other_channel[i];
  642. other_channel[i] = channel;
  643. }
  644. goto out;
  645. }
  646. void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
  647. {
  648. mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
  649. }
  650. /**************************************************************************
  651. *
  652. * Port handling
  653. *
  654. **************************************************************************/
  655. /* This ensures that the kernel is kept informed (via
  656. * netif_carrier_on/off) of the link status, and also maintains the
  657. * link status's stop on the port's TX queue.
  658. */
  659. void efx_link_status_changed(struct efx_nic *efx)
  660. {
  661. struct efx_link_state *link_state = &efx->link_state;
  662. /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
  663. * that no events are triggered between unregister_netdev() and the
  664. * driver unloading. A more general condition is that NETDEV_CHANGE
  665. * can only be generated between NETDEV_UP and NETDEV_DOWN */
  666. if (!netif_running(efx->net_dev))
  667. return;
  668. if (link_state->up != netif_carrier_ok(efx->net_dev)) {
  669. efx->n_link_state_changes++;
  670. if (link_state->up)
  671. netif_carrier_on(efx->net_dev);
  672. else
  673. netif_carrier_off(efx->net_dev);
  674. }
  675. /* Status message for kernel log */
  676. if (link_state->up)
  677. netif_info(efx, link, efx->net_dev,
  678. "link up at %uMbps %s-duplex (MTU %d)%s\n",
  679. link_state->speed, link_state->fd ? "full" : "half",
  680. efx->net_dev->mtu,
  681. (efx->promiscuous ? " [PROMISC]" : ""));
  682. else
  683. netif_info(efx, link, efx->net_dev, "link down\n");
  684. }
  685. void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
  686. {
  687. efx->link_advertising = advertising;
  688. if (advertising) {
  689. if (advertising & ADVERTISED_Pause)
  690. efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
  691. else
  692. efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
  693. if (advertising & ADVERTISED_Asym_Pause)
  694. efx->wanted_fc ^= EFX_FC_TX;
  695. }
  696. }
  697. void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
  698. {
  699. efx->wanted_fc = wanted_fc;
  700. if (efx->link_advertising) {
  701. if (wanted_fc & EFX_FC_RX)
  702. efx->link_advertising |= (ADVERTISED_Pause |
  703. ADVERTISED_Asym_Pause);
  704. else
  705. efx->link_advertising &= ~(ADVERTISED_Pause |
  706. ADVERTISED_Asym_Pause);
  707. if (wanted_fc & EFX_FC_TX)
  708. efx->link_advertising ^= ADVERTISED_Asym_Pause;
  709. }
  710. }
  711. static void efx_fini_port(struct efx_nic *efx);
  712. /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
  713. * the MAC appropriately. All other PHY configuration changes are pushed
  714. * through phy_op->set_settings(), and pushed asynchronously to the MAC
  715. * through efx_monitor().
  716. *
  717. * Callers must hold the mac_lock
  718. */
  719. int __efx_reconfigure_port(struct efx_nic *efx)
  720. {
  721. enum efx_phy_mode phy_mode;
  722. int rc;
  723. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  724. /* Serialise the promiscuous flag with efx_set_rx_mode. */
  725. netif_addr_lock_bh(efx->net_dev);
  726. netif_addr_unlock_bh(efx->net_dev);
  727. /* Disable PHY transmit in mac level loopbacks */
  728. phy_mode = efx->phy_mode;
  729. if (LOOPBACK_INTERNAL(efx))
  730. efx->phy_mode |= PHY_MODE_TX_DISABLED;
  731. else
  732. efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
  733. rc = efx->type->reconfigure_port(efx);
  734. if (rc)
  735. efx->phy_mode = phy_mode;
  736. return rc;
  737. }
  738. /* Reinitialise the MAC to pick up new PHY settings, even if the port is
  739. * disabled. */
  740. int efx_reconfigure_port(struct efx_nic *efx)
  741. {
  742. int rc;
  743. EFX_ASSERT_RESET_SERIALISED(efx);
  744. mutex_lock(&efx->mac_lock);
  745. rc = __efx_reconfigure_port(efx);
  746. mutex_unlock(&efx->mac_lock);
  747. return rc;
  748. }
  749. /* Asynchronous work item for changing MAC promiscuity and multicast
  750. * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
  751. * MAC directly. */
  752. static void efx_mac_work(struct work_struct *data)
  753. {
  754. struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
  755. mutex_lock(&efx->mac_lock);
  756. if (efx->port_enabled)
  757. efx->type->reconfigure_mac(efx);
  758. mutex_unlock(&efx->mac_lock);
  759. }
  760. static int efx_probe_port(struct efx_nic *efx)
  761. {
  762. int rc;
  763. netif_dbg(efx, probe, efx->net_dev, "create port\n");
  764. if (phy_flash_cfg)
  765. efx->phy_mode = PHY_MODE_SPECIAL;
  766. /* Connect up MAC/PHY operations table */
  767. rc = efx->type->probe_port(efx);
  768. if (rc)
  769. return rc;
  770. /* Initialise MAC address to permanent address */
  771. memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
  772. return 0;
  773. }
  774. static int efx_init_port(struct efx_nic *efx)
  775. {
  776. int rc;
  777. netif_dbg(efx, drv, efx->net_dev, "init port\n");
  778. mutex_lock(&efx->mac_lock);
  779. rc = efx->phy_op->init(efx);
  780. if (rc)
  781. goto fail1;
  782. efx->port_initialized = true;
  783. /* Reconfigure the MAC before creating dma queues (required for
  784. * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
  785. efx->type->reconfigure_mac(efx);
  786. /* Ensure the PHY advertises the correct flow control settings */
  787. rc = efx->phy_op->reconfigure(efx);
  788. if (rc)
  789. goto fail2;
  790. mutex_unlock(&efx->mac_lock);
  791. return 0;
  792. fail2:
  793. efx->phy_op->fini(efx);
  794. fail1:
  795. mutex_unlock(&efx->mac_lock);
  796. return rc;
  797. }
  798. static void efx_start_port(struct efx_nic *efx)
  799. {
  800. netif_dbg(efx, ifup, efx->net_dev, "start port\n");
  801. BUG_ON(efx->port_enabled);
  802. mutex_lock(&efx->mac_lock);
  803. efx->port_enabled = true;
  804. /* efx_mac_work() might have been scheduled after efx_stop_port(),
  805. * and then cancelled by efx_flush_all() */
  806. efx->type->reconfigure_mac(efx);
  807. mutex_unlock(&efx->mac_lock);
  808. }
  809. /* Prevent efx_mac_work() and efx_monitor() from working */
  810. static void efx_stop_port(struct efx_nic *efx)
  811. {
  812. netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
  813. mutex_lock(&efx->mac_lock);
  814. efx->port_enabled = false;
  815. mutex_unlock(&efx->mac_lock);
  816. /* Serialise against efx_set_multicast_list() */
  817. netif_addr_lock_bh(efx->net_dev);
  818. netif_addr_unlock_bh(efx->net_dev);
  819. }
  820. static void efx_fini_port(struct efx_nic *efx)
  821. {
  822. netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
  823. if (!efx->port_initialized)
  824. return;
  825. efx->phy_op->fini(efx);
  826. efx->port_initialized = false;
  827. efx->link_state.up = false;
  828. efx_link_status_changed(efx);
  829. }
  830. static void efx_remove_port(struct efx_nic *efx)
  831. {
  832. netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
  833. efx->type->remove_port(efx);
  834. }
  835. /**************************************************************************
  836. *
  837. * NIC handling
  838. *
  839. **************************************************************************/
  840. /* This configures the PCI device to enable I/O and DMA. */
  841. static int efx_init_io(struct efx_nic *efx)
  842. {
  843. struct pci_dev *pci_dev = efx->pci_dev;
  844. dma_addr_t dma_mask = efx->type->max_dma_mask;
  845. int rc;
  846. netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
  847. rc = pci_enable_device(pci_dev);
  848. if (rc) {
  849. netif_err(efx, probe, efx->net_dev,
  850. "failed to enable PCI device\n");
  851. goto fail1;
  852. }
  853. pci_set_master(pci_dev);
  854. /* Set the PCI DMA mask. Try all possibilities from our
  855. * genuine mask down to 32 bits, because some architectures
  856. * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
  857. * masks event though they reject 46 bit masks.
  858. */
  859. while (dma_mask > 0x7fffffffUL) {
  860. if (pci_dma_supported(pci_dev, dma_mask)) {
  861. rc = pci_set_dma_mask(pci_dev, dma_mask);
  862. if (rc == 0)
  863. break;
  864. }
  865. dma_mask >>= 1;
  866. }
  867. if (rc) {
  868. netif_err(efx, probe, efx->net_dev,
  869. "could not find a suitable DMA mask\n");
  870. goto fail2;
  871. }
  872. netif_dbg(efx, probe, efx->net_dev,
  873. "using DMA mask %llx\n", (unsigned long long) dma_mask);
  874. rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
  875. if (rc) {
  876. /* pci_set_consistent_dma_mask() is not *allowed* to
  877. * fail with a mask that pci_set_dma_mask() accepted,
  878. * but just in case...
  879. */
  880. netif_err(efx, probe, efx->net_dev,
  881. "failed to set consistent DMA mask\n");
  882. goto fail2;
  883. }
  884. efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
  885. rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
  886. if (rc) {
  887. netif_err(efx, probe, efx->net_dev,
  888. "request for memory BAR failed\n");
  889. rc = -EIO;
  890. goto fail3;
  891. }
  892. efx->membase = ioremap_nocache(efx->membase_phys,
  893. efx->type->mem_map_size);
  894. if (!efx->membase) {
  895. netif_err(efx, probe, efx->net_dev,
  896. "could not map memory BAR at %llx+%x\n",
  897. (unsigned long long)efx->membase_phys,
  898. efx->type->mem_map_size);
  899. rc = -ENOMEM;
  900. goto fail4;
  901. }
  902. netif_dbg(efx, probe, efx->net_dev,
  903. "memory BAR at %llx+%x (virtual %p)\n",
  904. (unsigned long long)efx->membase_phys,
  905. efx->type->mem_map_size, efx->membase);
  906. return 0;
  907. fail4:
  908. pci_release_region(efx->pci_dev, EFX_MEM_BAR);
  909. fail3:
  910. efx->membase_phys = 0;
  911. fail2:
  912. pci_disable_device(efx->pci_dev);
  913. fail1:
  914. return rc;
  915. }
  916. static void efx_fini_io(struct efx_nic *efx)
  917. {
  918. netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
  919. if (efx->membase) {
  920. iounmap(efx->membase);
  921. efx->membase = NULL;
  922. }
  923. if (efx->membase_phys) {
  924. pci_release_region(efx->pci_dev, EFX_MEM_BAR);
  925. efx->membase_phys = 0;
  926. }
  927. pci_disable_device(efx->pci_dev);
  928. }
  929. static unsigned int efx_wanted_parallelism(void)
  930. {
  931. cpumask_var_t thread_mask;
  932. unsigned int count;
  933. int cpu;
  934. if (rss_cpus)
  935. return rss_cpus;
  936. if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
  937. printk(KERN_WARNING
  938. "sfc: RSS disabled due to allocation failure\n");
  939. return 1;
  940. }
  941. count = 0;
  942. for_each_online_cpu(cpu) {
  943. if (!cpumask_test_cpu(cpu, thread_mask)) {
  944. ++count;
  945. cpumask_or(thread_mask, thread_mask,
  946. topology_thread_cpumask(cpu));
  947. }
  948. }
  949. free_cpumask_var(thread_mask);
  950. return count;
  951. }
  952. static int
  953. efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
  954. {
  955. #ifdef CONFIG_RFS_ACCEL
  956. unsigned int i;
  957. int rc;
  958. efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
  959. if (!efx->net_dev->rx_cpu_rmap)
  960. return -ENOMEM;
  961. for (i = 0; i < efx->n_rx_channels; i++) {
  962. rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
  963. xentries[i].vector);
  964. if (rc) {
  965. free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
  966. efx->net_dev->rx_cpu_rmap = NULL;
  967. return rc;
  968. }
  969. }
  970. #endif
  971. return 0;
  972. }
  973. /* Probe the number and type of interrupts we are able to obtain, and
  974. * the resulting numbers of channels and RX queues.
  975. */
  976. static int efx_probe_interrupts(struct efx_nic *efx)
  977. {
  978. unsigned int max_channels =
  979. min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
  980. unsigned int i;
  981. int rc;
  982. if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
  983. struct msix_entry xentries[EFX_MAX_CHANNELS];
  984. unsigned int n_channels;
  985. n_channels = efx_wanted_parallelism();
  986. if (separate_tx_channels)
  987. n_channels *= 2;
  988. n_channels = min(n_channels, max_channels);
  989. for (i = 0; i < n_channels; i++)
  990. xentries[i].entry = i;
  991. rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
  992. if (rc > 0) {
  993. netif_err(efx, drv, efx->net_dev,
  994. "WARNING: Insufficient MSI-X vectors"
  995. " available (%d < %u).\n", rc, n_channels);
  996. netif_err(efx, drv, efx->net_dev,
  997. "WARNING: Performance may be reduced.\n");
  998. EFX_BUG_ON_PARANOID(rc >= n_channels);
  999. n_channels = rc;
  1000. rc = pci_enable_msix(efx->pci_dev, xentries,
  1001. n_channels);
  1002. }
  1003. if (rc == 0) {
  1004. efx->n_channels = n_channels;
  1005. if (separate_tx_channels) {
  1006. efx->n_tx_channels =
  1007. max(efx->n_channels / 2, 1U);
  1008. efx->n_rx_channels =
  1009. max(efx->n_channels -
  1010. efx->n_tx_channels, 1U);
  1011. } else {
  1012. efx->n_tx_channels = efx->n_channels;
  1013. efx->n_rx_channels = efx->n_channels;
  1014. }
  1015. rc = efx_init_rx_cpu_rmap(efx, xentries);
  1016. if (rc) {
  1017. pci_disable_msix(efx->pci_dev);
  1018. return rc;
  1019. }
  1020. for (i = 0; i < n_channels; i++)
  1021. efx_get_channel(efx, i)->irq =
  1022. xentries[i].vector;
  1023. } else {
  1024. /* Fall back to single channel MSI */
  1025. efx->interrupt_mode = EFX_INT_MODE_MSI;
  1026. netif_err(efx, drv, efx->net_dev,
  1027. "could not enable MSI-X\n");
  1028. }
  1029. }
  1030. /* Try single interrupt MSI */
  1031. if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
  1032. efx->n_channels = 1;
  1033. efx->n_rx_channels = 1;
  1034. efx->n_tx_channels = 1;
  1035. rc = pci_enable_msi(efx->pci_dev);
  1036. if (rc == 0) {
  1037. efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
  1038. } else {
  1039. netif_err(efx, drv, efx->net_dev,
  1040. "could not enable MSI\n");
  1041. efx->interrupt_mode = EFX_INT_MODE_LEGACY;
  1042. }
  1043. }
  1044. /* Assume legacy interrupts */
  1045. if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
  1046. efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
  1047. efx->n_rx_channels = 1;
  1048. efx->n_tx_channels = 1;
  1049. efx->legacy_irq = efx->pci_dev->irq;
  1050. }
  1051. return 0;
  1052. }
  1053. /* Enable interrupts, then probe and start the event queues */
  1054. static void efx_start_interrupts(struct efx_nic *efx)
  1055. {
  1056. struct efx_channel *channel;
  1057. if (efx->legacy_irq)
  1058. efx->legacy_irq_enabled = true;
  1059. efx_nic_enable_interrupts(efx);
  1060. efx_for_each_channel(channel, efx) {
  1061. efx_init_eventq(channel);
  1062. efx_start_eventq(channel);
  1063. }
  1064. efx_mcdi_mode_event(efx);
  1065. }
  1066. static void efx_stop_interrupts(struct efx_nic *efx)
  1067. {
  1068. struct efx_channel *channel;
  1069. efx_mcdi_mode_poll(efx);
  1070. efx_nic_disable_interrupts(efx);
  1071. if (efx->legacy_irq) {
  1072. synchronize_irq(efx->legacy_irq);
  1073. efx->legacy_irq_enabled = false;
  1074. }
  1075. efx_for_each_channel(channel, efx) {
  1076. if (channel->irq)
  1077. synchronize_irq(channel->irq);
  1078. efx_stop_eventq(channel);
  1079. efx_fini_eventq(channel);
  1080. }
  1081. }
  1082. static void efx_remove_interrupts(struct efx_nic *efx)
  1083. {
  1084. struct efx_channel *channel;
  1085. /* Remove MSI/MSI-X interrupts */
  1086. efx_for_each_channel(channel, efx)
  1087. channel->irq = 0;
  1088. pci_disable_msi(efx->pci_dev);
  1089. pci_disable_msix(efx->pci_dev);
  1090. /* Remove legacy interrupt */
  1091. efx->legacy_irq = 0;
  1092. }
  1093. static void efx_set_channels(struct efx_nic *efx)
  1094. {
  1095. struct efx_channel *channel;
  1096. struct efx_tx_queue *tx_queue;
  1097. efx->tx_channel_offset =
  1098. separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
  1099. /* We need to adjust the TX queue numbers if we have separate
  1100. * RX-only and TX-only channels.
  1101. */
  1102. efx_for_each_channel(channel, efx) {
  1103. efx_for_each_channel_tx_queue(tx_queue, channel)
  1104. tx_queue->queue -= (efx->tx_channel_offset *
  1105. EFX_TXQ_TYPES);
  1106. }
  1107. }
  1108. static int efx_probe_nic(struct efx_nic *efx)
  1109. {
  1110. size_t i;
  1111. int rc;
  1112. netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
  1113. /* Carry out hardware-type specific initialisation */
  1114. rc = efx->type->probe(efx);
  1115. if (rc)
  1116. return rc;
  1117. /* Determine the number of channels and queues by trying to hook
  1118. * in MSI-X interrupts. */
  1119. rc = efx_probe_interrupts(efx);
  1120. if (rc)
  1121. goto fail;
  1122. if (efx->n_channels > 1)
  1123. get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
  1124. for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
  1125. efx->rx_indir_table[i] =
  1126. ethtool_rxfh_indir_default(i, efx->n_rx_channels);
  1127. efx_set_channels(efx);
  1128. netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
  1129. netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
  1130. /* Initialise the interrupt moderation settings */
  1131. efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
  1132. true);
  1133. return 0;
  1134. fail:
  1135. efx->type->remove(efx);
  1136. return rc;
  1137. }
  1138. static void efx_remove_nic(struct efx_nic *efx)
  1139. {
  1140. netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
  1141. efx_remove_interrupts(efx);
  1142. efx->type->remove(efx);
  1143. }
  1144. /**************************************************************************
  1145. *
  1146. * NIC startup/shutdown
  1147. *
  1148. *************************************************************************/
  1149. static int efx_probe_all(struct efx_nic *efx)
  1150. {
  1151. int rc;
  1152. rc = efx_probe_nic(efx);
  1153. if (rc) {
  1154. netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
  1155. goto fail1;
  1156. }
  1157. rc = efx_probe_port(efx);
  1158. if (rc) {
  1159. netif_err(efx, probe, efx->net_dev, "failed to create port\n");
  1160. goto fail2;
  1161. }
  1162. efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
  1163. rc = efx_probe_channels(efx);
  1164. if (rc)
  1165. goto fail3;
  1166. rc = efx_probe_filters(efx);
  1167. if (rc) {
  1168. netif_err(efx, probe, efx->net_dev,
  1169. "failed to create filter tables\n");
  1170. goto fail4;
  1171. }
  1172. return 0;
  1173. fail4:
  1174. efx_remove_channels(efx);
  1175. fail3:
  1176. efx_remove_port(efx);
  1177. fail2:
  1178. efx_remove_nic(efx);
  1179. fail1:
  1180. return rc;
  1181. }
  1182. /* Called after previous invocation(s) of efx_stop_all, restarts the port,
  1183. * kernel transmit queues and NAPI processing, and ensures that the port is
  1184. * scheduled to be reconfigured. This function is safe to call multiple
  1185. * times when the NIC is in any state.
  1186. */
  1187. static void efx_start_all(struct efx_nic *efx)
  1188. {
  1189. EFX_ASSERT_RESET_SERIALISED(efx);
  1190. /* Check that it is appropriate to restart the interface. All
  1191. * of these flags are safe to read under just the rtnl lock */
  1192. if (efx->port_enabled)
  1193. return;
  1194. if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
  1195. return;
  1196. if (!netif_running(efx->net_dev))
  1197. return;
  1198. efx_start_port(efx);
  1199. efx_start_datapath(efx);
  1200. /* Start the hardware monitor if there is one. Otherwise (we're link
  1201. * event driven), we have to poll the PHY because after an event queue
  1202. * flush, we could have a missed a link state change */
  1203. if (efx->type->monitor != NULL) {
  1204. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  1205. efx_monitor_interval);
  1206. } else {
  1207. mutex_lock(&efx->mac_lock);
  1208. if (efx->phy_op->poll(efx))
  1209. efx_link_status_changed(efx);
  1210. mutex_unlock(&efx->mac_lock);
  1211. }
  1212. efx->type->start_stats(efx);
  1213. }
  1214. /* Flush all delayed work. Should only be called when no more delayed work
  1215. * will be scheduled. This doesn't flush pending online resets (efx_reset),
  1216. * since we're holding the rtnl_lock at this point. */
  1217. static void efx_flush_all(struct efx_nic *efx)
  1218. {
  1219. /* Make sure the hardware monitor is stopped */
  1220. cancel_delayed_work_sync(&efx->monitor_work);
  1221. /* Stop scheduled port reconfigurations */
  1222. cancel_work_sync(&efx->mac_work);
  1223. }
  1224. /* Quiesce hardware and software without bringing the link down.
  1225. * Safe to call multiple times, when the nic and interface is in any
  1226. * state. The caller is guaranteed to subsequently be in a position
  1227. * to modify any hardware and software state they see fit without
  1228. * taking locks. */
  1229. static void efx_stop_all(struct efx_nic *efx)
  1230. {
  1231. EFX_ASSERT_RESET_SERIALISED(efx);
  1232. /* port_enabled can be read safely under the rtnl lock */
  1233. if (!efx->port_enabled)
  1234. return;
  1235. efx->type->stop_stats(efx);
  1236. efx_stop_port(efx);
  1237. /* Flush efx_mac_work(), refill_workqueue, monitor_work */
  1238. efx_flush_all(efx);
  1239. /* Stop the kernel transmit interface late, so the watchdog
  1240. * timer isn't ticking over the flush */
  1241. netif_tx_disable(efx->net_dev);
  1242. efx_stop_datapath(efx);
  1243. }
  1244. static void efx_remove_all(struct efx_nic *efx)
  1245. {
  1246. efx_remove_filters(efx);
  1247. efx_remove_channels(efx);
  1248. efx_remove_port(efx);
  1249. efx_remove_nic(efx);
  1250. }
  1251. /**************************************************************************
  1252. *
  1253. * Interrupt moderation
  1254. *
  1255. **************************************************************************/
  1256. static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
  1257. {
  1258. if (usecs == 0)
  1259. return 0;
  1260. if (usecs * 1000 < quantum_ns)
  1261. return 1; /* never round down to 0 */
  1262. return usecs * 1000 / quantum_ns;
  1263. }
  1264. /* Set interrupt moderation parameters */
  1265. int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
  1266. unsigned int rx_usecs, bool rx_adaptive,
  1267. bool rx_may_override_tx)
  1268. {
  1269. struct efx_channel *channel;
  1270. unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
  1271. efx->timer_quantum_ns,
  1272. 1000);
  1273. unsigned int tx_ticks;
  1274. unsigned int rx_ticks;
  1275. EFX_ASSERT_RESET_SERIALISED(efx);
  1276. if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
  1277. return -EINVAL;
  1278. tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
  1279. rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
  1280. if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
  1281. !rx_may_override_tx) {
  1282. netif_err(efx, drv, efx->net_dev, "Channels are shared. "
  1283. "RX and TX IRQ moderation must be equal\n");
  1284. return -EINVAL;
  1285. }
  1286. efx->irq_rx_adaptive = rx_adaptive;
  1287. efx->irq_rx_moderation = rx_ticks;
  1288. efx_for_each_channel(channel, efx) {
  1289. if (efx_channel_has_rx_queue(channel))
  1290. channel->irq_moderation = rx_ticks;
  1291. else if (efx_channel_has_tx_queues(channel))
  1292. channel->irq_moderation = tx_ticks;
  1293. }
  1294. return 0;
  1295. }
  1296. void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
  1297. unsigned int *rx_usecs, bool *rx_adaptive)
  1298. {
  1299. /* We must round up when converting ticks to microseconds
  1300. * because we round down when converting the other way.
  1301. */
  1302. *rx_adaptive = efx->irq_rx_adaptive;
  1303. *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
  1304. efx->timer_quantum_ns,
  1305. 1000);
  1306. /* If channels are shared between RX and TX, so is IRQ
  1307. * moderation. Otherwise, IRQ moderation is the same for all
  1308. * TX channels and is not adaptive.
  1309. */
  1310. if (efx->tx_channel_offset == 0)
  1311. *tx_usecs = *rx_usecs;
  1312. else
  1313. *tx_usecs = DIV_ROUND_UP(
  1314. efx->channel[efx->tx_channel_offset]->irq_moderation *
  1315. efx->timer_quantum_ns,
  1316. 1000);
  1317. }
  1318. /**************************************************************************
  1319. *
  1320. * Hardware monitor
  1321. *
  1322. **************************************************************************/
  1323. /* Run periodically off the general workqueue */
  1324. static void efx_monitor(struct work_struct *data)
  1325. {
  1326. struct efx_nic *efx = container_of(data, struct efx_nic,
  1327. monitor_work.work);
  1328. netif_vdbg(efx, timer, efx->net_dev,
  1329. "hardware monitor executing on CPU %d\n",
  1330. raw_smp_processor_id());
  1331. BUG_ON(efx->type->monitor == NULL);
  1332. /* If the mac_lock is already held then it is likely a port
  1333. * reconfiguration is already in place, which will likely do
  1334. * most of the work of monitor() anyway. */
  1335. if (mutex_trylock(&efx->mac_lock)) {
  1336. if (efx->port_enabled)
  1337. efx->type->monitor(efx);
  1338. mutex_unlock(&efx->mac_lock);
  1339. }
  1340. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  1341. efx_monitor_interval);
  1342. }
  1343. /**************************************************************************
  1344. *
  1345. * ioctls
  1346. *
  1347. *************************************************************************/
  1348. /* Net device ioctl
  1349. * Context: process, rtnl_lock() held.
  1350. */
  1351. static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
  1352. {
  1353. struct efx_nic *efx = netdev_priv(net_dev);
  1354. struct mii_ioctl_data *data = if_mii(ifr);
  1355. EFX_ASSERT_RESET_SERIALISED(efx);
  1356. /* Convert phy_id from older PRTAD/DEVAD format */
  1357. if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
  1358. (data->phy_id & 0xfc00) == 0x0400)
  1359. data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
  1360. return mdio_mii_ioctl(&efx->mdio, data, cmd);
  1361. }
  1362. /**************************************************************************
  1363. *
  1364. * NAPI interface
  1365. *
  1366. **************************************************************************/
  1367. static void efx_init_napi(struct efx_nic *efx)
  1368. {
  1369. struct efx_channel *channel;
  1370. efx_for_each_channel(channel, efx) {
  1371. channel->napi_dev = efx->net_dev;
  1372. netif_napi_add(channel->napi_dev, &channel->napi_str,
  1373. efx_poll, napi_weight);
  1374. }
  1375. }
  1376. static void efx_fini_napi_channel(struct efx_channel *channel)
  1377. {
  1378. if (channel->napi_dev)
  1379. netif_napi_del(&channel->napi_str);
  1380. channel->napi_dev = NULL;
  1381. }
  1382. static void efx_fini_napi(struct efx_nic *efx)
  1383. {
  1384. struct efx_channel *channel;
  1385. efx_for_each_channel(channel, efx)
  1386. efx_fini_napi_channel(channel);
  1387. }
  1388. /**************************************************************************
  1389. *
  1390. * Kernel netpoll interface
  1391. *
  1392. *************************************************************************/
  1393. #ifdef CONFIG_NET_POLL_CONTROLLER
  1394. /* Although in the common case interrupts will be disabled, this is not
  1395. * guaranteed. However, all our work happens inside the NAPI callback,
  1396. * so no locking is required.
  1397. */
  1398. static void efx_netpoll(struct net_device *net_dev)
  1399. {
  1400. struct efx_nic *efx = netdev_priv(net_dev);
  1401. struct efx_channel *channel;
  1402. efx_for_each_channel(channel, efx)
  1403. efx_schedule_channel(channel);
  1404. }
  1405. #endif
  1406. /**************************************************************************
  1407. *
  1408. * Kernel net device interface
  1409. *
  1410. *************************************************************************/
  1411. /* Context: process, rtnl_lock() held. */
  1412. static int efx_net_open(struct net_device *net_dev)
  1413. {
  1414. struct efx_nic *efx = netdev_priv(net_dev);
  1415. EFX_ASSERT_RESET_SERIALISED(efx);
  1416. netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
  1417. raw_smp_processor_id());
  1418. if (efx->state == STATE_DISABLED)
  1419. return -EIO;
  1420. if (efx->phy_mode & PHY_MODE_SPECIAL)
  1421. return -EBUSY;
  1422. if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
  1423. return -EIO;
  1424. /* Notify the kernel of the link state polled during driver load,
  1425. * before the monitor starts running */
  1426. efx_link_status_changed(efx);
  1427. efx_start_all(efx);
  1428. return 0;
  1429. }
  1430. /* Context: process, rtnl_lock() held.
  1431. * Note that the kernel will ignore our return code; this method
  1432. * should really be a void.
  1433. */
  1434. static int efx_net_stop(struct net_device *net_dev)
  1435. {
  1436. struct efx_nic *efx = netdev_priv(net_dev);
  1437. netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
  1438. raw_smp_processor_id());
  1439. if (efx->state != STATE_DISABLED) {
  1440. /* Stop the device and flush all the channels */
  1441. efx_stop_all(efx);
  1442. }
  1443. return 0;
  1444. }
  1445. /* Context: process, dev_base_lock or RTNL held, non-blocking. */
  1446. static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
  1447. struct rtnl_link_stats64 *stats)
  1448. {
  1449. struct efx_nic *efx = netdev_priv(net_dev);
  1450. struct efx_mac_stats *mac_stats = &efx->mac_stats;
  1451. spin_lock_bh(&efx->stats_lock);
  1452. efx->type->update_stats(efx);
  1453. stats->rx_packets = mac_stats->rx_packets;
  1454. stats->tx_packets = mac_stats->tx_packets;
  1455. stats->rx_bytes = mac_stats->rx_bytes;
  1456. stats->tx_bytes = mac_stats->tx_bytes;
  1457. stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
  1458. stats->multicast = mac_stats->rx_multicast;
  1459. stats->collisions = mac_stats->tx_collision;
  1460. stats->rx_length_errors = (mac_stats->rx_gtjumbo +
  1461. mac_stats->rx_length_error);
  1462. stats->rx_crc_errors = mac_stats->rx_bad;
  1463. stats->rx_frame_errors = mac_stats->rx_align_error;
  1464. stats->rx_fifo_errors = mac_stats->rx_overflow;
  1465. stats->rx_missed_errors = mac_stats->rx_missed;
  1466. stats->tx_window_errors = mac_stats->tx_late_collision;
  1467. stats->rx_errors = (stats->rx_length_errors +
  1468. stats->rx_crc_errors +
  1469. stats->rx_frame_errors +
  1470. mac_stats->rx_symbol_error);
  1471. stats->tx_errors = (stats->tx_window_errors +
  1472. mac_stats->tx_bad);
  1473. spin_unlock_bh(&efx->stats_lock);
  1474. return stats;
  1475. }
  1476. /* Context: netif_tx_lock held, BHs disabled. */
  1477. static void efx_watchdog(struct net_device *net_dev)
  1478. {
  1479. struct efx_nic *efx = netdev_priv(net_dev);
  1480. netif_err(efx, tx_err, efx->net_dev,
  1481. "TX stuck with port_enabled=%d: resetting channels\n",
  1482. efx->port_enabled);
  1483. efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
  1484. }
  1485. /* Context: process, rtnl_lock() held. */
  1486. static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
  1487. {
  1488. struct efx_nic *efx = netdev_priv(net_dev);
  1489. EFX_ASSERT_RESET_SERIALISED(efx);
  1490. if (new_mtu > EFX_MAX_MTU)
  1491. return -EINVAL;
  1492. efx_stop_all(efx);
  1493. netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
  1494. mutex_lock(&efx->mac_lock);
  1495. /* Reconfigure the MAC before enabling the dma queues so that
  1496. * the RX buffers don't overflow */
  1497. net_dev->mtu = new_mtu;
  1498. efx->type->reconfigure_mac(efx);
  1499. mutex_unlock(&efx->mac_lock);
  1500. efx_start_all(efx);
  1501. return 0;
  1502. }
  1503. static int efx_set_mac_address(struct net_device *net_dev, void *data)
  1504. {
  1505. struct efx_nic *efx = netdev_priv(net_dev);
  1506. struct sockaddr *addr = data;
  1507. char *new_addr = addr->sa_data;
  1508. EFX_ASSERT_RESET_SERIALISED(efx);
  1509. if (!is_valid_ether_addr(new_addr)) {
  1510. netif_err(efx, drv, efx->net_dev,
  1511. "invalid ethernet MAC address requested: %pM\n",
  1512. new_addr);
  1513. return -EINVAL;
  1514. }
  1515. memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
  1516. /* Reconfigure the MAC */
  1517. mutex_lock(&efx->mac_lock);
  1518. efx->type->reconfigure_mac(efx);
  1519. mutex_unlock(&efx->mac_lock);
  1520. return 0;
  1521. }
  1522. /* Context: netif_addr_lock held, BHs disabled. */
  1523. static void efx_set_rx_mode(struct net_device *net_dev)
  1524. {
  1525. struct efx_nic *efx = netdev_priv(net_dev);
  1526. struct netdev_hw_addr *ha;
  1527. union efx_multicast_hash *mc_hash = &efx->multicast_hash;
  1528. u32 crc;
  1529. int bit;
  1530. efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
  1531. /* Build multicast hash table */
  1532. if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
  1533. memset(mc_hash, 0xff, sizeof(*mc_hash));
  1534. } else {
  1535. memset(mc_hash, 0x00, sizeof(*mc_hash));
  1536. netdev_for_each_mc_addr(ha, net_dev) {
  1537. crc = ether_crc_le(ETH_ALEN, ha->addr);
  1538. bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
  1539. set_bit_le(bit, mc_hash->byte);
  1540. }
  1541. /* Broadcast packets go through the multicast hash filter.
  1542. * ether_crc_le() of the broadcast address is 0xbe2612ff
  1543. * so we always add bit 0xff to the mask.
  1544. */
  1545. set_bit_le(0xff, mc_hash->byte);
  1546. }
  1547. if (efx->port_enabled)
  1548. queue_work(efx->workqueue, &efx->mac_work);
  1549. /* Otherwise efx_start_port() will do this */
  1550. }
  1551. static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
  1552. {
  1553. struct efx_nic *efx = netdev_priv(net_dev);
  1554. /* If disabling RX n-tuple filtering, clear existing filters */
  1555. if (net_dev->features & ~data & NETIF_F_NTUPLE)
  1556. efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
  1557. return 0;
  1558. }
  1559. static const struct net_device_ops efx_netdev_ops = {
  1560. .ndo_open = efx_net_open,
  1561. .ndo_stop = efx_net_stop,
  1562. .ndo_get_stats64 = efx_net_stats,
  1563. .ndo_tx_timeout = efx_watchdog,
  1564. .ndo_start_xmit = efx_hard_start_xmit,
  1565. .ndo_validate_addr = eth_validate_addr,
  1566. .ndo_do_ioctl = efx_ioctl,
  1567. .ndo_change_mtu = efx_change_mtu,
  1568. .ndo_set_mac_address = efx_set_mac_address,
  1569. .ndo_set_rx_mode = efx_set_rx_mode,
  1570. .ndo_set_features = efx_set_features,
  1571. #ifdef CONFIG_NET_POLL_CONTROLLER
  1572. .ndo_poll_controller = efx_netpoll,
  1573. #endif
  1574. .ndo_setup_tc = efx_setup_tc,
  1575. #ifdef CONFIG_RFS_ACCEL
  1576. .ndo_rx_flow_steer = efx_filter_rfs,
  1577. #endif
  1578. };
  1579. static void efx_update_name(struct efx_nic *efx)
  1580. {
  1581. strcpy(efx->name, efx->net_dev->name);
  1582. efx_mtd_rename(efx);
  1583. efx_set_channel_names(efx);
  1584. }
  1585. static int efx_netdev_event(struct notifier_block *this,
  1586. unsigned long event, void *ptr)
  1587. {
  1588. struct net_device *net_dev = ptr;
  1589. if (net_dev->netdev_ops == &efx_netdev_ops &&
  1590. event == NETDEV_CHANGENAME)
  1591. efx_update_name(netdev_priv(net_dev));
  1592. return NOTIFY_DONE;
  1593. }
  1594. static struct notifier_block efx_netdev_notifier = {
  1595. .notifier_call = efx_netdev_event,
  1596. };
  1597. static ssize_t
  1598. show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
  1599. {
  1600. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  1601. return sprintf(buf, "%d\n", efx->phy_type);
  1602. }
  1603. static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
  1604. static int efx_register_netdev(struct efx_nic *efx)
  1605. {
  1606. struct net_device *net_dev = efx->net_dev;
  1607. struct efx_channel *channel;
  1608. int rc;
  1609. net_dev->watchdog_timeo = 5 * HZ;
  1610. net_dev->irq = efx->pci_dev->irq;
  1611. net_dev->netdev_ops = &efx_netdev_ops;
  1612. SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
  1613. rtnl_lock();
  1614. rc = dev_alloc_name(net_dev, net_dev->name);
  1615. if (rc < 0)
  1616. goto fail_locked;
  1617. efx_update_name(efx);
  1618. rc = register_netdevice(net_dev);
  1619. if (rc)
  1620. goto fail_locked;
  1621. efx_for_each_channel(channel, efx) {
  1622. struct efx_tx_queue *tx_queue;
  1623. efx_for_each_channel_tx_queue(tx_queue, channel)
  1624. efx_init_tx_queue_core_txq(tx_queue);
  1625. }
  1626. /* Always start with carrier off; PHY events will detect the link */
  1627. netif_carrier_off(net_dev);
  1628. rtnl_unlock();
  1629. rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1630. if (rc) {
  1631. netif_err(efx, drv, efx->net_dev,
  1632. "failed to init net dev attributes\n");
  1633. goto fail_registered;
  1634. }
  1635. return 0;
  1636. fail_locked:
  1637. rtnl_unlock();
  1638. netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
  1639. return rc;
  1640. fail_registered:
  1641. unregister_netdev(net_dev);
  1642. return rc;
  1643. }
  1644. static void efx_unregister_netdev(struct efx_nic *efx)
  1645. {
  1646. struct efx_channel *channel;
  1647. struct efx_tx_queue *tx_queue;
  1648. if (!efx->net_dev)
  1649. return;
  1650. BUG_ON(netdev_priv(efx->net_dev) != efx);
  1651. /* Free up any skbs still remaining. This has to happen before
  1652. * we try to unregister the netdev as running their destructors
  1653. * may be needed to get the device ref. count to 0. */
  1654. efx_for_each_channel(channel, efx) {
  1655. efx_for_each_channel_tx_queue(tx_queue, channel)
  1656. efx_release_tx_buffers(tx_queue);
  1657. }
  1658. strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
  1659. device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1660. unregister_netdev(efx->net_dev);
  1661. }
  1662. /**************************************************************************
  1663. *
  1664. * Device reset and suspend
  1665. *
  1666. **************************************************************************/
  1667. /* Tears down the entire software state and most of the hardware state
  1668. * before reset. */
  1669. void efx_reset_down(struct efx_nic *efx, enum reset_type method)
  1670. {
  1671. EFX_ASSERT_RESET_SERIALISED(efx);
  1672. efx_stop_all(efx);
  1673. mutex_lock(&efx->mac_lock);
  1674. efx_stop_interrupts(efx);
  1675. if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
  1676. efx->phy_op->fini(efx);
  1677. efx->type->fini(efx);
  1678. }
  1679. /* This function will always ensure that the locks acquired in
  1680. * efx_reset_down() are released. A failure return code indicates
  1681. * that we were unable to reinitialise the hardware, and the
  1682. * driver should be disabled. If ok is false, then the rx and tx
  1683. * engines are not restarted, pending a RESET_DISABLE. */
  1684. int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
  1685. {
  1686. int rc;
  1687. EFX_ASSERT_RESET_SERIALISED(efx);
  1688. rc = efx->type->init(efx);
  1689. if (rc) {
  1690. netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
  1691. goto fail;
  1692. }
  1693. if (!ok)
  1694. goto fail;
  1695. if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
  1696. rc = efx->phy_op->init(efx);
  1697. if (rc)
  1698. goto fail;
  1699. if (efx->phy_op->reconfigure(efx))
  1700. netif_err(efx, drv, efx->net_dev,
  1701. "could not restore PHY settings\n");
  1702. }
  1703. efx->type->reconfigure_mac(efx);
  1704. efx_start_interrupts(efx);
  1705. efx_restore_filters(efx);
  1706. mutex_unlock(&efx->mac_lock);
  1707. efx_start_all(efx);
  1708. return 0;
  1709. fail:
  1710. efx->port_initialized = false;
  1711. mutex_unlock(&efx->mac_lock);
  1712. return rc;
  1713. }
  1714. /* Reset the NIC using the specified method. Note that the reset may
  1715. * fail, in which case the card will be left in an unusable state.
  1716. *
  1717. * Caller must hold the rtnl_lock.
  1718. */
  1719. int efx_reset(struct efx_nic *efx, enum reset_type method)
  1720. {
  1721. int rc, rc2;
  1722. bool disabled;
  1723. netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
  1724. RESET_TYPE(method));
  1725. netif_device_detach(efx->net_dev);
  1726. efx_reset_down(efx, method);
  1727. rc = efx->type->reset(efx, method);
  1728. if (rc) {
  1729. netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
  1730. goto out;
  1731. }
  1732. /* Clear flags for the scopes we covered. We assume the NIC and
  1733. * driver are now quiescent so that there is no race here.
  1734. */
  1735. efx->reset_pending &= -(1 << (method + 1));
  1736. /* Reinitialise bus-mastering, which may have been turned off before
  1737. * the reset was scheduled. This is still appropriate, even in the
  1738. * RESET_TYPE_DISABLE since this driver generally assumes the hardware
  1739. * can respond to requests. */
  1740. pci_set_master(efx->pci_dev);
  1741. out:
  1742. /* Leave device stopped if necessary */
  1743. disabled = rc || method == RESET_TYPE_DISABLE;
  1744. rc2 = efx_reset_up(efx, method, !disabled);
  1745. if (rc2) {
  1746. disabled = true;
  1747. if (!rc)
  1748. rc = rc2;
  1749. }
  1750. if (disabled) {
  1751. dev_close(efx->net_dev);
  1752. netif_err(efx, drv, efx->net_dev, "has been disabled\n");
  1753. efx->state = STATE_DISABLED;
  1754. } else {
  1755. netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
  1756. netif_device_attach(efx->net_dev);
  1757. }
  1758. return rc;
  1759. }
  1760. /* The worker thread exists so that code that cannot sleep can
  1761. * schedule a reset for later.
  1762. */
  1763. static void efx_reset_work(struct work_struct *data)
  1764. {
  1765. struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
  1766. unsigned long pending = ACCESS_ONCE(efx->reset_pending);
  1767. if (!pending)
  1768. return;
  1769. /* If we're not RUNNING then don't reset. Leave the reset_pending
  1770. * flags set so that efx_pci_probe_main will be retried */
  1771. if (efx->state != STATE_RUNNING) {
  1772. netif_info(efx, drv, efx->net_dev,
  1773. "scheduled reset quenched. NIC not RUNNING\n");
  1774. return;
  1775. }
  1776. rtnl_lock();
  1777. (void)efx_reset(efx, fls(pending) - 1);
  1778. rtnl_unlock();
  1779. }
  1780. void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
  1781. {
  1782. enum reset_type method;
  1783. switch (type) {
  1784. case RESET_TYPE_INVISIBLE:
  1785. case RESET_TYPE_ALL:
  1786. case RESET_TYPE_WORLD:
  1787. case RESET_TYPE_DISABLE:
  1788. method = type;
  1789. netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
  1790. RESET_TYPE(method));
  1791. break;
  1792. default:
  1793. method = efx->type->map_reset_reason(type);
  1794. netif_dbg(efx, drv, efx->net_dev,
  1795. "scheduling %s reset for %s\n",
  1796. RESET_TYPE(method), RESET_TYPE(type));
  1797. break;
  1798. }
  1799. set_bit(method, &efx->reset_pending);
  1800. /* efx_process_channel() will no longer read events once a
  1801. * reset is scheduled. So switch back to poll'd MCDI completions. */
  1802. efx_mcdi_mode_poll(efx);
  1803. queue_work(reset_workqueue, &efx->reset_work);
  1804. }
  1805. /**************************************************************************
  1806. *
  1807. * List of NICs we support
  1808. *
  1809. **************************************************************************/
  1810. /* PCI device ID table */
  1811. static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
  1812. {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
  1813. PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
  1814. .driver_data = (unsigned long) &falcon_a1_nic_type},
  1815. {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
  1816. PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
  1817. .driver_data = (unsigned long) &falcon_b0_nic_type},
  1818. {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
  1819. .driver_data = (unsigned long) &siena_a0_nic_type},
  1820. {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
  1821. .driver_data = (unsigned long) &siena_a0_nic_type},
  1822. {0} /* end of list */
  1823. };
  1824. /**************************************************************************
  1825. *
  1826. * Dummy PHY/MAC operations
  1827. *
  1828. * Can be used for some unimplemented operations
  1829. * Needed so all function pointers are valid and do not have to be tested
  1830. * before use
  1831. *
  1832. **************************************************************************/
  1833. int efx_port_dummy_op_int(struct efx_nic *efx)
  1834. {
  1835. return 0;
  1836. }
  1837. void efx_port_dummy_op_void(struct efx_nic *efx) {}
  1838. static bool efx_port_dummy_op_poll(struct efx_nic *efx)
  1839. {
  1840. return false;
  1841. }
  1842. static const struct efx_phy_operations efx_dummy_phy_operations = {
  1843. .init = efx_port_dummy_op_int,
  1844. .reconfigure = efx_port_dummy_op_int,
  1845. .poll = efx_port_dummy_op_poll,
  1846. .fini = efx_port_dummy_op_void,
  1847. };
  1848. /**************************************************************************
  1849. *
  1850. * Data housekeeping
  1851. *
  1852. **************************************************************************/
  1853. /* This zeroes out and then fills in the invariants in a struct
  1854. * efx_nic (including all sub-structures).
  1855. */
  1856. static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
  1857. struct pci_dev *pci_dev, struct net_device *net_dev)
  1858. {
  1859. int i;
  1860. /* Initialise common structures */
  1861. memset(efx, 0, sizeof(*efx));
  1862. spin_lock_init(&efx->biu_lock);
  1863. #ifdef CONFIG_SFC_MTD
  1864. INIT_LIST_HEAD(&efx->mtd_list);
  1865. #endif
  1866. INIT_WORK(&efx->reset_work, efx_reset_work);
  1867. INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
  1868. efx->pci_dev = pci_dev;
  1869. efx->msg_enable = debug;
  1870. efx->state = STATE_INIT;
  1871. strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
  1872. efx->net_dev = net_dev;
  1873. spin_lock_init(&efx->stats_lock);
  1874. mutex_init(&efx->mac_lock);
  1875. efx->phy_op = &efx_dummy_phy_operations;
  1876. efx->mdio.dev = net_dev;
  1877. INIT_WORK(&efx->mac_work, efx_mac_work);
  1878. init_waitqueue_head(&efx->flush_wq);
  1879. for (i = 0; i < EFX_MAX_CHANNELS; i++) {
  1880. efx->channel[i] = efx_alloc_channel(efx, i, NULL);
  1881. if (!efx->channel[i])
  1882. goto fail;
  1883. }
  1884. efx->type = type;
  1885. EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
  1886. /* Higher numbered interrupt modes are less capable! */
  1887. efx->interrupt_mode = max(efx->type->max_interrupt_mode,
  1888. interrupt_mode);
  1889. /* Would be good to use the net_dev name, but we're too early */
  1890. snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
  1891. pci_name(pci_dev));
  1892. efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
  1893. if (!efx->workqueue)
  1894. goto fail;
  1895. return 0;
  1896. fail:
  1897. efx_fini_struct(efx);
  1898. return -ENOMEM;
  1899. }
  1900. static void efx_fini_struct(struct efx_nic *efx)
  1901. {
  1902. int i;
  1903. for (i = 0; i < EFX_MAX_CHANNELS; i++)
  1904. kfree(efx->channel[i]);
  1905. if (efx->workqueue) {
  1906. destroy_workqueue(efx->workqueue);
  1907. efx->workqueue = NULL;
  1908. }
  1909. }
  1910. /**************************************************************************
  1911. *
  1912. * PCI interface
  1913. *
  1914. **************************************************************************/
  1915. /* Main body of final NIC shutdown code
  1916. * This is called only at module unload (or hotplug removal).
  1917. */
  1918. static void efx_pci_remove_main(struct efx_nic *efx)
  1919. {
  1920. #ifdef CONFIG_RFS_ACCEL
  1921. free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
  1922. efx->net_dev->rx_cpu_rmap = NULL;
  1923. #endif
  1924. efx_stop_interrupts(efx);
  1925. efx_nic_fini_interrupt(efx);
  1926. efx_fini_port(efx);
  1927. efx->type->fini(efx);
  1928. efx_fini_napi(efx);
  1929. efx_remove_all(efx);
  1930. }
  1931. /* Final NIC shutdown
  1932. * This is called only at module unload (or hotplug removal).
  1933. */
  1934. static void efx_pci_remove(struct pci_dev *pci_dev)
  1935. {
  1936. struct efx_nic *efx;
  1937. efx = pci_get_drvdata(pci_dev);
  1938. if (!efx)
  1939. return;
  1940. /* Mark the NIC as fini, then stop the interface */
  1941. rtnl_lock();
  1942. efx->state = STATE_FINI;
  1943. dev_close(efx->net_dev);
  1944. /* Allow any queued efx_resets() to complete */
  1945. rtnl_unlock();
  1946. efx_stop_interrupts(efx);
  1947. efx_unregister_netdev(efx);
  1948. efx_mtd_remove(efx);
  1949. /* Wait for any scheduled resets to complete. No more will be
  1950. * scheduled from this point because efx_stop_all() has been
  1951. * called, we are no longer registered with driverlink, and
  1952. * the net_device's have been removed. */
  1953. cancel_work_sync(&efx->reset_work);
  1954. efx_pci_remove_main(efx);
  1955. efx_fini_io(efx);
  1956. netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
  1957. pci_set_drvdata(pci_dev, NULL);
  1958. efx_fini_struct(efx);
  1959. free_netdev(efx->net_dev);
  1960. };
  1961. /* Main body of NIC initialisation
  1962. * This is called at module load (or hotplug insertion, theoretically).
  1963. */
  1964. static int efx_pci_probe_main(struct efx_nic *efx)
  1965. {
  1966. int rc;
  1967. /* Do start-of-day initialisation */
  1968. rc = efx_probe_all(efx);
  1969. if (rc)
  1970. goto fail1;
  1971. efx_init_napi(efx);
  1972. rc = efx->type->init(efx);
  1973. if (rc) {
  1974. netif_err(efx, probe, efx->net_dev,
  1975. "failed to initialise NIC\n");
  1976. goto fail3;
  1977. }
  1978. rc = efx_init_port(efx);
  1979. if (rc) {
  1980. netif_err(efx, probe, efx->net_dev,
  1981. "failed to initialise port\n");
  1982. goto fail4;
  1983. }
  1984. rc = efx_nic_init_interrupt(efx);
  1985. if (rc)
  1986. goto fail5;
  1987. efx_start_interrupts(efx);
  1988. return 0;
  1989. fail5:
  1990. efx_fini_port(efx);
  1991. fail4:
  1992. efx->type->fini(efx);
  1993. fail3:
  1994. efx_fini_napi(efx);
  1995. efx_remove_all(efx);
  1996. fail1:
  1997. return rc;
  1998. }
  1999. /* NIC initialisation
  2000. *
  2001. * This is called at module load (or hotplug insertion,
  2002. * theoretically). It sets up PCI mappings, resets the NIC,
  2003. * sets up and registers the network devices with the kernel and hooks
  2004. * the interrupt service routine. It does not prepare the device for
  2005. * transmission; this is left to the first time one of the network
  2006. * interfaces is brought up (i.e. efx_net_open).
  2007. */
  2008. static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
  2009. const struct pci_device_id *entry)
  2010. {
  2011. const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
  2012. struct net_device *net_dev;
  2013. struct efx_nic *efx;
  2014. int rc;
  2015. /* Allocate and initialise a struct net_device and struct efx_nic */
  2016. net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
  2017. EFX_MAX_RX_QUEUES);
  2018. if (!net_dev)
  2019. return -ENOMEM;
  2020. net_dev->features |= (type->offload_features | NETIF_F_SG |
  2021. NETIF_F_HIGHDMA | NETIF_F_TSO |
  2022. NETIF_F_RXCSUM);
  2023. if (type->offload_features & NETIF_F_V6_CSUM)
  2024. net_dev->features |= NETIF_F_TSO6;
  2025. /* Mask for features that also apply to VLAN devices */
  2026. net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
  2027. NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
  2028. NETIF_F_RXCSUM);
  2029. /* All offloads can be toggled */
  2030. net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
  2031. efx = netdev_priv(net_dev);
  2032. pci_set_drvdata(pci_dev, efx);
  2033. SET_NETDEV_DEV(net_dev, &pci_dev->dev);
  2034. rc = efx_init_struct(efx, type, pci_dev, net_dev);
  2035. if (rc)
  2036. goto fail1;
  2037. netif_info(efx, probe, efx->net_dev,
  2038. "Solarflare NIC detected\n");
  2039. /* Set up basic I/O (BAR mappings etc) */
  2040. rc = efx_init_io(efx);
  2041. if (rc)
  2042. goto fail2;
  2043. rc = efx_pci_probe_main(efx);
  2044. /* Serialise against efx_reset(). No more resets will be
  2045. * scheduled since efx_stop_all() has been called, and we have
  2046. * not and never have been registered.
  2047. */
  2048. cancel_work_sync(&efx->reset_work);
  2049. if (rc)
  2050. goto fail3;
  2051. /* If there was a scheduled reset during probe, the NIC is
  2052. * probably hosed anyway.
  2053. */
  2054. if (efx->reset_pending) {
  2055. rc = -EIO;
  2056. goto fail4;
  2057. }
  2058. /* Switch to the running state before we expose the device to the OS,
  2059. * so that dev_open()|efx_start_all() will actually start the device */
  2060. efx->state = STATE_RUNNING;
  2061. rc = efx_register_netdev(efx);
  2062. if (rc)
  2063. goto fail4;
  2064. netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
  2065. /* Try to create MTDs, but allow this to fail */
  2066. rtnl_lock();
  2067. rc = efx_mtd_probe(efx);
  2068. rtnl_unlock();
  2069. if (rc)
  2070. netif_warn(efx, probe, efx->net_dev,
  2071. "failed to create MTDs (%d)\n", rc);
  2072. return 0;
  2073. fail4:
  2074. efx_pci_remove_main(efx);
  2075. fail3:
  2076. efx_fini_io(efx);
  2077. fail2:
  2078. efx_fini_struct(efx);
  2079. fail1:
  2080. WARN_ON(rc > 0);
  2081. netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
  2082. free_netdev(net_dev);
  2083. return rc;
  2084. }
  2085. static int efx_pm_freeze(struct device *dev)
  2086. {
  2087. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  2088. efx->state = STATE_FINI;
  2089. netif_device_detach(efx->net_dev);
  2090. efx_stop_all(efx);
  2091. efx_stop_interrupts(efx);
  2092. return 0;
  2093. }
  2094. static int efx_pm_thaw(struct device *dev)
  2095. {
  2096. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  2097. efx->state = STATE_INIT;
  2098. efx_start_interrupts(efx);
  2099. mutex_lock(&efx->mac_lock);
  2100. efx->phy_op->reconfigure(efx);
  2101. mutex_unlock(&efx->mac_lock);
  2102. efx_start_all(efx);
  2103. netif_device_attach(efx->net_dev);
  2104. efx->state = STATE_RUNNING;
  2105. efx->type->resume_wol(efx);
  2106. /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
  2107. queue_work(reset_workqueue, &efx->reset_work);
  2108. return 0;
  2109. }
  2110. static int efx_pm_poweroff(struct device *dev)
  2111. {
  2112. struct pci_dev *pci_dev = to_pci_dev(dev);
  2113. struct efx_nic *efx = pci_get_drvdata(pci_dev);
  2114. efx->type->fini(efx);
  2115. efx->reset_pending = 0;
  2116. pci_save_state(pci_dev);
  2117. return pci_set_power_state(pci_dev, PCI_D3hot);
  2118. }
  2119. /* Used for both resume and restore */
  2120. static int efx_pm_resume(struct device *dev)
  2121. {
  2122. struct pci_dev *pci_dev = to_pci_dev(dev);
  2123. struct efx_nic *efx = pci_get_drvdata(pci_dev);
  2124. int rc;
  2125. rc = pci_set_power_state(pci_dev, PCI_D0);
  2126. if (rc)
  2127. return rc;
  2128. pci_restore_state(pci_dev);
  2129. rc = pci_enable_device(pci_dev);
  2130. if (rc)
  2131. return rc;
  2132. pci_set_master(efx->pci_dev);
  2133. rc = efx->type->reset(efx, RESET_TYPE_ALL);
  2134. if (rc)
  2135. return rc;
  2136. rc = efx->type->init(efx);
  2137. if (rc)
  2138. return rc;
  2139. efx_pm_thaw(dev);
  2140. return 0;
  2141. }
  2142. static int efx_pm_suspend(struct device *dev)
  2143. {
  2144. int rc;
  2145. efx_pm_freeze(dev);
  2146. rc = efx_pm_poweroff(dev);
  2147. if (rc)
  2148. efx_pm_resume(dev);
  2149. return rc;
  2150. }
  2151. static const struct dev_pm_ops efx_pm_ops = {
  2152. .suspend = efx_pm_suspend,
  2153. .resume = efx_pm_resume,
  2154. .freeze = efx_pm_freeze,
  2155. .thaw = efx_pm_thaw,
  2156. .poweroff = efx_pm_poweroff,
  2157. .restore = efx_pm_resume,
  2158. };
  2159. static struct pci_driver efx_pci_driver = {
  2160. .name = KBUILD_MODNAME,
  2161. .id_table = efx_pci_table,
  2162. .probe = efx_pci_probe,
  2163. .remove = efx_pci_remove,
  2164. .driver.pm = &efx_pm_ops,
  2165. };
  2166. /**************************************************************************
  2167. *
  2168. * Kernel module interface
  2169. *
  2170. *************************************************************************/
  2171. module_param(interrupt_mode, uint, 0444);
  2172. MODULE_PARM_DESC(interrupt_mode,
  2173. "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
  2174. static int __init efx_init_module(void)
  2175. {
  2176. int rc;
  2177. printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
  2178. rc = register_netdevice_notifier(&efx_netdev_notifier);
  2179. if (rc)
  2180. goto err_notifier;
  2181. reset_workqueue = create_singlethread_workqueue("sfc_reset");
  2182. if (!reset_workqueue) {
  2183. rc = -ENOMEM;
  2184. goto err_reset;
  2185. }
  2186. rc = pci_register_driver(&efx_pci_driver);
  2187. if (rc < 0)
  2188. goto err_pci;
  2189. return 0;
  2190. err_pci:
  2191. destroy_workqueue(reset_workqueue);
  2192. err_reset:
  2193. unregister_netdevice_notifier(&efx_netdev_notifier);
  2194. err_notifier:
  2195. return rc;
  2196. }
  2197. static void __exit efx_exit_module(void)
  2198. {
  2199. printk(KERN_INFO "Solarflare NET driver unloading\n");
  2200. pci_unregister_driver(&efx_pci_driver);
  2201. destroy_workqueue(reset_workqueue);
  2202. unregister_netdevice_notifier(&efx_netdev_notifier);
  2203. }
  2204. module_init(efx_init_module);
  2205. module_exit(efx_exit_module);
  2206. MODULE_AUTHOR("Solarflare Communications and "
  2207. "Michael Brown <mbrown@fensystems.co.uk>");
  2208. MODULE_DESCRIPTION("Solarflare Communications network driver");
  2209. MODULE_LICENSE("GPL");
  2210. MODULE_DEVICE_TABLE(pci, efx_pci_table);