dib3000mc.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920
  1. /*
  2. * Frontend driver for mobile DVB-T demodulator DiBcom 3000P/M-C
  3. * DiBcom (http://www.dibcom.fr/)
  4. *
  5. * Copyright (C) 2004-5 Patrick Boettcher (patrick.boettcher@desy.de)
  6. *
  7. * based on GPL code from DiBCom, which has
  8. *
  9. * Copyright (C) 2004 Amaury Demol for DiBcom (ademol@dibcom.fr)
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License as
  13. * published by the Free Software Foundation, version 2.
  14. *
  15. * Acknowledgements
  16. *
  17. * Amaury Demol (ademol@dibcom.fr) from DiBcom for providing specs and driver
  18. * sources, on which this driver (and the dvb-dibusb) are based.
  19. *
  20. * see Documentation/dvb/README.dibusb for more information
  21. *
  22. */
  23. #include <linux/config.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/init.h>
  28. #include <linux/delay.h>
  29. #include <linux/string.h>
  30. #include <linux/slab.h>
  31. #include "dib3000-common.h"
  32. #include "dib3000mc_priv.h"
  33. #include "dib3000.h"
  34. /* Version information */
  35. #define DRIVER_VERSION "0.1"
  36. #define DRIVER_DESC "DiBcom 3000M-C DVB-T demodulator"
  37. #define DRIVER_AUTHOR "Patrick Boettcher, patrick.boettcher@desy.de"
  38. #ifdef CONFIG_DVB_DIBCOM_DEBUG
  39. static int debug;
  40. module_param(debug, int, 0644);
  41. MODULE_PARM_DESC(debug, "set debugging level (1=info,2=xfer,4=setfe,8=getfe,16=stat (|-able)).");
  42. #endif
  43. #define deb_info(args...) dprintk(0x01,args)
  44. #define deb_xfer(args...) dprintk(0x02,args)
  45. #define deb_setf(args...) dprintk(0x04,args)
  46. #define deb_getf(args...) dprintk(0x08,args)
  47. #define deb_stat(args...) dprintk(0x10,args)
  48. static int dib3000mc_set_impulse_noise(struct dib3000_state * state, int mode,
  49. fe_transmit_mode_t transmission_mode, fe_bandwidth_t bandwidth)
  50. {
  51. switch (transmission_mode) {
  52. case TRANSMISSION_MODE_2K:
  53. wr_foreach(dib3000mc_reg_fft,dib3000mc_fft_modes[0]);
  54. break;
  55. case TRANSMISSION_MODE_8K:
  56. wr_foreach(dib3000mc_reg_fft,dib3000mc_fft_modes[1]);
  57. break;
  58. default:
  59. break;
  60. }
  61. switch (bandwidth) {
  62. /* case BANDWIDTH_5_MHZ:
  63. wr_foreach(dib3000mc_reg_impulse_noise,dib3000mc_impluse_noise[0]);
  64. break; */
  65. case BANDWIDTH_6_MHZ:
  66. wr_foreach(dib3000mc_reg_impulse_noise,dib3000mc_impluse_noise[1]);
  67. break;
  68. case BANDWIDTH_7_MHZ:
  69. wr_foreach(dib3000mc_reg_impulse_noise,dib3000mc_impluse_noise[2]);
  70. break;
  71. case BANDWIDTH_8_MHZ:
  72. wr_foreach(dib3000mc_reg_impulse_noise,dib3000mc_impluse_noise[3]);
  73. break;
  74. default:
  75. break;
  76. }
  77. switch (mode) {
  78. case 0: /* no impulse */ /* fall through */
  79. wr_foreach(dib3000mc_reg_imp_noise_ctl,dib3000mc_imp_noise_ctl[0]);
  80. break;
  81. case 1: /* new algo */
  82. wr_foreach(dib3000mc_reg_imp_noise_ctl,dib3000mc_imp_noise_ctl[1]);
  83. set_or(DIB3000MC_REG_IMP_NOISE_55,DIB3000MC_IMP_NEW_ALGO(0)); /* gives 1<<10 */
  84. break;
  85. default: /* old algo */
  86. wr_foreach(dib3000mc_reg_imp_noise_ctl,dib3000mc_imp_noise_ctl[3]);
  87. break;
  88. }
  89. return 0;
  90. }
  91. static int dib3000mc_set_timing(struct dib3000_state *state, int upd_offset,
  92. fe_transmit_mode_t fft, fe_bandwidth_t bw)
  93. {
  94. u16 timf_msb,timf_lsb;
  95. s32 tim_offset,tim_sgn;
  96. u64 comp1,comp2,comp=0;
  97. switch (bw) {
  98. case BANDWIDTH_8_MHZ: comp = DIB3000MC_CLOCK_REF*8; break;
  99. case BANDWIDTH_7_MHZ: comp = DIB3000MC_CLOCK_REF*7; break;
  100. case BANDWIDTH_6_MHZ: comp = DIB3000MC_CLOCK_REF*6; break;
  101. default: err("unknown bandwidth (%d)",bw); break;
  102. }
  103. timf_msb = (comp >> 16) & 0xff;
  104. timf_lsb = (comp & 0xffff);
  105. // Update the timing offset ;
  106. if (upd_offset > 0) {
  107. if (!state->timing_offset_comp_done) {
  108. msleep(200);
  109. state->timing_offset_comp_done = 1;
  110. }
  111. tim_offset = rd(DIB3000MC_REG_TIMING_OFFS_MSB);
  112. if ((tim_offset & 0x2000) == 0x2000)
  113. tim_offset |= 0xC000;
  114. if (fft == TRANSMISSION_MODE_2K)
  115. tim_offset <<= 2;
  116. state->timing_offset += tim_offset;
  117. }
  118. tim_offset = state->timing_offset;
  119. if (tim_offset < 0) {
  120. tim_sgn = 1;
  121. tim_offset = -tim_offset;
  122. } else
  123. tim_sgn = 0;
  124. comp1 = (u32)tim_offset * (u32)timf_lsb ;
  125. comp2 = (u32)tim_offset * (u32)timf_msb ;
  126. comp = ((comp1 >> 16) + comp2) >> 7;
  127. if (tim_sgn == 0)
  128. comp = (u32)(timf_msb << 16) + (u32) timf_lsb + comp;
  129. else
  130. comp = (u32)(timf_msb << 16) + (u32) timf_lsb - comp ;
  131. timf_msb = (comp >> 16) & 0xff;
  132. timf_lsb = comp & 0xffff;
  133. wr(DIB3000MC_REG_TIMING_FREQ_MSB,timf_msb);
  134. wr(DIB3000MC_REG_TIMING_FREQ_LSB,timf_lsb);
  135. return 0;
  136. }
  137. static int dib3000mc_init_auto_scan(struct dib3000_state *state, fe_bandwidth_t bw, int boost)
  138. {
  139. if (boost) {
  140. wr(DIB3000MC_REG_SCAN_BOOST,DIB3000MC_SCAN_BOOST_ON);
  141. } else {
  142. wr(DIB3000MC_REG_SCAN_BOOST,DIB3000MC_SCAN_BOOST_OFF);
  143. }
  144. switch (bw) {
  145. case BANDWIDTH_8_MHZ:
  146. wr_foreach(dib3000mc_reg_bandwidth,dib3000mc_bandwidth_8mhz);
  147. break;
  148. case BANDWIDTH_7_MHZ:
  149. wr_foreach(dib3000mc_reg_bandwidth,dib3000mc_bandwidth_7mhz);
  150. break;
  151. case BANDWIDTH_6_MHZ:
  152. wr_foreach(dib3000mc_reg_bandwidth,dib3000mc_bandwidth_6mhz);
  153. break;
  154. /* case BANDWIDTH_5_MHZ:
  155. wr_foreach(dib3000mc_reg_bandwidth,dib3000mc_bandwidth_5mhz);
  156. break;*/
  157. case BANDWIDTH_AUTO:
  158. return -EOPNOTSUPP;
  159. default:
  160. err("unknown bandwidth value (%d).",bw);
  161. return -EINVAL;
  162. }
  163. if (boost) {
  164. u32 timeout = (rd(DIB3000MC_REG_BW_TIMOUT_MSB) << 16) +
  165. rd(DIB3000MC_REG_BW_TIMOUT_LSB);
  166. timeout *= 85; timeout >>= 7;
  167. wr(DIB3000MC_REG_BW_TIMOUT_MSB,(timeout >> 16) & 0xffff);
  168. wr(DIB3000MC_REG_BW_TIMOUT_LSB,timeout & 0xffff);
  169. }
  170. return 0;
  171. }
  172. static int dib3000mc_set_adp_cfg(struct dib3000_state *state, fe_modulation_t con)
  173. {
  174. switch (con) {
  175. case QAM_64:
  176. wr_foreach(dib3000mc_reg_adp_cfg,dib3000mc_adp_cfg[2]);
  177. break;
  178. case QAM_16:
  179. wr_foreach(dib3000mc_reg_adp_cfg,dib3000mc_adp_cfg[1]);
  180. break;
  181. case QPSK:
  182. wr_foreach(dib3000mc_reg_adp_cfg,dib3000mc_adp_cfg[0]);
  183. break;
  184. case QAM_AUTO:
  185. break;
  186. default:
  187. warn("unkown constellation.");
  188. break;
  189. }
  190. return 0;
  191. }
  192. static int dib3000mc_set_general_cfg(struct dib3000_state *state, struct dvb_frontend_parameters *fep, int *auto_val)
  193. {
  194. struct dvb_ofdm_parameters *ofdm = &fep->u.ofdm;
  195. fe_code_rate_t fe_cr = FEC_NONE;
  196. u8 fft=0, guard=0, qam=0, alpha=0, sel_hp=0, cr=0, hrch=0;
  197. int seq;
  198. switch (ofdm->transmission_mode) {
  199. case TRANSMISSION_MODE_2K: fft = DIB3000_TRANSMISSION_MODE_2K; break;
  200. case TRANSMISSION_MODE_8K: fft = DIB3000_TRANSMISSION_MODE_8K; break;
  201. case TRANSMISSION_MODE_AUTO: break;
  202. default: return -EINVAL;
  203. }
  204. switch (ofdm->guard_interval) {
  205. case GUARD_INTERVAL_1_32: guard = DIB3000_GUARD_TIME_1_32; break;
  206. case GUARD_INTERVAL_1_16: guard = DIB3000_GUARD_TIME_1_16; break;
  207. case GUARD_INTERVAL_1_8: guard = DIB3000_GUARD_TIME_1_8; break;
  208. case GUARD_INTERVAL_1_4: guard = DIB3000_GUARD_TIME_1_4; break;
  209. case GUARD_INTERVAL_AUTO: break;
  210. default: return -EINVAL;
  211. }
  212. switch (ofdm->constellation) {
  213. case QPSK: qam = DIB3000_CONSTELLATION_QPSK; break;
  214. case QAM_16: qam = DIB3000_CONSTELLATION_16QAM; break;
  215. case QAM_64: qam = DIB3000_CONSTELLATION_64QAM; break;
  216. case QAM_AUTO: break;
  217. default: return -EINVAL;
  218. }
  219. switch (ofdm->hierarchy_information) {
  220. case HIERARCHY_NONE: /* fall through */
  221. case HIERARCHY_1: alpha = DIB3000_ALPHA_1; break;
  222. case HIERARCHY_2: alpha = DIB3000_ALPHA_2; break;
  223. case HIERARCHY_4: alpha = DIB3000_ALPHA_4; break;
  224. case HIERARCHY_AUTO: break;
  225. default: return -EINVAL;
  226. }
  227. if (ofdm->hierarchy_information == HIERARCHY_NONE) {
  228. hrch = DIB3000_HRCH_OFF;
  229. sel_hp = DIB3000_SELECT_HP;
  230. fe_cr = ofdm->code_rate_HP;
  231. } else if (ofdm->hierarchy_information != HIERARCHY_AUTO) {
  232. hrch = DIB3000_HRCH_ON;
  233. sel_hp = DIB3000_SELECT_LP;
  234. fe_cr = ofdm->code_rate_LP;
  235. }
  236. switch (fe_cr) {
  237. case FEC_1_2: cr = DIB3000_FEC_1_2; break;
  238. case FEC_2_3: cr = DIB3000_FEC_2_3; break;
  239. case FEC_3_4: cr = DIB3000_FEC_3_4; break;
  240. case FEC_5_6: cr = DIB3000_FEC_5_6; break;
  241. case FEC_7_8: cr = DIB3000_FEC_7_8; break;
  242. case FEC_NONE: break;
  243. case FEC_AUTO: break;
  244. default: return -EINVAL;
  245. }
  246. wr(DIB3000MC_REG_DEMOD_PARM,DIB3000MC_DEMOD_PARM(alpha,qam,guard,fft));
  247. wr(DIB3000MC_REG_HRCH_PARM,DIB3000MC_HRCH_PARM(sel_hp,cr,hrch));
  248. switch (fep->inversion) {
  249. case INVERSION_OFF:
  250. wr(DIB3000MC_REG_SET_DDS_FREQ_MSB,DIB3000MC_DDS_FREQ_MSB_INV_OFF);
  251. break;
  252. case INVERSION_AUTO: /* fall through */
  253. case INVERSION_ON:
  254. wr(DIB3000MC_REG_SET_DDS_FREQ_MSB,DIB3000MC_DDS_FREQ_MSB_INV_ON);
  255. break;
  256. default:
  257. return -EINVAL;
  258. }
  259. seq = dib3000_seq
  260. [ofdm->transmission_mode == TRANSMISSION_MODE_AUTO]
  261. [ofdm->guard_interval == GUARD_INTERVAL_AUTO]
  262. [fep->inversion == INVERSION_AUTO];
  263. deb_setf("seq? %d\n", seq);
  264. wr(DIB3000MC_REG_SEQ_TPS,DIB3000MC_SEQ_TPS(seq,1));
  265. *auto_val = ofdm->constellation == QAM_AUTO ||
  266. ofdm->hierarchy_information == HIERARCHY_AUTO ||
  267. ofdm->guard_interval == GUARD_INTERVAL_AUTO ||
  268. ofdm->transmission_mode == TRANSMISSION_MODE_AUTO ||
  269. fe_cr == FEC_AUTO ||
  270. fep->inversion == INVERSION_AUTO;
  271. return 0;
  272. }
  273. static int dib3000mc_get_frontend(struct dvb_frontend* fe,
  274. struct dvb_frontend_parameters *fep)
  275. {
  276. struct dib3000_state* state = fe->demodulator_priv;
  277. struct dvb_ofdm_parameters *ofdm = &fep->u.ofdm;
  278. fe_code_rate_t *cr;
  279. u16 tps_val,cr_val;
  280. int inv_test1,inv_test2;
  281. u32 dds_val, threshold = 0x1000000;
  282. if (!(rd(DIB3000MC_REG_LOCK_507) & DIB3000MC_LOCK_507))
  283. return 0;
  284. dds_val = (rd(DIB3000MC_REG_DDS_FREQ_MSB) << 16) + rd(DIB3000MC_REG_DDS_FREQ_LSB);
  285. deb_getf("DDS_FREQ: %6x\n",dds_val);
  286. if (dds_val < threshold)
  287. inv_test1 = 0;
  288. else if (dds_val == threshold)
  289. inv_test1 = 1;
  290. else
  291. inv_test1 = 2;
  292. dds_val = (rd(DIB3000MC_REG_SET_DDS_FREQ_MSB) << 16) + rd(DIB3000MC_REG_SET_DDS_FREQ_LSB);
  293. deb_getf("DDS_SET_FREQ: %6x\n",dds_val);
  294. if (dds_val < threshold)
  295. inv_test2 = 0;
  296. else if (dds_val == threshold)
  297. inv_test2 = 1;
  298. else
  299. inv_test2 = 2;
  300. fep->inversion =
  301. ((inv_test2 == 2) && (inv_test1==1 || inv_test1==0)) ||
  302. ((inv_test2 == 0) && (inv_test1==1 || inv_test1==2)) ?
  303. INVERSION_ON : INVERSION_OFF;
  304. deb_getf("inversion %d %d, %d\n", inv_test2, inv_test1, fep->inversion);
  305. fep->frequency = state->last_tuned_freq;
  306. fep->u.ofdm.bandwidth= state->last_tuned_bw;
  307. tps_val = rd(DIB3000MC_REG_TUNING_PARM);
  308. switch (DIB3000MC_TP_QAM(tps_val)) {
  309. case DIB3000_CONSTELLATION_QPSK:
  310. deb_getf("QPSK ");
  311. ofdm->constellation = QPSK;
  312. break;
  313. case DIB3000_CONSTELLATION_16QAM:
  314. deb_getf("QAM16 ");
  315. ofdm->constellation = QAM_16;
  316. break;
  317. case DIB3000_CONSTELLATION_64QAM:
  318. deb_getf("QAM64 ");
  319. ofdm->constellation = QAM_64;
  320. break;
  321. default:
  322. err("Unexpected constellation returned by TPS (%d)", tps_val);
  323. break;
  324. }
  325. if (DIB3000MC_TP_HRCH(tps_val)) {
  326. deb_getf("HRCH ON ");
  327. cr = &ofdm->code_rate_LP;
  328. ofdm->code_rate_HP = FEC_NONE;
  329. switch (DIB3000MC_TP_ALPHA(tps_val)) {
  330. case DIB3000_ALPHA_0:
  331. deb_getf("HIERARCHY_NONE ");
  332. ofdm->hierarchy_information = HIERARCHY_NONE;
  333. break;
  334. case DIB3000_ALPHA_1:
  335. deb_getf("HIERARCHY_1 ");
  336. ofdm->hierarchy_information = HIERARCHY_1;
  337. break;
  338. case DIB3000_ALPHA_2:
  339. deb_getf("HIERARCHY_2 ");
  340. ofdm->hierarchy_information = HIERARCHY_2;
  341. break;
  342. case DIB3000_ALPHA_4:
  343. deb_getf("HIERARCHY_4 ");
  344. ofdm->hierarchy_information = HIERARCHY_4;
  345. break;
  346. default:
  347. err("Unexpected ALPHA value returned by TPS (%d)", tps_val);
  348. break;
  349. }
  350. cr_val = DIB3000MC_TP_FEC_CR_LP(tps_val);
  351. } else {
  352. deb_getf("HRCH OFF ");
  353. cr = &ofdm->code_rate_HP;
  354. ofdm->code_rate_LP = FEC_NONE;
  355. ofdm->hierarchy_information = HIERARCHY_NONE;
  356. cr_val = DIB3000MC_TP_FEC_CR_HP(tps_val);
  357. }
  358. switch (cr_val) {
  359. case DIB3000_FEC_1_2:
  360. deb_getf("FEC_1_2 ");
  361. *cr = FEC_1_2;
  362. break;
  363. case DIB3000_FEC_2_3:
  364. deb_getf("FEC_2_3 ");
  365. *cr = FEC_2_3;
  366. break;
  367. case DIB3000_FEC_3_4:
  368. deb_getf("FEC_3_4 ");
  369. *cr = FEC_3_4;
  370. break;
  371. case DIB3000_FEC_5_6:
  372. deb_getf("FEC_5_6 ");
  373. *cr = FEC_4_5;
  374. break;
  375. case DIB3000_FEC_7_8:
  376. deb_getf("FEC_7_8 ");
  377. *cr = FEC_7_8;
  378. break;
  379. default:
  380. err("Unexpected FEC returned by TPS (%d)", tps_val);
  381. break;
  382. }
  383. switch (DIB3000MC_TP_GUARD(tps_val)) {
  384. case DIB3000_GUARD_TIME_1_32:
  385. deb_getf("GUARD_INTERVAL_1_32 ");
  386. ofdm->guard_interval = GUARD_INTERVAL_1_32;
  387. break;
  388. case DIB3000_GUARD_TIME_1_16:
  389. deb_getf("GUARD_INTERVAL_1_16 ");
  390. ofdm->guard_interval = GUARD_INTERVAL_1_16;
  391. break;
  392. case DIB3000_GUARD_TIME_1_8:
  393. deb_getf("GUARD_INTERVAL_1_8 ");
  394. ofdm->guard_interval = GUARD_INTERVAL_1_8;
  395. break;
  396. case DIB3000_GUARD_TIME_1_4:
  397. deb_getf("GUARD_INTERVAL_1_4 ");
  398. ofdm->guard_interval = GUARD_INTERVAL_1_4;
  399. break;
  400. default:
  401. err("Unexpected Guard Time returned by TPS (%d)", tps_val);
  402. break;
  403. }
  404. switch (DIB3000MC_TP_FFT(tps_val)) {
  405. case DIB3000_TRANSMISSION_MODE_2K:
  406. deb_getf("TRANSMISSION_MODE_2K ");
  407. ofdm->transmission_mode = TRANSMISSION_MODE_2K;
  408. break;
  409. case DIB3000_TRANSMISSION_MODE_8K:
  410. deb_getf("TRANSMISSION_MODE_8K ");
  411. ofdm->transmission_mode = TRANSMISSION_MODE_8K;
  412. break;
  413. default:
  414. err("unexpected transmission mode return by TPS (%d)", tps_val);
  415. break;
  416. }
  417. deb_getf("\n");
  418. return 0;
  419. }
  420. static int dib3000mc_set_frontend(struct dvb_frontend* fe,
  421. struct dvb_frontend_parameters *fep, int tuner)
  422. {
  423. struct dib3000_state* state = fe->demodulator_priv;
  424. struct dvb_ofdm_parameters *ofdm = &fep->u.ofdm;
  425. int search_state,auto_val;
  426. u16 val;
  427. if (tuner && state->config.pll_set) { /* initial call from dvb */
  428. state->config.pll_set(fe,fep);
  429. state->last_tuned_freq = fep->frequency;
  430. // if (!scanboost) {
  431. dib3000mc_set_timing(state,0,ofdm->transmission_mode,ofdm->bandwidth);
  432. dib3000mc_init_auto_scan(state, ofdm->bandwidth, 0);
  433. state->last_tuned_bw = ofdm->bandwidth;
  434. wr_foreach(dib3000mc_reg_agc_bandwidth,dib3000mc_agc_bandwidth);
  435. wr(DIB3000MC_REG_RESTART,DIB3000MC_RESTART_AGC);
  436. wr(DIB3000MC_REG_RESTART,DIB3000MC_RESTART_OFF);
  437. /* Default cfg isi offset adp */
  438. wr_foreach(dib3000mc_reg_offset,dib3000mc_offset[0]);
  439. wr(DIB3000MC_REG_ISI,DIB3000MC_ISI_DEFAULT | DIB3000MC_ISI_INHIBIT);
  440. dib3000mc_set_adp_cfg(state,ofdm->constellation);
  441. wr(DIB3000MC_REG_UNK_133,DIB3000MC_UNK_133);
  442. wr_foreach(dib3000mc_reg_bandwidth_general,dib3000mc_bandwidth_general);
  443. /* power smoothing */
  444. if (ofdm->bandwidth != BANDWIDTH_8_MHZ) {
  445. wr_foreach(dib3000mc_reg_bw,dib3000mc_bw[0]);
  446. } else {
  447. wr_foreach(dib3000mc_reg_bw,dib3000mc_bw[3]);
  448. }
  449. auto_val = 0;
  450. dib3000mc_set_general_cfg(state,fep,&auto_val);
  451. dib3000mc_set_impulse_noise(state,0,ofdm->constellation,ofdm->bandwidth);
  452. val = rd(DIB3000MC_REG_DEMOD_PARM);
  453. wr(DIB3000MC_REG_DEMOD_PARM,val|DIB3000MC_DEMOD_RST_DEMOD_ON);
  454. wr(DIB3000MC_REG_DEMOD_PARM,val);
  455. // }
  456. msleep(70);
  457. /* something has to be auto searched */
  458. if (auto_val) {
  459. int as_count=0;
  460. deb_setf("autosearch enabled.\n");
  461. val = rd(DIB3000MC_REG_DEMOD_PARM);
  462. wr(DIB3000MC_REG_DEMOD_PARM,val | DIB3000MC_DEMOD_RST_AUTO_SRCH_ON);
  463. wr(DIB3000MC_REG_DEMOD_PARM,val);
  464. while ((search_state = dib3000_search_status(
  465. rd(DIB3000MC_REG_AS_IRQ),1)) < 0 && as_count++ < 100)
  466. msleep(10);
  467. deb_info("search_state after autosearch %d after %d checks\n",search_state,as_count);
  468. if (search_state == 1) {
  469. struct dvb_frontend_parameters feps;
  470. if (dib3000mc_get_frontend(fe, &feps) == 0) {
  471. deb_setf("reading tuning data from frontend succeeded.\n");
  472. return dib3000mc_set_frontend(fe, &feps, 0);
  473. }
  474. }
  475. } else {
  476. dib3000mc_set_impulse_noise(state,0,ofdm->transmission_mode,ofdm->bandwidth);
  477. wr(DIB3000MC_REG_ISI,DIB3000MC_ISI_DEFAULT|DIB3000MC_ISI_ACTIVATE);
  478. dib3000mc_set_adp_cfg(state,ofdm->constellation);
  479. /* set_offset_cfg */
  480. wr_foreach(dib3000mc_reg_offset,
  481. dib3000mc_offset[(ofdm->transmission_mode == TRANSMISSION_MODE_8K)+1]);
  482. }
  483. } else { /* second call, after autosearch (fka: set_WithKnownParams) */
  484. // dib3000mc_set_timing(state,1,ofdm->transmission_mode,ofdm->bandwidth);
  485. auto_val = 0;
  486. dib3000mc_set_general_cfg(state,fep,&auto_val);
  487. if (auto_val)
  488. deb_info("auto_val is true, even though an auto search was already performed.\n");
  489. dib3000mc_set_impulse_noise(state,0,ofdm->constellation,ofdm->bandwidth);
  490. val = rd(DIB3000MC_REG_DEMOD_PARM);
  491. wr(DIB3000MC_REG_DEMOD_PARM,val | DIB3000MC_DEMOD_RST_AUTO_SRCH_ON);
  492. wr(DIB3000MC_REG_DEMOD_PARM,val);
  493. msleep(30);
  494. wr(DIB3000MC_REG_ISI,DIB3000MC_ISI_DEFAULT|DIB3000MC_ISI_ACTIVATE);
  495. dib3000mc_set_adp_cfg(state,ofdm->constellation);
  496. wr_foreach(dib3000mc_reg_offset,
  497. dib3000mc_offset[(ofdm->transmission_mode == TRANSMISSION_MODE_8K)+1]);
  498. }
  499. return 0;
  500. }
  501. static int dib3000mc_fe_init(struct dvb_frontend* fe, int mobile_mode)
  502. {
  503. struct dib3000_state *state = fe->demodulator_priv;
  504. int AGCtuner=(int)fe->misc_priv;
  505. deb_info("init start\n");
  506. state->timing_offset = 0;
  507. state->timing_offset_comp_done = 0;
  508. wr(DIB3000MC_REG_RESTART,DIB3000MC_RESTART_CONFIG);
  509. wr(DIB3000MC_REG_RESTART,DIB3000MC_RESTART_OFF);
  510. wr(DIB3000MC_REG_CLK_CFG_1,DIB3000MC_CLK_CFG_1_POWER_UP);
  511. wr(DIB3000MC_REG_CLK_CFG_2,DIB3000MC_CLK_CFG_2_PUP_MOBILE);
  512. wr(DIB3000MC_REG_CLK_CFG_3,DIB3000MC_CLK_CFG_3_POWER_UP);
  513. wr(DIB3000MC_REG_CLK_CFG_7,DIB3000MC_CLK_CFG_7_INIT);
  514. wr(DIB3000MC_REG_RST_UNC,DIB3000MC_RST_UNC_OFF);
  515. wr(DIB3000MC_REG_UNK_19,DIB3000MC_UNK_19);
  516. wr(33,5);
  517. wr(36,81);
  518. wr(DIB3000MC_REG_UNK_88,DIB3000MC_UNK_88);
  519. wr(DIB3000MC_REG_UNK_99,DIB3000MC_UNK_99);
  520. wr(DIB3000MC_REG_UNK_111,DIB3000MC_UNK_111_PH_N_MODE_0); /* phase noise algo off */
  521. /* mobile mode - portable reception */
  522. wr_foreach(dib3000mc_reg_mobile_mode,dib3000mc_mobile_mode[1]);
  523. /* TUNER_PANASONIC_ENV57H12D5 or TUNER_MICROTUNE_MT2060. Sets agc_tuner accordingly */
  524. wr_foreach(dib3000mc_reg_agc_bandwidth,dib3000mc_agc_bandwidth);
  525. wr_foreach(dib3000mc_reg_agc_bandwidth_general,dib3000mc_agc_bandwidth_general);
  526. if (AGCtuner<0 || AGCtuner>=DIB3000MC_AGC_TUNER_COUNT) AGCtuner=1;
  527. wr_foreach(dib3000mc_reg_agc,dib3000mc_agc_tuner[AGCtuner]);
  528. wr(DIB3000MC_REG_UNK_110,DIB3000MC_UNK_110);
  529. wr(26,0x6680);
  530. wr(DIB3000MC_REG_UNK_1,DIB3000MC_UNK_1);
  531. wr(DIB3000MC_REG_UNK_2,DIB3000MC_UNK_2);
  532. wr(DIB3000MC_REG_UNK_3,DIB3000MC_UNK_3);
  533. wr(DIB3000MC_REG_SEQ_TPS,DIB3000MC_SEQ_TPS_DEFAULT);
  534. wr_foreach(dib3000mc_reg_bandwidth,dib3000mc_bandwidth_8mhz);
  535. wr_foreach(dib3000mc_reg_bandwidth_general,dib3000mc_bandwidth_general);
  536. wr(DIB3000MC_REG_UNK_4,DIB3000MC_UNK_4);
  537. wr(DIB3000MC_REG_SET_DDS_FREQ_MSB,DIB3000MC_DDS_FREQ_MSB_INV_OFF);
  538. wr(DIB3000MC_REG_SET_DDS_FREQ_LSB,DIB3000MC_DDS_FREQ_LSB);
  539. dib3000mc_set_timing(state,0,TRANSMISSION_MODE_8K,BANDWIDTH_8_MHZ);
  540. // wr_foreach(dib3000mc_reg_timing_freq,dib3000mc_timing_freq[3]);
  541. wr(DIB3000MC_REG_UNK_120,DIB3000MC_UNK_120);
  542. wr(DIB3000MC_REG_UNK_134,DIB3000MC_UNK_134);
  543. wr(DIB3000MC_REG_FEC_CFG,DIB3000MC_FEC_CFG);
  544. wr(DIB3000MC_REG_DIVERSITY3,DIB3000MC_DIVERSITY3_IN_OFF);
  545. dib3000mc_set_impulse_noise(state,0,TRANSMISSION_MODE_8K,BANDWIDTH_8_MHZ);
  546. /* output mode control, just the MPEG2_SLAVE */
  547. // set_or(DIB3000MC_REG_OUTMODE,DIB3000MC_OM_SLAVE);
  548. wr(DIB3000MC_REG_OUTMODE,DIB3000MC_OM_SLAVE);
  549. wr(DIB3000MC_REG_SMO_MODE,DIB3000MC_SMO_MODE_SLAVE);
  550. wr(DIB3000MC_REG_FIFO_THRESHOLD,DIB3000MC_FIFO_THRESHOLD_SLAVE);
  551. wr(DIB3000MC_REG_ELEC_OUT,DIB3000MC_ELEC_OUT_SLAVE);
  552. /* MPEG2_PARALLEL_CONTINUOUS_CLOCK
  553. wr(DIB3000MC_REG_OUTMODE,
  554. DIB3000MC_SET_OUTMODE(DIB3000MC_OM_PAR_CONT_CLK,
  555. rd(DIB3000MC_REG_OUTMODE)));
  556. wr(DIB3000MC_REG_SMO_MODE,
  557. DIB3000MC_SMO_MODE_DEFAULT |
  558. DIB3000MC_SMO_MODE_188);
  559. wr(DIB3000MC_REG_FIFO_THRESHOLD,DIB3000MC_FIFO_THRESHOLD_DEFAULT);
  560. wr(DIB3000MC_REG_ELEC_OUT,DIB3000MC_ELEC_OUT_DIV_OUT_ON);
  561. */
  562. /* diversity */
  563. wr(DIB3000MC_REG_DIVERSITY1,DIB3000MC_DIVERSITY1_DEFAULT);
  564. wr(DIB3000MC_REG_DIVERSITY2,DIB3000MC_DIVERSITY2_DEFAULT);
  565. set_and(DIB3000MC_REG_DIVERSITY3,DIB3000MC_DIVERSITY3_IN_OFF);
  566. set_or(DIB3000MC_REG_CLK_CFG_7,DIB3000MC_CLK_CFG_7_DIV_IN_OFF);
  567. if (state->config.pll_init)
  568. state->config.pll_init(fe);
  569. deb_info("init end\n");
  570. return 0;
  571. }
  572. static int dib3000mc_read_status(struct dvb_frontend* fe, fe_status_t *stat)
  573. {
  574. struct dib3000_state* state = fe->demodulator_priv;
  575. u16 lock = rd(DIB3000MC_REG_LOCKING);
  576. *stat = 0;
  577. if (DIB3000MC_AGC_LOCK(lock))
  578. *stat |= FE_HAS_SIGNAL;
  579. if (DIB3000MC_CARRIER_LOCK(lock))
  580. *stat |= FE_HAS_CARRIER;
  581. if (DIB3000MC_TPS_LOCK(lock))
  582. *stat |= FE_HAS_VITERBI;
  583. if (DIB3000MC_MPEG_SYNC_LOCK(lock))
  584. *stat |= (FE_HAS_SYNC | FE_HAS_LOCK);
  585. deb_stat("actual status is %2x fifo_level: %x,244: %x, 206: %x, 207: %x, 1040: %x\n",*stat,rd(510),rd(244),rd(206),rd(207),rd(1040));
  586. return 0;
  587. }
  588. static int dib3000mc_read_ber(struct dvb_frontend* fe, u32 *ber)
  589. {
  590. struct dib3000_state* state = fe->demodulator_priv;
  591. *ber = ((rd(DIB3000MC_REG_BER_MSB) << 16) | rd(DIB3000MC_REG_BER_LSB));
  592. return 0;
  593. }
  594. static int dib3000mc_read_unc_blocks(struct dvb_frontend* fe, u32 *unc)
  595. {
  596. struct dib3000_state* state = fe->demodulator_priv;
  597. *unc = rd(DIB3000MC_REG_PACKET_ERRORS);
  598. return 0;
  599. }
  600. /* see dib3000mb.c for calculation comments */
  601. static int dib3000mc_read_signal_strength(struct dvb_frontend* fe, u16 *strength)
  602. {
  603. struct dib3000_state* state = fe->demodulator_priv;
  604. u16 val = rd(DIB3000MC_REG_SIGNAL_NOISE_LSB);
  605. *strength = (((val >> 6) & 0xff) << 8) + (val & 0x3f);
  606. deb_stat("signal: mantisse = %d, exponent = %d\n",(*strength >> 8) & 0xff, *strength & 0xff);
  607. return 0;
  608. }
  609. /* see dib3000mb.c for calculation comments */
  610. static int dib3000mc_read_snr(struct dvb_frontend* fe, u16 *snr)
  611. {
  612. struct dib3000_state* state = fe->demodulator_priv;
  613. u16 val = rd(DIB3000MC_REG_SIGNAL_NOISE_LSB),
  614. val2 = rd(DIB3000MC_REG_SIGNAL_NOISE_MSB);
  615. u16 sig,noise;
  616. sig = (((val >> 6) & 0xff) << 8) + (val & 0x3f);
  617. noise = (((val >> 4) & 0xff) << 8) + ((val & 0xf) << 2) + ((val2 >> 14) & 0x3);
  618. if (noise == 0)
  619. *snr = 0xffff;
  620. else
  621. *snr = (u16) sig/noise;
  622. deb_stat("signal: mantisse = %d, exponent = %d\n",(sig >> 8) & 0xff, sig & 0xff);
  623. deb_stat("noise: mantisse = %d, exponent = %d\n",(noise >> 8) & 0xff, noise & 0xff);
  624. deb_stat("snr: %d\n",*snr);
  625. return 0;
  626. }
  627. static int dib3000mc_sleep(struct dvb_frontend* fe)
  628. {
  629. struct dib3000_state* state = fe->demodulator_priv;
  630. set_or(DIB3000MC_REG_CLK_CFG_7,DIB3000MC_CLK_CFG_7_PWR_DOWN);
  631. wr(DIB3000MC_REG_CLK_CFG_1,DIB3000MC_CLK_CFG_1_POWER_DOWN);
  632. wr(DIB3000MC_REG_CLK_CFG_2,DIB3000MC_CLK_CFG_2_POWER_DOWN);
  633. wr(DIB3000MC_REG_CLK_CFG_3,DIB3000MC_CLK_CFG_3_POWER_DOWN);
  634. return 0;
  635. }
  636. static int dib3000mc_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
  637. {
  638. tune->min_delay_ms = 1000;
  639. return 0;
  640. }
  641. static int dib3000mc_fe_init_nonmobile(struct dvb_frontend* fe)
  642. {
  643. return dib3000mc_fe_init(fe, 0);
  644. }
  645. static int dib3000mc_set_frontend_and_tuner(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep)
  646. {
  647. return dib3000mc_set_frontend(fe, fep, 1);
  648. }
  649. static void dib3000mc_release(struct dvb_frontend* fe)
  650. {
  651. struct dib3000_state *state = fe->demodulator_priv;
  652. kfree(state);
  653. }
  654. /* pid filter and transfer stuff */
  655. static int dib3000mc_pid_control(struct dvb_frontend *fe,int index, int pid,int onoff)
  656. {
  657. struct dib3000_state *state = fe->demodulator_priv;
  658. pid = (onoff ? pid | DIB3000_ACTIVATE_PID_FILTERING : 0);
  659. wr(index+DIB3000MC_REG_FIRST_PID,pid);
  660. return 0;
  661. }
  662. static int dib3000mc_fifo_control(struct dvb_frontend *fe, int onoff)
  663. {
  664. struct dib3000_state *state = fe->demodulator_priv;
  665. u16 tmp = rd(DIB3000MC_REG_SMO_MODE);
  666. deb_xfer("%s fifo\n",onoff ? "enabling" : "disabling");
  667. if (onoff) {
  668. deb_xfer("%d %x\n",tmp & DIB3000MC_SMO_MODE_FIFO_UNFLUSH,tmp & DIB3000MC_SMO_MODE_FIFO_UNFLUSH);
  669. wr(DIB3000MC_REG_SMO_MODE,tmp & DIB3000MC_SMO_MODE_FIFO_UNFLUSH);
  670. } else {
  671. deb_xfer("%d %x\n",tmp | DIB3000MC_SMO_MODE_FIFO_FLUSH,tmp | DIB3000MC_SMO_MODE_FIFO_FLUSH);
  672. wr(DIB3000MC_REG_SMO_MODE,tmp | DIB3000MC_SMO_MODE_FIFO_FLUSH);
  673. }
  674. return 0;
  675. }
  676. static int dib3000mc_pid_parse(struct dvb_frontend *fe, int onoff)
  677. {
  678. struct dib3000_state *state = fe->demodulator_priv;
  679. u16 tmp = rd(DIB3000MC_REG_SMO_MODE);
  680. deb_xfer("%s pid parsing\n",onoff ? "enabling" : "disabling");
  681. if (onoff) {
  682. wr(DIB3000MC_REG_SMO_MODE,tmp | DIB3000MC_SMO_MODE_PID_PARSE);
  683. } else {
  684. wr(DIB3000MC_REG_SMO_MODE,tmp & DIB3000MC_SMO_MODE_NO_PID_PARSE);
  685. }
  686. return 0;
  687. }
  688. static int dib3000mc_tuner_pass_ctrl(struct dvb_frontend *fe, int onoff, u8 pll_addr)
  689. {
  690. struct dib3000_state *state = fe->demodulator_priv;
  691. if (onoff) {
  692. wr(DIB3000MC_REG_TUNER, DIB3000_TUNER_WRITE_ENABLE(pll_addr));
  693. } else {
  694. wr(DIB3000MC_REG_TUNER, DIB3000_TUNER_WRITE_DISABLE(pll_addr));
  695. }
  696. return 0;
  697. }
  698. static int dib3000mc_demod_init(struct dib3000_state *state)
  699. {
  700. u16 default_addr = 0x0a;
  701. /* first init */
  702. if (state->config.demod_address != default_addr) {
  703. deb_info("initializing the demod the first time. Setting demod addr to 0x%x\n",default_addr);
  704. wr(DIB3000MC_REG_ELEC_OUT,DIB3000MC_ELEC_OUT_DIV_OUT_ON);
  705. wr(DIB3000MC_REG_OUTMODE,DIB3000MC_OM_PAR_CONT_CLK);
  706. wr(DIB3000MC_REG_RST_I2C_ADDR,
  707. DIB3000MC_DEMOD_ADDR(default_addr) |
  708. DIB3000MC_DEMOD_ADDR_ON);
  709. state->config.demod_address = default_addr;
  710. wr(DIB3000MC_REG_RST_I2C_ADDR,
  711. DIB3000MC_DEMOD_ADDR(default_addr));
  712. } else
  713. deb_info("demod is already initialized. Demod addr: 0x%x\n",state->config.demod_address);
  714. return 0;
  715. }
  716. static struct dvb_frontend_ops dib3000mc_ops;
  717. struct dvb_frontend* dib3000mc_attach(const struct dib3000_config* config,
  718. struct i2c_adapter* i2c, struct dib_fe_xfer_ops *xfer_ops)
  719. {
  720. struct dib3000_state* state = NULL;
  721. u16 devid;
  722. /* allocate memory for the internal state */
  723. state = kzalloc(sizeof(struct dib3000_state), GFP_KERNEL);
  724. if (state == NULL)
  725. goto error;
  726. /* setup the state */
  727. state->i2c = i2c;
  728. memcpy(&state->config,config,sizeof(struct dib3000_config));
  729. memcpy(&state->ops, &dib3000mc_ops, sizeof(struct dvb_frontend_ops));
  730. /* check for the correct demod */
  731. if (rd(DIB3000_REG_MANUFACTOR_ID) != DIB3000_I2C_ID_DIBCOM)
  732. goto error;
  733. devid = rd(DIB3000_REG_DEVICE_ID);
  734. if (devid != DIB3000MC_DEVICE_ID && devid != DIB3000P_DEVICE_ID)
  735. goto error;
  736. switch (devid) {
  737. case DIB3000MC_DEVICE_ID:
  738. info("Found a DiBcom 3000M-C, interesting...");
  739. break;
  740. case DIB3000P_DEVICE_ID:
  741. info("Found a DiBcom 3000P.");
  742. break;
  743. }
  744. /* create dvb_frontend */
  745. state->frontend.ops = &state->ops;
  746. state->frontend.demodulator_priv = state;
  747. /* set the xfer operations */
  748. xfer_ops->pid_parse = dib3000mc_pid_parse;
  749. xfer_ops->fifo_ctrl = dib3000mc_fifo_control;
  750. xfer_ops->pid_ctrl = dib3000mc_pid_control;
  751. xfer_ops->tuner_pass_ctrl = dib3000mc_tuner_pass_ctrl;
  752. dib3000mc_demod_init(state);
  753. return &state->frontend;
  754. error:
  755. kfree(state);
  756. return NULL;
  757. }
  758. static struct dvb_frontend_ops dib3000mc_ops = {
  759. .info = {
  760. .name = "DiBcom 3000P/M-C DVB-T",
  761. .type = FE_OFDM,
  762. .frequency_min = 44250000,
  763. .frequency_max = 867250000,
  764. .frequency_stepsize = 62500,
  765. .caps = FE_CAN_INVERSION_AUTO |
  766. FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  767. FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
  768. FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
  769. FE_CAN_TRANSMISSION_MODE_AUTO |
  770. FE_CAN_GUARD_INTERVAL_AUTO |
  771. FE_CAN_RECOVER |
  772. FE_CAN_HIERARCHY_AUTO,
  773. },
  774. .release = dib3000mc_release,
  775. .init = dib3000mc_fe_init_nonmobile,
  776. .sleep = dib3000mc_sleep,
  777. .set_frontend = dib3000mc_set_frontend_and_tuner,
  778. .get_frontend = dib3000mc_get_frontend,
  779. .get_tune_settings = dib3000mc_fe_get_tune_settings,
  780. .read_status = dib3000mc_read_status,
  781. .read_ber = dib3000mc_read_ber,
  782. .read_signal_strength = dib3000mc_read_signal_strength,
  783. .read_snr = dib3000mc_read_snr,
  784. .read_ucblocks = dib3000mc_read_unc_blocks,
  785. };
  786. MODULE_AUTHOR(DRIVER_AUTHOR);
  787. MODULE_DESCRIPTION(DRIVER_DESC);
  788. MODULE_LICENSE("GPL");
  789. EXPORT_SYMBOL(dib3000mc_attach);