mtdpart.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/list.h>
  28. #include <linux/kmod.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/mtd/compatmac.h>
  32. /* Our partition linked list */
  33. static LIST_HEAD(mtd_partitions);
  34. /* Our partition node structure */
  35. struct mtd_part {
  36. struct mtd_info mtd;
  37. struct mtd_info *master;
  38. uint64_t offset;
  39. struct list_head list;
  40. };
  41. /*
  42. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  43. * the pointer to that structure with this macro.
  44. */
  45. #define PART(x) ((struct mtd_part *)(x))
  46. /*
  47. * MTD methods which simply translate the effective address and pass through
  48. * to the _real_ device.
  49. */
  50. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  51. size_t *retlen, u_char *buf)
  52. {
  53. struct mtd_part *part = PART(mtd);
  54. struct mtd_ecc_stats stats;
  55. int res;
  56. stats = part->master->ecc_stats;
  57. if (from >= mtd->size)
  58. len = 0;
  59. else if (from + len > mtd->size)
  60. len = mtd->size - from;
  61. res = part->master->read(part->master, from + part->offset,
  62. len, retlen, buf);
  63. if (unlikely(res)) {
  64. if (res == -EUCLEAN)
  65. mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
  66. if (res == -EBADMSG)
  67. mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
  68. }
  69. return res;
  70. }
  71. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  72. size_t *retlen, void **virt, resource_size_t *phys)
  73. {
  74. struct mtd_part *part = PART(mtd);
  75. if (from >= mtd->size)
  76. len = 0;
  77. else if (from + len > mtd->size)
  78. len = mtd->size - from;
  79. return part->master->point (part->master, from + part->offset,
  80. len, retlen, virt, phys);
  81. }
  82. static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  83. {
  84. struct mtd_part *part = PART(mtd);
  85. part->master->unpoint(part->master, from + part->offset, len);
  86. }
  87. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  88. unsigned long len,
  89. unsigned long offset,
  90. unsigned long flags)
  91. {
  92. struct mtd_part *part = PART(mtd);
  93. offset += part->offset;
  94. return part->master->get_unmapped_area(part->master, len, offset,
  95. flags);
  96. }
  97. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  98. struct mtd_oob_ops *ops)
  99. {
  100. struct mtd_part *part = PART(mtd);
  101. int res;
  102. if (from >= mtd->size)
  103. return -EINVAL;
  104. if (ops->datbuf && from + ops->len > mtd->size)
  105. return -EINVAL;
  106. res = part->master->read_oob(part->master, from + part->offset, ops);
  107. if (unlikely(res)) {
  108. if (res == -EUCLEAN)
  109. mtd->ecc_stats.corrected++;
  110. if (res == -EBADMSG)
  111. mtd->ecc_stats.failed++;
  112. }
  113. return res;
  114. }
  115. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  116. size_t len, size_t *retlen, u_char *buf)
  117. {
  118. struct mtd_part *part = PART(mtd);
  119. return part->master->read_user_prot_reg(part->master, from,
  120. len, retlen, buf);
  121. }
  122. static int part_get_user_prot_info(struct mtd_info *mtd,
  123. struct otp_info *buf, size_t len)
  124. {
  125. struct mtd_part *part = PART(mtd);
  126. return part->master->get_user_prot_info(part->master, buf, len);
  127. }
  128. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  129. size_t len, size_t *retlen, u_char *buf)
  130. {
  131. struct mtd_part *part = PART(mtd);
  132. return part->master->read_fact_prot_reg(part->master, from,
  133. len, retlen, buf);
  134. }
  135. static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
  136. size_t len)
  137. {
  138. struct mtd_part *part = PART(mtd);
  139. return part->master->get_fact_prot_info(part->master, buf, len);
  140. }
  141. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  142. size_t *retlen, const u_char *buf)
  143. {
  144. struct mtd_part *part = PART(mtd);
  145. if (!(mtd->flags & MTD_WRITEABLE))
  146. return -EROFS;
  147. if (to >= mtd->size)
  148. len = 0;
  149. else if (to + len > mtd->size)
  150. len = mtd->size - to;
  151. return part->master->write(part->master, to + part->offset,
  152. len, retlen, buf);
  153. }
  154. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  155. size_t *retlen, const u_char *buf)
  156. {
  157. struct mtd_part *part = PART(mtd);
  158. if (!(mtd->flags & MTD_WRITEABLE))
  159. return -EROFS;
  160. if (to >= mtd->size)
  161. len = 0;
  162. else if (to + len > mtd->size)
  163. len = mtd->size - to;
  164. return part->master->panic_write(part->master, to + part->offset,
  165. len, retlen, buf);
  166. }
  167. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  168. struct mtd_oob_ops *ops)
  169. {
  170. struct mtd_part *part = PART(mtd);
  171. if (!(mtd->flags & MTD_WRITEABLE))
  172. return -EROFS;
  173. if (to >= mtd->size)
  174. return -EINVAL;
  175. if (ops->datbuf && to + ops->len > mtd->size)
  176. return -EINVAL;
  177. return part->master->write_oob(part->master, to + part->offset, ops);
  178. }
  179. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  180. size_t len, size_t *retlen, u_char *buf)
  181. {
  182. struct mtd_part *part = PART(mtd);
  183. return part->master->write_user_prot_reg(part->master, from,
  184. len, retlen, buf);
  185. }
  186. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  187. size_t len)
  188. {
  189. struct mtd_part *part = PART(mtd);
  190. return part->master->lock_user_prot_reg(part->master, from, len);
  191. }
  192. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  193. unsigned long count, loff_t to, size_t *retlen)
  194. {
  195. struct mtd_part *part = PART(mtd);
  196. if (!(mtd->flags & MTD_WRITEABLE))
  197. return -EROFS;
  198. return part->master->writev(part->master, vecs, count,
  199. to + part->offset, retlen);
  200. }
  201. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  202. {
  203. struct mtd_part *part = PART(mtd);
  204. int ret;
  205. if (!(mtd->flags & MTD_WRITEABLE))
  206. return -EROFS;
  207. if (instr->addr >= mtd->size)
  208. return -EINVAL;
  209. instr->addr += part->offset;
  210. ret = part->master->erase(part->master, instr);
  211. if (ret) {
  212. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  213. instr->fail_addr -= part->offset;
  214. instr->addr -= part->offset;
  215. }
  216. return ret;
  217. }
  218. void mtd_erase_callback(struct erase_info *instr)
  219. {
  220. if (instr->mtd->erase == part_erase) {
  221. struct mtd_part *part = PART(instr->mtd);
  222. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  223. instr->fail_addr -= part->offset;
  224. instr->addr -= part->offset;
  225. }
  226. if (instr->callback)
  227. instr->callback(instr);
  228. }
  229. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  230. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  231. {
  232. struct mtd_part *part = PART(mtd);
  233. if ((len + ofs) > mtd->size)
  234. return -EINVAL;
  235. return part->master->lock(part->master, ofs + part->offset, len);
  236. }
  237. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  238. {
  239. struct mtd_part *part = PART(mtd);
  240. if ((len + ofs) > mtd->size)
  241. return -EINVAL;
  242. return part->master->unlock(part->master, ofs + part->offset, len);
  243. }
  244. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  245. {
  246. struct mtd_part *part = PART(mtd);
  247. if ((len + ofs) > mtd->size)
  248. return -EINVAL;
  249. return part->master->is_locked(part->master, ofs + part->offset, len);
  250. }
  251. static void part_sync(struct mtd_info *mtd)
  252. {
  253. struct mtd_part *part = PART(mtd);
  254. part->master->sync(part->master);
  255. }
  256. static int part_suspend(struct mtd_info *mtd)
  257. {
  258. struct mtd_part *part = PART(mtd);
  259. return part->master->suspend(part->master);
  260. }
  261. static void part_resume(struct mtd_info *mtd)
  262. {
  263. struct mtd_part *part = PART(mtd);
  264. part->master->resume(part->master);
  265. }
  266. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  267. {
  268. struct mtd_part *part = PART(mtd);
  269. if (ofs >= mtd->size)
  270. return -EINVAL;
  271. ofs += part->offset;
  272. return part->master->block_isbad(part->master, ofs);
  273. }
  274. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  275. {
  276. struct mtd_part *part = PART(mtd);
  277. int res;
  278. if (!(mtd->flags & MTD_WRITEABLE))
  279. return -EROFS;
  280. if (ofs >= mtd->size)
  281. return -EINVAL;
  282. ofs += part->offset;
  283. res = part->master->block_markbad(part->master, ofs);
  284. if (!res)
  285. mtd->ecc_stats.badblocks++;
  286. return res;
  287. }
  288. /*
  289. * This function unregisters and destroy all slave MTD objects which are
  290. * attached to the given master MTD object.
  291. */
  292. int del_mtd_partitions(struct mtd_info *master)
  293. {
  294. struct mtd_part *slave, *next;
  295. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  296. if (slave->master == master) {
  297. list_del(&slave->list);
  298. del_mtd_device(&slave->mtd);
  299. kfree(slave);
  300. }
  301. return 0;
  302. }
  303. EXPORT_SYMBOL(del_mtd_partitions);
  304. static struct mtd_part *add_one_partition(struct mtd_info *master,
  305. const struct mtd_partition *part, int partno,
  306. uint64_t cur_offset)
  307. {
  308. struct mtd_part *slave;
  309. /* allocate the partition structure */
  310. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  311. if (!slave) {
  312. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  313. master->name);
  314. del_mtd_partitions(master);
  315. return NULL;
  316. }
  317. list_add(&slave->list, &mtd_partitions);
  318. /* set up the MTD object for this partition */
  319. slave->mtd.type = master->type;
  320. slave->mtd.flags = master->flags & ~part->mask_flags;
  321. slave->mtd.size = part->size;
  322. slave->mtd.writesize = master->writesize;
  323. slave->mtd.oobsize = master->oobsize;
  324. slave->mtd.oobavail = master->oobavail;
  325. slave->mtd.subpage_sft = master->subpage_sft;
  326. slave->mtd.name = part->name;
  327. slave->mtd.owner = master->owner;
  328. slave->mtd.backing_dev_info = master->backing_dev_info;
  329. /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
  330. * to have the same data be in two different partitions.
  331. */
  332. slave->mtd.dev.parent = master->dev.parent;
  333. slave->mtd.read = part_read;
  334. slave->mtd.write = part_write;
  335. if (master->panic_write)
  336. slave->mtd.panic_write = part_panic_write;
  337. if (master->point && master->unpoint) {
  338. slave->mtd.point = part_point;
  339. slave->mtd.unpoint = part_unpoint;
  340. }
  341. if (master->get_unmapped_area)
  342. slave->mtd.get_unmapped_area = part_get_unmapped_area;
  343. if (master->read_oob)
  344. slave->mtd.read_oob = part_read_oob;
  345. if (master->write_oob)
  346. slave->mtd.write_oob = part_write_oob;
  347. if (master->read_user_prot_reg)
  348. slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
  349. if (master->read_fact_prot_reg)
  350. slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
  351. if (master->write_user_prot_reg)
  352. slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
  353. if (master->lock_user_prot_reg)
  354. slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
  355. if (master->get_user_prot_info)
  356. slave->mtd.get_user_prot_info = part_get_user_prot_info;
  357. if (master->get_fact_prot_info)
  358. slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
  359. if (master->sync)
  360. slave->mtd.sync = part_sync;
  361. if (!partno && !master->dev.class && master->suspend && master->resume) {
  362. slave->mtd.suspend = part_suspend;
  363. slave->mtd.resume = part_resume;
  364. }
  365. if (master->writev)
  366. slave->mtd.writev = part_writev;
  367. if (master->lock)
  368. slave->mtd.lock = part_lock;
  369. if (master->unlock)
  370. slave->mtd.unlock = part_unlock;
  371. if (master->is_locked)
  372. slave->mtd.is_locked = part_is_locked;
  373. if (master->block_isbad)
  374. slave->mtd.block_isbad = part_block_isbad;
  375. if (master->block_markbad)
  376. slave->mtd.block_markbad = part_block_markbad;
  377. slave->mtd.erase = part_erase;
  378. slave->master = master;
  379. slave->offset = part->offset;
  380. if (slave->offset == MTDPART_OFS_APPEND)
  381. slave->offset = cur_offset;
  382. if (slave->offset == MTDPART_OFS_NXTBLK) {
  383. slave->offset = cur_offset;
  384. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  385. /* Round up to next erasesize */
  386. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  387. printk(KERN_NOTICE "Moving partition %d: "
  388. "0x%012llx -> 0x%012llx\n", partno,
  389. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  390. }
  391. }
  392. if (slave->mtd.size == MTDPART_SIZ_FULL)
  393. slave->mtd.size = master->size - slave->offset;
  394. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  395. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  396. /* let's do some sanity checks */
  397. if (slave->offset >= master->size) {
  398. /* let's register it anyway to preserve ordering */
  399. slave->offset = 0;
  400. slave->mtd.size = 0;
  401. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  402. part->name);
  403. goto out_register;
  404. }
  405. if (slave->offset + slave->mtd.size > master->size) {
  406. slave->mtd.size = master->size - slave->offset;
  407. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  408. part->name, master->name, (unsigned long long)slave->mtd.size);
  409. }
  410. if (master->numeraseregions > 1) {
  411. /* Deal with variable erase size stuff */
  412. int i, max = master->numeraseregions;
  413. u64 end = slave->offset + slave->mtd.size;
  414. struct mtd_erase_region_info *regions = master->eraseregions;
  415. /* Find the first erase regions which is part of this
  416. * partition. */
  417. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  418. ;
  419. /* The loop searched for the region _behind_ the first one */
  420. if (i > 0)
  421. i--;
  422. /* Pick biggest erasesize */
  423. for (; i < max && regions[i].offset < end; i++) {
  424. if (slave->mtd.erasesize < regions[i].erasesize) {
  425. slave->mtd.erasesize = regions[i].erasesize;
  426. }
  427. }
  428. BUG_ON(slave->mtd.erasesize == 0);
  429. } else {
  430. /* Single erase size */
  431. slave->mtd.erasesize = master->erasesize;
  432. }
  433. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  434. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  435. /* Doesn't start on a boundary of major erase size */
  436. /* FIXME: Let it be writable if it is on a boundary of
  437. * _minor_ erase size though */
  438. slave->mtd.flags &= ~MTD_WRITEABLE;
  439. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  440. part->name);
  441. }
  442. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  443. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  444. slave->mtd.flags &= ~MTD_WRITEABLE;
  445. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  446. part->name);
  447. }
  448. slave->mtd.ecclayout = master->ecclayout;
  449. if (master->block_isbad) {
  450. uint64_t offs = 0;
  451. while (offs < slave->mtd.size) {
  452. if (master->block_isbad(master,
  453. offs + slave->offset))
  454. slave->mtd.ecc_stats.badblocks++;
  455. offs += slave->mtd.erasesize;
  456. }
  457. }
  458. out_register:
  459. /* register our partition */
  460. add_mtd_device(&slave->mtd);
  461. return slave;
  462. }
  463. /*
  464. * This function, given a master MTD object and a partition table, creates
  465. * and registers slave MTD objects which are bound to the master according to
  466. * the partition definitions.
  467. *
  468. * We don't register the master, or expect the caller to have done so,
  469. * for reasons of data integrity.
  470. */
  471. int add_mtd_partitions(struct mtd_info *master,
  472. const struct mtd_partition *parts,
  473. int nbparts)
  474. {
  475. struct mtd_part *slave;
  476. uint64_t cur_offset = 0;
  477. int i;
  478. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  479. for (i = 0; i < nbparts; i++) {
  480. slave = add_one_partition(master, parts + i, i, cur_offset);
  481. if (!slave)
  482. return -ENOMEM;
  483. cur_offset = slave->offset + slave->mtd.size;
  484. }
  485. return 0;
  486. }
  487. EXPORT_SYMBOL(add_mtd_partitions);
  488. static DEFINE_SPINLOCK(part_parser_lock);
  489. static LIST_HEAD(part_parsers);
  490. static struct mtd_part_parser *get_partition_parser(const char *name)
  491. {
  492. struct mtd_part_parser *p, *ret = NULL;
  493. spin_lock(&part_parser_lock);
  494. list_for_each_entry(p, &part_parsers, list)
  495. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  496. ret = p;
  497. break;
  498. }
  499. spin_unlock(&part_parser_lock);
  500. return ret;
  501. }
  502. int register_mtd_parser(struct mtd_part_parser *p)
  503. {
  504. spin_lock(&part_parser_lock);
  505. list_add(&p->list, &part_parsers);
  506. spin_unlock(&part_parser_lock);
  507. return 0;
  508. }
  509. EXPORT_SYMBOL_GPL(register_mtd_parser);
  510. int deregister_mtd_parser(struct mtd_part_parser *p)
  511. {
  512. spin_lock(&part_parser_lock);
  513. list_del(&p->list);
  514. spin_unlock(&part_parser_lock);
  515. return 0;
  516. }
  517. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  518. int parse_mtd_partitions(struct mtd_info *master, const char **types,
  519. struct mtd_partition **pparts, unsigned long origin)
  520. {
  521. struct mtd_part_parser *parser;
  522. int ret = 0;
  523. for ( ; ret <= 0 && *types; types++) {
  524. parser = get_partition_parser(*types);
  525. if (!parser && !request_module("%s", *types))
  526. parser = get_partition_parser(*types);
  527. if (!parser) {
  528. printk(KERN_NOTICE "%s partition parsing not available\n",
  529. *types);
  530. continue;
  531. }
  532. ret = (*parser->parse_fn)(master, pparts, origin);
  533. if (ret > 0) {
  534. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  535. ret, parser->name, master->name);
  536. }
  537. put_partition_parser(parser);
  538. }
  539. return ret;
  540. }
  541. EXPORT_SYMBOL_GPL(parse_mtd_partitions);