memory.c 92 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/module.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <asm/io.h>
  55. #include <asm/pgalloc.h>
  56. #include <asm/uaccess.h>
  57. #include <asm/tlb.h>
  58. #include <asm/tlbflush.h>
  59. #include <asm/pgtable.h>
  60. #include "internal.h"
  61. #ifndef CONFIG_NEED_MULTIPLE_NODES
  62. /* use the per-pgdat data instead for discontigmem - mbligh */
  63. unsigned long max_mapnr;
  64. struct page *mem_map;
  65. EXPORT_SYMBOL(max_mapnr);
  66. EXPORT_SYMBOL(mem_map);
  67. #endif
  68. unsigned long num_physpages;
  69. /*
  70. * A number of key systems in x86 including ioremap() rely on the assumption
  71. * that high_memory defines the upper bound on direct map memory, then end
  72. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  73. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  74. * and ZONE_HIGHMEM.
  75. */
  76. void * high_memory;
  77. EXPORT_SYMBOL(num_physpages);
  78. EXPORT_SYMBOL(high_memory);
  79. /*
  80. * Randomize the address space (stacks, mmaps, brk, etc.).
  81. *
  82. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  83. * as ancient (libc5 based) binaries can segfault. )
  84. */
  85. int randomize_va_space __read_mostly =
  86. #ifdef CONFIG_COMPAT_BRK
  87. 1;
  88. #else
  89. 2;
  90. #endif
  91. static int __init disable_randmaps(char *s)
  92. {
  93. randomize_va_space = 0;
  94. return 1;
  95. }
  96. __setup("norandmaps", disable_randmaps);
  97. static unsigned long zero_pfn __read_mostly;
  98. /*
  99. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  100. */
  101. static int __init init_zero_pfn(void)
  102. {
  103. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  104. return 0;
  105. }
  106. core_initcall(init_zero_pfn);
  107. /*
  108. * If a p?d_bad entry is found while walking page tables, report
  109. * the error, before resetting entry to p?d_none. Usually (but
  110. * very seldom) called out from the p?d_none_or_clear_bad macros.
  111. */
  112. void pgd_clear_bad(pgd_t *pgd)
  113. {
  114. pgd_ERROR(*pgd);
  115. pgd_clear(pgd);
  116. }
  117. void pud_clear_bad(pud_t *pud)
  118. {
  119. pud_ERROR(*pud);
  120. pud_clear(pud);
  121. }
  122. void pmd_clear_bad(pmd_t *pmd)
  123. {
  124. pmd_ERROR(*pmd);
  125. pmd_clear(pmd);
  126. }
  127. /*
  128. * Note: this doesn't free the actual pages themselves. That
  129. * has been handled earlier when unmapping all the memory regions.
  130. */
  131. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  132. unsigned long addr)
  133. {
  134. pgtable_t token = pmd_pgtable(*pmd);
  135. pmd_clear(pmd);
  136. pte_free_tlb(tlb, token, addr);
  137. tlb->mm->nr_ptes--;
  138. }
  139. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  140. unsigned long addr, unsigned long end,
  141. unsigned long floor, unsigned long ceiling)
  142. {
  143. pmd_t *pmd;
  144. unsigned long next;
  145. unsigned long start;
  146. start = addr;
  147. pmd = pmd_offset(pud, addr);
  148. do {
  149. next = pmd_addr_end(addr, end);
  150. if (pmd_none_or_clear_bad(pmd))
  151. continue;
  152. free_pte_range(tlb, pmd, addr);
  153. } while (pmd++, addr = next, addr != end);
  154. start &= PUD_MASK;
  155. if (start < floor)
  156. return;
  157. if (ceiling) {
  158. ceiling &= PUD_MASK;
  159. if (!ceiling)
  160. return;
  161. }
  162. if (end - 1 > ceiling - 1)
  163. return;
  164. pmd = pmd_offset(pud, start);
  165. pud_clear(pud);
  166. pmd_free_tlb(tlb, pmd, start);
  167. }
  168. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  169. unsigned long addr, unsigned long end,
  170. unsigned long floor, unsigned long ceiling)
  171. {
  172. pud_t *pud;
  173. unsigned long next;
  174. unsigned long start;
  175. start = addr;
  176. pud = pud_offset(pgd, addr);
  177. do {
  178. next = pud_addr_end(addr, end);
  179. if (pud_none_or_clear_bad(pud))
  180. continue;
  181. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  182. } while (pud++, addr = next, addr != end);
  183. start &= PGDIR_MASK;
  184. if (start < floor)
  185. return;
  186. if (ceiling) {
  187. ceiling &= PGDIR_MASK;
  188. if (!ceiling)
  189. return;
  190. }
  191. if (end - 1 > ceiling - 1)
  192. return;
  193. pud = pud_offset(pgd, start);
  194. pgd_clear(pgd);
  195. pud_free_tlb(tlb, pud, start);
  196. }
  197. /*
  198. * This function frees user-level page tables of a process.
  199. *
  200. * Must be called with pagetable lock held.
  201. */
  202. void free_pgd_range(struct mmu_gather *tlb,
  203. unsigned long addr, unsigned long end,
  204. unsigned long floor, unsigned long ceiling)
  205. {
  206. pgd_t *pgd;
  207. unsigned long next;
  208. unsigned long start;
  209. /*
  210. * The next few lines have given us lots of grief...
  211. *
  212. * Why are we testing PMD* at this top level? Because often
  213. * there will be no work to do at all, and we'd prefer not to
  214. * go all the way down to the bottom just to discover that.
  215. *
  216. * Why all these "- 1"s? Because 0 represents both the bottom
  217. * of the address space and the top of it (using -1 for the
  218. * top wouldn't help much: the masks would do the wrong thing).
  219. * The rule is that addr 0 and floor 0 refer to the bottom of
  220. * the address space, but end 0 and ceiling 0 refer to the top
  221. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  222. * that end 0 case should be mythical).
  223. *
  224. * Wherever addr is brought up or ceiling brought down, we must
  225. * be careful to reject "the opposite 0" before it confuses the
  226. * subsequent tests. But what about where end is brought down
  227. * by PMD_SIZE below? no, end can't go down to 0 there.
  228. *
  229. * Whereas we round start (addr) and ceiling down, by different
  230. * masks at different levels, in order to test whether a table
  231. * now has no other vmas using it, so can be freed, we don't
  232. * bother to round floor or end up - the tests don't need that.
  233. */
  234. addr &= PMD_MASK;
  235. if (addr < floor) {
  236. addr += PMD_SIZE;
  237. if (!addr)
  238. return;
  239. }
  240. if (ceiling) {
  241. ceiling &= PMD_MASK;
  242. if (!ceiling)
  243. return;
  244. }
  245. if (end - 1 > ceiling - 1)
  246. end -= PMD_SIZE;
  247. if (addr > end - 1)
  248. return;
  249. start = addr;
  250. pgd = pgd_offset(tlb->mm, addr);
  251. do {
  252. next = pgd_addr_end(addr, end);
  253. if (pgd_none_or_clear_bad(pgd))
  254. continue;
  255. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  256. } while (pgd++, addr = next, addr != end);
  257. }
  258. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  259. unsigned long floor, unsigned long ceiling)
  260. {
  261. while (vma) {
  262. struct vm_area_struct *next = vma->vm_next;
  263. unsigned long addr = vma->vm_start;
  264. /*
  265. * Hide vma from rmap and vmtruncate before freeing pgtables
  266. */
  267. anon_vma_unlink(vma);
  268. unlink_file_vma(vma);
  269. if (is_vm_hugetlb_page(vma)) {
  270. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  271. floor, next? next->vm_start: ceiling);
  272. } else {
  273. /*
  274. * Optimization: gather nearby vmas into one call down
  275. */
  276. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  277. && !is_vm_hugetlb_page(next)) {
  278. vma = next;
  279. next = vma->vm_next;
  280. anon_vma_unlink(vma);
  281. unlink_file_vma(vma);
  282. }
  283. free_pgd_range(tlb, addr, vma->vm_end,
  284. floor, next? next->vm_start: ceiling);
  285. }
  286. vma = next;
  287. }
  288. }
  289. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  290. {
  291. pgtable_t new = pte_alloc_one(mm, address);
  292. if (!new)
  293. return -ENOMEM;
  294. /*
  295. * Ensure all pte setup (eg. pte page lock and page clearing) are
  296. * visible before the pte is made visible to other CPUs by being
  297. * put into page tables.
  298. *
  299. * The other side of the story is the pointer chasing in the page
  300. * table walking code (when walking the page table without locking;
  301. * ie. most of the time). Fortunately, these data accesses consist
  302. * of a chain of data-dependent loads, meaning most CPUs (alpha
  303. * being the notable exception) will already guarantee loads are
  304. * seen in-order. See the alpha page table accessors for the
  305. * smp_read_barrier_depends() barriers in page table walking code.
  306. */
  307. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  308. spin_lock(&mm->page_table_lock);
  309. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  310. mm->nr_ptes++;
  311. pmd_populate(mm, pmd, new);
  312. new = NULL;
  313. }
  314. spin_unlock(&mm->page_table_lock);
  315. if (new)
  316. pte_free(mm, new);
  317. return 0;
  318. }
  319. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  320. {
  321. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  322. if (!new)
  323. return -ENOMEM;
  324. smp_wmb(); /* See comment in __pte_alloc */
  325. spin_lock(&init_mm.page_table_lock);
  326. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  327. pmd_populate_kernel(&init_mm, pmd, new);
  328. new = NULL;
  329. }
  330. spin_unlock(&init_mm.page_table_lock);
  331. if (new)
  332. pte_free_kernel(&init_mm, new);
  333. return 0;
  334. }
  335. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  336. {
  337. if (file_rss)
  338. add_mm_counter(mm, file_rss, file_rss);
  339. if (anon_rss)
  340. add_mm_counter(mm, anon_rss, anon_rss);
  341. }
  342. /*
  343. * This function is called to print an error when a bad pte
  344. * is found. For example, we might have a PFN-mapped pte in
  345. * a region that doesn't allow it.
  346. *
  347. * The calling function must still handle the error.
  348. */
  349. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  350. pte_t pte, struct page *page)
  351. {
  352. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  353. pud_t *pud = pud_offset(pgd, addr);
  354. pmd_t *pmd = pmd_offset(pud, addr);
  355. struct address_space *mapping;
  356. pgoff_t index;
  357. static unsigned long resume;
  358. static unsigned long nr_shown;
  359. static unsigned long nr_unshown;
  360. /*
  361. * Allow a burst of 60 reports, then keep quiet for that minute;
  362. * or allow a steady drip of one report per second.
  363. */
  364. if (nr_shown == 60) {
  365. if (time_before(jiffies, resume)) {
  366. nr_unshown++;
  367. return;
  368. }
  369. if (nr_unshown) {
  370. printk(KERN_ALERT
  371. "BUG: Bad page map: %lu messages suppressed\n",
  372. nr_unshown);
  373. nr_unshown = 0;
  374. }
  375. nr_shown = 0;
  376. }
  377. if (nr_shown++ == 0)
  378. resume = jiffies + 60 * HZ;
  379. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  380. index = linear_page_index(vma, addr);
  381. printk(KERN_ALERT
  382. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  383. current->comm,
  384. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  385. if (page) {
  386. printk(KERN_ALERT
  387. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  388. page, (void *)page->flags, page_count(page),
  389. page_mapcount(page), page->mapping, page->index);
  390. }
  391. printk(KERN_ALERT
  392. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  393. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  394. /*
  395. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  396. */
  397. if (vma->vm_ops)
  398. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  399. (unsigned long)vma->vm_ops->fault);
  400. if (vma->vm_file && vma->vm_file->f_op)
  401. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  402. (unsigned long)vma->vm_file->f_op->mmap);
  403. dump_stack();
  404. add_taint(TAINT_BAD_PAGE);
  405. }
  406. static inline int is_cow_mapping(unsigned int flags)
  407. {
  408. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  409. }
  410. /*
  411. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  412. *
  413. * "Special" mappings do not wish to be associated with a "struct page" (either
  414. * it doesn't exist, or it exists but they don't want to touch it). In this
  415. * case, NULL is returned here. "Normal" mappings do have a struct page.
  416. *
  417. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  418. * pte bit, in which case this function is trivial. Secondly, an architecture
  419. * may not have a spare pte bit, which requires a more complicated scheme,
  420. * described below.
  421. *
  422. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  423. * special mapping (even if there are underlying and valid "struct pages").
  424. * COWed pages of a VM_PFNMAP are always normal.
  425. *
  426. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  427. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  428. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  429. * mapping will always honor the rule
  430. *
  431. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  432. *
  433. * And for normal mappings this is false.
  434. *
  435. * This restricts such mappings to be a linear translation from virtual address
  436. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  437. * as the vma is not a COW mapping; in that case, we know that all ptes are
  438. * special (because none can have been COWed).
  439. *
  440. *
  441. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  442. *
  443. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  444. * page" backing, however the difference is that _all_ pages with a struct
  445. * page (that is, those where pfn_valid is true) are refcounted and considered
  446. * normal pages by the VM. The disadvantage is that pages are refcounted
  447. * (which can be slower and simply not an option for some PFNMAP users). The
  448. * advantage is that we don't have to follow the strict linearity rule of
  449. * PFNMAP mappings in order to support COWable mappings.
  450. *
  451. */
  452. #ifdef __HAVE_ARCH_PTE_SPECIAL
  453. # define HAVE_PTE_SPECIAL 1
  454. #else
  455. # define HAVE_PTE_SPECIAL 0
  456. #endif
  457. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  458. pte_t pte)
  459. {
  460. unsigned long pfn = pte_pfn(pte);
  461. if (HAVE_PTE_SPECIAL) {
  462. if (likely(!pte_special(pte)))
  463. goto check_pfn;
  464. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  465. return NULL;
  466. if (pfn != zero_pfn)
  467. print_bad_pte(vma, addr, pte, NULL);
  468. return NULL;
  469. }
  470. /* !HAVE_PTE_SPECIAL case follows: */
  471. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  472. if (vma->vm_flags & VM_MIXEDMAP) {
  473. if (!pfn_valid(pfn))
  474. return NULL;
  475. goto out;
  476. } else {
  477. unsigned long off;
  478. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  479. if (pfn == vma->vm_pgoff + off)
  480. return NULL;
  481. if (!is_cow_mapping(vma->vm_flags))
  482. return NULL;
  483. }
  484. }
  485. check_pfn:
  486. if (unlikely(pfn > highest_memmap_pfn)) {
  487. print_bad_pte(vma, addr, pte, NULL);
  488. return NULL;
  489. }
  490. /*
  491. * NOTE! We still have PageReserved() pages in the page tables.
  492. * eg. VDSO mappings can cause them to exist.
  493. */
  494. out:
  495. return pfn_to_page(pfn);
  496. }
  497. /*
  498. * copy one vm_area from one task to the other. Assumes the page tables
  499. * already present in the new task to be cleared in the whole range
  500. * covered by this vma.
  501. */
  502. static inline void
  503. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  504. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  505. unsigned long addr, int *rss)
  506. {
  507. unsigned long vm_flags = vma->vm_flags;
  508. pte_t pte = *src_pte;
  509. struct page *page;
  510. /* pte contains position in swap or file, so copy. */
  511. if (unlikely(!pte_present(pte))) {
  512. if (!pte_file(pte)) {
  513. swp_entry_t entry = pte_to_swp_entry(pte);
  514. swap_duplicate(entry);
  515. /* make sure dst_mm is on swapoff's mmlist. */
  516. if (unlikely(list_empty(&dst_mm->mmlist))) {
  517. spin_lock(&mmlist_lock);
  518. if (list_empty(&dst_mm->mmlist))
  519. list_add(&dst_mm->mmlist,
  520. &src_mm->mmlist);
  521. spin_unlock(&mmlist_lock);
  522. }
  523. if (is_write_migration_entry(entry) &&
  524. is_cow_mapping(vm_flags)) {
  525. /*
  526. * COW mappings require pages in both parent
  527. * and child to be set to read.
  528. */
  529. make_migration_entry_read(&entry);
  530. pte = swp_entry_to_pte(entry);
  531. set_pte_at(src_mm, addr, src_pte, pte);
  532. }
  533. }
  534. goto out_set_pte;
  535. }
  536. /*
  537. * If it's a COW mapping, write protect it both
  538. * in the parent and the child
  539. */
  540. if (is_cow_mapping(vm_flags)) {
  541. ptep_set_wrprotect(src_mm, addr, src_pte);
  542. pte = pte_wrprotect(pte);
  543. }
  544. /*
  545. * If it's a shared mapping, mark it clean in
  546. * the child
  547. */
  548. if (vm_flags & VM_SHARED)
  549. pte = pte_mkclean(pte);
  550. pte = pte_mkold(pte);
  551. page = vm_normal_page(vma, addr, pte);
  552. if (page) {
  553. get_page(page);
  554. page_dup_rmap(page);
  555. rss[PageAnon(page)]++;
  556. }
  557. out_set_pte:
  558. set_pte_at(dst_mm, addr, dst_pte, pte);
  559. }
  560. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  561. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  562. unsigned long addr, unsigned long end)
  563. {
  564. pte_t *src_pte, *dst_pte;
  565. spinlock_t *src_ptl, *dst_ptl;
  566. int progress = 0;
  567. int rss[2];
  568. again:
  569. rss[1] = rss[0] = 0;
  570. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  571. if (!dst_pte)
  572. return -ENOMEM;
  573. src_pte = pte_offset_map_nested(src_pmd, addr);
  574. src_ptl = pte_lockptr(src_mm, src_pmd);
  575. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  576. arch_enter_lazy_mmu_mode();
  577. do {
  578. /*
  579. * We are holding two locks at this point - either of them
  580. * could generate latencies in another task on another CPU.
  581. */
  582. if (progress >= 32) {
  583. progress = 0;
  584. if (need_resched() ||
  585. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  586. break;
  587. }
  588. if (pte_none(*src_pte)) {
  589. progress++;
  590. continue;
  591. }
  592. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  593. progress += 8;
  594. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  595. arch_leave_lazy_mmu_mode();
  596. spin_unlock(src_ptl);
  597. pte_unmap_nested(src_pte - 1);
  598. add_mm_rss(dst_mm, rss[0], rss[1]);
  599. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  600. cond_resched();
  601. if (addr != end)
  602. goto again;
  603. return 0;
  604. }
  605. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  606. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  607. unsigned long addr, unsigned long end)
  608. {
  609. pmd_t *src_pmd, *dst_pmd;
  610. unsigned long next;
  611. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  612. if (!dst_pmd)
  613. return -ENOMEM;
  614. src_pmd = pmd_offset(src_pud, addr);
  615. do {
  616. next = pmd_addr_end(addr, end);
  617. if (pmd_none_or_clear_bad(src_pmd))
  618. continue;
  619. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  620. vma, addr, next))
  621. return -ENOMEM;
  622. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  623. return 0;
  624. }
  625. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  626. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  627. unsigned long addr, unsigned long end)
  628. {
  629. pud_t *src_pud, *dst_pud;
  630. unsigned long next;
  631. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  632. if (!dst_pud)
  633. return -ENOMEM;
  634. src_pud = pud_offset(src_pgd, addr);
  635. do {
  636. next = pud_addr_end(addr, end);
  637. if (pud_none_or_clear_bad(src_pud))
  638. continue;
  639. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  640. vma, addr, next))
  641. return -ENOMEM;
  642. } while (dst_pud++, src_pud++, addr = next, addr != end);
  643. return 0;
  644. }
  645. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  646. struct vm_area_struct *vma)
  647. {
  648. pgd_t *src_pgd, *dst_pgd;
  649. unsigned long next;
  650. unsigned long addr = vma->vm_start;
  651. unsigned long end = vma->vm_end;
  652. int ret;
  653. /*
  654. * Don't copy ptes where a page fault will fill them correctly.
  655. * Fork becomes much lighter when there are big shared or private
  656. * readonly mappings. The tradeoff is that copy_page_range is more
  657. * efficient than faulting.
  658. */
  659. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  660. if (!vma->anon_vma)
  661. return 0;
  662. }
  663. if (is_vm_hugetlb_page(vma))
  664. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  665. if (unlikely(is_pfn_mapping(vma))) {
  666. /*
  667. * We do not free on error cases below as remove_vma
  668. * gets called on error from higher level routine
  669. */
  670. ret = track_pfn_vma_copy(vma);
  671. if (ret)
  672. return ret;
  673. }
  674. /*
  675. * We need to invalidate the secondary MMU mappings only when
  676. * there could be a permission downgrade on the ptes of the
  677. * parent mm. And a permission downgrade will only happen if
  678. * is_cow_mapping() returns true.
  679. */
  680. if (is_cow_mapping(vma->vm_flags))
  681. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  682. ret = 0;
  683. dst_pgd = pgd_offset(dst_mm, addr);
  684. src_pgd = pgd_offset(src_mm, addr);
  685. do {
  686. next = pgd_addr_end(addr, end);
  687. if (pgd_none_or_clear_bad(src_pgd))
  688. continue;
  689. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  690. vma, addr, next))) {
  691. ret = -ENOMEM;
  692. break;
  693. }
  694. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  695. if (is_cow_mapping(vma->vm_flags))
  696. mmu_notifier_invalidate_range_end(src_mm,
  697. vma->vm_start, end);
  698. return ret;
  699. }
  700. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  701. struct vm_area_struct *vma, pmd_t *pmd,
  702. unsigned long addr, unsigned long end,
  703. long *zap_work, struct zap_details *details)
  704. {
  705. struct mm_struct *mm = tlb->mm;
  706. pte_t *pte;
  707. spinlock_t *ptl;
  708. int file_rss = 0;
  709. int anon_rss = 0;
  710. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  711. arch_enter_lazy_mmu_mode();
  712. do {
  713. pte_t ptent = *pte;
  714. if (pte_none(ptent)) {
  715. (*zap_work)--;
  716. continue;
  717. }
  718. (*zap_work) -= PAGE_SIZE;
  719. if (pte_present(ptent)) {
  720. struct page *page;
  721. page = vm_normal_page(vma, addr, ptent);
  722. if (unlikely(details) && page) {
  723. /*
  724. * unmap_shared_mapping_pages() wants to
  725. * invalidate cache without truncating:
  726. * unmap shared but keep private pages.
  727. */
  728. if (details->check_mapping &&
  729. details->check_mapping != page->mapping)
  730. continue;
  731. /*
  732. * Each page->index must be checked when
  733. * invalidating or truncating nonlinear.
  734. */
  735. if (details->nonlinear_vma &&
  736. (page->index < details->first_index ||
  737. page->index > details->last_index))
  738. continue;
  739. }
  740. ptent = ptep_get_and_clear_full(mm, addr, pte,
  741. tlb->fullmm);
  742. tlb_remove_tlb_entry(tlb, pte, addr);
  743. if (unlikely(!page))
  744. continue;
  745. if (unlikely(details) && details->nonlinear_vma
  746. && linear_page_index(details->nonlinear_vma,
  747. addr) != page->index)
  748. set_pte_at(mm, addr, pte,
  749. pgoff_to_pte(page->index));
  750. if (PageAnon(page))
  751. anon_rss--;
  752. else {
  753. if (pte_dirty(ptent))
  754. set_page_dirty(page);
  755. if (pte_young(ptent) &&
  756. likely(!VM_SequentialReadHint(vma)))
  757. mark_page_accessed(page);
  758. file_rss--;
  759. }
  760. page_remove_rmap(page);
  761. if (unlikely(page_mapcount(page) < 0))
  762. print_bad_pte(vma, addr, ptent, page);
  763. tlb_remove_page(tlb, page);
  764. continue;
  765. }
  766. /*
  767. * If details->check_mapping, we leave swap entries;
  768. * if details->nonlinear_vma, we leave file entries.
  769. */
  770. if (unlikely(details))
  771. continue;
  772. if (pte_file(ptent)) {
  773. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  774. print_bad_pte(vma, addr, ptent, NULL);
  775. } else if
  776. (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
  777. print_bad_pte(vma, addr, ptent, NULL);
  778. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  779. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  780. add_mm_rss(mm, file_rss, anon_rss);
  781. arch_leave_lazy_mmu_mode();
  782. pte_unmap_unlock(pte - 1, ptl);
  783. return addr;
  784. }
  785. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  786. struct vm_area_struct *vma, pud_t *pud,
  787. unsigned long addr, unsigned long end,
  788. long *zap_work, struct zap_details *details)
  789. {
  790. pmd_t *pmd;
  791. unsigned long next;
  792. pmd = pmd_offset(pud, addr);
  793. do {
  794. next = pmd_addr_end(addr, end);
  795. if (pmd_none_or_clear_bad(pmd)) {
  796. (*zap_work)--;
  797. continue;
  798. }
  799. next = zap_pte_range(tlb, vma, pmd, addr, next,
  800. zap_work, details);
  801. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  802. return addr;
  803. }
  804. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  805. struct vm_area_struct *vma, pgd_t *pgd,
  806. unsigned long addr, unsigned long end,
  807. long *zap_work, struct zap_details *details)
  808. {
  809. pud_t *pud;
  810. unsigned long next;
  811. pud = pud_offset(pgd, addr);
  812. do {
  813. next = pud_addr_end(addr, end);
  814. if (pud_none_or_clear_bad(pud)) {
  815. (*zap_work)--;
  816. continue;
  817. }
  818. next = zap_pmd_range(tlb, vma, pud, addr, next,
  819. zap_work, details);
  820. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  821. return addr;
  822. }
  823. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  824. struct vm_area_struct *vma,
  825. unsigned long addr, unsigned long end,
  826. long *zap_work, struct zap_details *details)
  827. {
  828. pgd_t *pgd;
  829. unsigned long next;
  830. if (details && !details->check_mapping && !details->nonlinear_vma)
  831. details = NULL;
  832. BUG_ON(addr >= end);
  833. tlb_start_vma(tlb, vma);
  834. pgd = pgd_offset(vma->vm_mm, addr);
  835. do {
  836. next = pgd_addr_end(addr, end);
  837. if (pgd_none_or_clear_bad(pgd)) {
  838. (*zap_work)--;
  839. continue;
  840. }
  841. next = zap_pud_range(tlb, vma, pgd, addr, next,
  842. zap_work, details);
  843. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  844. tlb_end_vma(tlb, vma);
  845. return addr;
  846. }
  847. #ifdef CONFIG_PREEMPT
  848. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  849. #else
  850. /* No preempt: go for improved straight-line efficiency */
  851. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  852. #endif
  853. /**
  854. * unmap_vmas - unmap a range of memory covered by a list of vma's
  855. * @tlbp: address of the caller's struct mmu_gather
  856. * @vma: the starting vma
  857. * @start_addr: virtual address at which to start unmapping
  858. * @end_addr: virtual address at which to end unmapping
  859. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  860. * @details: details of nonlinear truncation or shared cache invalidation
  861. *
  862. * Returns the end address of the unmapping (restart addr if interrupted).
  863. *
  864. * Unmap all pages in the vma list.
  865. *
  866. * We aim to not hold locks for too long (for scheduling latency reasons).
  867. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  868. * return the ending mmu_gather to the caller.
  869. *
  870. * Only addresses between `start' and `end' will be unmapped.
  871. *
  872. * The VMA list must be sorted in ascending virtual address order.
  873. *
  874. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  875. * range after unmap_vmas() returns. So the only responsibility here is to
  876. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  877. * drops the lock and schedules.
  878. */
  879. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  880. struct vm_area_struct *vma, unsigned long start_addr,
  881. unsigned long end_addr, unsigned long *nr_accounted,
  882. struct zap_details *details)
  883. {
  884. long zap_work = ZAP_BLOCK_SIZE;
  885. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  886. int tlb_start_valid = 0;
  887. unsigned long start = start_addr;
  888. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  889. int fullmm = (*tlbp)->fullmm;
  890. struct mm_struct *mm = vma->vm_mm;
  891. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  892. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  893. unsigned long end;
  894. start = max(vma->vm_start, start_addr);
  895. if (start >= vma->vm_end)
  896. continue;
  897. end = min(vma->vm_end, end_addr);
  898. if (end <= vma->vm_start)
  899. continue;
  900. if (vma->vm_flags & VM_ACCOUNT)
  901. *nr_accounted += (end - start) >> PAGE_SHIFT;
  902. if (unlikely(is_pfn_mapping(vma)))
  903. untrack_pfn_vma(vma, 0, 0);
  904. while (start != end) {
  905. if (!tlb_start_valid) {
  906. tlb_start = start;
  907. tlb_start_valid = 1;
  908. }
  909. if (unlikely(is_vm_hugetlb_page(vma))) {
  910. /*
  911. * It is undesirable to test vma->vm_file as it
  912. * should be non-null for valid hugetlb area.
  913. * However, vm_file will be NULL in the error
  914. * cleanup path of do_mmap_pgoff. When
  915. * hugetlbfs ->mmap method fails,
  916. * do_mmap_pgoff() nullifies vma->vm_file
  917. * before calling this function to clean up.
  918. * Since no pte has actually been setup, it is
  919. * safe to do nothing in this case.
  920. */
  921. if (vma->vm_file) {
  922. unmap_hugepage_range(vma, start, end, NULL);
  923. zap_work -= (end - start) /
  924. pages_per_huge_page(hstate_vma(vma));
  925. }
  926. start = end;
  927. } else
  928. start = unmap_page_range(*tlbp, vma,
  929. start, end, &zap_work, details);
  930. if (zap_work > 0) {
  931. BUG_ON(start != end);
  932. break;
  933. }
  934. tlb_finish_mmu(*tlbp, tlb_start, start);
  935. if (need_resched() ||
  936. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  937. if (i_mmap_lock) {
  938. *tlbp = NULL;
  939. goto out;
  940. }
  941. cond_resched();
  942. }
  943. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  944. tlb_start_valid = 0;
  945. zap_work = ZAP_BLOCK_SIZE;
  946. }
  947. }
  948. out:
  949. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  950. return start; /* which is now the end (or restart) address */
  951. }
  952. /**
  953. * zap_page_range - remove user pages in a given range
  954. * @vma: vm_area_struct holding the applicable pages
  955. * @address: starting address of pages to zap
  956. * @size: number of bytes to zap
  957. * @details: details of nonlinear truncation or shared cache invalidation
  958. */
  959. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  960. unsigned long size, struct zap_details *details)
  961. {
  962. struct mm_struct *mm = vma->vm_mm;
  963. struct mmu_gather *tlb;
  964. unsigned long end = address + size;
  965. unsigned long nr_accounted = 0;
  966. lru_add_drain();
  967. tlb = tlb_gather_mmu(mm, 0);
  968. update_hiwater_rss(mm);
  969. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  970. if (tlb)
  971. tlb_finish_mmu(tlb, address, end);
  972. return end;
  973. }
  974. /**
  975. * zap_vma_ptes - remove ptes mapping the vma
  976. * @vma: vm_area_struct holding ptes to be zapped
  977. * @address: starting address of pages to zap
  978. * @size: number of bytes to zap
  979. *
  980. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  981. *
  982. * The entire address range must be fully contained within the vma.
  983. *
  984. * Returns 0 if successful.
  985. */
  986. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  987. unsigned long size)
  988. {
  989. if (address < vma->vm_start || address + size > vma->vm_end ||
  990. !(vma->vm_flags & VM_PFNMAP))
  991. return -1;
  992. zap_page_range(vma, address, size, NULL);
  993. return 0;
  994. }
  995. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  996. /*
  997. * Do a quick page-table lookup for a single page.
  998. */
  999. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1000. unsigned int flags)
  1001. {
  1002. pgd_t *pgd;
  1003. pud_t *pud;
  1004. pmd_t *pmd;
  1005. pte_t *ptep, pte;
  1006. spinlock_t *ptl;
  1007. struct page *page;
  1008. struct mm_struct *mm = vma->vm_mm;
  1009. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1010. if (!IS_ERR(page)) {
  1011. BUG_ON(flags & FOLL_GET);
  1012. goto out;
  1013. }
  1014. page = NULL;
  1015. pgd = pgd_offset(mm, address);
  1016. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1017. goto no_page_table;
  1018. pud = pud_offset(pgd, address);
  1019. if (pud_none(*pud))
  1020. goto no_page_table;
  1021. if (pud_huge(*pud)) {
  1022. BUG_ON(flags & FOLL_GET);
  1023. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1024. goto out;
  1025. }
  1026. if (unlikely(pud_bad(*pud)))
  1027. goto no_page_table;
  1028. pmd = pmd_offset(pud, address);
  1029. if (pmd_none(*pmd))
  1030. goto no_page_table;
  1031. if (pmd_huge(*pmd)) {
  1032. BUG_ON(flags & FOLL_GET);
  1033. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1034. goto out;
  1035. }
  1036. if (unlikely(pmd_bad(*pmd)))
  1037. goto no_page_table;
  1038. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1039. pte = *ptep;
  1040. if (!pte_present(pte))
  1041. goto no_page;
  1042. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1043. goto unlock;
  1044. page = vm_normal_page(vma, address, pte);
  1045. if (unlikely(!page)) {
  1046. if ((flags & FOLL_DUMP) ||
  1047. pte_pfn(pte) != zero_pfn)
  1048. goto bad_page;
  1049. page = pte_page(pte);
  1050. }
  1051. if (flags & FOLL_GET)
  1052. get_page(page);
  1053. if (flags & FOLL_TOUCH) {
  1054. if ((flags & FOLL_WRITE) &&
  1055. !pte_dirty(pte) && !PageDirty(page))
  1056. set_page_dirty(page);
  1057. /*
  1058. * pte_mkyoung() would be more correct here, but atomic care
  1059. * is needed to avoid losing the dirty bit: it is easier to use
  1060. * mark_page_accessed().
  1061. */
  1062. mark_page_accessed(page);
  1063. }
  1064. unlock:
  1065. pte_unmap_unlock(ptep, ptl);
  1066. out:
  1067. return page;
  1068. bad_page:
  1069. pte_unmap_unlock(ptep, ptl);
  1070. return ERR_PTR(-EFAULT);
  1071. no_page:
  1072. pte_unmap_unlock(ptep, ptl);
  1073. if (!pte_none(pte))
  1074. return page;
  1075. no_page_table:
  1076. /*
  1077. * When core dumping an enormous anonymous area that nobody
  1078. * has touched so far, we don't want to allocate unnecessary pages or
  1079. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1080. * then get_dump_page() will return NULL to leave a hole in the dump.
  1081. * But we can only make this optimization where a hole would surely
  1082. * be zero-filled if handle_mm_fault() actually did handle it.
  1083. */
  1084. if ((flags & FOLL_DUMP) &&
  1085. (!vma->vm_ops || !vma->vm_ops->fault))
  1086. return ERR_PTR(-EFAULT);
  1087. return page;
  1088. }
  1089. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1090. unsigned long start, int nr_pages, int flags,
  1091. struct page **pages, struct vm_area_struct **vmas)
  1092. {
  1093. int i;
  1094. unsigned int vm_flags = 0;
  1095. int write = !!(flags & GUP_FLAGS_WRITE);
  1096. int force = !!(flags & GUP_FLAGS_FORCE);
  1097. if (nr_pages <= 0)
  1098. return 0;
  1099. /*
  1100. * Require read or write permissions.
  1101. * If 'force' is set, we only require the "MAY" flags.
  1102. */
  1103. vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1104. vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1105. i = 0;
  1106. do {
  1107. struct vm_area_struct *vma;
  1108. unsigned int foll_flags;
  1109. vma = find_extend_vma(mm, start);
  1110. if (!vma && in_gate_area(tsk, start)) {
  1111. unsigned long pg = start & PAGE_MASK;
  1112. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1113. pgd_t *pgd;
  1114. pud_t *pud;
  1115. pmd_t *pmd;
  1116. pte_t *pte;
  1117. /* user gate pages are read-only */
  1118. if (write)
  1119. return i ? : -EFAULT;
  1120. if (pg > TASK_SIZE)
  1121. pgd = pgd_offset_k(pg);
  1122. else
  1123. pgd = pgd_offset_gate(mm, pg);
  1124. BUG_ON(pgd_none(*pgd));
  1125. pud = pud_offset(pgd, pg);
  1126. BUG_ON(pud_none(*pud));
  1127. pmd = pmd_offset(pud, pg);
  1128. if (pmd_none(*pmd))
  1129. return i ? : -EFAULT;
  1130. pte = pte_offset_map(pmd, pg);
  1131. if (pte_none(*pte)) {
  1132. pte_unmap(pte);
  1133. return i ? : -EFAULT;
  1134. }
  1135. if (pages) {
  1136. struct page *page = vm_normal_page(gate_vma, start, *pte);
  1137. pages[i] = page;
  1138. if (page)
  1139. get_page(page);
  1140. }
  1141. pte_unmap(pte);
  1142. if (vmas)
  1143. vmas[i] = gate_vma;
  1144. i++;
  1145. start += PAGE_SIZE;
  1146. nr_pages--;
  1147. continue;
  1148. }
  1149. if (!vma ||
  1150. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1151. !(vm_flags & vma->vm_flags))
  1152. return i ? : -EFAULT;
  1153. foll_flags = FOLL_TOUCH;
  1154. if (pages)
  1155. foll_flags |= FOLL_GET;
  1156. if (flags & GUP_FLAGS_DUMP)
  1157. foll_flags |= FOLL_DUMP;
  1158. if (write)
  1159. foll_flags |= FOLL_WRITE;
  1160. if (is_vm_hugetlb_page(vma)) {
  1161. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1162. &start, &nr_pages, i, foll_flags);
  1163. continue;
  1164. }
  1165. do {
  1166. struct page *page;
  1167. /*
  1168. * If we have a pending SIGKILL, don't keep faulting
  1169. * pages and potentially allocating memory.
  1170. */
  1171. if (unlikely(fatal_signal_pending(current)))
  1172. return i ? i : -ERESTARTSYS;
  1173. if (write)
  1174. foll_flags |= FOLL_WRITE;
  1175. cond_resched();
  1176. while (!(page = follow_page(vma, start, foll_flags))) {
  1177. int ret;
  1178. ret = handle_mm_fault(mm, vma, start,
  1179. (foll_flags & FOLL_WRITE) ?
  1180. FAULT_FLAG_WRITE : 0);
  1181. if (ret & VM_FAULT_ERROR) {
  1182. if (ret & VM_FAULT_OOM)
  1183. return i ? i : -ENOMEM;
  1184. else if (ret & VM_FAULT_SIGBUS)
  1185. return i ? i : -EFAULT;
  1186. BUG();
  1187. }
  1188. if (ret & VM_FAULT_MAJOR)
  1189. tsk->maj_flt++;
  1190. else
  1191. tsk->min_flt++;
  1192. /*
  1193. * The VM_FAULT_WRITE bit tells us that
  1194. * do_wp_page has broken COW when necessary,
  1195. * even if maybe_mkwrite decided not to set
  1196. * pte_write. We can thus safely do subsequent
  1197. * page lookups as if they were reads. But only
  1198. * do so when looping for pte_write is futile:
  1199. * in some cases userspace may also be wanting
  1200. * to write to the gotten user page, which a
  1201. * read fault here might prevent (a readonly
  1202. * page might get reCOWed by userspace write).
  1203. */
  1204. if ((ret & VM_FAULT_WRITE) &&
  1205. !(vma->vm_flags & VM_WRITE))
  1206. foll_flags &= ~FOLL_WRITE;
  1207. cond_resched();
  1208. }
  1209. if (IS_ERR(page))
  1210. return i ? i : PTR_ERR(page);
  1211. if (pages) {
  1212. pages[i] = page;
  1213. flush_anon_page(vma, page, start);
  1214. flush_dcache_page(page);
  1215. }
  1216. if (vmas)
  1217. vmas[i] = vma;
  1218. i++;
  1219. start += PAGE_SIZE;
  1220. nr_pages--;
  1221. } while (nr_pages && start < vma->vm_end);
  1222. } while (nr_pages);
  1223. return i;
  1224. }
  1225. /**
  1226. * get_user_pages() - pin user pages in memory
  1227. * @tsk: task_struct of target task
  1228. * @mm: mm_struct of target mm
  1229. * @start: starting user address
  1230. * @nr_pages: number of pages from start to pin
  1231. * @write: whether pages will be written to by the caller
  1232. * @force: whether to force write access even if user mapping is
  1233. * readonly. This will result in the page being COWed even
  1234. * in MAP_SHARED mappings. You do not want this.
  1235. * @pages: array that receives pointers to the pages pinned.
  1236. * Should be at least nr_pages long. Or NULL, if caller
  1237. * only intends to ensure the pages are faulted in.
  1238. * @vmas: array of pointers to vmas corresponding to each page.
  1239. * Or NULL if the caller does not require them.
  1240. *
  1241. * Returns number of pages pinned. This may be fewer than the number
  1242. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1243. * were pinned, returns -errno. Each page returned must be released
  1244. * with a put_page() call when it is finished with. vmas will only
  1245. * remain valid while mmap_sem is held.
  1246. *
  1247. * Must be called with mmap_sem held for read or write.
  1248. *
  1249. * get_user_pages walks a process's page tables and takes a reference to
  1250. * each struct page that each user address corresponds to at a given
  1251. * instant. That is, it takes the page that would be accessed if a user
  1252. * thread accesses the given user virtual address at that instant.
  1253. *
  1254. * This does not guarantee that the page exists in the user mappings when
  1255. * get_user_pages returns, and there may even be a completely different
  1256. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1257. * and subsequently re faulted). However it does guarantee that the page
  1258. * won't be freed completely. And mostly callers simply care that the page
  1259. * contains data that was valid *at some point in time*. Typically, an IO
  1260. * or similar operation cannot guarantee anything stronger anyway because
  1261. * locks can't be held over the syscall boundary.
  1262. *
  1263. * If write=0, the page must not be written to. If the page is written to,
  1264. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1265. * after the page is finished with, and before put_page is called.
  1266. *
  1267. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1268. * handle on the memory by some means other than accesses via the user virtual
  1269. * addresses. The pages may be submitted for DMA to devices or accessed via
  1270. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1271. * use the correct cache flushing APIs.
  1272. *
  1273. * See also get_user_pages_fast, for performance critical applications.
  1274. */
  1275. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1276. unsigned long start, int nr_pages, int write, int force,
  1277. struct page **pages, struct vm_area_struct **vmas)
  1278. {
  1279. int flags = 0;
  1280. if (write)
  1281. flags |= GUP_FLAGS_WRITE;
  1282. if (force)
  1283. flags |= GUP_FLAGS_FORCE;
  1284. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
  1285. }
  1286. EXPORT_SYMBOL(get_user_pages);
  1287. /**
  1288. * get_dump_page() - pin user page in memory while writing it to core dump
  1289. * @addr: user address
  1290. *
  1291. * Returns struct page pointer of user page pinned for dump,
  1292. * to be freed afterwards by page_cache_release() or put_page().
  1293. *
  1294. * Returns NULL on any kind of failure - a hole must then be inserted into
  1295. * the corefile, to preserve alignment with its headers; and also returns
  1296. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1297. * allowing a hole to be left in the corefile to save diskspace.
  1298. *
  1299. * Called without mmap_sem, but after all other threads have been killed.
  1300. */
  1301. #ifdef CONFIG_ELF_CORE
  1302. struct page *get_dump_page(unsigned long addr)
  1303. {
  1304. struct vm_area_struct *vma;
  1305. struct page *page;
  1306. if (__get_user_pages(current, current->mm, addr, 1,
  1307. GUP_FLAGS_FORCE | GUP_FLAGS_DUMP, &page, &vma) < 1)
  1308. return NULL;
  1309. if (page == ZERO_PAGE(0)) {
  1310. page_cache_release(page);
  1311. return NULL;
  1312. }
  1313. flush_cache_page(vma, addr, page_to_pfn(page));
  1314. return page;
  1315. }
  1316. #endif /* CONFIG_ELF_CORE */
  1317. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1318. spinlock_t **ptl)
  1319. {
  1320. pgd_t * pgd = pgd_offset(mm, addr);
  1321. pud_t * pud = pud_alloc(mm, pgd, addr);
  1322. if (pud) {
  1323. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1324. if (pmd)
  1325. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1326. }
  1327. return NULL;
  1328. }
  1329. /*
  1330. * This is the old fallback for page remapping.
  1331. *
  1332. * For historical reasons, it only allows reserved pages. Only
  1333. * old drivers should use this, and they needed to mark their
  1334. * pages reserved for the old functions anyway.
  1335. */
  1336. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1337. struct page *page, pgprot_t prot)
  1338. {
  1339. struct mm_struct *mm = vma->vm_mm;
  1340. int retval;
  1341. pte_t *pte;
  1342. spinlock_t *ptl;
  1343. retval = -EINVAL;
  1344. if (PageAnon(page))
  1345. goto out;
  1346. retval = -ENOMEM;
  1347. flush_dcache_page(page);
  1348. pte = get_locked_pte(mm, addr, &ptl);
  1349. if (!pte)
  1350. goto out;
  1351. retval = -EBUSY;
  1352. if (!pte_none(*pte))
  1353. goto out_unlock;
  1354. /* Ok, finally just insert the thing.. */
  1355. get_page(page);
  1356. inc_mm_counter(mm, file_rss);
  1357. page_add_file_rmap(page);
  1358. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1359. retval = 0;
  1360. pte_unmap_unlock(pte, ptl);
  1361. return retval;
  1362. out_unlock:
  1363. pte_unmap_unlock(pte, ptl);
  1364. out:
  1365. return retval;
  1366. }
  1367. /**
  1368. * vm_insert_page - insert single page into user vma
  1369. * @vma: user vma to map to
  1370. * @addr: target user address of this page
  1371. * @page: source kernel page
  1372. *
  1373. * This allows drivers to insert individual pages they've allocated
  1374. * into a user vma.
  1375. *
  1376. * The page has to be a nice clean _individual_ kernel allocation.
  1377. * If you allocate a compound page, you need to have marked it as
  1378. * such (__GFP_COMP), or manually just split the page up yourself
  1379. * (see split_page()).
  1380. *
  1381. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1382. * took an arbitrary page protection parameter. This doesn't allow
  1383. * that. Your vma protection will have to be set up correctly, which
  1384. * means that if you want a shared writable mapping, you'd better
  1385. * ask for a shared writable mapping!
  1386. *
  1387. * The page does not need to be reserved.
  1388. */
  1389. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1390. struct page *page)
  1391. {
  1392. if (addr < vma->vm_start || addr >= vma->vm_end)
  1393. return -EFAULT;
  1394. if (!page_count(page))
  1395. return -EINVAL;
  1396. vma->vm_flags |= VM_INSERTPAGE;
  1397. return insert_page(vma, addr, page, vma->vm_page_prot);
  1398. }
  1399. EXPORT_SYMBOL(vm_insert_page);
  1400. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1401. unsigned long pfn, pgprot_t prot)
  1402. {
  1403. struct mm_struct *mm = vma->vm_mm;
  1404. int retval;
  1405. pte_t *pte, entry;
  1406. spinlock_t *ptl;
  1407. retval = -ENOMEM;
  1408. pte = get_locked_pte(mm, addr, &ptl);
  1409. if (!pte)
  1410. goto out;
  1411. retval = -EBUSY;
  1412. if (!pte_none(*pte))
  1413. goto out_unlock;
  1414. /* Ok, finally just insert the thing.. */
  1415. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1416. set_pte_at(mm, addr, pte, entry);
  1417. update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
  1418. retval = 0;
  1419. out_unlock:
  1420. pte_unmap_unlock(pte, ptl);
  1421. out:
  1422. return retval;
  1423. }
  1424. /**
  1425. * vm_insert_pfn - insert single pfn into user vma
  1426. * @vma: user vma to map to
  1427. * @addr: target user address of this page
  1428. * @pfn: source kernel pfn
  1429. *
  1430. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1431. * they've allocated into a user vma. Same comments apply.
  1432. *
  1433. * This function should only be called from a vm_ops->fault handler, and
  1434. * in that case the handler should return NULL.
  1435. *
  1436. * vma cannot be a COW mapping.
  1437. *
  1438. * As this is called only for pages that do not currently exist, we
  1439. * do not need to flush old virtual caches or the TLB.
  1440. */
  1441. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1442. unsigned long pfn)
  1443. {
  1444. int ret;
  1445. pgprot_t pgprot = vma->vm_page_prot;
  1446. /*
  1447. * Technically, architectures with pte_special can avoid all these
  1448. * restrictions (same for remap_pfn_range). However we would like
  1449. * consistency in testing and feature parity among all, so we should
  1450. * try to keep these invariants in place for everybody.
  1451. */
  1452. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1453. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1454. (VM_PFNMAP|VM_MIXEDMAP));
  1455. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1456. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1457. if (addr < vma->vm_start || addr >= vma->vm_end)
  1458. return -EFAULT;
  1459. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1460. return -EINVAL;
  1461. ret = insert_pfn(vma, addr, pfn, pgprot);
  1462. if (ret)
  1463. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1464. return ret;
  1465. }
  1466. EXPORT_SYMBOL(vm_insert_pfn);
  1467. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1468. unsigned long pfn)
  1469. {
  1470. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1471. if (addr < vma->vm_start || addr >= vma->vm_end)
  1472. return -EFAULT;
  1473. /*
  1474. * If we don't have pte special, then we have to use the pfn_valid()
  1475. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1476. * refcount the page if pfn_valid is true (hence insert_page rather
  1477. * than insert_pfn).
  1478. */
  1479. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1480. struct page *page;
  1481. page = pfn_to_page(pfn);
  1482. return insert_page(vma, addr, page, vma->vm_page_prot);
  1483. }
  1484. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1485. }
  1486. EXPORT_SYMBOL(vm_insert_mixed);
  1487. /*
  1488. * maps a range of physical memory into the requested pages. the old
  1489. * mappings are removed. any references to nonexistent pages results
  1490. * in null mappings (currently treated as "copy-on-access")
  1491. */
  1492. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1493. unsigned long addr, unsigned long end,
  1494. unsigned long pfn, pgprot_t prot)
  1495. {
  1496. pte_t *pte;
  1497. spinlock_t *ptl;
  1498. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1499. if (!pte)
  1500. return -ENOMEM;
  1501. arch_enter_lazy_mmu_mode();
  1502. do {
  1503. BUG_ON(!pte_none(*pte));
  1504. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1505. pfn++;
  1506. } while (pte++, addr += PAGE_SIZE, addr != end);
  1507. arch_leave_lazy_mmu_mode();
  1508. pte_unmap_unlock(pte - 1, ptl);
  1509. return 0;
  1510. }
  1511. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1512. unsigned long addr, unsigned long end,
  1513. unsigned long pfn, pgprot_t prot)
  1514. {
  1515. pmd_t *pmd;
  1516. unsigned long next;
  1517. pfn -= addr >> PAGE_SHIFT;
  1518. pmd = pmd_alloc(mm, pud, addr);
  1519. if (!pmd)
  1520. return -ENOMEM;
  1521. do {
  1522. next = pmd_addr_end(addr, end);
  1523. if (remap_pte_range(mm, pmd, addr, next,
  1524. pfn + (addr >> PAGE_SHIFT), prot))
  1525. return -ENOMEM;
  1526. } while (pmd++, addr = next, addr != end);
  1527. return 0;
  1528. }
  1529. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1530. unsigned long addr, unsigned long end,
  1531. unsigned long pfn, pgprot_t prot)
  1532. {
  1533. pud_t *pud;
  1534. unsigned long next;
  1535. pfn -= addr >> PAGE_SHIFT;
  1536. pud = pud_alloc(mm, pgd, addr);
  1537. if (!pud)
  1538. return -ENOMEM;
  1539. do {
  1540. next = pud_addr_end(addr, end);
  1541. if (remap_pmd_range(mm, pud, addr, next,
  1542. pfn + (addr >> PAGE_SHIFT), prot))
  1543. return -ENOMEM;
  1544. } while (pud++, addr = next, addr != end);
  1545. return 0;
  1546. }
  1547. /**
  1548. * remap_pfn_range - remap kernel memory to userspace
  1549. * @vma: user vma to map to
  1550. * @addr: target user address to start at
  1551. * @pfn: physical address of kernel memory
  1552. * @size: size of map area
  1553. * @prot: page protection flags for this mapping
  1554. *
  1555. * Note: this is only safe if the mm semaphore is held when called.
  1556. */
  1557. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1558. unsigned long pfn, unsigned long size, pgprot_t prot)
  1559. {
  1560. pgd_t *pgd;
  1561. unsigned long next;
  1562. unsigned long end = addr + PAGE_ALIGN(size);
  1563. struct mm_struct *mm = vma->vm_mm;
  1564. int err;
  1565. /*
  1566. * Physically remapped pages are special. Tell the
  1567. * rest of the world about it:
  1568. * VM_IO tells people not to look at these pages
  1569. * (accesses can have side effects).
  1570. * VM_RESERVED is specified all over the place, because
  1571. * in 2.4 it kept swapout's vma scan off this vma; but
  1572. * in 2.6 the LRU scan won't even find its pages, so this
  1573. * flag means no more than count its pages in reserved_vm,
  1574. * and omit it from core dump, even when VM_IO turned off.
  1575. * VM_PFNMAP tells the core MM that the base pages are just
  1576. * raw PFN mappings, and do not have a "struct page" associated
  1577. * with them.
  1578. *
  1579. * There's a horrible special case to handle copy-on-write
  1580. * behaviour that some programs depend on. We mark the "original"
  1581. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1582. */
  1583. if (addr == vma->vm_start && end == vma->vm_end) {
  1584. vma->vm_pgoff = pfn;
  1585. vma->vm_flags |= VM_PFN_AT_MMAP;
  1586. } else if (is_cow_mapping(vma->vm_flags))
  1587. return -EINVAL;
  1588. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1589. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1590. if (err) {
  1591. /*
  1592. * To indicate that track_pfn related cleanup is not
  1593. * needed from higher level routine calling unmap_vmas
  1594. */
  1595. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1596. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1597. return -EINVAL;
  1598. }
  1599. BUG_ON(addr >= end);
  1600. pfn -= addr >> PAGE_SHIFT;
  1601. pgd = pgd_offset(mm, addr);
  1602. flush_cache_range(vma, addr, end);
  1603. do {
  1604. next = pgd_addr_end(addr, end);
  1605. err = remap_pud_range(mm, pgd, addr, next,
  1606. pfn + (addr >> PAGE_SHIFT), prot);
  1607. if (err)
  1608. break;
  1609. } while (pgd++, addr = next, addr != end);
  1610. if (err)
  1611. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1612. return err;
  1613. }
  1614. EXPORT_SYMBOL(remap_pfn_range);
  1615. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1616. unsigned long addr, unsigned long end,
  1617. pte_fn_t fn, void *data)
  1618. {
  1619. pte_t *pte;
  1620. int err;
  1621. pgtable_t token;
  1622. spinlock_t *uninitialized_var(ptl);
  1623. pte = (mm == &init_mm) ?
  1624. pte_alloc_kernel(pmd, addr) :
  1625. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1626. if (!pte)
  1627. return -ENOMEM;
  1628. BUG_ON(pmd_huge(*pmd));
  1629. arch_enter_lazy_mmu_mode();
  1630. token = pmd_pgtable(*pmd);
  1631. do {
  1632. err = fn(pte, token, addr, data);
  1633. if (err)
  1634. break;
  1635. } while (pte++, addr += PAGE_SIZE, addr != end);
  1636. arch_leave_lazy_mmu_mode();
  1637. if (mm != &init_mm)
  1638. pte_unmap_unlock(pte-1, ptl);
  1639. return err;
  1640. }
  1641. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1642. unsigned long addr, unsigned long end,
  1643. pte_fn_t fn, void *data)
  1644. {
  1645. pmd_t *pmd;
  1646. unsigned long next;
  1647. int err;
  1648. BUG_ON(pud_huge(*pud));
  1649. pmd = pmd_alloc(mm, pud, addr);
  1650. if (!pmd)
  1651. return -ENOMEM;
  1652. do {
  1653. next = pmd_addr_end(addr, end);
  1654. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1655. if (err)
  1656. break;
  1657. } while (pmd++, addr = next, addr != end);
  1658. return err;
  1659. }
  1660. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1661. unsigned long addr, unsigned long end,
  1662. pte_fn_t fn, void *data)
  1663. {
  1664. pud_t *pud;
  1665. unsigned long next;
  1666. int err;
  1667. pud = pud_alloc(mm, pgd, addr);
  1668. if (!pud)
  1669. return -ENOMEM;
  1670. do {
  1671. next = pud_addr_end(addr, end);
  1672. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1673. if (err)
  1674. break;
  1675. } while (pud++, addr = next, addr != end);
  1676. return err;
  1677. }
  1678. /*
  1679. * Scan a region of virtual memory, filling in page tables as necessary
  1680. * and calling a provided function on each leaf page table.
  1681. */
  1682. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1683. unsigned long size, pte_fn_t fn, void *data)
  1684. {
  1685. pgd_t *pgd;
  1686. unsigned long next;
  1687. unsigned long start = addr, end = addr + size;
  1688. int err;
  1689. BUG_ON(addr >= end);
  1690. mmu_notifier_invalidate_range_start(mm, start, end);
  1691. pgd = pgd_offset(mm, addr);
  1692. do {
  1693. next = pgd_addr_end(addr, end);
  1694. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1695. if (err)
  1696. break;
  1697. } while (pgd++, addr = next, addr != end);
  1698. mmu_notifier_invalidate_range_end(mm, start, end);
  1699. return err;
  1700. }
  1701. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1702. /*
  1703. * handle_pte_fault chooses page fault handler according to an entry
  1704. * which was read non-atomically. Before making any commitment, on
  1705. * those architectures or configurations (e.g. i386 with PAE) which
  1706. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1707. * must check under lock before unmapping the pte and proceeding
  1708. * (but do_wp_page is only called after already making such a check;
  1709. * and do_anonymous_page and do_no_page can safely check later on).
  1710. */
  1711. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1712. pte_t *page_table, pte_t orig_pte)
  1713. {
  1714. int same = 1;
  1715. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1716. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1717. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1718. spin_lock(ptl);
  1719. same = pte_same(*page_table, orig_pte);
  1720. spin_unlock(ptl);
  1721. }
  1722. #endif
  1723. pte_unmap(page_table);
  1724. return same;
  1725. }
  1726. /*
  1727. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1728. * servicing faults for write access. In the normal case, do always want
  1729. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1730. * that do not have writing enabled, when used by access_process_vm.
  1731. */
  1732. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1733. {
  1734. if (likely(vma->vm_flags & VM_WRITE))
  1735. pte = pte_mkwrite(pte);
  1736. return pte;
  1737. }
  1738. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1739. {
  1740. /*
  1741. * If the source page was a PFN mapping, we don't have
  1742. * a "struct page" for it. We do a best-effort copy by
  1743. * just copying from the original user address. If that
  1744. * fails, we just zero-fill it. Live with it.
  1745. */
  1746. if (unlikely(!src)) {
  1747. void *kaddr = kmap_atomic(dst, KM_USER0);
  1748. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1749. /*
  1750. * This really shouldn't fail, because the page is there
  1751. * in the page tables. But it might just be unreadable,
  1752. * in which case we just give up and fill the result with
  1753. * zeroes.
  1754. */
  1755. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1756. memset(kaddr, 0, PAGE_SIZE);
  1757. kunmap_atomic(kaddr, KM_USER0);
  1758. flush_dcache_page(dst);
  1759. } else
  1760. copy_user_highpage(dst, src, va, vma);
  1761. }
  1762. /*
  1763. * This routine handles present pages, when users try to write
  1764. * to a shared page. It is done by copying the page to a new address
  1765. * and decrementing the shared-page counter for the old page.
  1766. *
  1767. * Note that this routine assumes that the protection checks have been
  1768. * done by the caller (the low-level page fault routine in most cases).
  1769. * Thus we can safely just mark it writable once we've done any necessary
  1770. * COW.
  1771. *
  1772. * We also mark the page dirty at this point even though the page will
  1773. * change only once the write actually happens. This avoids a few races,
  1774. * and potentially makes it more efficient.
  1775. *
  1776. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1777. * but allow concurrent faults), with pte both mapped and locked.
  1778. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1779. */
  1780. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1781. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1782. spinlock_t *ptl, pte_t orig_pte)
  1783. {
  1784. struct page *old_page, *new_page;
  1785. pte_t entry;
  1786. int reuse = 0, ret = 0;
  1787. int page_mkwrite = 0;
  1788. struct page *dirty_page = NULL;
  1789. old_page = vm_normal_page(vma, address, orig_pte);
  1790. if (!old_page) {
  1791. /*
  1792. * VM_MIXEDMAP !pfn_valid() case
  1793. *
  1794. * We should not cow pages in a shared writeable mapping.
  1795. * Just mark the pages writable as we can't do any dirty
  1796. * accounting on raw pfn maps.
  1797. */
  1798. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1799. (VM_WRITE|VM_SHARED))
  1800. goto reuse;
  1801. goto gotten;
  1802. }
  1803. /*
  1804. * Take out anonymous pages first, anonymous shared vmas are
  1805. * not dirty accountable.
  1806. */
  1807. if (PageAnon(old_page) && !PageKsm(old_page)) {
  1808. if (!trylock_page(old_page)) {
  1809. page_cache_get(old_page);
  1810. pte_unmap_unlock(page_table, ptl);
  1811. lock_page(old_page);
  1812. page_table = pte_offset_map_lock(mm, pmd, address,
  1813. &ptl);
  1814. if (!pte_same(*page_table, orig_pte)) {
  1815. unlock_page(old_page);
  1816. page_cache_release(old_page);
  1817. goto unlock;
  1818. }
  1819. page_cache_release(old_page);
  1820. }
  1821. reuse = reuse_swap_page(old_page);
  1822. unlock_page(old_page);
  1823. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1824. (VM_WRITE|VM_SHARED))) {
  1825. /*
  1826. * Only catch write-faults on shared writable pages,
  1827. * read-only shared pages can get COWed by
  1828. * get_user_pages(.write=1, .force=1).
  1829. */
  1830. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1831. struct vm_fault vmf;
  1832. int tmp;
  1833. vmf.virtual_address = (void __user *)(address &
  1834. PAGE_MASK);
  1835. vmf.pgoff = old_page->index;
  1836. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1837. vmf.page = old_page;
  1838. /*
  1839. * Notify the address space that the page is about to
  1840. * become writable so that it can prohibit this or wait
  1841. * for the page to get into an appropriate state.
  1842. *
  1843. * We do this without the lock held, so that it can
  1844. * sleep if it needs to.
  1845. */
  1846. page_cache_get(old_page);
  1847. pte_unmap_unlock(page_table, ptl);
  1848. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  1849. if (unlikely(tmp &
  1850. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  1851. ret = tmp;
  1852. goto unwritable_page;
  1853. }
  1854. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  1855. lock_page(old_page);
  1856. if (!old_page->mapping) {
  1857. ret = 0; /* retry the fault */
  1858. unlock_page(old_page);
  1859. goto unwritable_page;
  1860. }
  1861. } else
  1862. VM_BUG_ON(!PageLocked(old_page));
  1863. /*
  1864. * Since we dropped the lock we need to revalidate
  1865. * the PTE as someone else may have changed it. If
  1866. * they did, we just return, as we can count on the
  1867. * MMU to tell us if they didn't also make it writable.
  1868. */
  1869. page_table = pte_offset_map_lock(mm, pmd, address,
  1870. &ptl);
  1871. if (!pte_same(*page_table, orig_pte)) {
  1872. unlock_page(old_page);
  1873. page_cache_release(old_page);
  1874. goto unlock;
  1875. }
  1876. page_mkwrite = 1;
  1877. }
  1878. dirty_page = old_page;
  1879. get_page(dirty_page);
  1880. reuse = 1;
  1881. }
  1882. if (reuse) {
  1883. reuse:
  1884. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1885. entry = pte_mkyoung(orig_pte);
  1886. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1887. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1888. update_mmu_cache(vma, address, entry);
  1889. ret |= VM_FAULT_WRITE;
  1890. goto unlock;
  1891. }
  1892. /*
  1893. * Ok, we need to copy. Oh, well..
  1894. */
  1895. page_cache_get(old_page);
  1896. gotten:
  1897. pte_unmap_unlock(page_table, ptl);
  1898. if (unlikely(anon_vma_prepare(vma)))
  1899. goto oom;
  1900. if (pte_pfn(orig_pte) == zero_pfn) {
  1901. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  1902. if (!new_page)
  1903. goto oom;
  1904. } else {
  1905. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1906. if (!new_page)
  1907. goto oom;
  1908. cow_user_page(new_page, old_page, address, vma);
  1909. }
  1910. __SetPageUptodate(new_page);
  1911. /*
  1912. * Don't let another task, with possibly unlocked vma,
  1913. * keep the mlocked page.
  1914. */
  1915. if ((vma->vm_flags & VM_LOCKED) && old_page) {
  1916. lock_page(old_page); /* for LRU manipulation */
  1917. clear_page_mlock(old_page);
  1918. unlock_page(old_page);
  1919. }
  1920. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  1921. goto oom_free_new;
  1922. /*
  1923. * Re-check the pte - we dropped the lock
  1924. */
  1925. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1926. if (likely(pte_same(*page_table, orig_pte))) {
  1927. if (old_page) {
  1928. if (!PageAnon(old_page)) {
  1929. dec_mm_counter(mm, file_rss);
  1930. inc_mm_counter(mm, anon_rss);
  1931. }
  1932. } else
  1933. inc_mm_counter(mm, anon_rss);
  1934. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1935. entry = mk_pte(new_page, vma->vm_page_prot);
  1936. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1937. /*
  1938. * Clear the pte entry and flush it first, before updating the
  1939. * pte with the new entry. This will avoid a race condition
  1940. * seen in the presence of one thread doing SMC and another
  1941. * thread doing COW.
  1942. */
  1943. ptep_clear_flush(vma, address, page_table);
  1944. page_add_new_anon_rmap(new_page, vma, address);
  1945. /*
  1946. * We call the notify macro here because, when using secondary
  1947. * mmu page tables (such as kvm shadow page tables), we want the
  1948. * new page to be mapped directly into the secondary page table.
  1949. */
  1950. set_pte_at_notify(mm, address, page_table, entry);
  1951. update_mmu_cache(vma, address, entry);
  1952. if (old_page) {
  1953. /*
  1954. * Only after switching the pte to the new page may
  1955. * we remove the mapcount here. Otherwise another
  1956. * process may come and find the rmap count decremented
  1957. * before the pte is switched to the new page, and
  1958. * "reuse" the old page writing into it while our pte
  1959. * here still points into it and can be read by other
  1960. * threads.
  1961. *
  1962. * The critical issue is to order this
  1963. * page_remove_rmap with the ptp_clear_flush above.
  1964. * Those stores are ordered by (if nothing else,)
  1965. * the barrier present in the atomic_add_negative
  1966. * in page_remove_rmap.
  1967. *
  1968. * Then the TLB flush in ptep_clear_flush ensures that
  1969. * no process can access the old page before the
  1970. * decremented mapcount is visible. And the old page
  1971. * cannot be reused until after the decremented
  1972. * mapcount is visible. So transitively, TLBs to
  1973. * old page will be flushed before it can be reused.
  1974. */
  1975. page_remove_rmap(old_page);
  1976. }
  1977. /* Free the old page.. */
  1978. new_page = old_page;
  1979. ret |= VM_FAULT_WRITE;
  1980. } else
  1981. mem_cgroup_uncharge_page(new_page);
  1982. if (new_page)
  1983. page_cache_release(new_page);
  1984. if (old_page)
  1985. page_cache_release(old_page);
  1986. unlock:
  1987. pte_unmap_unlock(page_table, ptl);
  1988. if (dirty_page) {
  1989. /*
  1990. * Yes, Virginia, this is actually required to prevent a race
  1991. * with clear_page_dirty_for_io() from clearing the page dirty
  1992. * bit after it clear all dirty ptes, but before a racing
  1993. * do_wp_page installs a dirty pte.
  1994. *
  1995. * do_no_page is protected similarly.
  1996. */
  1997. if (!page_mkwrite) {
  1998. wait_on_page_locked(dirty_page);
  1999. set_page_dirty_balance(dirty_page, page_mkwrite);
  2000. }
  2001. put_page(dirty_page);
  2002. if (page_mkwrite) {
  2003. struct address_space *mapping = dirty_page->mapping;
  2004. set_page_dirty(dirty_page);
  2005. unlock_page(dirty_page);
  2006. page_cache_release(dirty_page);
  2007. if (mapping) {
  2008. /*
  2009. * Some device drivers do not set page.mapping
  2010. * but still dirty their pages
  2011. */
  2012. balance_dirty_pages_ratelimited(mapping);
  2013. }
  2014. }
  2015. /* file_update_time outside page_lock */
  2016. if (vma->vm_file)
  2017. file_update_time(vma->vm_file);
  2018. }
  2019. return ret;
  2020. oom_free_new:
  2021. page_cache_release(new_page);
  2022. oom:
  2023. if (old_page) {
  2024. if (page_mkwrite) {
  2025. unlock_page(old_page);
  2026. page_cache_release(old_page);
  2027. }
  2028. page_cache_release(old_page);
  2029. }
  2030. return VM_FAULT_OOM;
  2031. unwritable_page:
  2032. page_cache_release(old_page);
  2033. return ret;
  2034. }
  2035. /*
  2036. * Helper functions for unmap_mapping_range().
  2037. *
  2038. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2039. *
  2040. * We have to restart searching the prio_tree whenever we drop the lock,
  2041. * since the iterator is only valid while the lock is held, and anyway
  2042. * a later vma might be split and reinserted earlier while lock dropped.
  2043. *
  2044. * The list of nonlinear vmas could be handled more efficiently, using
  2045. * a placeholder, but handle it in the same way until a need is shown.
  2046. * It is important to search the prio_tree before nonlinear list: a vma
  2047. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2048. * while the lock is dropped; but never shifted from list to prio_tree.
  2049. *
  2050. * In order to make forward progress despite restarting the search,
  2051. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2052. * quickly skip it next time around. Since the prio_tree search only
  2053. * shows us those vmas affected by unmapping the range in question, we
  2054. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2055. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2056. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2057. * i_mmap_lock.
  2058. *
  2059. * In order to make forward progress despite repeatedly restarting some
  2060. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2061. * and restart from that address when we reach that vma again. It might
  2062. * have been split or merged, shrunk or extended, but never shifted: so
  2063. * restart_addr remains valid so long as it remains in the vma's range.
  2064. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2065. * values so we can save vma's restart_addr in its truncate_count field.
  2066. */
  2067. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2068. static void reset_vma_truncate_counts(struct address_space *mapping)
  2069. {
  2070. struct vm_area_struct *vma;
  2071. struct prio_tree_iter iter;
  2072. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2073. vma->vm_truncate_count = 0;
  2074. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2075. vma->vm_truncate_count = 0;
  2076. }
  2077. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2078. unsigned long start_addr, unsigned long end_addr,
  2079. struct zap_details *details)
  2080. {
  2081. unsigned long restart_addr;
  2082. int need_break;
  2083. /*
  2084. * files that support invalidating or truncating portions of the
  2085. * file from under mmaped areas must have their ->fault function
  2086. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2087. * This provides synchronisation against concurrent unmapping here.
  2088. */
  2089. again:
  2090. restart_addr = vma->vm_truncate_count;
  2091. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2092. start_addr = restart_addr;
  2093. if (start_addr >= end_addr) {
  2094. /* Top of vma has been split off since last time */
  2095. vma->vm_truncate_count = details->truncate_count;
  2096. return 0;
  2097. }
  2098. }
  2099. restart_addr = zap_page_range(vma, start_addr,
  2100. end_addr - start_addr, details);
  2101. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2102. if (restart_addr >= end_addr) {
  2103. /* We have now completed this vma: mark it so */
  2104. vma->vm_truncate_count = details->truncate_count;
  2105. if (!need_break)
  2106. return 0;
  2107. } else {
  2108. /* Note restart_addr in vma's truncate_count field */
  2109. vma->vm_truncate_count = restart_addr;
  2110. if (!need_break)
  2111. goto again;
  2112. }
  2113. spin_unlock(details->i_mmap_lock);
  2114. cond_resched();
  2115. spin_lock(details->i_mmap_lock);
  2116. return -EINTR;
  2117. }
  2118. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2119. struct zap_details *details)
  2120. {
  2121. struct vm_area_struct *vma;
  2122. struct prio_tree_iter iter;
  2123. pgoff_t vba, vea, zba, zea;
  2124. restart:
  2125. vma_prio_tree_foreach(vma, &iter, root,
  2126. details->first_index, details->last_index) {
  2127. /* Skip quickly over those we have already dealt with */
  2128. if (vma->vm_truncate_count == details->truncate_count)
  2129. continue;
  2130. vba = vma->vm_pgoff;
  2131. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2132. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2133. zba = details->first_index;
  2134. if (zba < vba)
  2135. zba = vba;
  2136. zea = details->last_index;
  2137. if (zea > vea)
  2138. zea = vea;
  2139. if (unmap_mapping_range_vma(vma,
  2140. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2141. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2142. details) < 0)
  2143. goto restart;
  2144. }
  2145. }
  2146. static inline void unmap_mapping_range_list(struct list_head *head,
  2147. struct zap_details *details)
  2148. {
  2149. struct vm_area_struct *vma;
  2150. /*
  2151. * In nonlinear VMAs there is no correspondence between virtual address
  2152. * offset and file offset. So we must perform an exhaustive search
  2153. * across *all* the pages in each nonlinear VMA, not just the pages
  2154. * whose virtual address lies outside the file truncation point.
  2155. */
  2156. restart:
  2157. list_for_each_entry(vma, head, shared.vm_set.list) {
  2158. /* Skip quickly over those we have already dealt with */
  2159. if (vma->vm_truncate_count == details->truncate_count)
  2160. continue;
  2161. details->nonlinear_vma = vma;
  2162. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2163. vma->vm_end, details) < 0)
  2164. goto restart;
  2165. }
  2166. }
  2167. /**
  2168. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2169. * @mapping: the address space containing mmaps to be unmapped.
  2170. * @holebegin: byte in first page to unmap, relative to the start of
  2171. * the underlying file. This will be rounded down to a PAGE_SIZE
  2172. * boundary. Note that this is different from vmtruncate(), which
  2173. * must keep the partial page. In contrast, we must get rid of
  2174. * partial pages.
  2175. * @holelen: size of prospective hole in bytes. This will be rounded
  2176. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2177. * end of the file.
  2178. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2179. * but 0 when invalidating pagecache, don't throw away private data.
  2180. */
  2181. void unmap_mapping_range(struct address_space *mapping,
  2182. loff_t const holebegin, loff_t const holelen, int even_cows)
  2183. {
  2184. struct zap_details details;
  2185. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2186. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2187. /* Check for overflow. */
  2188. if (sizeof(holelen) > sizeof(hlen)) {
  2189. long long holeend =
  2190. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2191. if (holeend & ~(long long)ULONG_MAX)
  2192. hlen = ULONG_MAX - hba + 1;
  2193. }
  2194. details.check_mapping = even_cows? NULL: mapping;
  2195. details.nonlinear_vma = NULL;
  2196. details.first_index = hba;
  2197. details.last_index = hba + hlen - 1;
  2198. if (details.last_index < details.first_index)
  2199. details.last_index = ULONG_MAX;
  2200. details.i_mmap_lock = &mapping->i_mmap_lock;
  2201. spin_lock(&mapping->i_mmap_lock);
  2202. /* Protect against endless unmapping loops */
  2203. mapping->truncate_count++;
  2204. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2205. if (mapping->truncate_count == 0)
  2206. reset_vma_truncate_counts(mapping);
  2207. mapping->truncate_count++;
  2208. }
  2209. details.truncate_count = mapping->truncate_count;
  2210. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2211. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2212. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2213. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2214. spin_unlock(&mapping->i_mmap_lock);
  2215. }
  2216. EXPORT_SYMBOL(unmap_mapping_range);
  2217. /**
  2218. * vmtruncate - unmap mappings "freed" by truncate() syscall
  2219. * @inode: inode of the file used
  2220. * @offset: file offset to start truncating
  2221. *
  2222. * NOTE! We have to be ready to update the memory sharing
  2223. * between the file and the memory map for a potential last
  2224. * incomplete page. Ugly, but necessary.
  2225. */
  2226. int vmtruncate(struct inode * inode, loff_t offset)
  2227. {
  2228. if (inode->i_size < offset) {
  2229. unsigned long limit;
  2230. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  2231. if (limit != RLIM_INFINITY && offset > limit)
  2232. goto out_sig;
  2233. if (offset > inode->i_sb->s_maxbytes)
  2234. goto out_big;
  2235. i_size_write(inode, offset);
  2236. } else {
  2237. struct address_space *mapping = inode->i_mapping;
  2238. /*
  2239. * truncation of in-use swapfiles is disallowed - it would
  2240. * cause subsequent swapout to scribble on the now-freed
  2241. * blocks.
  2242. */
  2243. if (IS_SWAPFILE(inode))
  2244. return -ETXTBSY;
  2245. i_size_write(inode, offset);
  2246. /*
  2247. * unmap_mapping_range is called twice, first simply for
  2248. * efficiency so that truncate_inode_pages does fewer
  2249. * single-page unmaps. However after this first call, and
  2250. * before truncate_inode_pages finishes, it is possible for
  2251. * private pages to be COWed, which remain after
  2252. * truncate_inode_pages finishes, hence the second
  2253. * unmap_mapping_range call must be made for correctness.
  2254. */
  2255. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2256. truncate_inode_pages(mapping, offset);
  2257. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2258. }
  2259. if (inode->i_op->truncate)
  2260. inode->i_op->truncate(inode);
  2261. return 0;
  2262. out_sig:
  2263. send_sig(SIGXFSZ, current, 0);
  2264. out_big:
  2265. return -EFBIG;
  2266. }
  2267. EXPORT_SYMBOL(vmtruncate);
  2268. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2269. {
  2270. struct address_space *mapping = inode->i_mapping;
  2271. /*
  2272. * If the underlying filesystem is not going to provide
  2273. * a way to truncate a range of blocks (punch a hole) -
  2274. * we should return failure right now.
  2275. */
  2276. if (!inode->i_op->truncate_range)
  2277. return -ENOSYS;
  2278. mutex_lock(&inode->i_mutex);
  2279. down_write(&inode->i_alloc_sem);
  2280. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2281. truncate_inode_pages_range(mapping, offset, end);
  2282. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2283. inode->i_op->truncate_range(inode, offset, end);
  2284. up_write(&inode->i_alloc_sem);
  2285. mutex_unlock(&inode->i_mutex);
  2286. return 0;
  2287. }
  2288. /*
  2289. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2290. * but allow concurrent faults), and pte mapped but not yet locked.
  2291. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2292. */
  2293. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2294. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2295. unsigned int flags, pte_t orig_pte)
  2296. {
  2297. spinlock_t *ptl;
  2298. struct page *page;
  2299. swp_entry_t entry;
  2300. pte_t pte;
  2301. struct mem_cgroup *ptr = NULL;
  2302. int ret = 0;
  2303. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2304. goto out;
  2305. entry = pte_to_swp_entry(orig_pte);
  2306. if (is_migration_entry(entry)) {
  2307. migration_entry_wait(mm, pmd, address);
  2308. goto out;
  2309. }
  2310. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2311. page = lookup_swap_cache(entry);
  2312. if (!page) {
  2313. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2314. page = swapin_readahead(entry,
  2315. GFP_HIGHUSER_MOVABLE, vma, address);
  2316. if (!page) {
  2317. /*
  2318. * Back out if somebody else faulted in this pte
  2319. * while we released the pte lock.
  2320. */
  2321. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2322. if (likely(pte_same(*page_table, orig_pte)))
  2323. ret = VM_FAULT_OOM;
  2324. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2325. goto unlock;
  2326. }
  2327. /* Had to read the page from swap area: Major fault */
  2328. ret = VM_FAULT_MAJOR;
  2329. count_vm_event(PGMAJFAULT);
  2330. }
  2331. lock_page(page);
  2332. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2333. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2334. ret = VM_FAULT_OOM;
  2335. goto out_page;
  2336. }
  2337. /*
  2338. * Back out if somebody else already faulted in this pte.
  2339. */
  2340. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2341. if (unlikely(!pte_same(*page_table, orig_pte)))
  2342. goto out_nomap;
  2343. if (unlikely(!PageUptodate(page))) {
  2344. ret = VM_FAULT_SIGBUS;
  2345. goto out_nomap;
  2346. }
  2347. /*
  2348. * The page isn't present yet, go ahead with the fault.
  2349. *
  2350. * Be careful about the sequence of operations here.
  2351. * To get its accounting right, reuse_swap_page() must be called
  2352. * while the page is counted on swap but not yet in mapcount i.e.
  2353. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2354. * must be called after the swap_free(), or it will never succeed.
  2355. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2356. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2357. * in page->private. In this case, a record in swap_cgroup is silently
  2358. * discarded at swap_free().
  2359. */
  2360. inc_mm_counter(mm, anon_rss);
  2361. pte = mk_pte(page, vma->vm_page_prot);
  2362. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2363. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2364. flags &= ~FAULT_FLAG_WRITE;
  2365. }
  2366. flush_icache_page(vma, page);
  2367. set_pte_at(mm, address, page_table, pte);
  2368. page_add_anon_rmap(page, vma, address);
  2369. /* It's better to call commit-charge after rmap is established */
  2370. mem_cgroup_commit_charge_swapin(page, ptr);
  2371. swap_free(entry);
  2372. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2373. try_to_free_swap(page);
  2374. unlock_page(page);
  2375. if (flags & FAULT_FLAG_WRITE) {
  2376. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2377. if (ret & VM_FAULT_ERROR)
  2378. ret &= VM_FAULT_ERROR;
  2379. goto out;
  2380. }
  2381. /* No need to invalidate - it was non-present before */
  2382. update_mmu_cache(vma, address, pte);
  2383. unlock:
  2384. pte_unmap_unlock(page_table, ptl);
  2385. out:
  2386. return ret;
  2387. out_nomap:
  2388. mem_cgroup_cancel_charge_swapin(ptr);
  2389. pte_unmap_unlock(page_table, ptl);
  2390. out_page:
  2391. unlock_page(page);
  2392. page_cache_release(page);
  2393. return ret;
  2394. }
  2395. /*
  2396. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2397. * but allow concurrent faults), and pte mapped but not yet locked.
  2398. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2399. */
  2400. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2401. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2402. unsigned int flags)
  2403. {
  2404. struct page *page;
  2405. spinlock_t *ptl;
  2406. pte_t entry;
  2407. if (HAVE_PTE_SPECIAL && !(flags & FAULT_FLAG_WRITE)) {
  2408. entry = pte_mkspecial(pfn_pte(zero_pfn, vma->vm_page_prot));
  2409. ptl = pte_lockptr(mm, pmd);
  2410. spin_lock(ptl);
  2411. if (!pte_none(*page_table))
  2412. goto unlock;
  2413. goto setpte;
  2414. }
  2415. /* Allocate our own private page. */
  2416. pte_unmap(page_table);
  2417. if (unlikely(anon_vma_prepare(vma)))
  2418. goto oom;
  2419. page = alloc_zeroed_user_highpage_movable(vma, address);
  2420. if (!page)
  2421. goto oom;
  2422. __SetPageUptodate(page);
  2423. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2424. goto oom_free_page;
  2425. entry = mk_pte(page, vma->vm_page_prot);
  2426. if (vma->vm_flags & VM_WRITE)
  2427. entry = pte_mkwrite(pte_mkdirty(entry));
  2428. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2429. if (!pte_none(*page_table))
  2430. goto release;
  2431. inc_mm_counter(mm, anon_rss);
  2432. page_add_new_anon_rmap(page, vma, address);
  2433. setpte:
  2434. set_pte_at(mm, address, page_table, entry);
  2435. /* No need to invalidate - it was non-present before */
  2436. update_mmu_cache(vma, address, entry);
  2437. unlock:
  2438. pte_unmap_unlock(page_table, ptl);
  2439. return 0;
  2440. release:
  2441. mem_cgroup_uncharge_page(page);
  2442. page_cache_release(page);
  2443. goto unlock;
  2444. oom_free_page:
  2445. page_cache_release(page);
  2446. oom:
  2447. return VM_FAULT_OOM;
  2448. }
  2449. /*
  2450. * __do_fault() tries to create a new page mapping. It aggressively
  2451. * tries to share with existing pages, but makes a separate copy if
  2452. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2453. * the next page fault.
  2454. *
  2455. * As this is called only for pages that do not currently exist, we
  2456. * do not need to flush old virtual caches or the TLB.
  2457. *
  2458. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2459. * but allow concurrent faults), and pte neither mapped nor locked.
  2460. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2461. */
  2462. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2463. unsigned long address, pmd_t *pmd,
  2464. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2465. {
  2466. pte_t *page_table;
  2467. spinlock_t *ptl;
  2468. struct page *page;
  2469. pte_t entry;
  2470. int anon = 0;
  2471. int charged = 0;
  2472. struct page *dirty_page = NULL;
  2473. struct vm_fault vmf;
  2474. int ret;
  2475. int page_mkwrite = 0;
  2476. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2477. vmf.pgoff = pgoff;
  2478. vmf.flags = flags;
  2479. vmf.page = NULL;
  2480. ret = vma->vm_ops->fault(vma, &vmf);
  2481. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2482. return ret;
  2483. /*
  2484. * For consistency in subsequent calls, make the faulted page always
  2485. * locked.
  2486. */
  2487. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2488. lock_page(vmf.page);
  2489. else
  2490. VM_BUG_ON(!PageLocked(vmf.page));
  2491. /*
  2492. * Should we do an early C-O-W break?
  2493. */
  2494. page = vmf.page;
  2495. if (flags & FAULT_FLAG_WRITE) {
  2496. if (!(vma->vm_flags & VM_SHARED)) {
  2497. anon = 1;
  2498. if (unlikely(anon_vma_prepare(vma))) {
  2499. ret = VM_FAULT_OOM;
  2500. goto out;
  2501. }
  2502. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2503. vma, address);
  2504. if (!page) {
  2505. ret = VM_FAULT_OOM;
  2506. goto out;
  2507. }
  2508. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2509. ret = VM_FAULT_OOM;
  2510. page_cache_release(page);
  2511. goto out;
  2512. }
  2513. charged = 1;
  2514. /*
  2515. * Don't let another task, with possibly unlocked vma,
  2516. * keep the mlocked page.
  2517. */
  2518. if (vma->vm_flags & VM_LOCKED)
  2519. clear_page_mlock(vmf.page);
  2520. copy_user_highpage(page, vmf.page, address, vma);
  2521. __SetPageUptodate(page);
  2522. } else {
  2523. /*
  2524. * If the page will be shareable, see if the backing
  2525. * address space wants to know that the page is about
  2526. * to become writable
  2527. */
  2528. if (vma->vm_ops->page_mkwrite) {
  2529. int tmp;
  2530. unlock_page(page);
  2531. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2532. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2533. if (unlikely(tmp &
  2534. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2535. ret = tmp;
  2536. goto unwritable_page;
  2537. }
  2538. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2539. lock_page(page);
  2540. if (!page->mapping) {
  2541. ret = 0; /* retry the fault */
  2542. unlock_page(page);
  2543. goto unwritable_page;
  2544. }
  2545. } else
  2546. VM_BUG_ON(!PageLocked(page));
  2547. page_mkwrite = 1;
  2548. }
  2549. }
  2550. }
  2551. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2552. /*
  2553. * This silly early PAGE_DIRTY setting removes a race
  2554. * due to the bad i386 page protection. But it's valid
  2555. * for other architectures too.
  2556. *
  2557. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2558. * an exclusive copy of the page, or this is a shared mapping,
  2559. * so we can make it writable and dirty to avoid having to
  2560. * handle that later.
  2561. */
  2562. /* Only go through if we didn't race with anybody else... */
  2563. if (likely(pte_same(*page_table, orig_pte))) {
  2564. flush_icache_page(vma, page);
  2565. entry = mk_pte(page, vma->vm_page_prot);
  2566. if (flags & FAULT_FLAG_WRITE)
  2567. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2568. if (anon) {
  2569. inc_mm_counter(mm, anon_rss);
  2570. page_add_new_anon_rmap(page, vma, address);
  2571. } else {
  2572. inc_mm_counter(mm, file_rss);
  2573. page_add_file_rmap(page);
  2574. if (flags & FAULT_FLAG_WRITE) {
  2575. dirty_page = page;
  2576. get_page(dirty_page);
  2577. }
  2578. }
  2579. set_pte_at(mm, address, page_table, entry);
  2580. /* no need to invalidate: a not-present page won't be cached */
  2581. update_mmu_cache(vma, address, entry);
  2582. } else {
  2583. if (charged)
  2584. mem_cgroup_uncharge_page(page);
  2585. if (anon)
  2586. page_cache_release(page);
  2587. else
  2588. anon = 1; /* no anon but release faulted_page */
  2589. }
  2590. pte_unmap_unlock(page_table, ptl);
  2591. out:
  2592. if (dirty_page) {
  2593. struct address_space *mapping = page->mapping;
  2594. if (set_page_dirty(dirty_page))
  2595. page_mkwrite = 1;
  2596. unlock_page(dirty_page);
  2597. put_page(dirty_page);
  2598. if (page_mkwrite && mapping) {
  2599. /*
  2600. * Some device drivers do not set page.mapping but still
  2601. * dirty their pages
  2602. */
  2603. balance_dirty_pages_ratelimited(mapping);
  2604. }
  2605. /* file_update_time outside page_lock */
  2606. if (vma->vm_file)
  2607. file_update_time(vma->vm_file);
  2608. } else {
  2609. unlock_page(vmf.page);
  2610. if (anon)
  2611. page_cache_release(vmf.page);
  2612. }
  2613. return ret;
  2614. unwritable_page:
  2615. page_cache_release(page);
  2616. return ret;
  2617. }
  2618. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2619. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2620. unsigned int flags, pte_t orig_pte)
  2621. {
  2622. pgoff_t pgoff = (((address & PAGE_MASK)
  2623. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2624. pte_unmap(page_table);
  2625. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2626. }
  2627. /*
  2628. * Fault of a previously existing named mapping. Repopulate the pte
  2629. * from the encoded file_pte if possible. This enables swappable
  2630. * nonlinear vmas.
  2631. *
  2632. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2633. * but allow concurrent faults), and pte mapped but not yet locked.
  2634. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2635. */
  2636. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2637. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2638. unsigned int flags, pte_t orig_pte)
  2639. {
  2640. pgoff_t pgoff;
  2641. flags |= FAULT_FLAG_NONLINEAR;
  2642. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2643. return 0;
  2644. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2645. /*
  2646. * Page table corrupted: show pte and kill process.
  2647. */
  2648. print_bad_pte(vma, address, orig_pte, NULL);
  2649. return VM_FAULT_OOM;
  2650. }
  2651. pgoff = pte_to_pgoff(orig_pte);
  2652. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2653. }
  2654. /*
  2655. * These routines also need to handle stuff like marking pages dirty
  2656. * and/or accessed for architectures that don't do it in hardware (most
  2657. * RISC architectures). The early dirtying is also good on the i386.
  2658. *
  2659. * There is also a hook called "update_mmu_cache()" that architectures
  2660. * with external mmu caches can use to update those (ie the Sparc or
  2661. * PowerPC hashed page tables that act as extended TLBs).
  2662. *
  2663. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2664. * but allow concurrent faults), and pte mapped but not yet locked.
  2665. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2666. */
  2667. static inline int handle_pte_fault(struct mm_struct *mm,
  2668. struct vm_area_struct *vma, unsigned long address,
  2669. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2670. {
  2671. pte_t entry;
  2672. spinlock_t *ptl;
  2673. entry = *pte;
  2674. if (!pte_present(entry)) {
  2675. if (pte_none(entry)) {
  2676. if (vma->vm_ops) {
  2677. if (likely(vma->vm_ops->fault))
  2678. return do_linear_fault(mm, vma, address,
  2679. pte, pmd, flags, entry);
  2680. }
  2681. return do_anonymous_page(mm, vma, address,
  2682. pte, pmd, flags);
  2683. }
  2684. if (pte_file(entry))
  2685. return do_nonlinear_fault(mm, vma, address,
  2686. pte, pmd, flags, entry);
  2687. return do_swap_page(mm, vma, address,
  2688. pte, pmd, flags, entry);
  2689. }
  2690. ptl = pte_lockptr(mm, pmd);
  2691. spin_lock(ptl);
  2692. if (unlikely(!pte_same(*pte, entry)))
  2693. goto unlock;
  2694. if (flags & FAULT_FLAG_WRITE) {
  2695. if (!pte_write(entry))
  2696. return do_wp_page(mm, vma, address,
  2697. pte, pmd, ptl, entry);
  2698. entry = pte_mkdirty(entry);
  2699. }
  2700. entry = pte_mkyoung(entry);
  2701. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2702. update_mmu_cache(vma, address, entry);
  2703. } else {
  2704. /*
  2705. * This is needed only for protection faults but the arch code
  2706. * is not yet telling us if this is a protection fault or not.
  2707. * This still avoids useless tlb flushes for .text page faults
  2708. * with threads.
  2709. */
  2710. if (flags & FAULT_FLAG_WRITE)
  2711. flush_tlb_page(vma, address);
  2712. }
  2713. unlock:
  2714. pte_unmap_unlock(pte, ptl);
  2715. return 0;
  2716. }
  2717. /*
  2718. * By the time we get here, we already hold the mm semaphore
  2719. */
  2720. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2721. unsigned long address, unsigned int flags)
  2722. {
  2723. pgd_t *pgd;
  2724. pud_t *pud;
  2725. pmd_t *pmd;
  2726. pte_t *pte;
  2727. __set_current_state(TASK_RUNNING);
  2728. count_vm_event(PGFAULT);
  2729. if (unlikely(is_vm_hugetlb_page(vma)))
  2730. return hugetlb_fault(mm, vma, address, flags);
  2731. pgd = pgd_offset(mm, address);
  2732. pud = pud_alloc(mm, pgd, address);
  2733. if (!pud)
  2734. return VM_FAULT_OOM;
  2735. pmd = pmd_alloc(mm, pud, address);
  2736. if (!pmd)
  2737. return VM_FAULT_OOM;
  2738. pte = pte_alloc_map(mm, pmd, address);
  2739. if (!pte)
  2740. return VM_FAULT_OOM;
  2741. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2742. }
  2743. #ifndef __PAGETABLE_PUD_FOLDED
  2744. /*
  2745. * Allocate page upper directory.
  2746. * We've already handled the fast-path in-line.
  2747. */
  2748. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2749. {
  2750. pud_t *new = pud_alloc_one(mm, address);
  2751. if (!new)
  2752. return -ENOMEM;
  2753. smp_wmb(); /* See comment in __pte_alloc */
  2754. spin_lock(&mm->page_table_lock);
  2755. if (pgd_present(*pgd)) /* Another has populated it */
  2756. pud_free(mm, new);
  2757. else
  2758. pgd_populate(mm, pgd, new);
  2759. spin_unlock(&mm->page_table_lock);
  2760. return 0;
  2761. }
  2762. #endif /* __PAGETABLE_PUD_FOLDED */
  2763. #ifndef __PAGETABLE_PMD_FOLDED
  2764. /*
  2765. * Allocate page middle directory.
  2766. * We've already handled the fast-path in-line.
  2767. */
  2768. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2769. {
  2770. pmd_t *new = pmd_alloc_one(mm, address);
  2771. if (!new)
  2772. return -ENOMEM;
  2773. smp_wmb(); /* See comment in __pte_alloc */
  2774. spin_lock(&mm->page_table_lock);
  2775. #ifndef __ARCH_HAS_4LEVEL_HACK
  2776. if (pud_present(*pud)) /* Another has populated it */
  2777. pmd_free(mm, new);
  2778. else
  2779. pud_populate(mm, pud, new);
  2780. #else
  2781. if (pgd_present(*pud)) /* Another has populated it */
  2782. pmd_free(mm, new);
  2783. else
  2784. pgd_populate(mm, pud, new);
  2785. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2786. spin_unlock(&mm->page_table_lock);
  2787. return 0;
  2788. }
  2789. #endif /* __PAGETABLE_PMD_FOLDED */
  2790. int make_pages_present(unsigned long addr, unsigned long end)
  2791. {
  2792. int ret, len, write;
  2793. struct vm_area_struct * vma;
  2794. vma = find_vma(current->mm, addr);
  2795. if (!vma)
  2796. return -ENOMEM;
  2797. write = (vma->vm_flags & VM_WRITE) != 0;
  2798. BUG_ON(addr >= end);
  2799. BUG_ON(end > vma->vm_end);
  2800. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2801. ret = get_user_pages(current, current->mm, addr,
  2802. len, write, 0, NULL, NULL);
  2803. if (ret < 0)
  2804. return ret;
  2805. return ret == len ? 0 : -EFAULT;
  2806. }
  2807. #if !defined(__HAVE_ARCH_GATE_AREA)
  2808. #if defined(AT_SYSINFO_EHDR)
  2809. static struct vm_area_struct gate_vma;
  2810. static int __init gate_vma_init(void)
  2811. {
  2812. gate_vma.vm_mm = NULL;
  2813. gate_vma.vm_start = FIXADDR_USER_START;
  2814. gate_vma.vm_end = FIXADDR_USER_END;
  2815. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2816. gate_vma.vm_page_prot = __P101;
  2817. /*
  2818. * Make sure the vDSO gets into every core dump.
  2819. * Dumping its contents makes post-mortem fully interpretable later
  2820. * without matching up the same kernel and hardware config to see
  2821. * what PC values meant.
  2822. */
  2823. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2824. return 0;
  2825. }
  2826. __initcall(gate_vma_init);
  2827. #endif
  2828. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2829. {
  2830. #ifdef AT_SYSINFO_EHDR
  2831. return &gate_vma;
  2832. #else
  2833. return NULL;
  2834. #endif
  2835. }
  2836. int in_gate_area_no_task(unsigned long addr)
  2837. {
  2838. #ifdef AT_SYSINFO_EHDR
  2839. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2840. return 1;
  2841. #endif
  2842. return 0;
  2843. }
  2844. #endif /* __HAVE_ARCH_GATE_AREA */
  2845. static int follow_pte(struct mm_struct *mm, unsigned long address,
  2846. pte_t **ptepp, spinlock_t **ptlp)
  2847. {
  2848. pgd_t *pgd;
  2849. pud_t *pud;
  2850. pmd_t *pmd;
  2851. pte_t *ptep;
  2852. pgd = pgd_offset(mm, address);
  2853. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2854. goto out;
  2855. pud = pud_offset(pgd, address);
  2856. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2857. goto out;
  2858. pmd = pmd_offset(pud, address);
  2859. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2860. goto out;
  2861. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2862. if (pmd_huge(*pmd))
  2863. goto out;
  2864. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  2865. if (!ptep)
  2866. goto out;
  2867. if (!pte_present(*ptep))
  2868. goto unlock;
  2869. *ptepp = ptep;
  2870. return 0;
  2871. unlock:
  2872. pte_unmap_unlock(ptep, *ptlp);
  2873. out:
  2874. return -EINVAL;
  2875. }
  2876. /**
  2877. * follow_pfn - look up PFN at a user virtual address
  2878. * @vma: memory mapping
  2879. * @address: user virtual address
  2880. * @pfn: location to store found PFN
  2881. *
  2882. * Only IO mappings and raw PFN mappings are allowed.
  2883. *
  2884. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  2885. */
  2886. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  2887. unsigned long *pfn)
  2888. {
  2889. int ret = -EINVAL;
  2890. spinlock_t *ptl;
  2891. pte_t *ptep;
  2892. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2893. return ret;
  2894. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  2895. if (ret)
  2896. return ret;
  2897. *pfn = pte_pfn(*ptep);
  2898. pte_unmap_unlock(ptep, ptl);
  2899. return 0;
  2900. }
  2901. EXPORT_SYMBOL(follow_pfn);
  2902. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2903. int follow_phys(struct vm_area_struct *vma,
  2904. unsigned long address, unsigned int flags,
  2905. unsigned long *prot, resource_size_t *phys)
  2906. {
  2907. int ret = -EINVAL;
  2908. pte_t *ptep, pte;
  2909. spinlock_t *ptl;
  2910. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2911. goto out;
  2912. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  2913. goto out;
  2914. pte = *ptep;
  2915. if ((flags & FOLL_WRITE) && !pte_write(pte))
  2916. goto unlock;
  2917. *prot = pgprot_val(pte_pgprot(pte));
  2918. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  2919. ret = 0;
  2920. unlock:
  2921. pte_unmap_unlock(ptep, ptl);
  2922. out:
  2923. return ret;
  2924. }
  2925. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  2926. void *buf, int len, int write)
  2927. {
  2928. resource_size_t phys_addr;
  2929. unsigned long prot = 0;
  2930. void __iomem *maddr;
  2931. int offset = addr & (PAGE_SIZE-1);
  2932. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  2933. return -EINVAL;
  2934. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  2935. if (write)
  2936. memcpy_toio(maddr + offset, buf, len);
  2937. else
  2938. memcpy_fromio(buf, maddr + offset, len);
  2939. iounmap(maddr);
  2940. return len;
  2941. }
  2942. #endif
  2943. /*
  2944. * Access another process' address space.
  2945. * Source/target buffer must be kernel space,
  2946. * Do not walk the page table directly, use get_user_pages
  2947. */
  2948. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2949. {
  2950. struct mm_struct *mm;
  2951. struct vm_area_struct *vma;
  2952. void *old_buf = buf;
  2953. mm = get_task_mm(tsk);
  2954. if (!mm)
  2955. return 0;
  2956. down_read(&mm->mmap_sem);
  2957. /* ignore errors, just check how much was successfully transferred */
  2958. while (len) {
  2959. int bytes, ret, offset;
  2960. void *maddr;
  2961. struct page *page = NULL;
  2962. ret = get_user_pages(tsk, mm, addr, 1,
  2963. write, 1, &page, &vma);
  2964. if (ret <= 0) {
  2965. /*
  2966. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  2967. * we can access using slightly different code.
  2968. */
  2969. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2970. vma = find_vma(mm, addr);
  2971. if (!vma)
  2972. break;
  2973. if (vma->vm_ops && vma->vm_ops->access)
  2974. ret = vma->vm_ops->access(vma, addr, buf,
  2975. len, write);
  2976. if (ret <= 0)
  2977. #endif
  2978. break;
  2979. bytes = ret;
  2980. } else {
  2981. bytes = len;
  2982. offset = addr & (PAGE_SIZE-1);
  2983. if (bytes > PAGE_SIZE-offset)
  2984. bytes = PAGE_SIZE-offset;
  2985. maddr = kmap(page);
  2986. if (write) {
  2987. copy_to_user_page(vma, page, addr,
  2988. maddr + offset, buf, bytes);
  2989. set_page_dirty_lock(page);
  2990. } else {
  2991. copy_from_user_page(vma, page, addr,
  2992. buf, maddr + offset, bytes);
  2993. }
  2994. kunmap(page);
  2995. page_cache_release(page);
  2996. }
  2997. len -= bytes;
  2998. buf += bytes;
  2999. addr += bytes;
  3000. }
  3001. up_read(&mm->mmap_sem);
  3002. mmput(mm);
  3003. return buf - old_buf;
  3004. }
  3005. /*
  3006. * Print the name of a VMA.
  3007. */
  3008. void print_vma_addr(char *prefix, unsigned long ip)
  3009. {
  3010. struct mm_struct *mm = current->mm;
  3011. struct vm_area_struct *vma;
  3012. /*
  3013. * Do not print if we are in atomic
  3014. * contexts (in exception stacks, etc.):
  3015. */
  3016. if (preempt_count())
  3017. return;
  3018. down_read(&mm->mmap_sem);
  3019. vma = find_vma(mm, ip);
  3020. if (vma && vma->vm_file) {
  3021. struct file *f = vma->vm_file;
  3022. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3023. if (buf) {
  3024. char *p, *s;
  3025. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3026. if (IS_ERR(p))
  3027. p = "?";
  3028. s = strrchr(p, '/');
  3029. if (s)
  3030. p = s+1;
  3031. printk("%s%s[%lx+%lx]", prefix, p,
  3032. vma->vm_start,
  3033. vma->vm_end - vma->vm_start);
  3034. free_page((unsigned long)buf);
  3035. }
  3036. }
  3037. up_read(&current->mm->mmap_sem);
  3038. }
  3039. #ifdef CONFIG_PROVE_LOCKING
  3040. void might_fault(void)
  3041. {
  3042. /*
  3043. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3044. * holding the mmap_sem, this is safe because kernel memory doesn't
  3045. * get paged out, therefore we'll never actually fault, and the
  3046. * below annotations will generate false positives.
  3047. */
  3048. if (segment_eq(get_fs(), KERNEL_DS))
  3049. return;
  3050. might_sleep();
  3051. /*
  3052. * it would be nicer only to annotate paths which are not under
  3053. * pagefault_disable, however that requires a larger audit and
  3054. * providing helpers like get_user_atomic.
  3055. */
  3056. if (!in_atomic() && current->mm)
  3057. might_lock_read(&current->mm->mmap_sem);
  3058. }
  3059. EXPORT_SYMBOL(might_fault);
  3060. #endif