builtin-stat.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549
  1. /*
  2. * builtin-stat.c
  3. *
  4. * Builtin stat command: Give a precise performance counters summary
  5. * overview about any workload, CPU or specific PID.
  6. *
  7. * Sample output:
  8. $ perf stat ~/hackbench 10
  9. Time: 0.104
  10. Performance counter stats for '/home/mingo/hackbench':
  11. 1255.538611 task clock ticks # 10.143 CPU utilization factor
  12. 54011 context switches # 0.043 M/sec
  13. 385 CPU migrations # 0.000 M/sec
  14. 17755 pagefaults # 0.014 M/sec
  15. 3808323185 CPU cycles # 3033.219 M/sec
  16. 1575111190 instructions # 1254.530 M/sec
  17. 17367895 cache references # 13.833 M/sec
  18. 7674421 cache misses # 6.112 M/sec
  19. Wall-clock time elapsed: 123.786620 msecs
  20. *
  21. * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
  22. *
  23. * Improvements and fixes by:
  24. *
  25. * Arjan van de Ven <arjan@linux.intel.com>
  26. * Yanmin Zhang <yanmin.zhang@intel.com>
  27. * Wu Fengguang <fengguang.wu@intel.com>
  28. * Mike Galbraith <efault@gmx.de>
  29. * Paul Mackerras <paulus@samba.org>
  30. * Jaswinder Singh Rajput <jaswinder@kernel.org>
  31. *
  32. * Released under the GPL v2. (and only v2, not any later version)
  33. */
  34. #include "perf.h"
  35. #include "builtin.h"
  36. #include "util/util.h"
  37. #include "util/parse-options.h"
  38. #include "util/parse-events.h"
  39. #include "util/event.h"
  40. #include "util/debug.h"
  41. #include "util/header.h"
  42. #include "util/cpumap.h"
  43. #include <sys/prctl.h>
  44. #include <math.h>
  45. static struct perf_event_attr default_attrs[] = {
  46. { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK },
  47. { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES },
  48. { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS },
  49. { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS },
  50. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES },
  51. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS },
  52. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS },
  53. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES },
  54. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES },
  55. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES },
  56. };
  57. static int system_wide = 0;
  58. static unsigned int nr_cpus = 0;
  59. static int run_idx = 0;
  60. static int run_count = 1;
  61. static int inherit = 1;
  62. static int scale = 1;
  63. static pid_t target_pid = -1;
  64. static pid_t child_pid = -1;
  65. static int null_run = 0;
  66. static int fd[MAX_NR_CPUS][MAX_COUNTERS];
  67. static int event_scaled[MAX_COUNTERS];
  68. static volatile int done = 0;
  69. struct stats
  70. {
  71. double n, mean, M2;
  72. };
  73. static void update_stats(struct stats *stats, u64 val)
  74. {
  75. double delta;
  76. stats->n++;
  77. delta = val - stats->mean;
  78. stats->mean += delta / stats->n;
  79. stats->M2 += delta*(val - stats->mean);
  80. }
  81. static double avg_stats(struct stats *stats)
  82. {
  83. return stats->mean;
  84. }
  85. /*
  86. * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
  87. *
  88. * (\Sum n_i^2) - ((\Sum n_i)^2)/n
  89. * s^2 = -------------------------------
  90. * n - 1
  91. *
  92. * http://en.wikipedia.org/wiki/Stddev
  93. *
  94. * The std dev of the mean is related to the std dev by:
  95. *
  96. * s
  97. * s_mean = -------
  98. * sqrt(n)
  99. *
  100. */
  101. static double stddev_stats(struct stats *stats)
  102. {
  103. double variance = stats->M2 / (stats->n - 1);
  104. double variance_mean = variance / stats->n;
  105. return sqrt(variance_mean);
  106. }
  107. struct stats event_res_stats[MAX_COUNTERS][3];
  108. struct stats runtime_nsecs_stats;
  109. struct stats walltime_nsecs_stats;
  110. struct stats runtime_cycles_stats;
  111. struct stats runtime_branches_stats;
  112. #define MATCH_EVENT(t, c, counter) \
  113. (attrs[counter].type == PERF_TYPE_##t && \
  114. attrs[counter].config == PERF_COUNT_##c)
  115. #define ERR_PERF_OPEN \
  116. "Error: counter %d, sys_perf_event_open() syscall returned with %d (%s)\n"
  117. static void create_perf_stat_counter(int counter, int pid)
  118. {
  119. struct perf_event_attr *attr = attrs + counter;
  120. if (scale)
  121. attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
  122. PERF_FORMAT_TOTAL_TIME_RUNNING;
  123. if (system_wide) {
  124. unsigned int cpu;
  125. for (cpu = 0; cpu < nr_cpus; cpu++) {
  126. fd[cpu][counter] = sys_perf_event_open(attr, -1, cpumap[cpu], -1, 0);
  127. if (fd[cpu][counter] < 0 && verbose)
  128. fprintf(stderr, ERR_PERF_OPEN, counter,
  129. fd[cpu][counter], strerror(errno));
  130. }
  131. } else {
  132. attr->inherit = inherit;
  133. attr->disabled = 1;
  134. attr->enable_on_exec = 1;
  135. fd[0][counter] = sys_perf_event_open(attr, pid, -1, -1, 0);
  136. if (fd[0][counter] < 0 && verbose)
  137. fprintf(stderr, ERR_PERF_OPEN, counter,
  138. fd[0][counter], strerror(errno));
  139. }
  140. }
  141. /*
  142. * Does the counter have nsecs as a unit?
  143. */
  144. static inline int nsec_counter(int counter)
  145. {
  146. if (MATCH_EVENT(SOFTWARE, SW_CPU_CLOCK, counter) ||
  147. MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
  148. return 1;
  149. return 0;
  150. }
  151. /*
  152. * Read out the results of a single counter:
  153. */
  154. static void read_counter(int counter)
  155. {
  156. u64 count[3], single_count[3];
  157. unsigned int cpu;
  158. size_t res, nv;
  159. int scaled;
  160. int i;
  161. count[0] = count[1] = count[2] = 0;
  162. nv = scale ? 3 : 1;
  163. for (cpu = 0; cpu < nr_cpus; cpu++) {
  164. if (fd[cpu][counter] < 0)
  165. continue;
  166. res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
  167. assert(res == nv * sizeof(u64));
  168. close(fd[cpu][counter]);
  169. fd[cpu][counter] = -1;
  170. count[0] += single_count[0];
  171. if (scale) {
  172. count[1] += single_count[1];
  173. count[2] += single_count[2];
  174. }
  175. }
  176. scaled = 0;
  177. if (scale) {
  178. if (count[2] == 0) {
  179. event_scaled[counter] = -1;
  180. count[0] = 0;
  181. return;
  182. }
  183. if (count[2] < count[1]) {
  184. event_scaled[counter] = 1;
  185. count[0] = (unsigned long long)
  186. ((double)count[0] * count[1] / count[2] + 0.5);
  187. }
  188. }
  189. for (i = 0; i < 3; i++)
  190. update_stats(&event_res_stats[counter][i], count[i]);
  191. if (verbose) {
  192. fprintf(stderr, "%s: %Ld %Ld %Ld\n", event_name(counter),
  193. count[0], count[1], count[2]);
  194. }
  195. /*
  196. * Save the full runtime - to allow normalization during printout:
  197. */
  198. if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
  199. update_stats(&runtime_nsecs_stats, count[0]);
  200. if (MATCH_EVENT(HARDWARE, HW_CPU_CYCLES, counter))
  201. update_stats(&runtime_cycles_stats, count[0]);
  202. if (MATCH_EVENT(HARDWARE, HW_BRANCH_INSTRUCTIONS, counter))
  203. update_stats(&runtime_branches_stats, count[0]);
  204. }
  205. static int run_perf_stat(int argc __used, const char **argv)
  206. {
  207. unsigned long long t0, t1;
  208. int status = 0;
  209. int counter;
  210. int pid = target_pid;
  211. int child_ready_pipe[2], go_pipe[2];
  212. const bool forks = (target_pid == -1 && argc > 0);
  213. char buf;
  214. if (!system_wide)
  215. nr_cpus = 1;
  216. if (forks && (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0)) {
  217. perror("failed to create pipes");
  218. exit(1);
  219. }
  220. if (forks) {
  221. if ((pid = fork()) < 0)
  222. perror("failed to fork");
  223. if (!pid) {
  224. close(child_ready_pipe[0]);
  225. close(go_pipe[1]);
  226. fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
  227. /*
  228. * Do a dummy execvp to get the PLT entry resolved,
  229. * so we avoid the resolver overhead on the real
  230. * execvp call.
  231. */
  232. execvp("", (char **)argv);
  233. /*
  234. * Tell the parent we're ready to go
  235. */
  236. close(child_ready_pipe[1]);
  237. /*
  238. * Wait until the parent tells us to go.
  239. */
  240. if (read(go_pipe[0], &buf, 1) == -1)
  241. perror("unable to read pipe");
  242. execvp(argv[0], (char **)argv);
  243. perror(argv[0]);
  244. exit(-1);
  245. }
  246. child_pid = pid;
  247. /*
  248. * Wait for the child to be ready to exec.
  249. */
  250. close(child_ready_pipe[1]);
  251. close(go_pipe[0]);
  252. if (read(child_ready_pipe[0], &buf, 1) == -1)
  253. perror("unable to read pipe");
  254. close(child_ready_pipe[0]);
  255. }
  256. for (counter = 0; counter < nr_counters; counter++)
  257. create_perf_stat_counter(counter, pid);
  258. /*
  259. * Enable counters and exec the command:
  260. */
  261. t0 = rdclock();
  262. if (forks) {
  263. close(go_pipe[1]);
  264. wait(&status);
  265. } else {
  266. while(!done);
  267. }
  268. t1 = rdclock();
  269. update_stats(&walltime_nsecs_stats, t1 - t0);
  270. for (counter = 0; counter < nr_counters; counter++)
  271. read_counter(counter);
  272. return WEXITSTATUS(status);
  273. }
  274. static void print_noise(int counter, double avg)
  275. {
  276. if (run_count == 1)
  277. return;
  278. fprintf(stderr, " ( +- %7.3f%% )",
  279. 100 * stddev_stats(&event_res_stats[counter][0]) / avg);
  280. }
  281. static void nsec_printout(int counter, double avg)
  282. {
  283. double msecs = avg / 1e6;
  284. fprintf(stderr, " %14.6f %-24s", msecs, event_name(counter));
  285. if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter)) {
  286. fprintf(stderr, " # %10.3f CPUs ",
  287. avg / avg_stats(&walltime_nsecs_stats));
  288. }
  289. }
  290. static void abs_printout(int counter, double avg)
  291. {
  292. double total, ratio = 0.0;
  293. fprintf(stderr, " %14.0f %-24s", avg, event_name(counter));
  294. if (MATCH_EVENT(HARDWARE, HW_INSTRUCTIONS, counter)) {
  295. total = avg_stats(&runtime_cycles_stats);
  296. if (total)
  297. ratio = avg / total;
  298. fprintf(stderr, " # %10.3f IPC ", ratio);
  299. } else if (MATCH_EVENT(HARDWARE, HW_BRANCH_MISSES, counter) &&
  300. runtime_branches_stats.n != 0) {
  301. total = avg_stats(&runtime_branches_stats);
  302. if (total)
  303. ratio = avg * 100 / total;
  304. fprintf(stderr, " # %10.3f %% ", ratio);
  305. } else if (runtime_nsecs_stats.n != 0) {
  306. total = avg_stats(&runtime_nsecs_stats);
  307. if (total)
  308. ratio = 1000.0 * avg / total;
  309. fprintf(stderr, " # %10.3f M/sec", ratio);
  310. }
  311. }
  312. /*
  313. * Print out the results of a single counter:
  314. */
  315. static void print_counter(int counter)
  316. {
  317. double avg = avg_stats(&event_res_stats[counter][0]);
  318. int scaled = event_scaled[counter];
  319. if (scaled == -1) {
  320. fprintf(stderr, " %14s %-24s\n",
  321. "<not counted>", event_name(counter));
  322. return;
  323. }
  324. if (nsec_counter(counter))
  325. nsec_printout(counter, avg);
  326. else
  327. abs_printout(counter, avg);
  328. print_noise(counter, avg);
  329. if (scaled) {
  330. double avg_enabled, avg_running;
  331. avg_enabled = avg_stats(&event_res_stats[counter][1]);
  332. avg_running = avg_stats(&event_res_stats[counter][2]);
  333. fprintf(stderr, " (scaled from %.2f%%)",
  334. 100 * avg_running / avg_enabled);
  335. }
  336. fprintf(stderr, "\n");
  337. }
  338. static void print_stat(int argc, const char **argv)
  339. {
  340. int i, counter;
  341. fflush(stdout);
  342. fprintf(stderr, "\n");
  343. fprintf(stderr, " Performance counter stats for ");
  344. if(target_pid == -1) {
  345. fprintf(stderr, "\'%s", argv[0]);
  346. for (i = 1; i < argc; i++)
  347. fprintf(stderr, " %s", argv[i]);
  348. }else
  349. fprintf(stderr, "task pid \'%d", target_pid);
  350. fprintf(stderr, "\'");
  351. if (run_count > 1)
  352. fprintf(stderr, " (%d runs)", run_count);
  353. fprintf(stderr, ":\n\n");
  354. for (counter = 0; counter < nr_counters; counter++)
  355. print_counter(counter);
  356. fprintf(stderr, "\n");
  357. fprintf(stderr, " %14.9f seconds time elapsed",
  358. avg_stats(&walltime_nsecs_stats)/1e9);
  359. if (run_count > 1) {
  360. fprintf(stderr, " ( +- %7.3f%% )",
  361. 100*stddev_stats(&walltime_nsecs_stats) /
  362. avg_stats(&walltime_nsecs_stats));
  363. }
  364. fprintf(stderr, "\n\n");
  365. }
  366. static volatile int signr = -1;
  367. static void skip_signal(int signo)
  368. {
  369. if(target_pid != -1)
  370. done = 1;
  371. signr = signo;
  372. }
  373. static void sig_atexit(void)
  374. {
  375. if (child_pid != -1)
  376. kill(child_pid, SIGTERM);
  377. if (signr == -1)
  378. return;
  379. signal(signr, SIG_DFL);
  380. kill(getpid(), signr);
  381. }
  382. static const char * const stat_usage[] = {
  383. "perf stat [<options>] [<command>]",
  384. NULL
  385. };
  386. static const struct option options[] = {
  387. OPT_CALLBACK('e', "event", NULL, "event",
  388. "event selector. use 'perf list' to list available events",
  389. parse_events),
  390. OPT_BOOLEAN('i', "inherit", &inherit,
  391. "child tasks inherit counters"),
  392. OPT_INTEGER('p', "pid", &target_pid,
  393. "stat events on existing pid"),
  394. OPT_BOOLEAN('a', "all-cpus", &system_wide,
  395. "system-wide collection from all CPUs"),
  396. OPT_BOOLEAN('c', "scale", &scale,
  397. "scale/normalize counters"),
  398. OPT_BOOLEAN('v', "verbose", &verbose,
  399. "be more verbose (show counter open errors, etc)"),
  400. OPT_INTEGER('r', "repeat", &run_count,
  401. "repeat command and print average + stddev (max: 100)"),
  402. OPT_BOOLEAN('n', "null", &null_run,
  403. "null run - dont start any counters"),
  404. OPT_END()
  405. };
  406. int cmd_stat(int argc, const char **argv, const char *prefix __used)
  407. {
  408. int status;
  409. argc = parse_options(argc, argv, options, stat_usage,
  410. PARSE_OPT_STOP_AT_NON_OPTION);
  411. if (!argc && target_pid == -1)
  412. usage_with_options(stat_usage, options);
  413. if (run_count <= 0)
  414. usage_with_options(stat_usage, options);
  415. /* Set attrs and nr_counters if no event is selected and !null_run */
  416. if (!null_run && !nr_counters) {
  417. memcpy(attrs, default_attrs, sizeof(default_attrs));
  418. nr_counters = ARRAY_SIZE(default_attrs);
  419. }
  420. if (system_wide)
  421. nr_cpus = read_cpu_map();
  422. else
  423. nr_cpus = 1;
  424. /*
  425. * We dont want to block the signals - that would cause
  426. * child tasks to inherit that and Ctrl-C would not work.
  427. * What we want is for Ctrl-C to work in the exec()-ed
  428. * task, but being ignored by perf stat itself:
  429. */
  430. atexit(sig_atexit);
  431. signal(SIGINT, skip_signal);
  432. signal(SIGALRM, skip_signal);
  433. signal(SIGABRT, skip_signal);
  434. status = 0;
  435. for (run_idx = 0; run_idx < run_count; run_idx++) {
  436. if (run_count != 1 && verbose)
  437. fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
  438. status = run_perf_stat(argc, argv);
  439. }
  440. print_stat(argc, argv);
  441. return status;
  442. }