dir.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946
  1. /*
  2. * linux/fs/nfs/dir.c
  3. *
  4. * Copyright (C) 1992 Rick Sladkey
  5. *
  6. * nfs directory handling functions
  7. *
  8. * 10 Apr 1996 Added silly rename for unlink --okir
  9. * 28 Sep 1996 Improved directory cache --okir
  10. * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
  11. * Re-implemented silly rename for unlink, newly implemented
  12. * silly rename for nfs_rename() following the suggestions
  13. * of Olaf Kirch (okir) found in this file.
  14. * Following Linus comments on my original hack, this version
  15. * depends only on the dcache stuff and doesn't touch the inode
  16. * layer (iput() and friends).
  17. * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
  18. */
  19. #include <linux/time.h>
  20. #include <linux/errno.h>
  21. #include <linux/stat.h>
  22. #include <linux/fcntl.h>
  23. #include <linux/string.h>
  24. #include <linux/kernel.h>
  25. #include <linux/slab.h>
  26. #include <linux/mm.h>
  27. #include <linux/sunrpc/clnt.h>
  28. #include <linux/nfs_fs.h>
  29. #include <linux/nfs_mount.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/smp_lock.h>
  32. #include <linux/pagevec.h>
  33. #include <linux/namei.h>
  34. #include <linux/mount.h>
  35. #include <linux/sched.h>
  36. #include "nfs4_fs.h"
  37. #include "delegation.h"
  38. #include "iostat.h"
  39. /* #define NFS_DEBUG_VERBOSE 1 */
  40. static int nfs_opendir(struct inode *, struct file *);
  41. static int nfs_readdir(struct file *, void *, filldir_t);
  42. static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
  43. static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
  44. static int nfs_mkdir(struct inode *, struct dentry *, int);
  45. static int nfs_rmdir(struct inode *, struct dentry *);
  46. static int nfs_unlink(struct inode *, struct dentry *);
  47. static int nfs_symlink(struct inode *, struct dentry *, const char *);
  48. static int nfs_link(struct dentry *, struct inode *, struct dentry *);
  49. static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
  50. static int nfs_rename(struct inode *, struct dentry *,
  51. struct inode *, struct dentry *);
  52. static int nfs_fsync_dir(struct file *, struct dentry *, int);
  53. static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  54. const struct file_operations nfs_dir_operations = {
  55. .llseek = nfs_llseek_dir,
  56. .read = generic_read_dir,
  57. .readdir = nfs_readdir,
  58. .open = nfs_opendir,
  59. .release = nfs_release,
  60. .fsync = nfs_fsync_dir,
  61. };
  62. const struct inode_operations nfs_dir_inode_operations = {
  63. .create = nfs_create,
  64. .lookup = nfs_lookup,
  65. .link = nfs_link,
  66. .unlink = nfs_unlink,
  67. .symlink = nfs_symlink,
  68. .mkdir = nfs_mkdir,
  69. .rmdir = nfs_rmdir,
  70. .mknod = nfs_mknod,
  71. .rename = nfs_rename,
  72. .permission = nfs_permission,
  73. .getattr = nfs_getattr,
  74. .setattr = nfs_setattr,
  75. };
  76. #ifdef CONFIG_NFS_V3
  77. const struct inode_operations nfs3_dir_inode_operations = {
  78. .create = nfs_create,
  79. .lookup = nfs_lookup,
  80. .link = nfs_link,
  81. .unlink = nfs_unlink,
  82. .symlink = nfs_symlink,
  83. .mkdir = nfs_mkdir,
  84. .rmdir = nfs_rmdir,
  85. .mknod = nfs_mknod,
  86. .rename = nfs_rename,
  87. .permission = nfs_permission,
  88. .getattr = nfs_getattr,
  89. .setattr = nfs_setattr,
  90. .listxattr = nfs3_listxattr,
  91. .getxattr = nfs3_getxattr,
  92. .setxattr = nfs3_setxattr,
  93. .removexattr = nfs3_removexattr,
  94. };
  95. #endif /* CONFIG_NFS_V3 */
  96. #ifdef CONFIG_NFS_V4
  97. static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
  98. const struct inode_operations nfs4_dir_inode_operations = {
  99. .create = nfs_create,
  100. .lookup = nfs_atomic_lookup,
  101. .link = nfs_link,
  102. .unlink = nfs_unlink,
  103. .symlink = nfs_symlink,
  104. .mkdir = nfs_mkdir,
  105. .rmdir = nfs_rmdir,
  106. .mknod = nfs_mknod,
  107. .rename = nfs_rename,
  108. .permission = nfs_permission,
  109. .getattr = nfs_getattr,
  110. .setattr = nfs_setattr,
  111. .getxattr = nfs4_getxattr,
  112. .setxattr = nfs4_setxattr,
  113. .listxattr = nfs4_listxattr,
  114. };
  115. #endif /* CONFIG_NFS_V4 */
  116. /*
  117. * Open file
  118. */
  119. static int
  120. nfs_opendir(struct inode *inode, struct file *filp)
  121. {
  122. int res;
  123. dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
  124. inode->i_sb->s_id, inode->i_ino);
  125. lock_kernel();
  126. /* Call generic open code in order to cache credentials */
  127. res = nfs_open(inode, filp);
  128. unlock_kernel();
  129. return res;
  130. }
  131. typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
  132. typedef struct {
  133. struct file *file;
  134. struct page *page;
  135. unsigned long page_index;
  136. __be32 *ptr;
  137. u64 *dir_cookie;
  138. loff_t current_index;
  139. struct nfs_entry *entry;
  140. decode_dirent_t decode;
  141. int plus;
  142. int error;
  143. unsigned long timestamp;
  144. int timestamp_valid;
  145. } nfs_readdir_descriptor_t;
  146. /* Now we cache directories properly, by stuffing the dirent
  147. * data directly in the page cache.
  148. *
  149. * Inode invalidation due to refresh etc. takes care of
  150. * _everything_, no sloppy entry flushing logic, no extraneous
  151. * copying, network direct to page cache, the way it was meant
  152. * to be.
  153. *
  154. * NOTE: Dirent information verification is done always by the
  155. * page-in of the RPC reply, nowhere else, this simplies
  156. * things substantially.
  157. */
  158. static
  159. int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
  160. {
  161. struct file *file = desc->file;
  162. struct inode *inode = file->f_path.dentry->d_inode;
  163. struct rpc_cred *cred = nfs_file_cred(file);
  164. unsigned long timestamp;
  165. int error;
  166. dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
  167. __FUNCTION__, (long long)desc->entry->cookie,
  168. page->index);
  169. again:
  170. timestamp = jiffies;
  171. error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
  172. NFS_SERVER(inode)->dtsize, desc->plus);
  173. if (error < 0) {
  174. /* We requested READDIRPLUS, but the server doesn't grok it */
  175. if (error == -ENOTSUPP && desc->plus) {
  176. NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
  177. clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
  178. desc->plus = 0;
  179. goto again;
  180. }
  181. goto error;
  182. }
  183. desc->timestamp = timestamp;
  184. desc->timestamp_valid = 1;
  185. SetPageUptodate(page);
  186. /* Ensure consistent page alignment of the data.
  187. * Note: assumes we have exclusive access to this mapping either
  188. * through inode->i_mutex or some other mechanism.
  189. */
  190. if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
  191. /* Should never happen */
  192. nfs_zap_mapping(inode, inode->i_mapping);
  193. }
  194. unlock_page(page);
  195. return 0;
  196. error:
  197. unlock_page(page);
  198. desc->error = error;
  199. return -EIO;
  200. }
  201. static inline
  202. int dir_decode(nfs_readdir_descriptor_t *desc)
  203. {
  204. __be32 *p = desc->ptr;
  205. p = desc->decode(p, desc->entry, desc->plus);
  206. if (IS_ERR(p))
  207. return PTR_ERR(p);
  208. desc->ptr = p;
  209. if (desc->timestamp_valid)
  210. desc->entry->fattr->time_start = desc->timestamp;
  211. else
  212. desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
  213. return 0;
  214. }
  215. static inline
  216. void dir_page_release(nfs_readdir_descriptor_t *desc)
  217. {
  218. kunmap(desc->page);
  219. page_cache_release(desc->page);
  220. desc->page = NULL;
  221. desc->ptr = NULL;
  222. }
  223. /*
  224. * Given a pointer to a buffer that has already been filled by a call
  225. * to readdir, find the next entry with cookie '*desc->dir_cookie'.
  226. *
  227. * If the end of the buffer has been reached, return -EAGAIN, if not,
  228. * return the offset within the buffer of the next entry to be
  229. * read.
  230. */
  231. static inline
  232. int find_dirent(nfs_readdir_descriptor_t *desc)
  233. {
  234. struct nfs_entry *entry = desc->entry;
  235. int loop_count = 0,
  236. status;
  237. while((status = dir_decode(desc)) == 0) {
  238. dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
  239. __FUNCTION__, (unsigned long long)entry->cookie);
  240. if (entry->prev_cookie == *desc->dir_cookie)
  241. break;
  242. if (loop_count++ > 200) {
  243. loop_count = 0;
  244. schedule();
  245. }
  246. }
  247. return status;
  248. }
  249. /*
  250. * Given a pointer to a buffer that has already been filled by a call
  251. * to readdir, find the entry at offset 'desc->file->f_pos'.
  252. *
  253. * If the end of the buffer has been reached, return -EAGAIN, if not,
  254. * return the offset within the buffer of the next entry to be
  255. * read.
  256. */
  257. static inline
  258. int find_dirent_index(nfs_readdir_descriptor_t *desc)
  259. {
  260. struct nfs_entry *entry = desc->entry;
  261. int loop_count = 0,
  262. status;
  263. for(;;) {
  264. status = dir_decode(desc);
  265. if (status)
  266. break;
  267. dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
  268. (unsigned long long)entry->cookie, desc->current_index);
  269. if (desc->file->f_pos == desc->current_index) {
  270. *desc->dir_cookie = entry->cookie;
  271. break;
  272. }
  273. desc->current_index++;
  274. if (loop_count++ > 200) {
  275. loop_count = 0;
  276. schedule();
  277. }
  278. }
  279. return status;
  280. }
  281. /*
  282. * Find the given page, and call find_dirent() or find_dirent_index in
  283. * order to try to return the next entry.
  284. */
  285. static inline
  286. int find_dirent_page(nfs_readdir_descriptor_t *desc)
  287. {
  288. struct inode *inode = desc->file->f_path.dentry->d_inode;
  289. struct page *page;
  290. int status;
  291. dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
  292. __FUNCTION__, desc->page_index,
  293. (long long) *desc->dir_cookie);
  294. /* If we find the page in the page_cache, we cannot be sure
  295. * how fresh the data is, so we will ignore readdir_plus attributes.
  296. */
  297. desc->timestamp_valid = 0;
  298. page = read_cache_page(inode->i_mapping, desc->page_index,
  299. (filler_t *)nfs_readdir_filler, desc);
  300. if (IS_ERR(page)) {
  301. status = PTR_ERR(page);
  302. goto out;
  303. }
  304. /* NOTE: Someone else may have changed the READDIRPLUS flag */
  305. desc->page = page;
  306. desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
  307. if (*desc->dir_cookie != 0)
  308. status = find_dirent(desc);
  309. else
  310. status = find_dirent_index(desc);
  311. if (status < 0)
  312. dir_page_release(desc);
  313. out:
  314. dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
  315. return status;
  316. }
  317. /*
  318. * Recurse through the page cache pages, and return a
  319. * filled nfs_entry structure of the next directory entry if possible.
  320. *
  321. * The target for the search is '*desc->dir_cookie' if non-0,
  322. * 'desc->file->f_pos' otherwise
  323. */
  324. static inline
  325. int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
  326. {
  327. int loop_count = 0;
  328. int res;
  329. /* Always search-by-index from the beginning of the cache */
  330. if (*desc->dir_cookie == 0) {
  331. dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
  332. (long long)desc->file->f_pos);
  333. desc->page_index = 0;
  334. desc->entry->cookie = desc->entry->prev_cookie = 0;
  335. desc->entry->eof = 0;
  336. desc->current_index = 0;
  337. } else
  338. dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
  339. (unsigned long long)*desc->dir_cookie);
  340. for (;;) {
  341. res = find_dirent_page(desc);
  342. if (res != -EAGAIN)
  343. break;
  344. /* Align to beginning of next page */
  345. desc->page_index ++;
  346. if (loop_count++ > 200) {
  347. loop_count = 0;
  348. schedule();
  349. }
  350. }
  351. dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
  352. return res;
  353. }
  354. static inline unsigned int dt_type(struct inode *inode)
  355. {
  356. return (inode->i_mode >> 12) & 15;
  357. }
  358. static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
  359. /*
  360. * Once we've found the start of the dirent within a page: fill 'er up...
  361. */
  362. static
  363. int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
  364. filldir_t filldir)
  365. {
  366. struct file *file = desc->file;
  367. struct nfs_entry *entry = desc->entry;
  368. struct dentry *dentry = NULL;
  369. u64 fileid;
  370. int loop_count = 0,
  371. res;
  372. dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
  373. (unsigned long long)entry->cookie);
  374. for(;;) {
  375. unsigned d_type = DT_UNKNOWN;
  376. /* Note: entry->prev_cookie contains the cookie for
  377. * retrieving the current dirent on the server */
  378. fileid = entry->ino;
  379. /* Get a dentry if we have one */
  380. if (dentry != NULL)
  381. dput(dentry);
  382. dentry = nfs_readdir_lookup(desc);
  383. /* Use readdirplus info */
  384. if (dentry != NULL && dentry->d_inode != NULL) {
  385. d_type = dt_type(dentry->d_inode);
  386. fileid = NFS_FILEID(dentry->d_inode);
  387. }
  388. res = filldir(dirent, entry->name, entry->len,
  389. file->f_pos, fileid, d_type);
  390. if (res < 0)
  391. break;
  392. file->f_pos++;
  393. *desc->dir_cookie = entry->cookie;
  394. if (dir_decode(desc) != 0) {
  395. desc->page_index ++;
  396. break;
  397. }
  398. if (loop_count++ > 200) {
  399. loop_count = 0;
  400. schedule();
  401. }
  402. }
  403. dir_page_release(desc);
  404. if (dentry != NULL)
  405. dput(dentry);
  406. dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
  407. (unsigned long long)*desc->dir_cookie, res);
  408. return res;
  409. }
  410. /*
  411. * If we cannot find a cookie in our cache, we suspect that this is
  412. * because it points to a deleted file, so we ask the server to return
  413. * whatever it thinks is the next entry. We then feed this to filldir.
  414. * If all goes well, we should then be able to find our way round the
  415. * cache on the next call to readdir_search_pagecache();
  416. *
  417. * NOTE: we cannot add the anonymous page to the pagecache because
  418. * the data it contains might not be page aligned. Besides,
  419. * we should already have a complete representation of the
  420. * directory in the page cache by the time we get here.
  421. */
  422. static inline
  423. int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
  424. filldir_t filldir)
  425. {
  426. struct file *file = desc->file;
  427. struct inode *inode = file->f_path.dentry->d_inode;
  428. struct rpc_cred *cred = nfs_file_cred(file);
  429. struct page *page = NULL;
  430. int status;
  431. unsigned long timestamp;
  432. dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
  433. (unsigned long long)*desc->dir_cookie);
  434. page = alloc_page(GFP_HIGHUSER);
  435. if (!page) {
  436. status = -ENOMEM;
  437. goto out;
  438. }
  439. timestamp = jiffies;
  440. desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
  441. page,
  442. NFS_SERVER(inode)->dtsize,
  443. desc->plus);
  444. desc->page = page;
  445. desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
  446. if (desc->error >= 0) {
  447. desc->timestamp = timestamp;
  448. desc->timestamp_valid = 1;
  449. if ((status = dir_decode(desc)) == 0)
  450. desc->entry->prev_cookie = *desc->dir_cookie;
  451. } else
  452. status = -EIO;
  453. if (status < 0)
  454. goto out_release;
  455. status = nfs_do_filldir(desc, dirent, filldir);
  456. /* Reset read descriptor so it searches the page cache from
  457. * the start upon the next call to readdir_search_pagecache() */
  458. desc->page_index = 0;
  459. desc->entry->cookie = desc->entry->prev_cookie = 0;
  460. desc->entry->eof = 0;
  461. out:
  462. dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
  463. __FUNCTION__, status);
  464. return status;
  465. out_release:
  466. dir_page_release(desc);
  467. goto out;
  468. }
  469. /* The file offset position represents the dirent entry number. A
  470. last cookie cache takes care of the common case of reading the
  471. whole directory.
  472. */
  473. static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
  474. {
  475. struct dentry *dentry = filp->f_path.dentry;
  476. struct inode *inode = dentry->d_inode;
  477. nfs_readdir_descriptor_t my_desc,
  478. *desc = &my_desc;
  479. struct nfs_entry my_entry;
  480. struct nfs_fh fh;
  481. struct nfs_fattr fattr;
  482. long res;
  483. dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
  484. dentry->d_parent->d_name.name, dentry->d_name.name,
  485. (long long)filp->f_pos);
  486. nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
  487. lock_kernel();
  488. res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
  489. if (res < 0) {
  490. unlock_kernel();
  491. return res;
  492. }
  493. /*
  494. * filp->f_pos points to the dirent entry number.
  495. * *desc->dir_cookie has the cookie for the next entry. We have
  496. * to either find the entry with the appropriate number or
  497. * revalidate the cookie.
  498. */
  499. memset(desc, 0, sizeof(*desc));
  500. desc->file = filp;
  501. desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
  502. desc->decode = NFS_PROTO(inode)->decode_dirent;
  503. desc->plus = NFS_USE_READDIRPLUS(inode);
  504. my_entry.cookie = my_entry.prev_cookie = 0;
  505. my_entry.eof = 0;
  506. my_entry.fh = &fh;
  507. my_entry.fattr = &fattr;
  508. nfs_fattr_init(&fattr);
  509. desc->entry = &my_entry;
  510. while(!desc->entry->eof) {
  511. res = readdir_search_pagecache(desc);
  512. if (res == -EBADCOOKIE) {
  513. /* This means either end of directory */
  514. if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
  515. /* Or that the server has 'lost' a cookie */
  516. res = uncached_readdir(desc, dirent, filldir);
  517. if (res >= 0)
  518. continue;
  519. }
  520. res = 0;
  521. break;
  522. }
  523. if (res == -ETOOSMALL && desc->plus) {
  524. clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
  525. nfs_zap_caches(inode);
  526. desc->plus = 0;
  527. desc->entry->eof = 0;
  528. continue;
  529. }
  530. if (res < 0)
  531. break;
  532. res = nfs_do_filldir(desc, dirent, filldir);
  533. if (res < 0) {
  534. res = 0;
  535. break;
  536. }
  537. }
  538. unlock_kernel();
  539. if (res > 0)
  540. res = 0;
  541. dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
  542. dentry->d_parent->d_name.name, dentry->d_name.name,
  543. res);
  544. return res;
  545. }
  546. static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
  547. {
  548. mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
  549. switch (origin) {
  550. case 1:
  551. offset += filp->f_pos;
  552. case 0:
  553. if (offset >= 0)
  554. break;
  555. default:
  556. offset = -EINVAL;
  557. goto out;
  558. }
  559. if (offset != filp->f_pos) {
  560. filp->f_pos = offset;
  561. nfs_file_open_context(filp)->dir_cookie = 0;
  562. }
  563. out:
  564. mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
  565. return offset;
  566. }
  567. /*
  568. * All directory operations under NFS are synchronous, so fsync()
  569. * is a dummy operation.
  570. */
  571. static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
  572. {
  573. dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
  574. dentry->d_parent->d_name.name, dentry->d_name.name,
  575. datasync);
  576. return 0;
  577. }
  578. /*
  579. * A check for whether or not the parent directory has changed.
  580. * In the case it has, we assume that the dentries are untrustworthy
  581. * and may need to be looked up again.
  582. */
  583. static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
  584. {
  585. if (IS_ROOT(dentry))
  586. return 1;
  587. if (!nfs_verify_change_attribute(dir, dentry->d_time))
  588. return 0;
  589. /* Revalidate nfsi->cache_change_attribute before we declare a match */
  590. if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
  591. return 0;
  592. if (!nfs_verify_change_attribute(dir, dentry->d_time))
  593. return 0;
  594. return 1;
  595. }
  596. /*
  597. * Return the intent data that applies to this particular path component
  598. *
  599. * Note that the current set of intents only apply to the very last
  600. * component of the path.
  601. * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
  602. */
  603. static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
  604. {
  605. if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
  606. return 0;
  607. return nd->flags & mask;
  608. }
  609. /*
  610. * Use intent information to check whether or not we're going to do
  611. * an O_EXCL create using this path component.
  612. */
  613. static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
  614. {
  615. if (NFS_PROTO(dir)->version == 2)
  616. return 0;
  617. if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
  618. return 0;
  619. return (nd->intent.open.flags & O_EXCL) != 0;
  620. }
  621. /*
  622. * Inode and filehandle revalidation for lookups.
  623. *
  624. * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
  625. * or if the intent information indicates that we're about to open this
  626. * particular file and the "nocto" mount flag is not set.
  627. *
  628. */
  629. static inline
  630. int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
  631. {
  632. struct nfs_server *server = NFS_SERVER(inode);
  633. if (nd != NULL) {
  634. /* VFS wants an on-the-wire revalidation */
  635. if (nd->flags & LOOKUP_REVAL)
  636. goto out_force;
  637. /* This is an open(2) */
  638. if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
  639. !(server->flags & NFS_MOUNT_NOCTO) &&
  640. (S_ISREG(inode->i_mode) ||
  641. S_ISDIR(inode->i_mode)))
  642. goto out_force;
  643. }
  644. return nfs_revalidate_inode(server, inode);
  645. out_force:
  646. return __nfs_revalidate_inode(server, inode);
  647. }
  648. /*
  649. * We judge how long we want to trust negative
  650. * dentries by looking at the parent inode mtime.
  651. *
  652. * If parent mtime has changed, we revalidate, else we wait for a
  653. * period corresponding to the parent's attribute cache timeout value.
  654. */
  655. static inline
  656. int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
  657. struct nameidata *nd)
  658. {
  659. /* Don't revalidate a negative dentry if we're creating a new file */
  660. if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
  661. return 0;
  662. return !nfs_check_verifier(dir, dentry);
  663. }
  664. /*
  665. * This is called every time the dcache has a lookup hit,
  666. * and we should check whether we can really trust that
  667. * lookup.
  668. *
  669. * NOTE! The hit can be a negative hit too, don't assume
  670. * we have an inode!
  671. *
  672. * If the parent directory is seen to have changed, we throw out the
  673. * cached dentry and do a new lookup.
  674. */
  675. static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
  676. {
  677. struct inode *dir;
  678. struct inode *inode;
  679. struct dentry *parent;
  680. int error;
  681. struct nfs_fh fhandle;
  682. struct nfs_fattr fattr;
  683. parent = dget_parent(dentry);
  684. lock_kernel();
  685. dir = parent->d_inode;
  686. nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
  687. inode = dentry->d_inode;
  688. if (!inode) {
  689. if (nfs_neg_need_reval(dir, dentry, nd))
  690. goto out_bad;
  691. goto out_valid;
  692. }
  693. if (is_bad_inode(inode)) {
  694. dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
  695. __FUNCTION__, dentry->d_parent->d_name.name,
  696. dentry->d_name.name);
  697. goto out_bad;
  698. }
  699. /* Force a full look up iff the parent directory has changed */
  700. if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
  701. if (nfs_lookup_verify_inode(inode, nd))
  702. goto out_zap_parent;
  703. goto out_valid;
  704. }
  705. if (NFS_STALE(inode))
  706. goto out_bad;
  707. error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
  708. if (error)
  709. goto out_bad;
  710. if (nfs_compare_fh(NFS_FH(inode), &fhandle))
  711. goto out_bad;
  712. if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
  713. goto out_bad;
  714. nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
  715. out_valid:
  716. unlock_kernel();
  717. dput(parent);
  718. dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
  719. __FUNCTION__, dentry->d_parent->d_name.name,
  720. dentry->d_name.name);
  721. return 1;
  722. out_zap_parent:
  723. nfs_zap_caches(dir);
  724. out_bad:
  725. nfs_mark_for_revalidate(dir);
  726. if (inode && S_ISDIR(inode->i_mode)) {
  727. /* Purge readdir caches. */
  728. nfs_zap_caches(inode);
  729. /* If we have submounts, don't unhash ! */
  730. if (have_submounts(dentry))
  731. goto out_valid;
  732. shrink_dcache_parent(dentry);
  733. }
  734. d_drop(dentry);
  735. unlock_kernel();
  736. dput(parent);
  737. dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
  738. __FUNCTION__, dentry->d_parent->d_name.name,
  739. dentry->d_name.name);
  740. return 0;
  741. }
  742. /*
  743. * This is called from dput() when d_count is going to 0.
  744. */
  745. static int nfs_dentry_delete(struct dentry *dentry)
  746. {
  747. dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
  748. dentry->d_parent->d_name.name, dentry->d_name.name,
  749. dentry->d_flags);
  750. if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
  751. /* Unhash it, so that ->d_iput() would be called */
  752. return 1;
  753. }
  754. if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
  755. /* Unhash it, so that ancestors of killed async unlink
  756. * files will be cleaned up during umount */
  757. return 1;
  758. }
  759. return 0;
  760. }
  761. /*
  762. * Called when the dentry loses inode.
  763. * We use it to clean up silly-renamed files.
  764. */
  765. static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
  766. {
  767. nfs_inode_return_delegation(inode);
  768. if (S_ISDIR(inode->i_mode))
  769. /* drop any readdir cache as it could easily be old */
  770. NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
  771. if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
  772. lock_kernel();
  773. drop_nlink(inode);
  774. nfs_complete_unlink(dentry, inode);
  775. unlock_kernel();
  776. }
  777. iput(inode);
  778. }
  779. struct dentry_operations nfs_dentry_operations = {
  780. .d_revalidate = nfs_lookup_revalidate,
  781. .d_delete = nfs_dentry_delete,
  782. .d_iput = nfs_dentry_iput,
  783. };
  784. static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
  785. {
  786. struct dentry *res;
  787. struct inode *inode = NULL;
  788. int error;
  789. struct nfs_fh fhandle;
  790. struct nfs_fattr fattr;
  791. dfprintk(VFS, "NFS: lookup(%s/%s)\n",
  792. dentry->d_parent->d_name.name, dentry->d_name.name);
  793. nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
  794. res = ERR_PTR(-ENAMETOOLONG);
  795. if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
  796. goto out;
  797. res = ERR_PTR(-ENOMEM);
  798. dentry->d_op = NFS_PROTO(dir)->dentry_ops;
  799. lock_kernel();
  800. /*
  801. * If we're doing an exclusive create, optimize away the lookup
  802. * but don't hash the dentry.
  803. */
  804. if (nfs_is_exclusive_create(dir, nd)) {
  805. d_instantiate(dentry, NULL);
  806. res = NULL;
  807. goto out_unlock;
  808. }
  809. error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
  810. if (error == -ENOENT)
  811. goto no_entry;
  812. if (error < 0) {
  813. res = ERR_PTR(error);
  814. goto out_unlock;
  815. }
  816. inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
  817. res = (struct dentry *)inode;
  818. if (IS_ERR(res))
  819. goto out_unlock;
  820. no_entry:
  821. res = d_materialise_unique(dentry, inode);
  822. if (res != NULL) {
  823. if (IS_ERR(res))
  824. goto out_unlock;
  825. dentry = res;
  826. }
  827. nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
  828. out_unlock:
  829. unlock_kernel();
  830. out:
  831. return res;
  832. }
  833. #ifdef CONFIG_NFS_V4
  834. static int nfs_open_revalidate(struct dentry *, struct nameidata *);
  835. struct dentry_operations nfs4_dentry_operations = {
  836. .d_revalidate = nfs_open_revalidate,
  837. .d_delete = nfs_dentry_delete,
  838. .d_iput = nfs_dentry_iput,
  839. };
  840. /*
  841. * Use intent information to determine whether we need to substitute
  842. * the NFSv4-style stateful OPEN for the LOOKUP call
  843. */
  844. static int is_atomic_open(struct inode *dir, struct nameidata *nd)
  845. {
  846. if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
  847. return 0;
  848. /* NFS does not (yet) have a stateful open for directories */
  849. if (nd->flags & LOOKUP_DIRECTORY)
  850. return 0;
  851. /* Are we trying to write to a read only partition? */
  852. if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
  853. return 0;
  854. return 1;
  855. }
  856. static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
  857. {
  858. struct dentry *res = NULL;
  859. int error;
  860. dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
  861. dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
  862. /* Check that we are indeed trying to open this file */
  863. if (!is_atomic_open(dir, nd))
  864. goto no_open;
  865. if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
  866. res = ERR_PTR(-ENAMETOOLONG);
  867. goto out;
  868. }
  869. dentry->d_op = NFS_PROTO(dir)->dentry_ops;
  870. /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
  871. * the dentry. */
  872. if (nd->intent.open.flags & O_EXCL) {
  873. d_instantiate(dentry, NULL);
  874. goto out;
  875. }
  876. /* Open the file on the server */
  877. lock_kernel();
  878. res = nfs4_atomic_open(dir, dentry, nd);
  879. unlock_kernel();
  880. if (IS_ERR(res)) {
  881. error = PTR_ERR(res);
  882. switch (error) {
  883. /* Make a negative dentry */
  884. case -ENOENT:
  885. res = NULL;
  886. goto out;
  887. /* This turned out not to be a regular file */
  888. case -EISDIR:
  889. case -ENOTDIR:
  890. goto no_open;
  891. case -ELOOP:
  892. if (!(nd->intent.open.flags & O_NOFOLLOW))
  893. goto no_open;
  894. /* case -EINVAL: */
  895. default:
  896. goto out;
  897. }
  898. } else if (res != NULL)
  899. dentry = res;
  900. out:
  901. return res;
  902. no_open:
  903. return nfs_lookup(dir, dentry, nd);
  904. }
  905. static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
  906. {
  907. struct dentry *parent = NULL;
  908. struct inode *inode = dentry->d_inode;
  909. struct inode *dir;
  910. int openflags, ret = 0;
  911. parent = dget_parent(dentry);
  912. dir = parent->d_inode;
  913. if (!is_atomic_open(dir, nd))
  914. goto no_open;
  915. /* We can't create new files in nfs_open_revalidate(), so we
  916. * optimize away revalidation of negative dentries.
  917. */
  918. if (inode == NULL) {
  919. if (!nfs_neg_need_reval(dir, dentry, nd))
  920. ret = 1;
  921. goto out;
  922. }
  923. /* NFS only supports OPEN on regular files */
  924. if (!S_ISREG(inode->i_mode))
  925. goto no_open;
  926. openflags = nd->intent.open.flags;
  927. /* We cannot do exclusive creation on a positive dentry */
  928. if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
  929. goto no_open;
  930. /* We can't create new files, or truncate existing ones here */
  931. openflags &= ~(O_CREAT|O_TRUNC);
  932. /*
  933. * Note: we're not holding inode->i_mutex and so may be racing with
  934. * operations that change the directory. We therefore save the
  935. * change attribute *before* we do the RPC call.
  936. */
  937. lock_kernel();
  938. ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
  939. unlock_kernel();
  940. out:
  941. dput(parent);
  942. if (!ret)
  943. d_drop(dentry);
  944. return ret;
  945. no_open:
  946. dput(parent);
  947. if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
  948. return 1;
  949. return nfs_lookup_revalidate(dentry, nd);
  950. }
  951. #endif /* CONFIG_NFSV4 */
  952. static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
  953. {
  954. struct dentry *parent = desc->file->f_path.dentry;
  955. struct inode *dir = parent->d_inode;
  956. struct nfs_entry *entry = desc->entry;
  957. struct dentry *dentry, *alias;
  958. struct qstr name = {
  959. .name = entry->name,
  960. .len = entry->len,
  961. };
  962. struct inode *inode;
  963. unsigned long verf = nfs_save_change_attribute(dir);
  964. switch (name.len) {
  965. case 2:
  966. if (name.name[0] == '.' && name.name[1] == '.')
  967. return dget_parent(parent);
  968. break;
  969. case 1:
  970. if (name.name[0] == '.')
  971. return dget(parent);
  972. }
  973. spin_lock(&dir->i_lock);
  974. if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
  975. spin_unlock(&dir->i_lock);
  976. return NULL;
  977. }
  978. spin_unlock(&dir->i_lock);
  979. name.hash = full_name_hash(name.name, name.len);
  980. dentry = d_lookup(parent, &name);
  981. if (dentry != NULL) {
  982. /* Is this a positive dentry that matches the readdir info? */
  983. if (dentry->d_inode != NULL &&
  984. (NFS_FILEID(dentry->d_inode) == entry->ino ||
  985. d_mountpoint(dentry))) {
  986. if (!desc->plus || entry->fh->size == 0)
  987. return dentry;
  988. if (nfs_compare_fh(NFS_FH(dentry->d_inode),
  989. entry->fh) == 0)
  990. goto out_renew;
  991. }
  992. /* No, so d_drop to allow one to be created */
  993. d_drop(dentry);
  994. dput(dentry);
  995. }
  996. if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
  997. return NULL;
  998. if (name.len > NFS_SERVER(dir)->namelen)
  999. return NULL;
  1000. /* Note: caller is already holding the dir->i_mutex! */
  1001. dentry = d_alloc(parent, &name);
  1002. if (dentry == NULL)
  1003. return NULL;
  1004. dentry->d_op = NFS_PROTO(dir)->dentry_ops;
  1005. inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
  1006. if (IS_ERR(inode)) {
  1007. dput(dentry);
  1008. return NULL;
  1009. }
  1010. alias = d_materialise_unique(dentry, inode);
  1011. if (alias != NULL) {
  1012. dput(dentry);
  1013. if (IS_ERR(alias))
  1014. return NULL;
  1015. dentry = alias;
  1016. }
  1017. out_renew:
  1018. nfs_set_verifier(dentry, verf);
  1019. return dentry;
  1020. }
  1021. /*
  1022. * Code common to create, mkdir, and mknod.
  1023. */
  1024. int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
  1025. struct nfs_fattr *fattr)
  1026. {
  1027. struct dentry *parent = dget_parent(dentry);
  1028. struct inode *dir = parent->d_inode;
  1029. struct inode *inode;
  1030. int error = -EACCES;
  1031. d_drop(dentry);
  1032. /* We may have been initialized further down */
  1033. if (dentry->d_inode)
  1034. goto out;
  1035. if (fhandle->size == 0) {
  1036. error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
  1037. if (error)
  1038. goto out_error;
  1039. }
  1040. nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
  1041. if (!(fattr->valid & NFS_ATTR_FATTR)) {
  1042. struct nfs_server *server = NFS_SB(dentry->d_sb);
  1043. error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
  1044. if (error < 0)
  1045. goto out_error;
  1046. }
  1047. inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
  1048. error = PTR_ERR(inode);
  1049. if (IS_ERR(inode))
  1050. goto out_error;
  1051. d_add(dentry, inode);
  1052. out:
  1053. dput(parent);
  1054. return 0;
  1055. out_error:
  1056. nfs_mark_for_revalidate(dir);
  1057. dput(parent);
  1058. return error;
  1059. }
  1060. /*
  1061. * Following a failed create operation, we drop the dentry rather
  1062. * than retain a negative dentry. This avoids a problem in the event
  1063. * that the operation succeeded on the server, but an error in the
  1064. * reply path made it appear to have failed.
  1065. */
  1066. static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
  1067. struct nameidata *nd)
  1068. {
  1069. struct iattr attr;
  1070. int error;
  1071. int open_flags = 0;
  1072. dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
  1073. dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
  1074. attr.ia_mode = mode;
  1075. attr.ia_valid = ATTR_MODE;
  1076. if ((nd->flags & LOOKUP_CREATE) != 0)
  1077. open_flags = nd->intent.open.flags;
  1078. lock_kernel();
  1079. error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
  1080. if (error != 0)
  1081. goto out_err;
  1082. unlock_kernel();
  1083. return 0;
  1084. out_err:
  1085. unlock_kernel();
  1086. d_drop(dentry);
  1087. return error;
  1088. }
  1089. /*
  1090. * See comments for nfs_proc_create regarding failed operations.
  1091. */
  1092. static int
  1093. nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
  1094. {
  1095. struct iattr attr;
  1096. int status;
  1097. dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
  1098. dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
  1099. if (!new_valid_dev(rdev))
  1100. return -EINVAL;
  1101. attr.ia_mode = mode;
  1102. attr.ia_valid = ATTR_MODE;
  1103. lock_kernel();
  1104. status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
  1105. if (status != 0)
  1106. goto out_err;
  1107. unlock_kernel();
  1108. return 0;
  1109. out_err:
  1110. unlock_kernel();
  1111. d_drop(dentry);
  1112. return status;
  1113. }
  1114. /*
  1115. * See comments for nfs_proc_create regarding failed operations.
  1116. */
  1117. static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  1118. {
  1119. struct iattr attr;
  1120. int error;
  1121. dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
  1122. dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
  1123. attr.ia_valid = ATTR_MODE;
  1124. attr.ia_mode = mode | S_IFDIR;
  1125. lock_kernel();
  1126. error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
  1127. if (error != 0)
  1128. goto out_err;
  1129. unlock_kernel();
  1130. return 0;
  1131. out_err:
  1132. d_drop(dentry);
  1133. unlock_kernel();
  1134. return error;
  1135. }
  1136. static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
  1137. {
  1138. int error;
  1139. dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
  1140. dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
  1141. lock_kernel();
  1142. error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
  1143. /* Ensure the VFS deletes this inode */
  1144. if (error == 0 && dentry->d_inode != NULL)
  1145. clear_nlink(dentry->d_inode);
  1146. unlock_kernel();
  1147. return error;
  1148. }
  1149. static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
  1150. {
  1151. static unsigned int sillycounter;
  1152. const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2;
  1153. const int countersize = sizeof(sillycounter)*2;
  1154. const int slen = sizeof(".nfs")+fileidsize+countersize-1;
  1155. char silly[slen+1];
  1156. struct qstr qsilly;
  1157. struct dentry *sdentry;
  1158. int error = -EIO;
  1159. dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
  1160. dentry->d_parent->d_name.name, dentry->d_name.name,
  1161. atomic_read(&dentry->d_count));
  1162. nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
  1163. /*
  1164. * We don't allow a dentry to be silly-renamed twice.
  1165. */
  1166. error = -EBUSY;
  1167. if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
  1168. goto out;
  1169. sprintf(silly, ".nfs%*.*Lx",
  1170. fileidsize, fileidsize,
  1171. (unsigned long long)NFS_FILEID(dentry->d_inode));
  1172. /* Return delegation in anticipation of the rename */
  1173. nfs_inode_return_delegation(dentry->d_inode);
  1174. sdentry = NULL;
  1175. do {
  1176. char *suffix = silly + slen - countersize;
  1177. dput(sdentry);
  1178. sillycounter++;
  1179. sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
  1180. dfprintk(VFS, "NFS: trying to rename %s to %s\n",
  1181. dentry->d_name.name, silly);
  1182. sdentry = lookup_one_len(silly, dentry->d_parent, slen);
  1183. /*
  1184. * N.B. Better to return EBUSY here ... it could be
  1185. * dangerous to delete the file while it's in use.
  1186. */
  1187. if (IS_ERR(sdentry))
  1188. goto out;
  1189. } while(sdentry->d_inode != NULL); /* need negative lookup */
  1190. qsilly.name = silly;
  1191. qsilly.len = strlen(silly);
  1192. if (dentry->d_inode) {
  1193. error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
  1194. dir, &qsilly);
  1195. nfs_mark_for_revalidate(dentry->d_inode);
  1196. } else
  1197. error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
  1198. dir, &qsilly);
  1199. if (!error) {
  1200. nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
  1201. d_move(dentry, sdentry);
  1202. error = nfs_async_unlink(dir, dentry);
  1203. /* If we return 0 we don't unlink */
  1204. }
  1205. dput(sdentry);
  1206. out:
  1207. return error;
  1208. }
  1209. /*
  1210. * Remove a file after making sure there are no pending writes,
  1211. * and after checking that the file has only one user.
  1212. *
  1213. * We invalidate the attribute cache and free the inode prior to the operation
  1214. * to avoid possible races if the server reuses the inode.
  1215. */
  1216. static int nfs_safe_remove(struct dentry *dentry)
  1217. {
  1218. struct inode *dir = dentry->d_parent->d_inode;
  1219. struct inode *inode = dentry->d_inode;
  1220. int error = -EBUSY;
  1221. dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
  1222. dentry->d_parent->d_name.name, dentry->d_name.name);
  1223. /* If the dentry was sillyrenamed, we simply call d_delete() */
  1224. if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
  1225. error = 0;
  1226. goto out;
  1227. }
  1228. if (inode != NULL) {
  1229. nfs_inode_return_delegation(inode);
  1230. error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
  1231. /* The VFS may want to delete this inode */
  1232. if (error == 0)
  1233. drop_nlink(inode);
  1234. nfs_mark_for_revalidate(inode);
  1235. } else
  1236. error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
  1237. out:
  1238. return error;
  1239. }
  1240. /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
  1241. * belongs to an active ".nfs..." file and we return -EBUSY.
  1242. *
  1243. * If sillyrename() returns 0, we do nothing, otherwise we unlink.
  1244. */
  1245. static int nfs_unlink(struct inode *dir, struct dentry *dentry)
  1246. {
  1247. int error;
  1248. int need_rehash = 0;
  1249. dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
  1250. dir->i_ino, dentry->d_name.name);
  1251. lock_kernel();
  1252. spin_lock(&dcache_lock);
  1253. spin_lock(&dentry->d_lock);
  1254. if (atomic_read(&dentry->d_count) > 1) {
  1255. spin_unlock(&dentry->d_lock);
  1256. spin_unlock(&dcache_lock);
  1257. /* Start asynchronous writeout of the inode */
  1258. write_inode_now(dentry->d_inode, 0);
  1259. error = nfs_sillyrename(dir, dentry);
  1260. unlock_kernel();
  1261. return error;
  1262. }
  1263. if (!d_unhashed(dentry)) {
  1264. __d_drop(dentry);
  1265. need_rehash = 1;
  1266. }
  1267. spin_unlock(&dentry->d_lock);
  1268. spin_unlock(&dcache_lock);
  1269. error = nfs_safe_remove(dentry);
  1270. if (!error) {
  1271. nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
  1272. } else if (need_rehash)
  1273. d_rehash(dentry);
  1274. unlock_kernel();
  1275. return error;
  1276. }
  1277. /*
  1278. * To create a symbolic link, most file systems instantiate a new inode,
  1279. * add a page to it containing the path, then write it out to the disk
  1280. * using prepare_write/commit_write.
  1281. *
  1282. * Unfortunately the NFS client can't create the in-core inode first
  1283. * because it needs a file handle to create an in-core inode (see
  1284. * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
  1285. * symlink request has completed on the server.
  1286. *
  1287. * So instead we allocate a raw page, copy the symname into it, then do
  1288. * the SYMLINK request with the page as the buffer. If it succeeds, we
  1289. * now have a new file handle and can instantiate an in-core NFS inode
  1290. * and move the raw page into its mapping.
  1291. */
  1292. static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
  1293. {
  1294. struct pagevec lru_pvec;
  1295. struct page *page;
  1296. char *kaddr;
  1297. struct iattr attr;
  1298. unsigned int pathlen = strlen(symname);
  1299. int error;
  1300. dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
  1301. dir->i_ino, dentry->d_name.name, symname);
  1302. if (pathlen > PAGE_SIZE)
  1303. return -ENAMETOOLONG;
  1304. attr.ia_mode = S_IFLNK | S_IRWXUGO;
  1305. attr.ia_valid = ATTR_MODE;
  1306. lock_kernel();
  1307. page = alloc_page(GFP_HIGHUSER);
  1308. if (!page) {
  1309. unlock_kernel();
  1310. return -ENOMEM;
  1311. }
  1312. kaddr = kmap_atomic(page, KM_USER0);
  1313. memcpy(kaddr, symname, pathlen);
  1314. if (pathlen < PAGE_SIZE)
  1315. memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
  1316. kunmap_atomic(kaddr, KM_USER0);
  1317. error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
  1318. if (error != 0) {
  1319. dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
  1320. dir->i_sb->s_id, dir->i_ino,
  1321. dentry->d_name.name, symname, error);
  1322. d_drop(dentry);
  1323. __free_page(page);
  1324. unlock_kernel();
  1325. return error;
  1326. }
  1327. /*
  1328. * No big deal if we can't add this page to the page cache here.
  1329. * READLINK will get the missing page from the server if needed.
  1330. */
  1331. pagevec_init(&lru_pvec, 0);
  1332. if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
  1333. GFP_KERNEL)) {
  1334. pagevec_add(&lru_pvec, page);
  1335. pagevec_lru_add(&lru_pvec);
  1336. SetPageUptodate(page);
  1337. unlock_page(page);
  1338. } else
  1339. __free_page(page);
  1340. unlock_kernel();
  1341. return 0;
  1342. }
  1343. static int
  1344. nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
  1345. {
  1346. struct inode *inode = old_dentry->d_inode;
  1347. int error;
  1348. dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
  1349. old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
  1350. dentry->d_parent->d_name.name, dentry->d_name.name);
  1351. lock_kernel();
  1352. error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
  1353. if (error == 0) {
  1354. atomic_inc(&inode->i_count);
  1355. d_instantiate(dentry, inode);
  1356. }
  1357. unlock_kernel();
  1358. return error;
  1359. }
  1360. /*
  1361. * RENAME
  1362. * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
  1363. * different file handle for the same inode after a rename (e.g. when
  1364. * moving to a different directory). A fail-safe method to do so would
  1365. * be to look up old_dir/old_name, create a link to new_dir/new_name and
  1366. * rename the old file using the sillyrename stuff. This way, the original
  1367. * file in old_dir will go away when the last process iput()s the inode.
  1368. *
  1369. * FIXED.
  1370. *
  1371. * It actually works quite well. One needs to have the possibility for
  1372. * at least one ".nfs..." file in each directory the file ever gets
  1373. * moved or linked to which happens automagically with the new
  1374. * implementation that only depends on the dcache stuff instead of
  1375. * using the inode layer
  1376. *
  1377. * Unfortunately, things are a little more complicated than indicated
  1378. * above. For a cross-directory move, we want to make sure we can get
  1379. * rid of the old inode after the operation. This means there must be
  1380. * no pending writes (if it's a file), and the use count must be 1.
  1381. * If these conditions are met, we can drop the dentries before doing
  1382. * the rename.
  1383. */
  1384. static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
  1385. struct inode *new_dir, struct dentry *new_dentry)
  1386. {
  1387. struct inode *old_inode = old_dentry->d_inode;
  1388. struct inode *new_inode = new_dentry->d_inode;
  1389. struct dentry *dentry = NULL, *rehash = NULL;
  1390. int error = -EBUSY;
  1391. /*
  1392. * To prevent any new references to the target during the rename,
  1393. * we unhash the dentry and free the inode in advance.
  1394. */
  1395. lock_kernel();
  1396. if (!d_unhashed(new_dentry)) {
  1397. d_drop(new_dentry);
  1398. rehash = new_dentry;
  1399. }
  1400. dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
  1401. old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
  1402. new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
  1403. atomic_read(&new_dentry->d_count));
  1404. /*
  1405. * First check whether the target is busy ... we can't
  1406. * safely do _any_ rename if the target is in use.
  1407. *
  1408. * For files, make a copy of the dentry and then do a
  1409. * silly-rename. If the silly-rename succeeds, the
  1410. * copied dentry is hashed and becomes the new target.
  1411. */
  1412. if (!new_inode)
  1413. goto go_ahead;
  1414. if (S_ISDIR(new_inode->i_mode)) {
  1415. error = -EISDIR;
  1416. if (!S_ISDIR(old_inode->i_mode))
  1417. goto out;
  1418. } else if (atomic_read(&new_dentry->d_count) > 2) {
  1419. int err;
  1420. /* copy the target dentry's name */
  1421. dentry = d_alloc(new_dentry->d_parent,
  1422. &new_dentry->d_name);
  1423. if (!dentry)
  1424. goto out;
  1425. /* silly-rename the existing target ... */
  1426. err = nfs_sillyrename(new_dir, new_dentry);
  1427. if (!err) {
  1428. new_dentry = rehash = dentry;
  1429. new_inode = NULL;
  1430. /* instantiate the replacement target */
  1431. d_instantiate(new_dentry, NULL);
  1432. } else if (atomic_read(&new_dentry->d_count) > 1)
  1433. /* dentry still busy? */
  1434. goto out;
  1435. } else
  1436. drop_nlink(new_inode);
  1437. go_ahead:
  1438. /*
  1439. * ... prune child dentries and writebacks if needed.
  1440. */
  1441. if (atomic_read(&old_dentry->d_count) > 1) {
  1442. if (S_ISREG(old_inode->i_mode))
  1443. nfs_wb_all(old_inode);
  1444. shrink_dcache_parent(old_dentry);
  1445. }
  1446. nfs_inode_return_delegation(old_inode);
  1447. if (new_inode != NULL) {
  1448. nfs_inode_return_delegation(new_inode);
  1449. d_delete(new_dentry);
  1450. }
  1451. error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
  1452. new_dir, &new_dentry->d_name);
  1453. nfs_mark_for_revalidate(old_inode);
  1454. out:
  1455. if (rehash)
  1456. d_rehash(rehash);
  1457. if (!error) {
  1458. d_move(old_dentry, new_dentry);
  1459. nfs_set_verifier(new_dentry,
  1460. nfs_save_change_attribute(new_dir));
  1461. }
  1462. /* new dentry created? */
  1463. if (dentry)
  1464. dput(dentry);
  1465. unlock_kernel();
  1466. return error;
  1467. }
  1468. static DEFINE_SPINLOCK(nfs_access_lru_lock);
  1469. static LIST_HEAD(nfs_access_lru_list);
  1470. static atomic_long_t nfs_access_nr_entries;
  1471. static void nfs_access_free_entry(struct nfs_access_entry *entry)
  1472. {
  1473. put_rpccred(entry->cred);
  1474. kfree(entry);
  1475. smp_mb__before_atomic_dec();
  1476. atomic_long_dec(&nfs_access_nr_entries);
  1477. smp_mb__after_atomic_dec();
  1478. }
  1479. int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
  1480. {
  1481. LIST_HEAD(head);
  1482. struct nfs_inode *nfsi;
  1483. struct nfs_access_entry *cache;
  1484. restart:
  1485. spin_lock(&nfs_access_lru_lock);
  1486. list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
  1487. struct inode *inode;
  1488. if (nr_to_scan-- == 0)
  1489. break;
  1490. inode = igrab(&nfsi->vfs_inode);
  1491. if (inode == NULL)
  1492. continue;
  1493. spin_lock(&inode->i_lock);
  1494. if (list_empty(&nfsi->access_cache_entry_lru))
  1495. goto remove_lru_entry;
  1496. cache = list_entry(nfsi->access_cache_entry_lru.next,
  1497. struct nfs_access_entry, lru);
  1498. list_move(&cache->lru, &head);
  1499. rb_erase(&cache->rb_node, &nfsi->access_cache);
  1500. if (!list_empty(&nfsi->access_cache_entry_lru))
  1501. list_move_tail(&nfsi->access_cache_inode_lru,
  1502. &nfs_access_lru_list);
  1503. else {
  1504. remove_lru_entry:
  1505. list_del_init(&nfsi->access_cache_inode_lru);
  1506. clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
  1507. }
  1508. spin_unlock(&inode->i_lock);
  1509. spin_unlock(&nfs_access_lru_lock);
  1510. iput(inode);
  1511. goto restart;
  1512. }
  1513. spin_unlock(&nfs_access_lru_lock);
  1514. while (!list_empty(&head)) {
  1515. cache = list_entry(head.next, struct nfs_access_entry, lru);
  1516. list_del(&cache->lru);
  1517. nfs_access_free_entry(cache);
  1518. }
  1519. return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
  1520. }
  1521. static void __nfs_access_zap_cache(struct inode *inode)
  1522. {
  1523. struct nfs_inode *nfsi = NFS_I(inode);
  1524. struct rb_root *root_node = &nfsi->access_cache;
  1525. struct rb_node *n, *dispose = NULL;
  1526. struct nfs_access_entry *entry;
  1527. /* Unhook entries from the cache */
  1528. while ((n = rb_first(root_node)) != NULL) {
  1529. entry = rb_entry(n, struct nfs_access_entry, rb_node);
  1530. rb_erase(n, root_node);
  1531. list_del(&entry->lru);
  1532. n->rb_left = dispose;
  1533. dispose = n;
  1534. }
  1535. nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
  1536. spin_unlock(&inode->i_lock);
  1537. /* Now kill them all! */
  1538. while (dispose != NULL) {
  1539. n = dispose;
  1540. dispose = n->rb_left;
  1541. nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
  1542. }
  1543. }
  1544. void nfs_access_zap_cache(struct inode *inode)
  1545. {
  1546. /* Remove from global LRU init */
  1547. if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
  1548. spin_lock(&nfs_access_lru_lock);
  1549. list_del_init(&NFS_I(inode)->access_cache_inode_lru);
  1550. spin_unlock(&nfs_access_lru_lock);
  1551. }
  1552. spin_lock(&inode->i_lock);
  1553. /* This will release the spinlock */
  1554. __nfs_access_zap_cache(inode);
  1555. }
  1556. static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
  1557. {
  1558. struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
  1559. struct nfs_access_entry *entry;
  1560. while (n != NULL) {
  1561. entry = rb_entry(n, struct nfs_access_entry, rb_node);
  1562. if (cred < entry->cred)
  1563. n = n->rb_left;
  1564. else if (cred > entry->cred)
  1565. n = n->rb_right;
  1566. else
  1567. return entry;
  1568. }
  1569. return NULL;
  1570. }
  1571. static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
  1572. {
  1573. struct nfs_inode *nfsi = NFS_I(inode);
  1574. struct nfs_access_entry *cache;
  1575. int err = -ENOENT;
  1576. spin_lock(&inode->i_lock);
  1577. if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
  1578. goto out_zap;
  1579. cache = nfs_access_search_rbtree(inode, cred);
  1580. if (cache == NULL)
  1581. goto out;
  1582. if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
  1583. goto out_stale;
  1584. res->jiffies = cache->jiffies;
  1585. res->cred = cache->cred;
  1586. res->mask = cache->mask;
  1587. list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
  1588. err = 0;
  1589. out:
  1590. spin_unlock(&inode->i_lock);
  1591. return err;
  1592. out_stale:
  1593. rb_erase(&cache->rb_node, &nfsi->access_cache);
  1594. list_del(&cache->lru);
  1595. spin_unlock(&inode->i_lock);
  1596. nfs_access_free_entry(cache);
  1597. return -ENOENT;
  1598. out_zap:
  1599. /* This will release the spinlock */
  1600. __nfs_access_zap_cache(inode);
  1601. return -ENOENT;
  1602. }
  1603. static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
  1604. {
  1605. struct nfs_inode *nfsi = NFS_I(inode);
  1606. struct rb_root *root_node = &nfsi->access_cache;
  1607. struct rb_node **p = &root_node->rb_node;
  1608. struct rb_node *parent = NULL;
  1609. struct nfs_access_entry *entry;
  1610. spin_lock(&inode->i_lock);
  1611. while (*p != NULL) {
  1612. parent = *p;
  1613. entry = rb_entry(parent, struct nfs_access_entry, rb_node);
  1614. if (set->cred < entry->cred)
  1615. p = &parent->rb_left;
  1616. else if (set->cred > entry->cred)
  1617. p = &parent->rb_right;
  1618. else
  1619. goto found;
  1620. }
  1621. rb_link_node(&set->rb_node, parent, p);
  1622. rb_insert_color(&set->rb_node, root_node);
  1623. list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
  1624. spin_unlock(&inode->i_lock);
  1625. return;
  1626. found:
  1627. rb_replace_node(parent, &set->rb_node, root_node);
  1628. list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
  1629. list_del(&entry->lru);
  1630. spin_unlock(&inode->i_lock);
  1631. nfs_access_free_entry(entry);
  1632. }
  1633. static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
  1634. {
  1635. struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
  1636. if (cache == NULL)
  1637. return;
  1638. RB_CLEAR_NODE(&cache->rb_node);
  1639. cache->jiffies = set->jiffies;
  1640. cache->cred = get_rpccred(set->cred);
  1641. cache->mask = set->mask;
  1642. nfs_access_add_rbtree(inode, cache);
  1643. /* Update accounting */
  1644. smp_mb__before_atomic_inc();
  1645. atomic_long_inc(&nfs_access_nr_entries);
  1646. smp_mb__after_atomic_inc();
  1647. /* Add inode to global LRU list */
  1648. if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
  1649. spin_lock(&nfs_access_lru_lock);
  1650. list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
  1651. spin_unlock(&nfs_access_lru_lock);
  1652. }
  1653. }
  1654. static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
  1655. {
  1656. struct nfs_access_entry cache;
  1657. int status;
  1658. status = nfs_access_get_cached(inode, cred, &cache);
  1659. if (status == 0)
  1660. goto out;
  1661. /* Be clever: ask server to check for all possible rights */
  1662. cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
  1663. cache.cred = cred;
  1664. cache.jiffies = jiffies;
  1665. status = NFS_PROTO(inode)->access(inode, &cache);
  1666. if (status != 0)
  1667. return status;
  1668. nfs_access_add_cache(inode, &cache);
  1669. out:
  1670. if ((cache.mask & mask) == mask)
  1671. return 0;
  1672. return -EACCES;
  1673. }
  1674. static int nfs_open_permission_mask(int openflags)
  1675. {
  1676. int mask = 0;
  1677. if (openflags & FMODE_READ)
  1678. mask |= MAY_READ;
  1679. if (openflags & FMODE_WRITE)
  1680. mask |= MAY_WRITE;
  1681. if (openflags & FMODE_EXEC)
  1682. mask |= MAY_EXEC;
  1683. return mask;
  1684. }
  1685. int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
  1686. {
  1687. return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
  1688. }
  1689. int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
  1690. {
  1691. struct rpc_cred *cred;
  1692. int res = 0;
  1693. nfs_inc_stats(inode, NFSIOS_VFSACCESS);
  1694. if (mask == 0)
  1695. goto out;
  1696. /* Is this sys_access() ? */
  1697. if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
  1698. goto force_lookup;
  1699. switch (inode->i_mode & S_IFMT) {
  1700. case S_IFLNK:
  1701. goto out;
  1702. case S_IFREG:
  1703. /* NFSv4 has atomic_open... */
  1704. if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
  1705. && nd != NULL
  1706. && (nd->flags & LOOKUP_OPEN))
  1707. goto out;
  1708. break;
  1709. case S_IFDIR:
  1710. /*
  1711. * Optimize away all write operations, since the server
  1712. * will check permissions when we perform the op.
  1713. */
  1714. if ((mask & MAY_WRITE) && !(mask & MAY_READ))
  1715. goto out;
  1716. }
  1717. force_lookup:
  1718. lock_kernel();
  1719. if (!NFS_PROTO(inode)->access)
  1720. goto out_notsup;
  1721. cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
  1722. if (!IS_ERR(cred)) {
  1723. res = nfs_do_access(inode, cred, mask);
  1724. put_rpccred(cred);
  1725. } else
  1726. res = PTR_ERR(cred);
  1727. unlock_kernel();
  1728. out:
  1729. dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
  1730. inode->i_sb->s_id, inode->i_ino, mask, res);
  1731. return res;
  1732. out_notsup:
  1733. res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
  1734. if (res == 0)
  1735. res = generic_permission(inode, mask, NULL);
  1736. unlock_kernel();
  1737. goto out;
  1738. }
  1739. /*
  1740. * Local variables:
  1741. * version-control: t
  1742. * kept-new-versions: 5
  1743. * End:
  1744. */