namespace.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/percpu.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/acct.h>
  18. #include <linux/capability.h>
  19. #include <linux/cpumask.h>
  20. #include <linux/module.h>
  21. #include <linux/sysfs.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/mnt_namespace.h>
  24. #include <linux/namei.h>
  25. #include <linux/nsproxy.h>
  26. #include <linux/security.h>
  27. #include <linux/mount.h>
  28. #include <linux/ramfs.h>
  29. #include <linux/log2.h>
  30. #include <linux/idr.h>
  31. #include <linux/fs_struct.h>
  32. #include <linux/fsnotify.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/unistd.h>
  35. #include "pnode.h"
  36. #include "internal.h"
  37. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  38. #define HASH_SIZE (1UL << HASH_SHIFT)
  39. static int event;
  40. static DEFINE_IDA(mnt_id_ida);
  41. static DEFINE_IDA(mnt_group_ida);
  42. static DEFINE_SPINLOCK(mnt_id_lock);
  43. static int mnt_id_start = 0;
  44. static int mnt_group_start = 1;
  45. static struct list_head *mount_hashtable __read_mostly;
  46. static struct kmem_cache *mnt_cache __read_mostly;
  47. static struct rw_semaphore namespace_sem;
  48. /* /sys/fs */
  49. struct kobject *fs_kobj;
  50. EXPORT_SYMBOL_GPL(fs_kobj);
  51. /*
  52. * vfsmount lock may be taken for read to prevent changes to the
  53. * vfsmount hash, ie. during mountpoint lookups or walking back
  54. * up the tree.
  55. *
  56. * It should be taken for write in all cases where the vfsmount
  57. * tree or hash is modified or when a vfsmount structure is modified.
  58. */
  59. DEFINE_BRLOCK(vfsmount_lock);
  60. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  61. {
  62. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  63. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  64. tmp = tmp + (tmp >> HASH_SHIFT);
  65. return tmp & (HASH_SIZE - 1);
  66. }
  67. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  68. /*
  69. * allocation is serialized by namespace_sem, but we need the spinlock to
  70. * serialize with freeing.
  71. */
  72. static int mnt_alloc_id(struct vfsmount *mnt)
  73. {
  74. int res;
  75. retry:
  76. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  77. spin_lock(&mnt_id_lock);
  78. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  79. if (!res)
  80. mnt_id_start = mnt->mnt_id + 1;
  81. spin_unlock(&mnt_id_lock);
  82. if (res == -EAGAIN)
  83. goto retry;
  84. return res;
  85. }
  86. static void mnt_free_id(struct vfsmount *mnt)
  87. {
  88. int id = mnt->mnt_id;
  89. spin_lock(&mnt_id_lock);
  90. ida_remove(&mnt_id_ida, id);
  91. if (mnt_id_start > id)
  92. mnt_id_start = id;
  93. spin_unlock(&mnt_id_lock);
  94. }
  95. /*
  96. * Allocate a new peer group ID
  97. *
  98. * mnt_group_ida is protected by namespace_sem
  99. */
  100. static int mnt_alloc_group_id(struct vfsmount *mnt)
  101. {
  102. int res;
  103. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  104. return -ENOMEM;
  105. res = ida_get_new_above(&mnt_group_ida,
  106. mnt_group_start,
  107. &mnt->mnt_group_id);
  108. if (!res)
  109. mnt_group_start = mnt->mnt_group_id + 1;
  110. return res;
  111. }
  112. /*
  113. * Release a peer group ID
  114. */
  115. void mnt_release_group_id(struct vfsmount *mnt)
  116. {
  117. int id = mnt->mnt_group_id;
  118. ida_remove(&mnt_group_ida, id);
  119. if (mnt_group_start > id)
  120. mnt_group_start = id;
  121. mnt->mnt_group_id = 0;
  122. }
  123. /*
  124. * vfsmount lock must be held for read
  125. */
  126. static inline void mnt_add_count(struct vfsmount *mnt, int n)
  127. {
  128. #ifdef CONFIG_SMP
  129. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  130. #else
  131. preempt_disable();
  132. mnt->mnt_count += n;
  133. preempt_enable();
  134. #endif
  135. }
  136. static inline void mnt_set_count(struct vfsmount *mnt, int n)
  137. {
  138. #ifdef CONFIG_SMP
  139. this_cpu_write(mnt->mnt_pcp->mnt_count, n);
  140. #else
  141. mnt->mnt_count = n;
  142. #endif
  143. }
  144. /*
  145. * vfsmount lock must be held for read
  146. */
  147. static inline void mnt_inc_count(struct vfsmount *mnt)
  148. {
  149. mnt_add_count(mnt, 1);
  150. }
  151. /*
  152. * vfsmount lock must be held for read
  153. */
  154. static inline void mnt_dec_count(struct vfsmount *mnt)
  155. {
  156. mnt_add_count(mnt, -1);
  157. }
  158. /*
  159. * vfsmount lock must be held for write
  160. */
  161. unsigned int mnt_get_count(struct vfsmount *mnt)
  162. {
  163. #ifdef CONFIG_SMP
  164. unsigned int count = 0;
  165. int cpu;
  166. for_each_possible_cpu(cpu) {
  167. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  168. }
  169. return count;
  170. #else
  171. return mnt->mnt_count;
  172. #endif
  173. }
  174. static struct vfsmount *alloc_vfsmnt(const char *name)
  175. {
  176. struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  177. if (mnt) {
  178. int err;
  179. err = mnt_alloc_id(mnt);
  180. if (err)
  181. goto out_free_cache;
  182. if (name) {
  183. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  184. if (!mnt->mnt_devname)
  185. goto out_free_id;
  186. }
  187. #ifdef CONFIG_SMP
  188. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  189. if (!mnt->mnt_pcp)
  190. goto out_free_devname;
  191. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  192. #else
  193. mnt->mnt_count = 1;
  194. mnt->mnt_writers = 0;
  195. #endif
  196. INIT_LIST_HEAD(&mnt->mnt_hash);
  197. INIT_LIST_HEAD(&mnt->mnt_child);
  198. INIT_LIST_HEAD(&mnt->mnt_mounts);
  199. INIT_LIST_HEAD(&mnt->mnt_list);
  200. INIT_LIST_HEAD(&mnt->mnt_expire);
  201. INIT_LIST_HEAD(&mnt->mnt_share);
  202. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  203. INIT_LIST_HEAD(&mnt->mnt_slave);
  204. #ifdef CONFIG_FSNOTIFY
  205. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  206. #endif
  207. }
  208. return mnt;
  209. #ifdef CONFIG_SMP
  210. out_free_devname:
  211. kfree(mnt->mnt_devname);
  212. #endif
  213. out_free_id:
  214. mnt_free_id(mnt);
  215. out_free_cache:
  216. kmem_cache_free(mnt_cache, mnt);
  217. return NULL;
  218. }
  219. /*
  220. * Most r/o checks on a fs are for operations that take
  221. * discrete amounts of time, like a write() or unlink().
  222. * We must keep track of when those operations start
  223. * (for permission checks) and when they end, so that
  224. * we can determine when writes are able to occur to
  225. * a filesystem.
  226. */
  227. /*
  228. * __mnt_is_readonly: check whether a mount is read-only
  229. * @mnt: the mount to check for its write status
  230. *
  231. * This shouldn't be used directly ouside of the VFS.
  232. * It does not guarantee that the filesystem will stay
  233. * r/w, just that it is right *now*. This can not and
  234. * should not be used in place of IS_RDONLY(inode).
  235. * mnt_want/drop_write() will _keep_ the filesystem
  236. * r/w.
  237. */
  238. int __mnt_is_readonly(struct vfsmount *mnt)
  239. {
  240. if (mnt->mnt_flags & MNT_READONLY)
  241. return 1;
  242. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  243. return 1;
  244. return 0;
  245. }
  246. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  247. static inline void mnt_inc_writers(struct vfsmount *mnt)
  248. {
  249. #ifdef CONFIG_SMP
  250. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  251. #else
  252. mnt->mnt_writers++;
  253. #endif
  254. }
  255. static inline void mnt_dec_writers(struct vfsmount *mnt)
  256. {
  257. #ifdef CONFIG_SMP
  258. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  259. #else
  260. mnt->mnt_writers--;
  261. #endif
  262. }
  263. static unsigned int mnt_get_writers(struct vfsmount *mnt)
  264. {
  265. #ifdef CONFIG_SMP
  266. unsigned int count = 0;
  267. int cpu;
  268. for_each_possible_cpu(cpu) {
  269. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  270. }
  271. return count;
  272. #else
  273. return mnt->mnt_writers;
  274. #endif
  275. }
  276. /*
  277. * Most r/o checks on a fs are for operations that take
  278. * discrete amounts of time, like a write() or unlink().
  279. * We must keep track of when those operations start
  280. * (for permission checks) and when they end, so that
  281. * we can determine when writes are able to occur to
  282. * a filesystem.
  283. */
  284. /**
  285. * mnt_want_write - get write access to a mount
  286. * @mnt: the mount on which to take a write
  287. *
  288. * This tells the low-level filesystem that a write is
  289. * about to be performed to it, and makes sure that
  290. * writes are allowed before returning success. When
  291. * the write operation is finished, mnt_drop_write()
  292. * must be called. This is effectively a refcount.
  293. */
  294. int mnt_want_write(struct vfsmount *mnt)
  295. {
  296. int ret = 0;
  297. preempt_disable();
  298. mnt_inc_writers(mnt);
  299. /*
  300. * The store to mnt_inc_writers must be visible before we pass
  301. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  302. * incremented count after it has set MNT_WRITE_HOLD.
  303. */
  304. smp_mb();
  305. while (mnt->mnt_flags & MNT_WRITE_HOLD)
  306. cpu_relax();
  307. /*
  308. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  309. * be set to match its requirements. So we must not load that until
  310. * MNT_WRITE_HOLD is cleared.
  311. */
  312. smp_rmb();
  313. if (__mnt_is_readonly(mnt)) {
  314. mnt_dec_writers(mnt);
  315. ret = -EROFS;
  316. }
  317. preempt_enable();
  318. return ret;
  319. }
  320. EXPORT_SYMBOL_GPL(mnt_want_write);
  321. /**
  322. * mnt_clone_write - get write access to a mount
  323. * @mnt: the mount on which to take a write
  324. *
  325. * This is effectively like mnt_want_write, except
  326. * it must only be used to take an extra write reference
  327. * on a mountpoint that we already know has a write reference
  328. * on it. This allows some optimisation.
  329. *
  330. * After finished, mnt_drop_write must be called as usual to
  331. * drop the reference.
  332. */
  333. int mnt_clone_write(struct vfsmount *mnt)
  334. {
  335. /* superblock may be r/o */
  336. if (__mnt_is_readonly(mnt))
  337. return -EROFS;
  338. preempt_disable();
  339. mnt_inc_writers(mnt);
  340. preempt_enable();
  341. return 0;
  342. }
  343. EXPORT_SYMBOL_GPL(mnt_clone_write);
  344. /**
  345. * mnt_want_write_file - get write access to a file's mount
  346. * @file: the file who's mount on which to take a write
  347. *
  348. * This is like mnt_want_write, but it takes a file and can
  349. * do some optimisations if the file is open for write already
  350. */
  351. int mnt_want_write_file(struct file *file)
  352. {
  353. struct inode *inode = file->f_dentry->d_inode;
  354. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  355. return mnt_want_write(file->f_path.mnt);
  356. else
  357. return mnt_clone_write(file->f_path.mnt);
  358. }
  359. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  360. /**
  361. * mnt_drop_write - give up write access to a mount
  362. * @mnt: the mount on which to give up write access
  363. *
  364. * Tells the low-level filesystem that we are done
  365. * performing writes to it. Must be matched with
  366. * mnt_want_write() call above.
  367. */
  368. void mnt_drop_write(struct vfsmount *mnt)
  369. {
  370. preempt_disable();
  371. mnt_dec_writers(mnt);
  372. preempt_enable();
  373. }
  374. EXPORT_SYMBOL_GPL(mnt_drop_write);
  375. static int mnt_make_readonly(struct vfsmount *mnt)
  376. {
  377. int ret = 0;
  378. br_write_lock(vfsmount_lock);
  379. mnt->mnt_flags |= MNT_WRITE_HOLD;
  380. /*
  381. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  382. * should be visible before we do.
  383. */
  384. smp_mb();
  385. /*
  386. * With writers on hold, if this value is zero, then there are
  387. * definitely no active writers (although held writers may subsequently
  388. * increment the count, they'll have to wait, and decrement it after
  389. * seeing MNT_READONLY).
  390. *
  391. * It is OK to have counter incremented on one CPU and decremented on
  392. * another: the sum will add up correctly. The danger would be when we
  393. * sum up each counter, if we read a counter before it is incremented,
  394. * but then read another CPU's count which it has been subsequently
  395. * decremented from -- we would see more decrements than we should.
  396. * MNT_WRITE_HOLD protects against this scenario, because
  397. * mnt_want_write first increments count, then smp_mb, then spins on
  398. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  399. * we're counting up here.
  400. */
  401. if (mnt_get_writers(mnt) > 0)
  402. ret = -EBUSY;
  403. else
  404. mnt->mnt_flags |= MNT_READONLY;
  405. /*
  406. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  407. * that become unheld will see MNT_READONLY.
  408. */
  409. smp_wmb();
  410. mnt->mnt_flags &= ~MNT_WRITE_HOLD;
  411. br_write_unlock(vfsmount_lock);
  412. return ret;
  413. }
  414. static void __mnt_unmake_readonly(struct vfsmount *mnt)
  415. {
  416. br_write_lock(vfsmount_lock);
  417. mnt->mnt_flags &= ~MNT_READONLY;
  418. br_write_unlock(vfsmount_lock);
  419. }
  420. static void free_vfsmnt(struct vfsmount *mnt)
  421. {
  422. kfree(mnt->mnt_devname);
  423. mnt_free_id(mnt);
  424. #ifdef CONFIG_SMP
  425. free_percpu(mnt->mnt_pcp);
  426. #endif
  427. kmem_cache_free(mnt_cache, mnt);
  428. }
  429. /*
  430. * find the first or last mount at @dentry on vfsmount @mnt depending on
  431. * @dir. If @dir is set return the first mount else return the last mount.
  432. * vfsmount_lock must be held for read or write.
  433. */
  434. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  435. int dir)
  436. {
  437. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  438. struct list_head *tmp = head;
  439. struct vfsmount *p, *found = NULL;
  440. for (;;) {
  441. tmp = dir ? tmp->next : tmp->prev;
  442. p = NULL;
  443. if (tmp == head)
  444. break;
  445. p = list_entry(tmp, struct vfsmount, mnt_hash);
  446. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  447. found = p;
  448. break;
  449. }
  450. }
  451. return found;
  452. }
  453. /*
  454. * lookup_mnt increments the ref count before returning
  455. * the vfsmount struct.
  456. */
  457. struct vfsmount *lookup_mnt(struct path *path)
  458. {
  459. struct vfsmount *child_mnt;
  460. br_read_lock(vfsmount_lock);
  461. if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
  462. mntget(child_mnt);
  463. br_read_unlock(vfsmount_lock);
  464. return child_mnt;
  465. }
  466. static inline int check_mnt(struct vfsmount *mnt)
  467. {
  468. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  469. }
  470. /*
  471. * vfsmount lock must be held for write
  472. */
  473. static void touch_mnt_namespace(struct mnt_namespace *ns)
  474. {
  475. if (ns) {
  476. ns->event = ++event;
  477. wake_up_interruptible(&ns->poll);
  478. }
  479. }
  480. /*
  481. * vfsmount lock must be held for write
  482. */
  483. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  484. {
  485. if (ns && ns->event != event) {
  486. ns->event = event;
  487. wake_up_interruptible(&ns->poll);
  488. }
  489. }
  490. /*
  491. * Clear dentry's mounted state if it has no remaining mounts.
  492. * vfsmount_lock must be held for write.
  493. */
  494. static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
  495. {
  496. unsigned u;
  497. for (u = 0; u < HASH_SIZE; u++) {
  498. struct vfsmount *p;
  499. list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  500. if (p->mnt_mountpoint == dentry)
  501. return;
  502. }
  503. }
  504. spin_lock(&dentry->d_lock);
  505. dentry->d_flags &= ~DCACHE_MOUNTED;
  506. spin_unlock(&dentry->d_lock);
  507. }
  508. /*
  509. * vfsmount lock must be held for write
  510. */
  511. static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
  512. {
  513. old_path->dentry = mnt->mnt_mountpoint;
  514. old_path->mnt = mnt->mnt_parent;
  515. mnt->mnt_parent = mnt;
  516. mnt->mnt_mountpoint = mnt->mnt_root;
  517. list_del_init(&mnt->mnt_child);
  518. list_del_init(&mnt->mnt_hash);
  519. dentry_reset_mounted(old_path->mnt, old_path->dentry);
  520. }
  521. /*
  522. * vfsmount lock must be held for write
  523. */
  524. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  525. struct vfsmount *child_mnt)
  526. {
  527. child_mnt->mnt_parent = mntget(mnt);
  528. child_mnt->mnt_mountpoint = dget(dentry);
  529. spin_lock(&dentry->d_lock);
  530. dentry->d_flags |= DCACHE_MOUNTED;
  531. spin_unlock(&dentry->d_lock);
  532. }
  533. /*
  534. * vfsmount lock must be held for write
  535. */
  536. static void attach_mnt(struct vfsmount *mnt, struct path *path)
  537. {
  538. mnt_set_mountpoint(path->mnt, path->dentry, mnt);
  539. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  540. hash(path->mnt, path->dentry));
  541. list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
  542. }
  543. static inline void __mnt_make_longterm(struct vfsmount *mnt)
  544. {
  545. #ifdef CONFIG_SMP
  546. atomic_inc(&mnt->mnt_longterm);
  547. #endif
  548. }
  549. /* needs vfsmount lock for write */
  550. static inline void __mnt_make_shortterm(struct vfsmount *mnt)
  551. {
  552. #ifdef CONFIG_SMP
  553. atomic_dec(&mnt->mnt_longterm);
  554. #endif
  555. }
  556. /*
  557. * vfsmount lock must be held for write
  558. */
  559. static void commit_tree(struct vfsmount *mnt)
  560. {
  561. struct vfsmount *parent = mnt->mnt_parent;
  562. struct vfsmount *m;
  563. LIST_HEAD(head);
  564. struct mnt_namespace *n = parent->mnt_ns;
  565. BUG_ON(parent == mnt);
  566. list_add_tail(&head, &mnt->mnt_list);
  567. list_for_each_entry(m, &head, mnt_list) {
  568. m->mnt_ns = n;
  569. __mnt_make_longterm(m);
  570. }
  571. list_splice(&head, n->list.prev);
  572. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  573. hash(parent, mnt->mnt_mountpoint));
  574. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  575. touch_mnt_namespace(n);
  576. }
  577. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  578. {
  579. struct list_head *next = p->mnt_mounts.next;
  580. if (next == &p->mnt_mounts) {
  581. while (1) {
  582. if (p == root)
  583. return NULL;
  584. next = p->mnt_child.next;
  585. if (next != &p->mnt_parent->mnt_mounts)
  586. break;
  587. p = p->mnt_parent;
  588. }
  589. }
  590. return list_entry(next, struct vfsmount, mnt_child);
  591. }
  592. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  593. {
  594. struct list_head *prev = p->mnt_mounts.prev;
  595. while (prev != &p->mnt_mounts) {
  596. p = list_entry(prev, struct vfsmount, mnt_child);
  597. prev = p->mnt_mounts.prev;
  598. }
  599. return p;
  600. }
  601. struct vfsmount *
  602. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  603. {
  604. struct vfsmount *mnt;
  605. struct dentry *root;
  606. if (!type)
  607. return ERR_PTR(-ENODEV);
  608. mnt = alloc_vfsmnt(name);
  609. if (!mnt)
  610. return ERR_PTR(-ENOMEM);
  611. if (flags & MS_KERNMOUNT)
  612. mnt->mnt_flags = MNT_INTERNAL;
  613. root = mount_fs(type, flags, name, data);
  614. if (IS_ERR(root)) {
  615. free_vfsmnt(mnt);
  616. return ERR_CAST(root);
  617. }
  618. mnt->mnt_root = root;
  619. mnt->mnt_sb = root->d_sb;
  620. mnt->mnt_mountpoint = mnt->mnt_root;
  621. mnt->mnt_parent = mnt;
  622. return mnt;
  623. }
  624. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  625. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  626. int flag)
  627. {
  628. struct super_block *sb = old->mnt_sb;
  629. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  630. if (mnt) {
  631. if (flag & (CL_SLAVE | CL_PRIVATE))
  632. mnt->mnt_group_id = 0; /* not a peer of original */
  633. else
  634. mnt->mnt_group_id = old->mnt_group_id;
  635. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  636. int err = mnt_alloc_group_id(mnt);
  637. if (err)
  638. goto out_free;
  639. }
  640. mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
  641. atomic_inc(&sb->s_active);
  642. mnt->mnt_sb = sb;
  643. mnt->mnt_root = dget(root);
  644. mnt->mnt_mountpoint = mnt->mnt_root;
  645. mnt->mnt_parent = mnt;
  646. if (flag & CL_SLAVE) {
  647. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  648. mnt->mnt_master = old;
  649. CLEAR_MNT_SHARED(mnt);
  650. } else if (!(flag & CL_PRIVATE)) {
  651. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  652. list_add(&mnt->mnt_share, &old->mnt_share);
  653. if (IS_MNT_SLAVE(old))
  654. list_add(&mnt->mnt_slave, &old->mnt_slave);
  655. mnt->mnt_master = old->mnt_master;
  656. }
  657. if (flag & CL_MAKE_SHARED)
  658. set_mnt_shared(mnt);
  659. /* stick the duplicate mount on the same expiry list
  660. * as the original if that was on one */
  661. if (flag & CL_EXPIRE) {
  662. if (!list_empty(&old->mnt_expire))
  663. list_add(&mnt->mnt_expire, &old->mnt_expire);
  664. }
  665. }
  666. return mnt;
  667. out_free:
  668. free_vfsmnt(mnt);
  669. return NULL;
  670. }
  671. static inline void mntfree(struct vfsmount *mnt)
  672. {
  673. struct super_block *sb = mnt->mnt_sb;
  674. /*
  675. * This probably indicates that somebody messed
  676. * up a mnt_want/drop_write() pair. If this
  677. * happens, the filesystem was probably unable
  678. * to make r/w->r/o transitions.
  679. */
  680. /*
  681. * The locking used to deal with mnt_count decrement provides barriers,
  682. * so mnt_get_writers() below is safe.
  683. */
  684. WARN_ON(mnt_get_writers(mnt));
  685. fsnotify_vfsmount_delete(mnt);
  686. dput(mnt->mnt_root);
  687. free_vfsmnt(mnt);
  688. deactivate_super(sb);
  689. }
  690. static void mntput_no_expire(struct vfsmount *mnt)
  691. {
  692. put_again:
  693. #ifdef CONFIG_SMP
  694. br_read_lock(vfsmount_lock);
  695. if (likely(atomic_read(&mnt->mnt_longterm))) {
  696. mnt_dec_count(mnt);
  697. br_read_unlock(vfsmount_lock);
  698. return;
  699. }
  700. br_read_unlock(vfsmount_lock);
  701. br_write_lock(vfsmount_lock);
  702. mnt_dec_count(mnt);
  703. if (mnt_get_count(mnt)) {
  704. br_write_unlock(vfsmount_lock);
  705. return;
  706. }
  707. #else
  708. mnt_dec_count(mnt);
  709. if (likely(mnt_get_count(mnt)))
  710. return;
  711. br_write_lock(vfsmount_lock);
  712. #endif
  713. if (unlikely(mnt->mnt_pinned)) {
  714. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  715. mnt->mnt_pinned = 0;
  716. br_write_unlock(vfsmount_lock);
  717. acct_auto_close_mnt(mnt);
  718. goto put_again;
  719. }
  720. br_write_unlock(vfsmount_lock);
  721. mntfree(mnt);
  722. }
  723. void mntput(struct vfsmount *mnt)
  724. {
  725. if (mnt) {
  726. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  727. if (unlikely(mnt->mnt_expiry_mark))
  728. mnt->mnt_expiry_mark = 0;
  729. mntput_no_expire(mnt);
  730. }
  731. }
  732. EXPORT_SYMBOL(mntput);
  733. struct vfsmount *mntget(struct vfsmount *mnt)
  734. {
  735. if (mnt)
  736. mnt_inc_count(mnt);
  737. return mnt;
  738. }
  739. EXPORT_SYMBOL(mntget);
  740. void mnt_pin(struct vfsmount *mnt)
  741. {
  742. br_write_lock(vfsmount_lock);
  743. mnt->mnt_pinned++;
  744. br_write_unlock(vfsmount_lock);
  745. }
  746. EXPORT_SYMBOL(mnt_pin);
  747. void mnt_unpin(struct vfsmount *mnt)
  748. {
  749. br_write_lock(vfsmount_lock);
  750. if (mnt->mnt_pinned) {
  751. mnt_inc_count(mnt);
  752. mnt->mnt_pinned--;
  753. }
  754. br_write_unlock(vfsmount_lock);
  755. }
  756. EXPORT_SYMBOL(mnt_unpin);
  757. static inline void mangle(struct seq_file *m, const char *s)
  758. {
  759. seq_escape(m, s, " \t\n\\");
  760. }
  761. /*
  762. * Simple .show_options callback for filesystems which don't want to
  763. * implement more complex mount option showing.
  764. *
  765. * See also save_mount_options().
  766. */
  767. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  768. {
  769. const char *options;
  770. rcu_read_lock();
  771. options = rcu_dereference(mnt->mnt_sb->s_options);
  772. if (options != NULL && options[0]) {
  773. seq_putc(m, ',');
  774. mangle(m, options);
  775. }
  776. rcu_read_unlock();
  777. return 0;
  778. }
  779. EXPORT_SYMBOL(generic_show_options);
  780. /*
  781. * If filesystem uses generic_show_options(), this function should be
  782. * called from the fill_super() callback.
  783. *
  784. * The .remount_fs callback usually needs to be handled in a special
  785. * way, to make sure, that previous options are not overwritten if the
  786. * remount fails.
  787. *
  788. * Also note, that if the filesystem's .remount_fs function doesn't
  789. * reset all options to their default value, but changes only newly
  790. * given options, then the displayed options will not reflect reality
  791. * any more.
  792. */
  793. void save_mount_options(struct super_block *sb, char *options)
  794. {
  795. BUG_ON(sb->s_options);
  796. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  797. }
  798. EXPORT_SYMBOL(save_mount_options);
  799. void replace_mount_options(struct super_block *sb, char *options)
  800. {
  801. char *old = sb->s_options;
  802. rcu_assign_pointer(sb->s_options, options);
  803. if (old) {
  804. synchronize_rcu();
  805. kfree(old);
  806. }
  807. }
  808. EXPORT_SYMBOL(replace_mount_options);
  809. #ifdef CONFIG_PROC_FS
  810. /* iterator */
  811. static void *m_start(struct seq_file *m, loff_t *pos)
  812. {
  813. struct proc_mounts *p = m->private;
  814. down_read(&namespace_sem);
  815. return seq_list_start(&p->ns->list, *pos);
  816. }
  817. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  818. {
  819. struct proc_mounts *p = m->private;
  820. return seq_list_next(v, &p->ns->list, pos);
  821. }
  822. static void m_stop(struct seq_file *m, void *v)
  823. {
  824. up_read(&namespace_sem);
  825. }
  826. int mnt_had_events(struct proc_mounts *p)
  827. {
  828. struct mnt_namespace *ns = p->ns;
  829. int res = 0;
  830. br_read_lock(vfsmount_lock);
  831. if (p->m.poll_event != ns->event) {
  832. p->m.poll_event = ns->event;
  833. res = 1;
  834. }
  835. br_read_unlock(vfsmount_lock);
  836. return res;
  837. }
  838. struct proc_fs_info {
  839. int flag;
  840. const char *str;
  841. };
  842. static int show_sb_opts(struct seq_file *m, struct super_block *sb)
  843. {
  844. static const struct proc_fs_info fs_info[] = {
  845. { MS_SYNCHRONOUS, ",sync" },
  846. { MS_DIRSYNC, ",dirsync" },
  847. { MS_MANDLOCK, ",mand" },
  848. { 0, NULL }
  849. };
  850. const struct proc_fs_info *fs_infop;
  851. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  852. if (sb->s_flags & fs_infop->flag)
  853. seq_puts(m, fs_infop->str);
  854. }
  855. return security_sb_show_options(m, sb);
  856. }
  857. static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
  858. {
  859. static const struct proc_fs_info mnt_info[] = {
  860. { MNT_NOSUID, ",nosuid" },
  861. { MNT_NODEV, ",nodev" },
  862. { MNT_NOEXEC, ",noexec" },
  863. { MNT_NOATIME, ",noatime" },
  864. { MNT_NODIRATIME, ",nodiratime" },
  865. { MNT_RELATIME, ",relatime" },
  866. { 0, NULL }
  867. };
  868. const struct proc_fs_info *fs_infop;
  869. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  870. if (mnt->mnt_flags & fs_infop->flag)
  871. seq_puts(m, fs_infop->str);
  872. }
  873. }
  874. static void show_type(struct seq_file *m, struct super_block *sb)
  875. {
  876. mangle(m, sb->s_type->name);
  877. if (sb->s_subtype && sb->s_subtype[0]) {
  878. seq_putc(m, '.');
  879. mangle(m, sb->s_subtype);
  880. }
  881. }
  882. static int show_vfsmnt(struct seq_file *m, void *v)
  883. {
  884. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  885. int err = 0;
  886. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  887. if (mnt->mnt_sb->s_op->show_devname) {
  888. err = mnt->mnt_sb->s_op->show_devname(m, mnt);
  889. if (err)
  890. goto out;
  891. } else {
  892. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  893. }
  894. seq_putc(m, ' ');
  895. seq_path(m, &mnt_path, " \t\n\\");
  896. seq_putc(m, ' ');
  897. show_type(m, mnt->mnt_sb);
  898. seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
  899. err = show_sb_opts(m, mnt->mnt_sb);
  900. if (err)
  901. goto out;
  902. show_mnt_opts(m, mnt);
  903. if (mnt->mnt_sb->s_op->show_options)
  904. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  905. seq_puts(m, " 0 0\n");
  906. out:
  907. return err;
  908. }
  909. const struct seq_operations mounts_op = {
  910. .start = m_start,
  911. .next = m_next,
  912. .stop = m_stop,
  913. .show = show_vfsmnt
  914. };
  915. static int show_mountinfo(struct seq_file *m, void *v)
  916. {
  917. struct proc_mounts *p = m->private;
  918. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  919. struct super_block *sb = mnt->mnt_sb;
  920. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  921. struct path root = p->root;
  922. int err = 0;
  923. seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
  924. MAJOR(sb->s_dev), MINOR(sb->s_dev));
  925. if (sb->s_op->show_path)
  926. err = sb->s_op->show_path(m, mnt);
  927. else
  928. seq_dentry(m, mnt->mnt_root, " \t\n\\");
  929. if (err)
  930. goto out;
  931. seq_putc(m, ' ');
  932. seq_path_root(m, &mnt_path, &root, " \t\n\\");
  933. if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
  934. /*
  935. * Mountpoint is outside root, discard that one. Ugly,
  936. * but less so than trying to do that in iterator in a
  937. * race-free way (due to renames).
  938. */
  939. return SEQ_SKIP;
  940. }
  941. seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
  942. show_mnt_opts(m, mnt);
  943. /* Tagged fields ("foo:X" or "bar") */
  944. if (IS_MNT_SHARED(mnt))
  945. seq_printf(m, " shared:%i", mnt->mnt_group_id);
  946. if (IS_MNT_SLAVE(mnt)) {
  947. int master = mnt->mnt_master->mnt_group_id;
  948. int dom = get_dominating_id(mnt, &p->root);
  949. seq_printf(m, " master:%i", master);
  950. if (dom && dom != master)
  951. seq_printf(m, " propagate_from:%i", dom);
  952. }
  953. if (IS_MNT_UNBINDABLE(mnt))
  954. seq_puts(m, " unbindable");
  955. /* Filesystem specific data */
  956. seq_puts(m, " - ");
  957. show_type(m, sb);
  958. seq_putc(m, ' ');
  959. if (sb->s_op->show_devname)
  960. err = sb->s_op->show_devname(m, mnt);
  961. else
  962. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  963. if (err)
  964. goto out;
  965. seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
  966. err = show_sb_opts(m, sb);
  967. if (err)
  968. goto out;
  969. if (sb->s_op->show_options)
  970. err = sb->s_op->show_options(m, mnt);
  971. seq_putc(m, '\n');
  972. out:
  973. return err;
  974. }
  975. const struct seq_operations mountinfo_op = {
  976. .start = m_start,
  977. .next = m_next,
  978. .stop = m_stop,
  979. .show = show_mountinfo,
  980. };
  981. static int show_vfsstat(struct seq_file *m, void *v)
  982. {
  983. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  984. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  985. int err = 0;
  986. /* device */
  987. if (mnt->mnt_sb->s_op->show_devname) {
  988. err = mnt->mnt_sb->s_op->show_devname(m, mnt);
  989. } else {
  990. if (mnt->mnt_devname) {
  991. seq_puts(m, "device ");
  992. mangle(m, mnt->mnt_devname);
  993. } else
  994. seq_puts(m, "no device");
  995. }
  996. /* mount point */
  997. seq_puts(m, " mounted on ");
  998. seq_path(m, &mnt_path, " \t\n\\");
  999. seq_putc(m, ' ');
  1000. /* file system type */
  1001. seq_puts(m, "with fstype ");
  1002. show_type(m, mnt->mnt_sb);
  1003. /* optional statistics */
  1004. if (mnt->mnt_sb->s_op->show_stats) {
  1005. seq_putc(m, ' ');
  1006. if (!err)
  1007. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  1008. }
  1009. seq_putc(m, '\n');
  1010. return err;
  1011. }
  1012. const struct seq_operations mountstats_op = {
  1013. .start = m_start,
  1014. .next = m_next,
  1015. .stop = m_stop,
  1016. .show = show_vfsstat,
  1017. };
  1018. #endif /* CONFIG_PROC_FS */
  1019. /**
  1020. * may_umount_tree - check if a mount tree is busy
  1021. * @mnt: root of mount tree
  1022. *
  1023. * This is called to check if a tree of mounts has any
  1024. * open files, pwds, chroots or sub mounts that are
  1025. * busy.
  1026. */
  1027. int may_umount_tree(struct vfsmount *mnt)
  1028. {
  1029. int actual_refs = 0;
  1030. int minimum_refs = 0;
  1031. struct vfsmount *p;
  1032. /* write lock needed for mnt_get_count */
  1033. br_write_lock(vfsmount_lock);
  1034. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1035. actual_refs += mnt_get_count(p);
  1036. minimum_refs += 2;
  1037. }
  1038. br_write_unlock(vfsmount_lock);
  1039. if (actual_refs > minimum_refs)
  1040. return 0;
  1041. return 1;
  1042. }
  1043. EXPORT_SYMBOL(may_umount_tree);
  1044. /**
  1045. * may_umount - check if a mount point is busy
  1046. * @mnt: root of mount
  1047. *
  1048. * This is called to check if a mount point has any
  1049. * open files, pwds, chroots or sub mounts. If the
  1050. * mount has sub mounts this will return busy
  1051. * regardless of whether the sub mounts are busy.
  1052. *
  1053. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1054. * give false negatives. The main reason why it's here is that we need
  1055. * a non-destructive way to look for easily umountable filesystems.
  1056. */
  1057. int may_umount(struct vfsmount *mnt)
  1058. {
  1059. int ret = 1;
  1060. down_read(&namespace_sem);
  1061. br_write_lock(vfsmount_lock);
  1062. if (propagate_mount_busy(mnt, 2))
  1063. ret = 0;
  1064. br_write_unlock(vfsmount_lock);
  1065. up_read(&namespace_sem);
  1066. return ret;
  1067. }
  1068. EXPORT_SYMBOL(may_umount);
  1069. void release_mounts(struct list_head *head)
  1070. {
  1071. struct vfsmount *mnt;
  1072. while (!list_empty(head)) {
  1073. mnt = list_first_entry(head, struct vfsmount, mnt_hash);
  1074. list_del_init(&mnt->mnt_hash);
  1075. if (mnt->mnt_parent != mnt) {
  1076. struct dentry *dentry;
  1077. struct vfsmount *m;
  1078. br_write_lock(vfsmount_lock);
  1079. dentry = mnt->mnt_mountpoint;
  1080. m = mnt->mnt_parent;
  1081. mnt->mnt_mountpoint = mnt->mnt_root;
  1082. mnt->mnt_parent = mnt;
  1083. m->mnt_ghosts--;
  1084. br_write_unlock(vfsmount_lock);
  1085. dput(dentry);
  1086. mntput(m);
  1087. }
  1088. mntput(mnt);
  1089. }
  1090. }
  1091. /*
  1092. * vfsmount lock must be held for write
  1093. * namespace_sem must be held for write
  1094. */
  1095. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  1096. {
  1097. LIST_HEAD(tmp_list);
  1098. struct vfsmount *p;
  1099. for (p = mnt; p; p = next_mnt(p, mnt))
  1100. list_move(&p->mnt_hash, &tmp_list);
  1101. if (propagate)
  1102. propagate_umount(&tmp_list);
  1103. list_for_each_entry(p, &tmp_list, mnt_hash) {
  1104. list_del_init(&p->mnt_expire);
  1105. list_del_init(&p->mnt_list);
  1106. __touch_mnt_namespace(p->mnt_ns);
  1107. p->mnt_ns = NULL;
  1108. __mnt_make_shortterm(p);
  1109. list_del_init(&p->mnt_child);
  1110. if (p->mnt_parent != p) {
  1111. p->mnt_parent->mnt_ghosts++;
  1112. dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
  1113. }
  1114. change_mnt_propagation(p, MS_PRIVATE);
  1115. }
  1116. list_splice(&tmp_list, kill);
  1117. }
  1118. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
  1119. static int do_umount(struct vfsmount *mnt, int flags)
  1120. {
  1121. struct super_block *sb = mnt->mnt_sb;
  1122. int retval;
  1123. LIST_HEAD(umount_list);
  1124. retval = security_sb_umount(mnt, flags);
  1125. if (retval)
  1126. return retval;
  1127. /*
  1128. * Allow userspace to request a mountpoint be expired rather than
  1129. * unmounting unconditionally. Unmount only happens if:
  1130. * (1) the mark is already set (the mark is cleared by mntput())
  1131. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1132. */
  1133. if (flags & MNT_EXPIRE) {
  1134. if (mnt == current->fs->root.mnt ||
  1135. flags & (MNT_FORCE | MNT_DETACH))
  1136. return -EINVAL;
  1137. /*
  1138. * probably don't strictly need the lock here if we examined
  1139. * all race cases, but it's a slowpath.
  1140. */
  1141. br_write_lock(vfsmount_lock);
  1142. if (mnt_get_count(mnt) != 2) {
  1143. br_write_unlock(vfsmount_lock);
  1144. return -EBUSY;
  1145. }
  1146. br_write_unlock(vfsmount_lock);
  1147. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1148. return -EAGAIN;
  1149. }
  1150. /*
  1151. * If we may have to abort operations to get out of this
  1152. * mount, and they will themselves hold resources we must
  1153. * allow the fs to do things. In the Unix tradition of
  1154. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1155. * might fail to complete on the first run through as other tasks
  1156. * must return, and the like. Thats for the mount program to worry
  1157. * about for the moment.
  1158. */
  1159. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1160. sb->s_op->umount_begin(sb);
  1161. }
  1162. /*
  1163. * No sense to grab the lock for this test, but test itself looks
  1164. * somewhat bogus. Suggestions for better replacement?
  1165. * Ho-hum... In principle, we might treat that as umount + switch
  1166. * to rootfs. GC would eventually take care of the old vfsmount.
  1167. * Actually it makes sense, especially if rootfs would contain a
  1168. * /reboot - static binary that would close all descriptors and
  1169. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1170. */
  1171. if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1172. /*
  1173. * Special case for "unmounting" root ...
  1174. * we just try to remount it readonly.
  1175. */
  1176. down_write(&sb->s_umount);
  1177. if (!(sb->s_flags & MS_RDONLY))
  1178. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1179. up_write(&sb->s_umount);
  1180. return retval;
  1181. }
  1182. down_write(&namespace_sem);
  1183. br_write_lock(vfsmount_lock);
  1184. event++;
  1185. if (!(flags & MNT_DETACH))
  1186. shrink_submounts(mnt, &umount_list);
  1187. retval = -EBUSY;
  1188. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1189. if (!list_empty(&mnt->mnt_list))
  1190. umount_tree(mnt, 1, &umount_list);
  1191. retval = 0;
  1192. }
  1193. br_write_unlock(vfsmount_lock);
  1194. up_write(&namespace_sem);
  1195. release_mounts(&umount_list);
  1196. return retval;
  1197. }
  1198. /*
  1199. * Now umount can handle mount points as well as block devices.
  1200. * This is important for filesystems which use unnamed block devices.
  1201. *
  1202. * We now support a flag for forced unmount like the other 'big iron'
  1203. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1204. */
  1205. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1206. {
  1207. struct path path;
  1208. int retval;
  1209. int lookup_flags = 0;
  1210. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1211. return -EINVAL;
  1212. if (!(flags & UMOUNT_NOFOLLOW))
  1213. lookup_flags |= LOOKUP_FOLLOW;
  1214. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1215. if (retval)
  1216. goto out;
  1217. retval = -EINVAL;
  1218. if (path.dentry != path.mnt->mnt_root)
  1219. goto dput_and_out;
  1220. if (!check_mnt(path.mnt))
  1221. goto dput_and_out;
  1222. retval = -EPERM;
  1223. if (!capable(CAP_SYS_ADMIN))
  1224. goto dput_and_out;
  1225. retval = do_umount(path.mnt, flags);
  1226. dput_and_out:
  1227. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1228. dput(path.dentry);
  1229. mntput_no_expire(path.mnt);
  1230. out:
  1231. return retval;
  1232. }
  1233. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1234. /*
  1235. * The 2.0 compatible umount. No flags.
  1236. */
  1237. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1238. {
  1239. return sys_umount(name, 0);
  1240. }
  1241. #endif
  1242. static int mount_is_safe(struct path *path)
  1243. {
  1244. if (capable(CAP_SYS_ADMIN))
  1245. return 0;
  1246. return -EPERM;
  1247. #ifdef notyet
  1248. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1249. return -EPERM;
  1250. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1251. if (current_uid() != path->dentry->d_inode->i_uid)
  1252. return -EPERM;
  1253. }
  1254. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1255. return -EPERM;
  1256. return 0;
  1257. #endif
  1258. }
  1259. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  1260. int flag)
  1261. {
  1262. struct vfsmount *res, *p, *q, *r, *s;
  1263. struct path path;
  1264. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1265. return NULL;
  1266. res = q = clone_mnt(mnt, dentry, flag);
  1267. if (!q)
  1268. goto Enomem;
  1269. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1270. p = mnt;
  1271. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1272. if (!is_subdir(r->mnt_mountpoint, dentry))
  1273. continue;
  1274. for (s = r; s; s = next_mnt(s, r)) {
  1275. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1276. s = skip_mnt_tree(s);
  1277. continue;
  1278. }
  1279. while (p != s->mnt_parent) {
  1280. p = p->mnt_parent;
  1281. q = q->mnt_parent;
  1282. }
  1283. p = s;
  1284. path.mnt = q;
  1285. path.dentry = p->mnt_mountpoint;
  1286. q = clone_mnt(p, p->mnt_root, flag);
  1287. if (!q)
  1288. goto Enomem;
  1289. br_write_lock(vfsmount_lock);
  1290. list_add_tail(&q->mnt_list, &res->mnt_list);
  1291. attach_mnt(q, &path);
  1292. br_write_unlock(vfsmount_lock);
  1293. }
  1294. }
  1295. return res;
  1296. Enomem:
  1297. if (res) {
  1298. LIST_HEAD(umount_list);
  1299. br_write_lock(vfsmount_lock);
  1300. umount_tree(res, 0, &umount_list);
  1301. br_write_unlock(vfsmount_lock);
  1302. release_mounts(&umount_list);
  1303. }
  1304. return NULL;
  1305. }
  1306. struct vfsmount *collect_mounts(struct path *path)
  1307. {
  1308. struct vfsmount *tree;
  1309. down_write(&namespace_sem);
  1310. tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
  1311. up_write(&namespace_sem);
  1312. return tree;
  1313. }
  1314. void drop_collected_mounts(struct vfsmount *mnt)
  1315. {
  1316. LIST_HEAD(umount_list);
  1317. down_write(&namespace_sem);
  1318. br_write_lock(vfsmount_lock);
  1319. umount_tree(mnt, 0, &umount_list);
  1320. br_write_unlock(vfsmount_lock);
  1321. up_write(&namespace_sem);
  1322. release_mounts(&umount_list);
  1323. }
  1324. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1325. struct vfsmount *root)
  1326. {
  1327. struct vfsmount *mnt;
  1328. int res = f(root, arg);
  1329. if (res)
  1330. return res;
  1331. list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
  1332. res = f(mnt, arg);
  1333. if (res)
  1334. return res;
  1335. }
  1336. return 0;
  1337. }
  1338. static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
  1339. {
  1340. struct vfsmount *p;
  1341. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1342. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1343. mnt_release_group_id(p);
  1344. }
  1345. }
  1346. static int invent_group_ids(struct vfsmount *mnt, bool recurse)
  1347. {
  1348. struct vfsmount *p;
  1349. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1350. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1351. int err = mnt_alloc_group_id(p);
  1352. if (err) {
  1353. cleanup_group_ids(mnt, p);
  1354. return err;
  1355. }
  1356. }
  1357. }
  1358. return 0;
  1359. }
  1360. /*
  1361. * @source_mnt : mount tree to be attached
  1362. * @nd : place the mount tree @source_mnt is attached
  1363. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1364. * store the parent mount and mountpoint dentry.
  1365. * (done when source_mnt is moved)
  1366. *
  1367. * NOTE: in the table below explains the semantics when a source mount
  1368. * of a given type is attached to a destination mount of a given type.
  1369. * ---------------------------------------------------------------------------
  1370. * | BIND MOUNT OPERATION |
  1371. * |**************************************************************************
  1372. * | source-->| shared | private | slave | unbindable |
  1373. * | dest | | | | |
  1374. * | | | | | | |
  1375. * | v | | | | |
  1376. * |**************************************************************************
  1377. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1378. * | | | | | |
  1379. * |non-shared| shared (+) | private | slave (*) | invalid |
  1380. * ***************************************************************************
  1381. * A bind operation clones the source mount and mounts the clone on the
  1382. * destination mount.
  1383. *
  1384. * (++) the cloned mount is propagated to all the mounts in the propagation
  1385. * tree of the destination mount and the cloned mount is added to
  1386. * the peer group of the source mount.
  1387. * (+) the cloned mount is created under the destination mount and is marked
  1388. * as shared. The cloned mount is added to the peer group of the source
  1389. * mount.
  1390. * (+++) the mount is propagated to all the mounts in the propagation tree
  1391. * of the destination mount and the cloned mount is made slave
  1392. * of the same master as that of the source mount. The cloned mount
  1393. * is marked as 'shared and slave'.
  1394. * (*) the cloned mount is made a slave of the same master as that of the
  1395. * source mount.
  1396. *
  1397. * ---------------------------------------------------------------------------
  1398. * | MOVE MOUNT OPERATION |
  1399. * |**************************************************************************
  1400. * | source-->| shared | private | slave | unbindable |
  1401. * | dest | | | | |
  1402. * | | | | | | |
  1403. * | v | | | | |
  1404. * |**************************************************************************
  1405. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1406. * | | | | | |
  1407. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1408. * ***************************************************************************
  1409. *
  1410. * (+) the mount is moved to the destination. And is then propagated to
  1411. * all the mounts in the propagation tree of the destination mount.
  1412. * (+*) the mount is moved to the destination.
  1413. * (+++) the mount is moved to the destination and is then propagated to
  1414. * all the mounts belonging to the destination mount's propagation tree.
  1415. * the mount is marked as 'shared and slave'.
  1416. * (*) the mount continues to be a slave at the new location.
  1417. *
  1418. * if the source mount is a tree, the operations explained above is
  1419. * applied to each mount in the tree.
  1420. * Must be called without spinlocks held, since this function can sleep
  1421. * in allocations.
  1422. */
  1423. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  1424. struct path *path, struct path *parent_path)
  1425. {
  1426. LIST_HEAD(tree_list);
  1427. struct vfsmount *dest_mnt = path->mnt;
  1428. struct dentry *dest_dentry = path->dentry;
  1429. struct vfsmount *child, *p;
  1430. int err;
  1431. if (IS_MNT_SHARED(dest_mnt)) {
  1432. err = invent_group_ids(source_mnt, true);
  1433. if (err)
  1434. goto out;
  1435. }
  1436. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1437. if (err)
  1438. goto out_cleanup_ids;
  1439. br_write_lock(vfsmount_lock);
  1440. if (IS_MNT_SHARED(dest_mnt)) {
  1441. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1442. set_mnt_shared(p);
  1443. }
  1444. if (parent_path) {
  1445. detach_mnt(source_mnt, parent_path);
  1446. attach_mnt(source_mnt, path);
  1447. touch_mnt_namespace(parent_path->mnt->mnt_ns);
  1448. } else {
  1449. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1450. commit_tree(source_mnt);
  1451. }
  1452. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1453. list_del_init(&child->mnt_hash);
  1454. commit_tree(child);
  1455. }
  1456. br_write_unlock(vfsmount_lock);
  1457. return 0;
  1458. out_cleanup_ids:
  1459. if (IS_MNT_SHARED(dest_mnt))
  1460. cleanup_group_ids(source_mnt, NULL);
  1461. out:
  1462. return err;
  1463. }
  1464. static int lock_mount(struct path *path)
  1465. {
  1466. struct vfsmount *mnt;
  1467. retry:
  1468. mutex_lock(&path->dentry->d_inode->i_mutex);
  1469. if (unlikely(cant_mount(path->dentry))) {
  1470. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1471. return -ENOENT;
  1472. }
  1473. down_write(&namespace_sem);
  1474. mnt = lookup_mnt(path);
  1475. if (likely(!mnt))
  1476. return 0;
  1477. up_write(&namespace_sem);
  1478. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1479. path_put(path);
  1480. path->mnt = mnt;
  1481. path->dentry = dget(mnt->mnt_root);
  1482. goto retry;
  1483. }
  1484. static void unlock_mount(struct path *path)
  1485. {
  1486. up_write(&namespace_sem);
  1487. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1488. }
  1489. static int graft_tree(struct vfsmount *mnt, struct path *path)
  1490. {
  1491. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  1492. return -EINVAL;
  1493. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1494. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  1495. return -ENOTDIR;
  1496. if (d_unlinked(path->dentry))
  1497. return -ENOENT;
  1498. return attach_recursive_mnt(mnt, path, NULL);
  1499. }
  1500. /*
  1501. * Sanity check the flags to change_mnt_propagation.
  1502. */
  1503. static int flags_to_propagation_type(int flags)
  1504. {
  1505. int type = flags & ~(MS_REC | MS_SILENT);
  1506. /* Fail if any non-propagation flags are set */
  1507. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1508. return 0;
  1509. /* Only one propagation flag should be set */
  1510. if (!is_power_of_2(type))
  1511. return 0;
  1512. return type;
  1513. }
  1514. /*
  1515. * recursively change the type of the mountpoint.
  1516. */
  1517. static int do_change_type(struct path *path, int flag)
  1518. {
  1519. struct vfsmount *m, *mnt = path->mnt;
  1520. int recurse = flag & MS_REC;
  1521. int type;
  1522. int err = 0;
  1523. if (!capable(CAP_SYS_ADMIN))
  1524. return -EPERM;
  1525. if (path->dentry != path->mnt->mnt_root)
  1526. return -EINVAL;
  1527. type = flags_to_propagation_type(flag);
  1528. if (!type)
  1529. return -EINVAL;
  1530. down_write(&namespace_sem);
  1531. if (type == MS_SHARED) {
  1532. err = invent_group_ids(mnt, recurse);
  1533. if (err)
  1534. goto out_unlock;
  1535. }
  1536. br_write_lock(vfsmount_lock);
  1537. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1538. change_mnt_propagation(m, type);
  1539. br_write_unlock(vfsmount_lock);
  1540. out_unlock:
  1541. up_write(&namespace_sem);
  1542. return err;
  1543. }
  1544. /*
  1545. * do loopback mount.
  1546. */
  1547. static int do_loopback(struct path *path, char *old_name,
  1548. int recurse)
  1549. {
  1550. LIST_HEAD(umount_list);
  1551. struct path old_path;
  1552. struct vfsmount *mnt = NULL;
  1553. int err = mount_is_safe(path);
  1554. if (err)
  1555. return err;
  1556. if (!old_name || !*old_name)
  1557. return -EINVAL;
  1558. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1559. if (err)
  1560. return err;
  1561. err = lock_mount(path);
  1562. if (err)
  1563. goto out;
  1564. err = -EINVAL;
  1565. if (IS_MNT_UNBINDABLE(old_path.mnt))
  1566. goto out2;
  1567. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1568. goto out2;
  1569. err = -ENOMEM;
  1570. if (recurse)
  1571. mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
  1572. else
  1573. mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
  1574. if (!mnt)
  1575. goto out2;
  1576. err = graft_tree(mnt, path);
  1577. if (err) {
  1578. br_write_lock(vfsmount_lock);
  1579. umount_tree(mnt, 0, &umount_list);
  1580. br_write_unlock(vfsmount_lock);
  1581. }
  1582. out2:
  1583. unlock_mount(path);
  1584. release_mounts(&umount_list);
  1585. out:
  1586. path_put(&old_path);
  1587. return err;
  1588. }
  1589. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1590. {
  1591. int error = 0;
  1592. int readonly_request = 0;
  1593. if (ms_flags & MS_RDONLY)
  1594. readonly_request = 1;
  1595. if (readonly_request == __mnt_is_readonly(mnt))
  1596. return 0;
  1597. if (readonly_request)
  1598. error = mnt_make_readonly(mnt);
  1599. else
  1600. __mnt_unmake_readonly(mnt);
  1601. return error;
  1602. }
  1603. /*
  1604. * change filesystem flags. dir should be a physical root of filesystem.
  1605. * If you've mounted a non-root directory somewhere and want to do remount
  1606. * on it - tough luck.
  1607. */
  1608. static int do_remount(struct path *path, int flags, int mnt_flags,
  1609. void *data)
  1610. {
  1611. int err;
  1612. struct super_block *sb = path->mnt->mnt_sb;
  1613. if (!capable(CAP_SYS_ADMIN))
  1614. return -EPERM;
  1615. if (!check_mnt(path->mnt))
  1616. return -EINVAL;
  1617. if (path->dentry != path->mnt->mnt_root)
  1618. return -EINVAL;
  1619. err = security_sb_remount(sb, data);
  1620. if (err)
  1621. return err;
  1622. down_write(&sb->s_umount);
  1623. if (flags & MS_BIND)
  1624. err = change_mount_flags(path->mnt, flags);
  1625. else
  1626. err = do_remount_sb(sb, flags, data, 0);
  1627. if (!err) {
  1628. br_write_lock(vfsmount_lock);
  1629. mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
  1630. path->mnt->mnt_flags = mnt_flags;
  1631. br_write_unlock(vfsmount_lock);
  1632. }
  1633. up_write(&sb->s_umount);
  1634. if (!err) {
  1635. br_write_lock(vfsmount_lock);
  1636. touch_mnt_namespace(path->mnt->mnt_ns);
  1637. br_write_unlock(vfsmount_lock);
  1638. }
  1639. return err;
  1640. }
  1641. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  1642. {
  1643. struct vfsmount *p;
  1644. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1645. if (IS_MNT_UNBINDABLE(p))
  1646. return 1;
  1647. }
  1648. return 0;
  1649. }
  1650. static int do_move_mount(struct path *path, char *old_name)
  1651. {
  1652. struct path old_path, parent_path;
  1653. struct vfsmount *p;
  1654. int err = 0;
  1655. if (!capable(CAP_SYS_ADMIN))
  1656. return -EPERM;
  1657. if (!old_name || !*old_name)
  1658. return -EINVAL;
  1659. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1660. if (err)
  1661. return err;
  1662. err = lock_mount(path);
  1663. if (err < 0)
  1664. goto out;
  1665. err = -EINVAL;
  1666. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1667. goto out1;
  1668. if (d_unlinked(path->dentry))
  1669. goto out1;
  1670. err = -EINVAL;
  1671. if (old_path.dentry != old_path.mnt->mnt_root)
  1672. goto out1;
  1673. if (old_path.mnt == old_path.mnt->mnt_parent)
  1674. goto out1;
  1675. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1676. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1677. goto out1;
  1678. /*
  1679. * Don't move a mount residing in a shared parent.
  1680. */
  1681. if (old_path.mnt->mnt_parent &&
  1682. IS_MNT_SHARED(old_path.mnt->mnt_parent))
  1683. goto out1;
  1684. /*
  1685. * Don't move a mount tree containing unbindable mounts to a destination
  1686. * mount which is shared.
  1687. */
  1688. if (IS_MNT_SHARED(path->mnt) &&
  1689. tree_contains_unbindable(old_path.mnt))
  1690. goto out1;
  1691. err = -ELOOP;
  1692. for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
  1693. if (p == old_path.mnt)
  1694. goto out1;
  1695. err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
  1696. if (err)
  1697. goto out1;
  1698. /* if the mount is moved, it should no longer be expire
  1699. * automatically */
  1700. list_del_init(&old_path.mnt->mnt_expire);
  1701. out1:
  1702. unlock_mount(path);
  1703. out:
  1704. if (!err)
  1705. path_put(&parent_path);
  1706. path_put(&old_path);
  1707. return err;
  1708. }
  1709. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1710. {
  1711. int err;
  1712. const char *subtype = strchr(fstype, '.');
  1713. if (subtype) {
  1714. subtype++;
  1715. err = -EINVAL;
  1716. if (!subtype[0])
  1717. goto err;
  1718. } else
  1719. subtype = "";
  1720. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1721. err = -ENOMEM;
  1722. if (!mnt->mnt_sb->s_subtype)
  1723. goto err;
  1724. return mnt;
  1725. err:
  1726. mntput(mnt);
  1727. return ERR_PTR(err);
  1728. }
  1729. struct vfsmount *
  1730. do_kern_mount(const char *fstype, int flags, const char *name, void *data)
  1731. {
  1732. struct file_system_type *type = get_fs_type(fstype);
  1733. struct vfsmount *mnt;
  1734. if (!type)
  1735. return ERR_PTR(-ENODEV);
  1736. mnt = vfs_kern_mount(type, flags, name, data);
  1737. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1738. !mnt->mnt_sb->s_subtype)
  1739. mnt = fs_set_subtype(mnt, fstype);
  1740. put_filesystem(type);
  1741. return mnt;
  1742. }
  1743. EXPORT_SYMBOL_GPL(do_kern_mount);
  1744. /*
  1745. * add a mount into a namespace's mount tree
  1746. */
  1747. static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
  1748. {
  1749. int err;
  1750. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1751. err = lock_mount(path);
  1752. if (err)
  1753. return err;
  1754. err = -EINVAL;
  1755. if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
  1756. goto unlock;
  1757. /* Refuse the same filesystem on the same mount point */
  1758. err = -EBUSY;
  1759. if (path->mnt->mnt_sb == newmnt->mnt_sb &&
  1760. path->mnt->mnt_root == path->dentry)
  1761. goto unlock;
  1762. err = -EINVAL;
  1763. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  1764. goto unlock;
  1765. newmnt->mnt_flags = mnt_flags;
  1766. err = graft_tree(newmnt, path);
  1767. unlock:
  1768. unlock_mount(path);
  1769. return err;
  1770. }
  1771. /*
  1772. * create a new mount for userspace and request it to be added into the
  1773. * namespace's tree
  1774. */
  1775. static int do_new_mount(struct path *path, char *type, int flags,
  1776. int mnt_flags, char *name, void *data)
  1777. {
  1778. struct vfsmount *mnt;
  1779. int err;
  1780. if (!type)
  1781. return -EINVAL;
  1782. /* we need capabilities... */
  1783. if (!capable(CAP_SYS_ADMIN))
  1784. return -EPERM;
  1785. mnt = do_kern_mount(type, flags, name, data);
  1786. if (IS_ERR(mnt))
  1787. return PTR_ERR(mnt);
  1788. err = do_add_mount(mnt, path, mnt_flags);
  1789. if (err)
  1790. mntput(mnt);
  1791. return err;
  1792. }
  1793. int finish_automount(struct vfsmount *m, struct path *path)
  1794. {
  1795. int err;
  1796. /* The new mount record should have at least 2 refs to prevent it being
  1797. * expired before we get a chance to add it
  1798. */
  1799. BUG_ON(mnt_get_count(m) < 2);
  1800. if (m->mnt_sb == path->mnt->mnt_sb &&
  1801. m->mnt_root == path->dentry) {
  1802. err = -ELOOP;
  1803. goto fail;
  1804. }
  1805. err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1806. if (!err)
  1807. return 0;
  1808. fail:
  1809. /* remove m from any expiration list it may be on */
  1810. if (!list_empty(&m->mnt_expire)) {
  1811. down_write(&namespace_sem);
  1812. br_write_lock(vfsmount_lock);
  1813. list_del_init(&m->mnt_expire);
  1814. br_write_unlock(vfsmount_lock);
  1815. up_write(&namespace_sem);
  1816. }
  1817. mntput(m);
  1818. mntput(m);
  1819. return err;
  1820. }
  1821. /**
  1822. * mnt_set_expiry - Put a mount on an expiration list
  1823. * @mnt: The mount to list.
  1824. * @expiry_list: The list to add the mount to.
  1825. */
  1826. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1827. {
  1828. down_write(&namespace_sem);
  1829. br_write_lock(vfsmount_lock);
  1830. list_add_tail(&mnt->mnt_expire, expiry_list);
  1831. br_write_unlock(vfsmount_lock);
  1832. up_write(&namespace_sem);
  1833. }
  1834. EXPORT_SYMBOL(mnt_set_expiry);
  1835. /*
  1836. * process a list of expirable mountpoints with the intent of discarding any
  1837. * mountpoints that aren't in use and haven't been touched since last we came
  1838. * here
  1839. */
  1840. void mark_mounts_for_expiry(struct list_head *mounts)
  1841. {
  1842. struct vfsmount *mnt, *next;
  1843. LIST_HEAD(graveyard);
  1844. LIST_HEAD(umounts);
  1845. if (list_empty(mounts))
  1846. return;
  1847. down_write(&namespace_sem);
  1848. br_write_lock(vfsmount_lock);
  1849. /* extract from the expiration list every vfsmount that matches the
  1850. * following criteria:
  1851. * - only referenced by its parent vfsmount
  1852. * - still marked for expiry (marked on the last call here; marks are
  1853. * cleared by mntput())
  1854. */
  1855. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1856. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1857. propagate_mount_busy(mnt, 1))
  1858. continue;
  1859. list_move(&mnt->mnt_expire, &graveyard);
  1860. }
  1861. while (!list_empty(&graveyard)) {
  1862. mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
  1863. touch_mnt_namespace(mnt->mnt_ns);
  1864. umount_tree(mnt, 1, &umounts);
  1865. }
  1866. br_write_unlock(vfsmount_lock);
  1867. up_write(&namespace_sem);
  1868. release_mounts(&umounts);
  1869. }
  1870. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1871. /*
  1872. * Ripoff of 'select_parent()'
  1873. *
  1874. * search the list of submounts for a given mountpoint, and move any
  1875. * shrinkable submounts to the 'graveyard' list.
  1876. */
  1877. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1878. {
  1879. struct vfsmount *this_parent = parent;
  1880. struct list_head *next;
  1881. int found = 0;
  1882. repeat:
  1883. next = this_parent->mnt_mounts.next;
  1884. resume:
  1885. while (next != &this_parent->mnt_mounts) {
  1886. struct list_head *tmp = next;
  1887. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1888. next = tmp->next;
  1889. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1890. continue;
  1891. /*
  1892. * Descend a level if the d_mounts list is non-empty.
  1893. */
  1894. if (!list_empty(&mnt->mnt_mounts)) {
  1895. this_parent = mnt;
  1896. goto repeat;
  1897. }
  1898. if (!propagate_mount_busy(mnt, 1)) {
  1899. list_move_tail(&mnt->mnt_expire, graveyard);
  1900. found++;
  1901. }
  1902. }
  1903. /*
  1904. * All done at this level ... ascend and resume the search
  1905. */
  1906. if (this_parent != parent) {
  1907. next = this_parent->mnt_child.next;
  1908. this_parent = this_parent->mnt_parent;
  1909. goto resume;
  1910. }
  1911. return found;
  1912. }
  1913. /*
  1914. * process a list of expirable mountpoints with the intent of discarding any
  1915. * submounts of a specific parent mountpoint
  1916. *
  1917. * vfsmount_lock must be held for write
  1918. */
  1919. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
  1920. {
  1921. LIST_HEAD(graveyard);
  1922. struct vfsmount *m;
  1923. /* extract submounts of 'mountpoint' from the expiration list */
  1924. while (select_submounts(mnt, &graveyard)) {
  1925. while (!list_empty(&graveyard)) {
  1926. m = list_first_entry(&graveyard, struct vfsmount,
  1927. mnt_expire);
  1928. touch_mnt_namespace(m->mnt_ns);
  1929. umount_tree(m, 1, umounts);
  1930. }
  1931. }
  1932. }
  1933. /*
  1934. * Some copy_from_user() implementations do not return the exact number of
  1935. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1936. * Note that this function differs from copy_from_user() in that it will oops
  1937. * on bad values of `to', rather than returning a short copy.
  1938. */
  1939. static long exact_copy_from_user(void *to, const void __user * from,
  1940. unsigned long n)
  1941. {
  1942. char *t = to;
  1943. const char __user *f = from;
  1944. char c;
  1945. if (!access_ok(VERIFY_READ, from, n))
  1946. return n;
  1947. while (n) {
  1948. if (__get_user(c, f)) {
  1949. memset(t, 0, n);
  1950. break;
  1951. }
  1952. *t++ = c;
  1953. f++;
  1954. n--;
  1955. }
  1956. return n;
  1957. }
  1958. int copy_mount_options(const void __user * data, unsigned long *where)
  1959. {
  1960. int i;
  1961. unsigned long page;
  1962. unsigned long size;
  1963. *where = 0;
  1964. if (!data)
  1965. return 0;
  1966. if (!(page = __get_free_page(GFP_KERNEL)))
  1967. return -ENOMEM;
  1968. /* We only care that *some* data at the address the user
  1969. * gave us is valid. Just in case, we'll zero
  1970. * the remainder of the page.
  1971. */
  1972. /* copy_from_user cannot cross TASK_SIZE ! */
  1973. size = TASK_SIZE - (unsigned long)data;
  1974. if (size > PAGE_SIZE)
  1975. size = PAGE_SIZE;
  1976. i = size - exact_copy_from_user((void *)page, data, size);
  1977. if (!i) {
  1978. free_page(page);
  1979. return -EFAULT;
  1980. }
  1981. if (i != PAGE_SIZE)
  1982. memset((char *)page + i, 0, PAGE_SIZE - i);
  1983. *where = page;
  1984. return 0;
  1985. }
  1986. int copy_mount_string(const void __user *data, char **where)
  1987. {
  1988. char *tmp;
  1989. if (!data) {
  1990. *where = NULL;
  1991. return 0;
  1992. }
  1993. tmp = strndup_user(data, PAGE_SIZE);
  1994. if (IS_ERR(tmp))
  1995. return PTR_ERR(tmp);
  1996. *where = tmp;
  1997. return 0;
  1998. }
  1999. /*
  2000. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2001. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2002. *
  2003. * data is a (void *) that can point to any structure up to
  2004. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2005. * information (or be NULL).
  2006. *
  2007. * Pre-0.97 versions of mount() didn't have a flags word.
  2008. * When the flags word was introduced its top half was required
  2009. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2010. * Therefore, if this magic number is present, it carries no information
  2011. * and must be discarded.
  2012. */
  2013. long do_mount(char *dev_name, char *dir_name, char *type_page,
  2014. unsigned long flags, void *data_page)
  2015. {
  2016. struct path path;
  2017. int retval = 0;
  2018. int mnt_flags = 0;
  2019. /* Discard magic */
  2020. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2021. flags &= ~MS_MGC_MSK;
  2022. /* Basic sanity checks */
  2023. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  2024. return -EINVAL;
  2025. if (data_page)
  2026. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2027. /* ... and get the mountpoint */
  2028. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  2029. if (retval)
  2030. return retval;
  2031. retval = security_sb_mount(dev_name, &path,
  2032. type_page, flags, data_page);
  2033. if (retval)
  2034. goto dput_out;
  2035. /* Default to relatime unless overriden */
  2036. if (!(flags & MS_NOATIME))
  2037. mnt_flags |= MNT_RELATIME;
  2038. /* Separate the per-mountpoint flags */
  2039. if (flags & MS_NOSUID)
  2040. mnt_flags |= MNT_NOSUID;
  2041. if (flags & MS_NODEV)
  2042. mnt_flags |= MNT_NODEV;
  2043. if (flags & MS_NOEXEC)
  2044. mnt_flags |= MNT_NOEXEC;
  2045. if (flags & MS_NOATIME)
  2046. mnt_flags |= MNT_NOATIME;
  2047. if (flags & MS_NODIRATIME)
  2048. mnt_flags |= MNT_NODIRATIME;
  2049. if (flags & MS_STRICTATIME)
  2050. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2051. if (flags & MS_RDONLY)
  2052. mnt_flags |= MNT_READONLY;
  2053. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2054. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2055. MS_STRICTATIME);
  2056. if (flags & MS_REMOUNT)
  2057. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2058. data_page);
  2059. else if (flags & MS_BIND)
  2060. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2061. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2062. retval = do_change_type(&path, flags);
  2063. else if (flags & MS_MOVE)
  2064. retval = do_move_mount(&path, dev_name);
  2065. else
  2066. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2067. dev_name, data_page);
  2068. dput_out:
  2069. path_put(&path);
  2070. return retval;
  2071. }
  2072. static struct mnt_namespace *alloc_mnt_ns(void)
  2073. {
  2074. struct mnt_namespace *new_ns;
  2075. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2076. if (!new_ns)
  2077. return ERR_PTR(-ENOMEM);
  2078. atomic_set(&new_ns->count, 1);
  2079. new_ns->root = NULL;
  2080. INIT_LIST_HEAD(&new_ns->list);
  2081. init_waitqueue_head(&new_ns->poll);
  2082. new_ns->event = 0;
  2083. return new_ns;
  2084. }
  2085. void mnt_make_longterm(struct vfsmount *mnt)
  2086. {
  2087. __mnt_make_longterm(mnt);
  2088. }
  2089. void mnt_make_shortterm(struct vfsmount *mnt)
  2090. {
  2091. #ifdef CONFIG_SMP
  2092. if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
  2093. return;
  2094. br_write_lock(vfsmount_lock);
  2095. atomic_dec(&mnt->mnt_longterm);
  2096. br_write_unlock(vfsmount_lock);
  2097. #endif
  2098. }
  2099. /*
  2100. * Allocate a new namespace structure and populate it with contents
  2101. * copied from the namespace of the passed in task structure.
  2102. */
  2103. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  2104. struct fs_struct *fs)
  2105. {
  2106. struct mnt_namespace *new_ns;
  2107. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2108. struct vfsmount *p, *q;
  2109. new_ns = alloc_mnt_ns();
  2110. if (IS_ERR(new_ns))
  2111. return new_ns;
  2112. down_write(&namespace_sem);
  2113. /* First pass: copy the tree topology */
  2114. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  2115. CL_COPY_ALL | CL_EXPIRE);
  2116. if (!new_ns->root) {
  2117. up_write(&namespace_sem);
  2118. kfree(new_ns);
  2119. return ERR_PTR(-ENOMEM);
  2120. }
  2121. br_write_lock(vfsmount_lock);
  2122. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  2123. br_write_unlock(vfsmount_lock);
  2124. /*
  2125. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2126. * as belonging to new namespace. We have already acquired a private
  2127. * fs_struct, so tsk->fs->lock is not needed.
  2128. */
  2129. p = mnt_ns->root;
  2130. q = new_ns->root;
  2131. while (p) {
  2132. q->mnt_ns = new_ns;
  2133. __mnt_make_longterm(q);
  2134. if (fs) {
  2135. if (p == fs->root.mnt) {
  2136. fs->root.mnt = mntget(q);
  2137. __mnt_make_longterm(q);
  2138. mnt_make_shortterm(p);
  2139. rootmnt = p;
  2140. }
  2141. if (p == fs->pwd.mnt) {
  2142. fs->pwd.mnt = mntget(q);
  2143. __mnt_make_longterm(q);
  2144. mnt_make_shortterm(p);
  2145. pwdmnt = p;
  2146. }
  2147. }
  2148. p = next_mnt(p, mnt_ns->root);
  2149. q = next_mnt(q, new_ns->root);
  2150. }
  2151. up_write(&namespace_sem);
  2152. if (rootmnt)
  2153. mntput(rootmnt);
  2154. if (pwdmnt)
  2155. mntput(pwdmnt);
  2156. return new_ns;
  2157. }
  2158. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2159. struct fs_struct *new_fs)
  2160. {
  2161. struct mnt_namespace *new_ns;
  2162. BUG_ON(!ns);
  2163. get_mnt_ns(ns);
  2164. if (!(flags & CLONE_NEWNS))
  2165. return ns;
  2166. new_ns = dup_mnt_ns(ns, new_fs);
  2167. put_mnt_ns(ns);
  2168. return new_ns;
  2169. }
  2170. /**
  2171. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2172. * @mnt: pointer to the new root filesystem mountpoint
  2173. */
  2174. struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
  2175. {
  2176. struct mnt_namespace *new_ns;
  2177. new_ns = alloc_mnt_ns();
  2178. if (!IS_ERR(new_ns)) {
  2179. mnt->mnt_ns = new_ns;
  2180. __mnt_make_longterm(mnt);
  2181. new_ns->root = mnt;
  2182. list_add(&new_ns->list, &new_ns->root->mnt_list);
  2183. }
  2184. return new_ns;
  2185. }
  2186. EXPORT_SYMBOL(create_mnt_ns);
  2187. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2188. char __user *, type, unsigned long, flags, void __user *, data)
  2189. {
  2190. int ret;
  2191. char *kernel_type;
  2192. char *kernel_dir;
  2193. char *kernel_dev;
  2194. unsigned long data_page;
  2195. ret = copy_mount_string(type, &kernel_type);
  2196. if (ret < 0)
  2197. goto out_type;
  2198. kernel_dir = getname(dir_name);
  2199. if (IS_ERR(kernel_dir)) {
  2200. ret = PTR_ERR(kernel_dir);
  2201. goto out_dir;
  2202. }
  2203. ret = copy_mount_string(dev_name, &kernel_dev);
  2204. if (ret < 0)
  2205. goto out_dev;
  2206. ret = copy_mount_options(data, &data_page);
  2207. if (ret < 0)
  2208. goto out_data;
  2209. ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
  2210. (void *) data_page);
  2211. free_page(data_page);
  2212. out_data:
  2213. kfree(kernel_dev);
  2214. out_dev:
  2215. putname(kernel_dir);
  2216. out_dir:
  2217. kfree(kernel_type);
  2218. out_type:
  2219. return ret;
  2220. }
  2221. /*
  2222. * pivot_root Semantics:
  2223. * Moves the root file system of the current process to the directory put_old,
  2224. * makes new_root as the new root file system of the current process, and sets
  2225. * root/cwd of all processes which had them on the current root to new_root.
  2226. *
  2227. * Restrictions:
  2228. * The new_root and put_old must be directories, and must not be on the
  2229. * same file system as the current process root. The put_old must be
  2230. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2231. * pointed to by put_old must yield the same directory as new_root. No other
  2232. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2233. *
  2234. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2235. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2236. * in this situation.
  2237. *
  2238. * Notes:
  2239. * - we don't move root/cwd if they are not at the root (reason: if something
  2240. * cared enough to change them, it's probably wrong to force them elsewhere)
  2241. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2242. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2243. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2244. * first.
  2245. */
  2246. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2247. const char __user *, put_old)
  2248. {
  2249. struct vfsmount *tmp;
  2250. struct path new, old, parent_path, root_parent, root;
  2251. int error;
  2252. if (!capable(CAP_SYS_ADMIN))
  2253. return -EPERM;
  2254. error = user_path_dir(new_root, &new);
  2255. if (error)
  2256. goto out0;
  2257. error = user_path_dir(put_old, &old);
  2258. if (error)
  2259. goto out1;
  2260. error = security_sb_pivotroot(&old, &new);
  2261. if (error)
  2262. goto out2;
  2263. get_fs_root(current->fs, &root);
  2264. error = lock_mount(&old);
  2265. if (error)
  2266. goto out3;
  2267. error = -EINVAL;
  2268. if (IS_MNT_SHARED(old.mnt) ||
  2269. IS_MNT_SHARED(new.mnt->mnt_parent) ||
  2270. IS_MNT_SHARED(root.mnt->mnt_parent))
  2271. goto out4;
  2272. if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
  2273. goto out4;
  2274. error = -ENOENT;
  2275. if (d_unlinked(new.dentry))
  2276. goto out4;
  2277. if (d_unlinked(old.dentry))
  2278. goto out4;
  2279. error = -EBUSY;
  2280. if (new.mnt == root.mnt ||
  2281. old.mnt == root.mnt)
  2282. goto out4; /* loop, on the same file system */
  2283. error = -EINVAL;
  2284. if (root.mnt->mnt_root != root.dentry)
  2285. goto out4; /* not a mountpoint */
  2286. if (root.mnt->mnt_parent == root.mnt)
  2287. goto out4; /* not attached */
  2288. if (new.mnt->mnt_root != new.dentry)
  2289. goto out4; /* not a mountpoint */
  2290. if (new.mnt->mnt_parent == new.mnt)
  2291. goto out4; /* not attached */
  2292. /* make sure we can reach put_old from new_root */
  2293. tmp = old.mnt;
  2294. if (tmp != new.mnt) {
  2295. for (;;) {
  2296. if (tmp->mnt_parent == tmp)
  2297. goto out4; /* already mounted on put_old */
  2298. if (tmp->mnt_parent == new.mnt)
  2299. break;
  2300. tmp = tmp->mnt_parent;
  2301. }
  2302. if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
  2303. goto out4;
  2304. } else if (!is_subdir(old.dentry, new.dentry))
  2305. goto out4;
  2306. br_write_lock(vfsmount_lock);
  2307. detach_mnt(new.mnt, &parent_path);
  2308. detach_mnt(root.mnt, &root_parent);
  2309. /* mount old root on put_old */
  2310. attach_mnt(root.mnt, &old);
  2311. /* mount new_root on / */
  2312. attach_mnt(new.mnt, &root_parent);
  2313. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2314. br_write_unlock(vfsmount_lock);
  2315. chroot_fs_refs(&root, &new);
  2316. error = 0;
  2317. out4:
  2318. unlock_mount(&old);
  2319. if (!error) {
  2320. path_put(&root_parent);
  2321. path_put(&parent_path);
  2322. }
  2323. out3:
  2324. path_put(&root);
  2325. out2:
  2326. path_put(&old);
  2327. out1:
  2328. path_put(&new);
  2329. out0:
  2330. return error;
  2331. }
  2332. static void __init init_mount_tree(void)
  2333. {
  2334. struct vfsmount *mnt;
  2335. struct mnt_namespace *ns;
  2336. struct path root;
  2337. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  2338. if (IS_ERR(mnt))
  2339. panic("Can't create rootfs");
  2340. ns = create_mnt_ns(mnt);
  2341. if (IS_ERR(ns))
  2342. panic("Can't allocate initial namespace");
  2343. init_task.nsproxy->mnt_ns = ns;
  2344. get_mnt_ns(ns);
  2345. root.mnt = ns->root;
  2346. root.dentry = ns->root->mnt_root;
  2347. set_fs_pwd(current->fs, &root);
  2348. set_fs_root(current->fs, &root);
  2349. }
  2350. void __init mnt_init(void)
  2351. {
  2352. unsigned u;
  2353. int err;
  2354. init_rwsem(&namespace_sem);
  2355. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  2356. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2357. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2358. if (!mount_hashtable)
  2359. panic("Failed to allocate mount hash table\n");
  2360. printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2361. for (u = 0; u < HASH_SIZE; u++)
  2362. INIT_LIST_HEAD(&mount_hashtable[u]);
  2363. br_lock_init(vfsmount_lock);
  2364. err = sysfs_init();
  2365. if (err)
  2366. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2367. __func__, err);
  2368. fs_kobj = kobject_create_and_add("fs", NULL);
  2369. if (!fs_kobj)
  2370. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2371. init_rootfs();
  2372. init_mount_tree();
  2373. }
  2374. void put_mnt_ns(struct mnt_namespace *ns)
  2375. {
  2376. LIST_HEAD(umount_list);
  2377. if (!atomic_dec_and_test(&ns->count))
  2378. return;
  2379. down_write(&namespace_sem);
  2380. br_write_lock(vfsmount_lock);
  2381. umount_tree(ns->root, 0, &umount_list);
  2382. br_write_unlock(vfsmount_lock);
  2383. up_write(&namespace_sem);
  2384. release_mounts(&umount_list);
  2385. kfree(ns);
  2386. }
  2387. EXPORT_SYMBOL(put_mnt_ns);
  2388. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2389. {
  2390. struct vfsmount *mnt;
  2391. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2392. if (!IS_ERR(mnt)) {
  2393. /*
  2394. * it is a longterm mount, don't release mnt until
  2395. * we unmount before file sys is unregistered
  2396. */
  2397. mnt_make_longterm(mnt);
  2398. }
  2399. return mnt;
  2400. }
  2401. EXPORT_SYMBOL_GPL(kern_mount_data);
  2402. void kern_unmount(struct vfsmount *mnt)
  2403. {
  2404. /* release long term mount so mount point can be released */
  2405. if (!IS_ERR_OR_NULL(mnt)) {
  2406. mnt_make_shortterm(mnt);
  2407. mntput(mnt);
  2408. }
  2409. }
  2410. EXPORT_SYMBOL(kern_unmount);