rt2800pci.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300
  1. /*
  2. Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/crc-ccitt.h>
  30. #include <linux/delay.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/init.h>
  33. #include <linux/kernel.h>
  34. #include <linux/module.h>
  35. #include <linux/pci.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/eeprom_93cx6.h>
  38. #include "rt2x00.h"
  39. #include "rt2x00pci.h"
  40. #include "rt2x00soc.h"
  41. #include "rt2800lib.h"
  42. #include "rt2800.h"
  43. #include "rt2800pci.h"
  44. /*
  45. * Allow hardware encryption to be disabled.
  46. */
  47. static int modparam_nohwcrypt = 1;
  48. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  49. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  50. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  51. {
  52. unsigned int i;
  53. u32 reg;
  54. /*
  55. * SOC devices don't support MCU requests.
  56. */
  57. if (rt2x00_is_soc(rt2x00dev))
  58. return;
  59. for (i = 0; i < 200; i++) {
  60. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  61. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  62. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  63. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  64. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  65. break;
  66. udelay(REGISTER_BUSY_DELAY);
  67. }
  68. if (i == 200)
  69. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  70. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  71. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  72. }
  73. #ifdef CONFIG_RT2800PCI_SOC
  74. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  75. {
  76. u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
  77. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  78. }
  79. #else
  80. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  81. {
  82. }
  83. #endif /* CONFIG_RT2800PCI_SOC */
  84. #ifdef CONFIG_RT2800PCI_PCI
  85. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  86. {
  87. struct rt2x00_dev *rt2x00dev = eeprom->data;
  88. u32 reg;
  89. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  90. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  91. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  92. eeprom->reg_data_clock =
  93. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  94. eeprom->reg_chip_select =
  95. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  96. }
  97. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  98. {
  99. struct rt2x00_dev *rt2x00dev = eeprom->data;
  100. u32 reg = 0;
  101. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  102. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  103. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  104. !!eeprom->reg_data_clock);
  105. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  106. !!eeprom->reg_chip_select);
  107. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  108. }
  109. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  110. {
  111. struct eeprom_93cx6 eeprom;
  112. u32 reg;
  113. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  114. eeprom.data = rt2x00dev;
  115. eeprom.register_read = rt2800pci_eepromregister_read;
  116. eeprom.register_write = rt2800pci_eepromregister_write;
  117. eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
  118. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  119. eeprom.reg_data_in = 0;
  120. eeprom.reg_data_out = 0;
  121. eeprom.reg_data_clock = 0;
  122. eeprom.reg_chip_select = 0;
  123. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  124. EEPROM_SIZE / sizeof(u16));
  125. }
  126. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  127. {
  128. return rt2800_efuse_detect(rt2x00dev);
  129. }
  130. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  131. {
  132. rt2800_read_eeprom_efuse(rt2x00dev);
  133. }
  134. #else
  135. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  136. {
  137. }
  138. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  139. {
  140. return 0;
  141. }
  142. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  143. {
  144. }
  145. #endif /* CONFIG_RT2800PCI_PCI */
  146. /*
  147. * Firmware functions
  148. */
  149. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  150. {
  151. return FIRMWARE_RT2860;
  152. }
  153. static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
  154. const u8 *data, const size_t len)
  155. {
  156. u16 fw_crc;
  157. u16 crc;
  158. /*
  159. * Only support 8kb firmware files.
  160. */
  161. if (len != 8192)
  162. return FW_BAD_LENGTH;
  163. /*
  164. * The last 2 bytes in the firmware array are the crc checksum itself,
  165. * this means that we should never pass those 2 bytes to the crc
  166. * algorithm.
  167. */
  168. fw_crc = (data[len - 2] << 8 | data[len - 1]);
  169. /*
  170. * Use the crc ccitt algorithm.
  171. * This will return the same value as the legacy driver which
  172. * used bit ordering reversion on the both the firmware bytes
  173. * before input input as well as on the final output.
  174. * Obviously using crc ccitt directly is much more efficient.
  175. */
  176. crc = crc_ccitt(~0, data, len - 2);
  177. /*
  178. * There is a small difference between the crc-itu-t + bitrev and
  179. * the crc-ccitt crc calculation. In the latter method the 2 bytes
  180. * will be swapped, use swab16 to convert the crc to the correct
  181. * value.
  182. */
  183. crc = swab16(crc);
  184. return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
  185. }
  186. static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
  187. const u8 *data, const size_t len)
  188. {
  189. unsigned int i;
  190. u32 reg;
  191. /*
  192. * Wait for stable hardware.
  193. */
  194. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  195. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  196. if (reg && reg != ~0)
  197. break;
  198. msleep(1);
  199. }
  200. if (i == REGISTER_BUSY_COUNT) {
  201. ERROR(rt2x00dev, "Unstable hardware.\n");
  202. return -EBUSY;
  203. }
  204. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
  205. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
  206. /*
  207. * Disable DMA, will be reenabled later when enabling
  208. * the radio.
  209. */
  210. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  211. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  212. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  213. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  214. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  215. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  216. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  217. /*
  218. * enable Host program ram write selection
  219. */
  220. reg = 0;
  221. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  222. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  223. /*
  224. * Write firmware to device.
  225. */
  226. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  227. data, len);
  228. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  229. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  230. /*
  231. * Wait for device to stabilize.
  232. */
  233. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  234. rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
  235. if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
  236. break;
  237. msleep(1);
  238. }
  239. if (i == REGISTER_BUSY_COUNT) {
  240. ERROR(rt2x00dev, "PBF system register not ready.\n");
  241. return -EBUSY;
  242. }
  243. /*
  244. * Disable interrupts
  245. */
  246. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
  247. /*
  248. * Initialize BBP R/W access agent
  249. */
  250. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  251. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  252. return 0;
  253. }
  254. /*
  255. * Initialization functions.
  256. */
  257. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  258. {
  259. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  260. u32 word;
  261. if (entry->queue->qid == QID_RX) {
  262. rt2x00_desc_read(entry_priv->desc, 1, &word);
  263. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  264. } else {
  265. rt2x00_desc_read(entry_priv->desc, 1, &word);
  266. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  267. }
  268. }
  269. static void rt2800pci_clear_entry(struct queue_entry *entry)
  270. {
  271. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  272. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  273. u32 word;
  274. if (entry->queue->qid == QID_RX) {
  275. rt2x00_desc_read(entry_priv->desc, 0, &word);
  276. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  277. rt2x00_desc_write(entry_priv->desc, 0, word);
  278. rt2x00_desc_read(entry_priv->desc, 1, &word);
  279. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  280. rt2x00_desc_write(entry_priv->desc, 1, word);
  281. } else {
  282. rt2x00_desc_read(entry_priv->desc, 1, &word);
  283. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  284. rt2x00_desc_write(entry_priv->desc, 1, word);
  285. }
  286. }
  287. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  288. {
  289. struct queue_entry_priv_pci *entry_priv;
  290. u32 reg;
  291. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  292. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  293. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  294. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  295. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  296. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  297. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  298. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  299. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  300. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  301. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  302. /*
  303. * Initialize registers.
  304. */
  305. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  306. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  307. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  308. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  309. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  310. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  311. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  312. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  313. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  314. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  315. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  316. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  317. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  318. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  319. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  320. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  321. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  322. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  323. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  324. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  325. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  326. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  327. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  328. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  329. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  330. /*
  331. * Enable global DMA configuration
  332. */
  333. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  334. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  335. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  336. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  337. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  338. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  339. return 0;
  340. }
  341. /*
  342. * Device state switch handlers.
  343. */
  344. static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  345. enum dev_state state)
  346. {
  347. u32 reg;
  348. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  349. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
  350. (state == STATE_RADIO_RX_ON) ||
  351. (state == STATE_RADIO_RX_ON_LINK));
  352. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  353. }
  354. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  355. enum dev_state state)
  356. {
  357. int mask = (state == STATE_RADIO_IRQ_ON);
  358. u32 reg;
  359. /*
  360. * When interrupts are being enabled, the interrupt registers
  361. * should clear the register to assure a clean state.
  362. */
  363. if (state == STATE_RADIO_IRQ_ON) {
  364. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  365. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  366. }
  367. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  368. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
  369. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
  370. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  371. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
  372. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
  373. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
  374. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
  375. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
  376. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
  377. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
  378. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
  379. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  380. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  381. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  382. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  383. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
  384. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
  385. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
  386. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  387. }
  388. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  389. {
  390. u32 reg;
  391. u16 word;
  392. /*
  393. * Initialize all registers.
  394. */
  395. if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
  396. rt2800pci_init_queues(rt2x00dev) ||
  397. rt2800_init_registers(rt2x00dev) ||
  398. rt2800_wait_wpdma_ready(rt2x00dev) ||
  399. rt2800_init_bbp(rt2x00dev) ||
  400. rt2800_init_rfcsr(rt2x00dev)))
  401. return -EIO;
  402. /*
  403. * Send signal to firmware during boot time.
  404. */
  405. rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0);
  406. /*
  407. * Enable RX.
  408. */
  409. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  410. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  411. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  412. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  413. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  414. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
  415. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
  416. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
  417. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  418. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  419. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  420. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  421. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  422. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  423. /*
  424. * Initialize LED control
  425. */
  426. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
  427. rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
  428. word & 0xff, (word >> 8) & 0xff);
  429. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
  430. rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
  431. word & 0xff, (word >> 8) & 0xff);
  432. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
  433. rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
  434. word & 0xff, (word >> 8) & 0xff);
  435. return 0;
  436. }
  437. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  438. {
  439. u32 reg;
  440. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  441. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  442. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  443. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  444. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  445. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  446. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  447. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
  448. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
  449. rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
  450. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  451. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  452. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  453. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  454. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  455. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  456. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  457. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  458. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  459. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  460. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  461. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  462. /* Wait for DMA, ignore error */
  463. rt2800_wait_wpdma_ready(rt2x00dev);
  464. }
  465. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  466. enum dev_state state)
  467. {
  468. /*
  469. * Always put the device to sleep (even when we intend to wakeup!)
  470. * if the device is booting and wasn't asleep it will return
  471. * failure when attempting to wakeup.
  472. */
  473. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
  474. if (state == STATE_AWAKE) {
  475. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  476. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  477. }
  478. return 0;
  479. }
  480. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  481. enum dev_state state)
  482. {
  483. int retval = 0;
  484. switch (state) {
  485. case STATE_RADIO_ON:
  486. /*
  487. * Before the radio can be enabled, the device first has
  488. * to be woken up. After that it needs a bit of time
  489. * to be fully awake and then the radio can be enabled.
  490. */
  491. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  492. msleep(1);
  493. retval = rt2800pci_enable_radio(rt2x00dev);
  494. break;
  495. case STATE_RADIO_OFF:
  496. /*
  497. * After the radio has been disabled, the device should
  498. * be put to sleep for powersaving.
  499. */
  500. rt2800pci_disable_radio(rt2x00dev);
  501. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  502. break;
  503. case STATE_RADIO_RX_ON:
  504. case STATE_RADIO_RX_ON_LINK:
  505. case STATE_RADIO_RX_OFF:
  506. case STATE_RADIO_RX_OFF_LINK:
  507. rt2800pci_toggle_rx(rt2x00dev, state);
  508. break;
  509. case STATE_RADIO_IRQ_ON:
  510. case STATE_RADIO_IRQ_OFF:
  511. rt2800pci_toggle_irq(rt2x00dev, state);
  512. break;
  513. case STATE_DEEP_SLEEP:
  514. case STATE_SLEEP:
  515. case STATE_STANDBY:
  516. case STATE_AWAKE:
  517. retval = rt2800pci_set_state(rt2x00dev, state);
  518. break;
  519. default:
  520. retval = -ENOTSUPP;
  521. break;
  522. }
  523. if (unlikely(retval))
  524. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  525. state, retval);
  526. return retval;
  527. }
  528. /*
  529. * TX descriptor initialization
  530. */
  531. static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  532. struct sk_buff *skb,
  533. struct txentry_desc *txdesc)
  534. {
  535. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  536. __le32 *txd = skbdesc->desc;
  537. __le32 *txwi = (__le32 *)(skb->data - rt2x00dev->ops->extra_tx_headroom);
  538. u32 word;
  539. /*
  540. * Initialize TX Info descriptor
  541. */
  542. rt2x00_desc_read(txwi, 0, &word);
  543. rt2x00_set_field32(&word, TXWI_W0_FRAG,
  544. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  545. rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0);
  546. rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
  547. rt2x00_set_field32(&word, TXWI_W0_TS,
  548. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  549. rt2x00_set_field32(&word, TXWI_W0_AMPDU,
  550. test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
  551. rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
  552. rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->ifs);
  553. rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
  554. rt2x00_set_field32(&word, TXWI_W0_BW,
  555. test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
  556. rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
  557. test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
  558. rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
  559. rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
  560. rt2x00_desc_write(txwi, 0, word);
  561. rt2x00_desc_read(txwi, 1, &word);
  562. rt2x00_set_field32(&word, TXWI_W1_ACK,
  563. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  564. rt2x00_set_field32(&word, TXWI_W1_NSEQ,
  565. test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
  566. rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
  567. rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
  568. test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
  569. txdesc->key_idx : 0xff);
  570. rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
  571. skb->len - txdesc->l2pad);
  572. rt2x00_set_field32(&word, TXWI_W1_PACKETID,
  573. skbdesc->entry->queue->qid + 1);
  574. rt2x00_desc_write(txwi, 1, word);
  575. /*
  576. * Always write 0 to IV/EIV fields, hardware will insert the IV
  577. * from the IVEIV register when TXD_W3_WIV is set to 0.
  578. * When TXD_W3_WIV is set to 1 it will use the IV data
  579. * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
  580. * crypto entry in the registers should be used to encrypt the frame.
  581. */
  582. _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
  583. _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
  584. /*
  585. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  586. * must contains a TXWI structure + 802.11 header + padding + 802.11
  587. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  588. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  589. * data. It means that LAST_SEC0 is always 0.
  590. */
  591. /*
  592. * Initialize TX descriptor
  593. */
  594. rt2x00_desc_read(txd, 0, &word);
  595. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  596. rt2x00_desc_write(txd, 0, word);
  597. rt2x00_desc_read(txd, 1, &word);
  598. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
  599. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  600. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  601. rt2x00_set_field32(&word, TXD_W1_BURST,
  602. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  603. rt2x00_set_field32(&word, TXD_W1_SD_LEN0,
  604. rt2x00dev->ops->extra_tx_headroom);
  605. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  606. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  607. rt2x00_desc_write(txd, 1, word);
  608. rt2x00_desc_read(txd, 2, &word);
  609. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  610. skbdesc->skb_dma + rt2x00dev->ops->extra_tx_headroom);
  611. rt2x00_desc_write(txd, 2, word);
  612. rt2x00_desc_read(txd, 3, &word);
  613. rt2x00_set_field32(&word, TXD_W3_WIV,
  614. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  615. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  616. rt2x00_desc_write(txd, 3, word);
  617. }
  618. /*
  619. * TX data initialization
  620. */
  621. static void rt2800pci_write_beacon(struct queue_entry *entry)
  622. {
  623. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  624. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  625. unsigned int beacon_base;
  626. u32 reg;
  627. /*
  628. * Disable beaconing while we are reloading the beacon data,
  629. * otherwise we might be sending out invalid data.
  630. */
  631. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  632. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  633. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  634. /*
  635. * Write entire beacon with descriptor to register.
  636. */
  637. beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
  638. rt2800_register_multiwrite(rt2x00dev,
  639. beacon_base,
  640. skbdesc->desc, skbdesc->desc_len);
  641. rt2800_register_multiwrite(rt2x00dev,
  642. beacon_base + skbdesc->desc_len,
  643. entry->skb->data, entry->skb->len);
  644. /*
  645. * Clean up beacon skb.
  646. */
  647. dev_kfree_skb_any(entry->skb);
  648. entry->skb = NULL;
  649. }
  650. static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  651. const enum data_queue_qid queue_idx)
  652. {
  653. struct data_queue *queue;
  654. unsigned int idx, qidx = 0;
  655. u32 reg;
  656. if (queue_idx == QID_BEACON) {
  657. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  658. if (!rt2x00_get_field32(reg, BCN_TIME_CFG_BEACON_GEN)) {
  659. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
  660. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
  661. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  662. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  663. }
  664. return;
  665. }
  666. if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
  667. return;
  668. queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  669. idx = queue->index[Q_INDEX];
  670. if (queue_idx == QID_MGMT)
  671. qidx = 5;
  672. else
  673. qidx = queue_idx;
  674. rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
  675. }
  676. static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  677. const enum data_queue_qid qid)
  678. {
  679. u32 reg;
  680. if (qid == QID_BEACON) {
  681. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
  682. return;
  683. }
  684. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  685. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
  686. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
  687. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
  688. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
  689. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  690. }
  691. /*
  692. * RX control handlers
  693. */
  694. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  695. struct rxdone_entry_desc *rxdesc)
  696. {
  697. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  698. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  699. __le32 *rxd = entry_priv->desc;
  700. __le32 *rxwi = (__le32 *)entry->skb->data;
  701. u32 rxd3;
  702. u32 rxwi0;
  703. u32 rxwi1;
  704. u32 rxwi2;
  705. u32 rxwi3;
  706. rt2x00_desc_read(rxd, 3, &rxd3);
  707. rt2x00_desc_read(rxwi, 0, &rxwi0);
  708. rt2x00_desc_read(rxwi, 1, &rxwi1);
  709. rt2x00_desc_read(rxwi, 2, &rxwi2);
  710. rt2x00_desc_read(rxwi, 3, &rxwi3);
  711. if (rt2x00_get_field32(rxd3, RXD_W3_CRC_ERROR))
  712. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  713. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  714. /*
  715. * Unfortunately we don't know the cipher type used during
  716. * decryption. This prevents us from correct providing
  717. * correct statistics through debugfs.
  718. */
  719. rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF);
  720. rxdesc->cipher_status =
  721. rt2x00_get_field32(rxd3, RXD_W3_CIPHER_ERROR);
  722. }
  723. if (rt2x00_get_field32(rxd3, RXD_W3_DECRYPTED)) {
  724. /*
  725. * Hardware has stripped IV/EIV data from 802.11 frame during
  726. * decryption. Unfortunately the descriptor doesn't contain
  727. * any fields with the EIV/IV data either, so they can't
  728. * be restored by rt2x00lib.
  729. */
  730. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  731. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  732. rxdesc->flags |= RX_FLAG_DECRYPTED;
  733. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  734. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  735. }
  736. if (rt2x00_get_field32(rxd3, RXD_W3_MY_BSS))
  737. rxdesc->dev_flags |= RXDONE_MY_BSS;
  738. if (rt2x00_get_field32(rxd3, RXD_W3_L2PAD))
  739. rxdesc->dev_flags |= RXDONE_L2PAD;
  740. if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI))
  741. rxdesc->flags |= RX_FLAG_SHORT_GI;
  742. if (rt2x00_get_field32(rxwi1, RXWI_W1_BW))
  743. rxdesc->flags |= RX_FLAG_40MHZ;
  744. /*
  745. * Detect RX rate, always use MCS as signal type.
  746. */
  747. rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
  748. rxdesc->rate_mode = rt2x00_get_field32(rxwi1, RXWI_W1_PHYMODE);
  749. rxdesc->signal = rt2x00_get_field32(rxwi1, RXWI_W1_MCS);
  750. /*
  751. * Mask of 0x8 bit to remove the short preamble flag.
  752. */
  753. if (rxdesc->rate_mode == RATE_MODE_CCK)
  754. rxdesc->signal &= ~0x8;
  755. rxdesc->rssi =
  756. (rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) +
  757. rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2;
  758. rxdesc->noise =
  759. (rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) +
  760. rt2x00_get_field32(rxwi3, RXWI_W3_SNR1)) / 2;
  761. rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
  762. /*
  763. * Set RX IDX in register to inform hardware that we have handled
  764. * this entry and it is available for reuse again.
  765. */
  766. rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
  767. /*
  768. * Remove TXWI descriptor from start of buffer.
  769. */
  770. skb_pull(entry->skb, RXWI_DESC_SIZE);
  771. }
  772. /*
  773. * Interrupt functions.
  774. */
  775. static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  776. {
  777. struct data_queue *queue;
  778. struct queue_entry *entry;
  779. __le32 *txwi;
  780. struct txdone_entry_desc txdesc;
  781. u32 word;
  782. u32 reg;
  783. u32 old_reg;
  784. int wcid, ack, pid, tx_wcid, tx_ack, tx_pid;
  785. u16 mcs, real_mcs;
  786. /*
  787. * During each loop we will compare the freshly read
  788. * TX_STA_FIFO register value with the value read from
  789. * the previous loop. If the 2 values are equal then
  790. * we should stop processing because the chance it
  791. * quite big that the device has been unplugged and
  792. * we risk going into an endless loop.
  793. */
  794. old_reg = 0;
  795. while (1) {
  796. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
  797. if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
  798. break;
  799. if (old_reg == reg)
  800. break;
  801. old_reg = reg;
  802. wcid = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
  803. ack = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
  804. pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
  805. /*
  806. * Skip this entry when it contains an invalid
  807. * queue identication number.
  808. */
  809. if (pid <= 0 || pid > QID_RX)
  810. continue;
  811. queue = rt2x00queue_get_queue(rt2x00dev, pid - 1);
  812. if (unlikely(!queue))
  813. continue;
  814. /*
  815. * Inside each queue, we process each entry in a chronological
  816. * order. We first check that the queue is not empty.
  817. */
  818. if (rt2x00queue_empty(queue))
  819. continue;
  820. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  821. /* Check if we got a match by looking at WCID/ACK/PID
  822. * fields */
  823. txwi = (__le32 *)(entry->skb->data -
  824. rt2x00dev->ops->extra_tx_headroom);
  825. rt2x00_desc_read(txwi, 1, &word);
  826. tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
  827. tx_ack = rt2x00_get_field32(word, TXWI_W1_ACK);
  828. tx_pid = rt2x00_get_field32(word, TXWI_W1_PACKETID);
  829. if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid))
  830. WARNING(rt2x00dev, "invalid TX_STA_FIFO content\n");
  831. /*
  832. * Obtain the status about this packet.
  833. */
  834. txdesc.flags = 0;
  835. rt2x00_desc_read(txwi, 0, &word);
  836. mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
  837. real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
  838. /*
  839. * Ralink has a retry mechanism using a global fallback
  840. * table. We setup this fallback table to try the immediate
  841. * lower rate for all rates. In the TX_STA_FIFO, the MCS field
  842. * always contains the MCS used for the last transmission, be
  843. * it successful or not.
  844. */
  845. if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) {
  846. /*
  847. * Transmission succeeded. The number of retries is
  848. * mcs - real_mcs
  849. */
  850. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  851. txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
  852. } else {
  853. /*
  854. * Transmission failed. The number of retries is
  855. * always 7 in this case (for a total number of 8
  856. * frames sent).
  857. */
  858. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  859. txdesc.retry = 7;
  860. }
  861. __set_bit(TXDONE_FALLBACK, &txdesc.flags);
  862. rt2x00lib_txdone(entry, &txdesc);
  863. }
  864. }
  865. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  866. {
  867. struct rt2x00_dev *rt2x00dev = dev_instance;
  868. u32 reg;
  869. /* Read status and ACK all interrupts */
  870. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  871. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  872. if (!reg)
  873. return IRQ_NONE;
  874. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  875. return IRQ_HANDLED;
  876. /*
  877. * 1 - Rx ring done interrupt.
  878. */
  879. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  880. rt2x00pci_rxdone(rt2x00dev);
  881. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  882. rt2800pci_txdone(rt2x00dev);
  883. return IRQ_HANDLED;
  884. }
  885. /*
  886. * Device probe functions.
  887. */
  888. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  889. {
  890. /*
  891. * Read EEPROM into buffer
  892. */
  893. if (rt2x00_is_soc(rt2x00dev))
  894. rt2800pci_read_eeprom_soc(rt2x00dev);
  895. else if (rt2800pci_efuse_detect(rt2x00dev))
  896. rt2800pci_read_eeprom_efuse(rt2x00dev);
  897. else
  898. rt2800pci_read_eeprom_pci(rt2x00dev);
  899. return rt2800_validate_eeprom(rt2x00dev);
  900. }
  901. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  902. .register_read = rt2x00pci_register_read,
  903. .register_read_lock = rt2x00pci_register_read, /* same for PCI */
  904. .register_write = rt2x00pci_register_write,
  905. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  906. .register_multiread = rt2x00pci_register_multiread,
  907. .register_multiwrite = rt2x00pci_register_multiwrite,
  908. .regbusy_read = rt2x00pci_regbusy_read,
  909. };
  910. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  911. {
  912. int retval;
  913. rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
  914. /*
  915. * Allocate eeprom data.
  916. */
  917. retval = rt2800pci_validate_eeprom(rt2x00dev);
  918. if (retval)
  919. return retval;
  920. retval = rt2800_init_eeprom(rt2x00dev);
  921. if (retval)
  922. return retval;
  923. /*
  924. * Initialize hw specifications.
  925. */
  926. retval = rt2800_probe_hw_mode(rt2x00dev);
  927. if (retval)
  928. return retval;
  929. /*
  930. * This device has multiple filters for control frames
  931. * and has a separate filter for PS Poll frames.
  932. */
  933. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  934. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  935. /*
  936. * This device requires firmware.
  937. */
  938. if (!rt2x00_is_soc(rt2x00dev))
  939. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  940. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  941. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  942. if (!modparam_nohwcrypt)
  943. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  944. /*
  945. * Set the rssi offset.
  946. */
  947. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  948. return 0;
  949. }
  950. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  951. .irq_handler = rt2800pci_interrupt,
  952. .probe_hw = rt2800pci_probe_hw,
  953. .get_firmware_name = rt2800pci_get_firmware_name,
  954. .check_firmware = rt2800pci_check_firmware,
  955. .load_firmware = rt2800pci_load_firmware,
  956. .initialize = rt2x00pci_initialize,
  957. .uninitialize = rt2x00pci_uninitialize,
  958. .get_entry_state = rt2800pci_get_entry_state,
  959. .clear_entry = rt2800pci_clear_entry,
  960. .set_device_state = rt2800pci_set_device_state,
  961. .rfkill_poll = rt2800_rfkill_poll,
  962. .link_stats = rt2800_link_stats,
  963. .reset_tuner = rt2800_reset_tuner,
  964. .link_tuner = rt2800_link_tuner,
  965. .write_tx_desc = rt2800pci_write_tx_desc,
  966. .write_tx_data = rt2x00pci_write_tx_data,
  967. .write_beacon = rt2800pci_write_beacon,
  968. .kick_tx_queue = rt2800pci_kick_tx_queue,
  969. .kill_tx_queue = rt2800pci_kill_tx_queue,
  970. .fill_rxdone = rt2800pci_fill_rxdone,
  971. .config_shared_key = rt2800_config_shared_key,
  972. .config_pairwise_key = rt2800_config_pairwise_key,
  973. .config_filter = rt2800_config_filter,
  974. .config_intf = rt2800_config_intf,
  975. .config_erp = rt2800_config_erp,
  976. .config_ant = rt2800_config_ant,
  977. .config = rt2800_config,
  978. };
  979. static const struct data_queue_desc rt2800pci_queue_rx = {
  980. .entry_num = RX_ENTRIES,
  981. .data_size = AGGREGATION_SIZE,
  982. .desc_size = RXD_DESC_SIZE,
  983. .priv_size = sizeof(struct queue_entry_priv_pci),
  984. };
  985. static const struct data_queue_desc rt2800pci_queue_tx = {
  986. .entry_num = TX_ENTRIES,
  987. .data_size = AGGREGATION_SIZE,
  988. .desc_size = TXD_DESC_SIZE,
  989. .priv_size = sizeof(struct queue_entry_priv_pci),
  990. };
  991. static const struct data_queue_desc rt2800pci_queue_bcn = {
  992. .entry_num = 8 * BEACON_ENTRIES,
  993. .data_size = 0, /* No DMA required for beacons */
  994. .desc_size = TXWI_DESC_SIZE,
  995. .priv_size = sizeof(struct queue_entry_priv_pci),
  996. };
  997. static const struct rt2x00_ops rt2800pci_ops = {
  998. .name = KBUILD_MODNAME,
  999. .max_sta_intf = 1,
  1000. .max_ap_intf = 8,
  1001. .eeprom_size = EEPROM_SIZE,
  1002. .rf_size = RF_SIZE,
  1003. .tx_queues = NUM_TX_QUEUES,
  1004. .extra_tx_headroom = TXWI_DESC_SIZE,
  1005. .rx = &rt2800pci_queue_rx,
  1006. .tx = &rt2800pci_queue_tx,
  1007. .bcn = &rt2800pci_queue_bcn,
  1008. .lib = &rt2800pci_rt2x00_ops,
  1009. .hw = &rt2800_mac80211_ops,
  1010. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1011. .debugfs = &rt2800_rt2x00debug,
  1012. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1013. };
  1014. /*
  1015. * RT2800pci module information.
  1016. */
  1017. #ifdef CONFIG_RT2800PCI_PCI
  1018. static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
  1019. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1020. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1021. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1022. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1023. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1024. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1025. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1026. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1027. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1028. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1029. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1030. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1031. #ifdef CONFIG_RT2800PCI_RT30XX
  1032. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1033. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1034. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1035. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1036. #endif
  1037. #ifdef CONFIG_RT2800PCI_RT35XX
  1038. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1039. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1040. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1041. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1042. { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1043. #endif
  1044. { 0, }
  1045. };
  1046. #endif /* CONFIG_RT2800PCI_PCI */
  1047. MODULE_AUTHOR(DRV_PROJECT);
  1048. MODULE_VERSION(DRV_VERSION);
  1049. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  1050. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  1051. #ifdef CONFIG_RT2800PCI_PCI
  1052. MODULE_FIRMWARE(FIRMWARE_RT2860);
  1053. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  1054. #endif /* CONFIG_RT2800PCI_PCI */
  1055. MODULE_LICENSE("GPL");
  1056. #ifdef CONFIG_RT2800PCI_SOC
  1057. static int rt2800soc_probe(struct platform_device *pdev)
  1058. {
  1059. return rt2x00soc_probe(pdev, &rt2800pci_ops);
  1060. }
  1061. static struct platform_driver rt2800soc_driver = {
  1062. .driver = {
  1063. .name = "rt2800_wmac",
  1064. .owner = THIS_MODULE,
  1065. .mod_name = KBUILD_MODNAME,
  1066. },
  1067. .probe = rt2800soc_probe,
  1068. .remove = __devexit_p(rt2x00soc_remove),
  1069. .suspend = rt2x00soc_suspend,
  1070. .resume = rt2x00soc_resume,
  1071. };
  1072. #endif /* CONFIG_RT2800PCI_SOC */
  1073. #ifdef CONFIG_RT2800PCI_PCI
  1074. static struct pci_driver rt2800pci_driver = {
  1075. .name = KBUILD_MODNAME,
  1076. .id_table = rt2800pci_device_table,
  1077. .probe = rt2x00pci_probe,
  1078. .remove = __devexit_p(rt2x00pci_remove),
  1079. .suspend = rt2x00pci_suspend,
  1080. .resume = rt2x00pci_resume,
  1081. };
  1082. #endif /* CONFIG_RT2800PCI_PCI */
  1083. static int __init rt2800pci_init(void)
  1084. {
  1085. int ret = 0;
  1086. #ifdef CONFIG_RT2800PCI_SOC
  1087. ret = platform_driver_register(&rt2800soc_driver);
  1088. if (ret)
  1089. return ret;
  1090. #endif
  1091. #ifdef CONFIG_RT2800PCI_PCI
  1092. ret = pci_register_driver(&rt2800pci_driver);
  1093. if (ret) {
  1094. #ifdef CONFIG_RT2800PCI_SOC
  1095. platform_driver_unregister(&rt2800soc_driver);
  1096. #endif
  1097. return ret;
  1098. }
  1099. #endif
  1100. return ret;
  1101. }
  1102. static void __exit rt2800pci_exit(void)
  1103. {
  1104. #ifdef CONFIG_RT2800PCI_PCI
  1105. pci_unregister_driver(&rt2800pci_driver);
  1106. #endif
  1107. #ifdef CONFIG_RT2800PCI_SOC
  1108. platform_driver_unregister(&rt2800soc_driver);
  1109. #endif
  1110. }
  1111. module_init(rt2800pci_init);
  1112. module_exit(rt2800pci_exit);