hw.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <asm/unaligned.h>
  18. #include "hw.h"
  19. #include "rc.h"
  20. #include "initvals.h"
  21. #define ATH9K_CLOCK_RATE_CCK 22
  22. #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
  23. #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
  24. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  25. static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
  26. static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
  27. struct ar5416_eeprom_def *pEepData,
  28. u32 reg, u32 value);
  29. MODULE_AUTHOR("Atheros Communications");
  30. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  31. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  32. MODULE_LICENSE("Dual BSD/GPL");
  33. static int __init ath9k_init(void)
  34. {
  35. return 0;
  36. }
  37. module_init(ath9k_init);
  38. static void __exit ath9k_exit(void)
  39. {
  40. return;
  41. }
  42. module_exit(ath9k_exit);
  43. /********************/
  44. /* Helper Functions */
  45. /********************/
  46. static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
  47. {
  48. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  49. if (!ah->curchan) /* should really check for CCK instead */
  50. return usecs *ATH9K_CLOCK_RATE_CCK;
  51. if (conf->channel->band == IEEE80211_BAND_2GHZ)
  52. return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
  53. return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
  54. }
  55. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  56. {
  57. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  58. if (conf_is_ht40(conf))
  59. return ath9k_hw_mac_clks(ah, usecs) * 2;
  60. else
  61. return ath9k_hw_mac_clks(ah, usecs);
  62. }
  63. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  64. {
  65. int i;
  66. BUG_ON(timeout < AH_TIME_QUANTUM);
  67. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  68. if ((REG_READ(ah, reg) & mask) == val)
  69. return true;
  70. udelay(AH_TIME_QUANTUM);
  71. }
  72. ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
  73. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  74. timeout, reg, REG_READ(ah, reg), mask, val);
  75. return false;
  76. }
  77. EXPORT_SYMBOL(ath9k_hw_wait);
  78. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  79. {
  80. u32 retval;
  81. int i;
  82. for (i = 0, retval = 0; i < n; i++) {
  83. retval = (retval << 1) | (val & 1);
  84. val >>= 1;
  85. }
  86. return retval;
  87. }
  88. bool ath9k_get_channel_edges(struct ath_hw *ah,
  89. u16 flags, u16 *low,
  90. u16 *high)
  91. {
  92. struct ath9k_hw_capabilities *pCap = &ah->caps;
  93. if (flags & CHANNEL_5GHZ) {
  94. *low = pCap->low_5ghz_chan;
  95. *high = pCap->high_5ghz_chan;
  96. return true;
  97. }
  98. if ((flags & CHANNEL_2GHZ)) {
  99. *low = pCap->low_2ghz_chan;
  100. *high = pCap->high_2ghz_chan;
  101. return true;
  102. }
  103. return false;
  104. }
  105. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  106. u8 phy, int kbps,
  107. u32 frameLen, u16 rateix,
  108. bool shortPreamble)
  109. {
  110. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  111. if (kbps == 0)
  112. return 0;
  113. switch (phy) {
  114. case WLAN_RC_PHY_CCK:
  115. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  116. if (shortPreamble)
  117. phyTime >>= 1;
  118. numBits = frameLen << 3;
  119. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  120. break;
  121. case WLAN_RC_PHY_OFDM:
  122. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  123. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  124. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  125. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  126. txTime = OFDM_SIFS_TIME_QUARTER
  127. + OFDM_PREAMBLE_TIME_QUARTER
  128. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  129. } else if (ah->curchan &&
  130. IS_CHAN_HALF_RATE(ah->curchan)) {
  131. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  132. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  133. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  134. txTime = OFDM_SIFS_TIME_HALF +
  135. OFDM_PREAMBLE_TIME_HALF
  136. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  137. } else {
  138. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  139. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  140. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  141. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  142. + (numSymbols * OFDM_SYMBOL_TIME);
  143. }
  144. break;
  145. default:
  146. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  147. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  148. txTime = 0;
  149. break;
  150. }
  151. return txTime;
  152. }
  153. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  154. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  155. struct ath9k_channel *chan,
  156. struct chan_centers *centers)
  157. {
  158. int8_t extoff;
  159. if (!IS_CHAN_HT40(chan)) {
  160. centers->ctl_center = centers->ext_center =
  161. centers->synth_center = chan->channel;
  162. return;
  163. }
  164. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  165. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  166. centers->synth_center =
  167. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  168. extoff = 1;
  169. } else {
  170. centers->synth_center =
  171. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  172. extoff = -1;
  173. }
  174. centers->ctl_center =
  175. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  176. /* 25 MHz spacing is supported by hw but not on upper layers */
  177. centers->ext_center =
  178. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  179. }
  180. /******************/
  181. /* Chip Revisions */
  182. /******************/
  183. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  184. {
  185. u32 val;
  186. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  187. if (val == 0xFF) {
  188. val = REG_READ(ah, AR_SREV);
  189. ah->hw_version.macVersion =
  190. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  191. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  192. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  193. } else {
  194. if (!AR_SREV_9100(ah))
  195. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  196. ah->hw_version.macRev = val & AR_SREV_REVISION;
  197. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  198. ah->is_pciexpress = true;
  199. }
  200. }
  201. static int ath9k_hw_get_radiorev(struct ath_hw *ah)
  202. {
  203. u32 val;
  204. int i;
  205. REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
  206. for (i = 0; i < 8; i++)
  207. REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
  208. val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
  209. val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
  210. return ath9k_hw_reverse_bits(val, 8);
  211. }
  212. /************************************/
  213. /* HW Attach, Detach, Init Routines */
  214. /************************************/
  215. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  216. {
  217. if (AR_SREV_9100(ah))
  218. return;
  219. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  220. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  221. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  222. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  223. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  224. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  225. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  226. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  227. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  228. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  229. }
  230. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  231. {
  232. struct ath_common *common = ath9k_hw_common(ah);
  233. u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
  234. u32 regHold[2];
  235. u32 patternData[4] = { 0x55555555,
  236. 0xaaaaaaaa,
  237. 0x66666666,
  238. 0x99999999 };
  239. int i, j;
  240. for (i = 0; i < 2; i++) {
  241. u32 addr = regAddr[i];
  242. u32 wrData, rdData;
  243. regHold[i] = REG_READ(ah, addr);
  244. for (j = 0; j < 0x100; j++) {
  245. wrData = (j << 16) | j;
  246. REG_WRITE(ah, addr, wrData);
  247. rdData = REG_READ(ah, addr);
  248. if (rdData != wrData) {
  249. ath_print(common, ATH_DBG_FATAL,
  250. "address test failed "
  251. "addr: 0x%08x - wr:0x%08x != "
  252. "rd:0x%08x\n",
  253. addr, wrData, rdData);
  254. return false;
  255. }
  256. }
  257. for (j = 0; j < 4; j++) {
  258. wrData = patternData[j];
  259. REG_WRITE(ah, addr, wrData);
  260. rdData = REG_READ(ah, addr);
  261. if (wrData != rdData) {
  262. ath_print(common, ATH_DBG_FATAL,
  263. "address test failed "
  264. "addr: 0x%08x - wr:0x%08x != "
  265. "rd:0x%08x\n",
  266. addr, wrData, rdData);
  267. return false;
  268. }
  269. }
  270. REG_WRITE(ah, regAddr[i], regHold[i]);
  271. }
  272. udelay(100);
  273. return true;
  274. }
  275. static void ath9k_hw_init_config(struct ath_hw *ah)
  276. {
  277. int i;
  278. ah->config.dma_beacon_response_time = 2;
  279. ah->config.sw_beacon_response_time = 10;
  280. ah->config.additional_swba_backoff = 0;
  281. ah->config.ack_6mb = 0x0;
  282. ah->config.cwm_ignore_extcca = 0;
  283. ah->config.pcie_powersave_enable = 0;
  284. ah->config.pcie_clock_req = 0;
  285. ah->config.pcie_waen = 0;
  286. ah->config.analog_shiftreg = 1;
  287. ah->config.ofdm_trig_low = 200;
  288. ah->config.ofdm_trig_high = 500;
  289. ah->config.cck_trig_high = 200;
  290. ah->config.cck_trig_low = 100;
  291. ah->config.enable_ani = 1;
  292. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  293. ah->config.spurchans[i][0] = AR_NO_SPUR;
  294. ah->config.spurchans[i][1] = AR_NO_SPUR;
  295. }
  296. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  297. ah->config.ht_enable = 1;
  298. else
  299. ah->config.ht_enable = 0;
  300. ah->config.rx_intr_mitigation = true;
  301. /*
  302. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  303. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  304. * This means we use it for all AR5416 devices, and the few
  305. * minor PCI AR9280 devices out there.
  306. *
  307. * Serialization is required because these devices do not handle
  308. * well the case of two concurrent reads/writes due to the latency
  309. * involved. During one read/write another read/write can be issued
  310. * on another CPU while the previous read/write may still be working
  311. * on our hardware, if we hit this case the hardware poops in a loop.
  312. * We prevent this by serializing reads and writes.
  313. *
  314. * This issue is not present on PCI-Express devices or pre-AR5416
  315. * devices (legacy, 802.11abg).
  316. */
  317. if (num_possible_cpus() > 1)
  318. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  319. }
  320. EXPORT_SYMBOL(ath9k_hw_init);
  321. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  322. {
  323. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  324. regulatory->country_code = CTRY_DEFAULT;
  325. regulatory->power_limit = MAX_RATE_POWER;
  326. regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
  327. ah->hw_version.magic = AR5416_MAGIC;
  328. ah->hw_version.subvendorid = 0;
  329. ah->ah_flags = 0;
  330. if (ah->hw_version.devid == AR5416_AR9100_DEVID)
  331. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  332. if (!AR_SREV_9100(ah))
  333. ah->ah_flags = AH_USE_EEPROM;
  334. ah->atim_window = 0;
  335. ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
  336. ah->beacon_interval = 100;
  337. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  338. ah->slottime = (u32) -1;
  339. ah->globaltxtimeout = (u32) -1;
  340. ah->power_mode = ATH9K_PM_UNDEFINED;
  341. }
  342. static int ath9k_hw_rf_claim(struct ath_hw *ah)
  343. {
  344. u32 val;
  345. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  346. val = ath9k_hw_get_radiorev(ah);
  347. switch (val & AR_RADIO_SREV_MAJOR) {
  348. case 0:
  349. val = AR_RAD5133_SREV_MAJOR;
  350. break;
  351. case AR_RAD5133_SREV_MAJOR:
  352. case AR_RAD5122_SREV_MAJOR:
  353. case AR_RAD2133_SREV_MAJOR:
  354. case AR_RAD2122_SREV_MAJOR:
  355. break;
  356. default:
  357. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  358. "Radio Chip Rev 0x%02X not supported\n",
  359. val & AR_RADIO_SREV_MAJOR);
  360. return -EOPNOTSUPP;
  361. }
  362. ah->hw_version.analog5GhzRev = val;
  363. return 0;
  364. }
  365. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  366. {
  367. struct ath_common *common = ath9k_hw_common(ah);
  368. u32 sum;
  369. int i;
  370. u16 eeval;
  371. sum = 0;
  372. for (i = 0; i < 3; i++) {
  373. eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
  374. sum += eeval;
  375. common->macaddr[2 * i] = eeval >> 8;
  376. common->macaddr[2 * i + 1] = eeval & 0xff;
  377. }
  378. if (sum == 0 || sum == 0xffff * 3)
  379. return -EADDRNOTAVAIL;
  380. return 0;
  381. }
  382. static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
  383. {
  384. u32 rxgain_type;
  385. if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
  386. rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
  387. if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
  388. INIT_INI_ARRAY(&ah->iniModesRxGain,
  389. ar9280Modes_backoff_13db_rxgain_9280_2,
  390. ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
  391. else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
  392. INIT_INI_ARRAY(&ah->iniModesRxGain,
  393. ar9280Modes_backoff_23db_rxgain_9280_2,
  394. ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
  395. else
  396. INIT_INI_ARRAY(&ah->iniModesRxGain,
  397. ar9280Modes_original_rxgain_9280_2,
  398. ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
  399. } else {
  400. INIT_INI_ARRAY(&ah->iniModesRxGain,
  401. ar9280Modes_original_rxgain_9280_2,
  402. ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
  403. }
  404. }
  405. static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
  406. {
  407. u32 txgain_type;
  408. if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
  409. txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
  410. if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
  411. INIT_INI_ARRAY(&ah->iniModesTxGain,
  412. ar9280Modes_high_power_tx_gain_9280_2,
  413. ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
  414. else
  415. INIT_INI_ARRAY(&ah->iniModesTxGain,
  416. ar9280Modes_original_tx_gain_9280_2,
  417. ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
  418. } else {
  419. INIT_INI_ARRAY(&ah->iniModesTxGain,
  420. ar9280Modes_original_tx_gain_9280_2,
  421. ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
  422. }
  423. }
  424. static int ath9k_hw_post_init(struct ath_hw *ah)
  425. {
  426. int ecode;
  427. if (!AR_SREV_9271(ah)) {
  428. if (!ath9k_hw_chip_test(ah))
  429. return -ENODEV;
  430. }
  431. ecode = ath9k_hw_rf_claim(ah);
  432. if (ecode != 0)
  433. return ecode;
  434. ecode = ath9k_hw_eeprom_init(ah);
  435. if (ecode != 0)
  436. return ecode;
  437. ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
  438. "Eeprom VER: %d, REV: %d\n",
  439. ah->eep_ops->get_eeprom_ver(ah),
  440. ah->eep_ops->get_eeprom_rev(ah));
  441. if (!AR_SREV_9280_10_OR_LATER(ah)) {
  442. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  443. if (ecode) {
  444. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  445. "Failed allocating banks for "
  446. "external radio\n");
  447. return ecode;
  448. }
  449. }
  450. if (!AR_SREV_9100(ah)) {
  451. ath9k_hw_ani_setup(ah);
  452. ath9k_hw_ani_init(ah);
  453. }
  454. return 0;
  455. }
  456. static bool ath9k_hw_devid_supported(u16 devid)
  457. {
  458. switch (devid) {
  459. case AR5416_DEVID_PCI:
  460. case AR5416_DEVID_PCIE:
  461. case AR5416_AR9100_DEVID:
  462. case AR9160_DEVID_PCI:
  463. case AR9280_DEVID_PCI:
  464. case AR9280_DEVID_PCIE:
  465. case AR9285_DEVID_PCIE:
  466. case AR5416_DEVID_AR9287_PCI:
  467. case AR5416_DEVID_AR9287_PCIE:
  468. case AR9271_USB:
  469. case AR2427_DEVID_PCIE:
  470. return true;
  471. default:
  472. break;
  473. }
  474. return false;
  475. }
  476. static bool ath9k_hw_macversion_supported(u32 macversion)
  477. {
  478. switch (macversion) {
  479. case AR_SREV_VERSION_5416_PCI:
  480. case AR_SREV_VERSION_5416_PCIE:
  481. case AR_SREV_VERSION_9160:
  482. case AR_SREV_VERSION_9100:
  483. case AR_SREV_VERSION_9280:
  484. case AR_SREV_VERSION_9285:
  485. case AR_SREV_VERSION_9287:
  486. case AR_SREV_VERSION_9271:
  487. return true;
  488. default:
  489. break;
  490. }
  491. return false;
  492. }
  493. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  494. {
  495. if (AR_SREV_9160_10_OR_LATER(ah)) {
  496. if (AR_SREV_9280_10_OR_LATER(ah)) {
  497. ah->iq_caldata.calData = &iq_cal_single_sample;
  498. ah->adcgain_caldata.calData =
  499. &adc_gain_cal_single_sample;
  500. ah->adcdc_caldata.calData =
  501. &adc_dc_cal_single_sample;
  502. ah->adcdc_calinitdata.calData =
  503. &adc_init_dc_cal;
  504. } else {
  505. ah->iq_caldata.calData = &iq_cal_multi_sample;
  506. ah->adcgain_caldata.calData =
  507. &adc_gain_cal_multi_sample;
  508. ah->adcdc_caldata.calData =
  509. &adc_dc_cal_multi_sample;
  510. ah->adcdc_calinitdata.calData =
  511. &adc_init_dc_cal;
  512. }
  513. ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
  514. }
  515. }
  516. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  517. {
  518. if (AR_SREV_9271(ah)) {
  519. INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
  520. ARRAY_SIZE(ar9271Modes_9271), 6);
  521. INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
  522. ARRAY_SIZE(ar9271Common_9271), 2);
  523. INIT_INI_ARRAY(&ah->iniCommon_normal_cck_fir_coeff_9271,
  524. ar9271Common_normal_cck_fir_coeff_9271,
  525. ARRAY_SIZE(ar9271Common_normal_cck_fir_coeff_9271), 2);
  526. INIT_INI_ARRAY(&ah->iniCommon_japan_2484_cck_fir_coeff_9271,
  527. ar9271Common_japan_2484_cck_fir_coeff_9271,
  528. ARRAY_SIZE(ar9271Common_japan_2484_cck_fir_coeff_9271), 2);
  529. INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
  530. ar9271Modes_9271_1_0_only,
  531. ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
  532. INIT_INI_ARRAY(&ah->iniModes_9271_ANI_reg, ar9271Modes_9271_ANI_reg,
  533. ARRAY_SIZE(ar9271Modes_9271_ANI_reg), 6);
  534. INIT_INI_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
  535. ar9271Modes_high_power_tx_gain_9271,
  536. ARRAY_SIZE(ar9271Modes_high_power_tx_gain_9271), 6);
  537. INIT_INI_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
  538. ar9271Modes_normal_power_tx_gain_9271,
  539. ARRAY_SIZE(ar9271Modes_normal_power_tx_gain_9271), 6);
  540. return;
  541. }
  542. if (AR_SREV_9287_11_OR_LATER(ah)) {
  543. INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
  544. ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
  545. INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
  546. ARRAY_SIZE(ar9287Common_9287_1_1), 2);
  547. if (ah->config.pcie_clock_req)
  548. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  549. ar9287PciePhy_clkreq_off_L1_9287_1_1,
  550. ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
  551. else
  552. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  553. ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
  554. ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
  555. 2);
  556. } else if (AR_SREV_9287_10_OR_LATER(ah)) {
  557. INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
  558. ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
  559. INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
  560. ARRAY_SIZE(ar9287Common_9287_1_0), 2);
  561. if (ah->config.pcie_clock_req)
  562. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  563. ar9287PciePhy_clkreq_off_L1_9287_1_0,
  564. ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
  565. else
  566. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  567. ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
  568. ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
  569. 2);
  570. } else if (AR_SREV_9285_12_OR_LATER(ah)) {
  571. INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
  572. ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
  573. INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
  574. ARRAY_SIZE(ar9285Common_9285_1_2), 2);
  575. if (ah->config.pcie_clock_req) {
  576. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  577. ar9285PciePhy_clkreq_off_L1_9285_1_2,
  578. ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
  579. } else {
  580. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  581. ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
  582. ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
  583. 2);
  584. }
  585. } else if (AR_SREV_9285_10_OR_LATER(ah)) {
  586. INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
  587. ARRAY_SIZE(ar9285Modes_9285), 6);
  588. INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
  589. ARRAY_SIZE(ar9285Common_9285), 2);
  590. if (ah->config.pcie_clock_req) {
  591. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  592. ar9285PciePhy_clkreq_off_L1_9285,
  593. ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
  594. } else {
  595. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  596. ar9285PciePhy_clkreq_always_on_L1_9285,
  597. ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
  598. }
  599. } else if (AR_SREV_9280_20_OR_LATER(ah)) {
  600. INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
  601. ARRAY_SIZE(ar9280Modes_9280_2), 6);
  602. INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
  603. ARRAY_SIZE(ar9280Common_9280_2), 2);
  604. if (ah->config.pcie_clock_req) {
  605. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  606. ar9280PciePhy_clkreq_off_L1_9280,
  607. ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
  608. } else {
  609. INIT_INI_ARRAY(&ah->iniPcieSerdes,
  610. ar9280PciePhy_clkreq_always_on_L1_9280,
  611. ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
  612. }
  613. INIT_INI_ARRAY(&ah->iniModesAdditional,
  614. ar9280Modes_fast_clock_9280_2,
  615. ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
  616. } else if (AR_SREV_9280_10_OR_LATER(ah)) {
  617. INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
  618. ARRAY_SIZE(ar9280Modes_9280), 6);
  619. INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
  620. ARRAY_SIZE(ar9280Common_9280), 2);
  621. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  622. INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
  623. ARRAY_SIZE(ar5416Modes_9160), 6);
  624. INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
  625. ARRAY_SIZE(ar5416Common_9160), 2);
  626. INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
  627. ARRAY_SIZE(ar5416Bank0_9160), 2);
  628. INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
  629. ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
  630. INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
  631. ARRAY_SIZE(ar5416Bank1_9160), 2);
  632. INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
  633. ARRAY_SIZE(ar5416Bank2_9160), 2);
  634. INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
  635. ARRAY_SIZE(ar5416Bank3_9160), 3);
  636. INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
  637. ARRAY_SIZE(ar5416Bank6_9160), 3);
  638. INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
  639. ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
  640. INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
  641. ARRAY_SIZE(ar5416Bank7_9160), 2);
  642. if (AR_SREV_9160_11(ah)) {
  643. INIT_INI_ARRAY(&ah->iniAddac,
  644. ar5416Addac_91601_1,
  645. ARRAY_SIZE(ar5416Addac_91601_1), 2);
  646. } else {
  647. INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
  648. ARRAY_SIZE(ar5416Addac_9160), 2);
  649. }
  650. } else if (AR_SREV_9100_OR_LATER(ah)) {
  651. INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
  652. ARRAY_SIZE(ar5416Modes_9100), 6);
  653. INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
  654. ARRAY_SIZE(ar5416Common_9100), 2);
  655. INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
  656. ARRAY_SIZE(ar5416Bank0_9100), 2);
  657. INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
  658. ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
  659. INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
  660. ARRAY_SIZE(ar5416Bank1_9100), 2);
  661. INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
  662. ARRAY_SIZE(ar5416Bank2_9100), 2);
  663. INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
  664. ARRAY_SIZE(ar5416Bank3_9100), 3);
  665. INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
  666. ARRAY_SIZE(ar5416Bank6_9100), 3);
  667. INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
  668. ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
  669. INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
  670. ARRAY_SIZE(ar5416Bank7_9100), 2);
  671. INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
  672. ARRAY_SIZE(ar5416Addac_9100), 2);
  673. } else {
  674. INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
  675. ARRAY_SIZE(ar5416Modes), 6);
  676. INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
  677. ARRAY_SIZE(ar5416Common), 2);
  678. INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
  679. ARRAY_SIZE(ar5416Bank0), 2);
  680. INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
  681. ARRAY_SIZE(ar5416BB_RfGain), 3);
  682. INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
  683. ARRAY_SIZE(ar5416Bank1), 2);
  684. INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
  685. ARRAY_SIZE(ar5416Bank2), 2);
  686. INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
  687. ARRAY_SIZE(ar5416Bank3), 3);
  688. INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
  689. ARRAY_SIZE(ar5416Bank6), 3);
  690. INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
  691. ARRAY_SIZE(ar5416Bank6TPC), 3);
  692. INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
  693. ARRAY_SIZE(ar5416Bank7), 2);
  694. INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
  695. ARRAY_SIZE(ar5416Addac), 2);
  696. }
  697. }
  698. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  699. {
  700. if (AR_SREV_9287_11_OR_LATER(ah))
  701. INIT_INI_ARRAY(&ah->iniModesRxGain,
  702. ar9287Modes_rx_gain_9287_1_1,
  703. ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
  704. else if (AR_SREV_9287_10(ah))
  705. INIT_INI_ARRAY(&ah->iniModesRxGain,
  706. ar9287Modes_rx_gain_9287_1_0,
  707. ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
  708. else if (AR_SREV_9280_20(ah))
  709. ath9k_hw_init_rxgain_ini(ah);
  710. if (AR_SREV_9287_11_OR_LATER(ah)) {
  711. INIT_INI_ARRAY(&ah->iniModesTxGain,
  712. ar9287Modes_tx_gain_9287_1_1,
  713. ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
  714. } else if (AR_SREV_9287_10(ah)) {
  715. INIT_INI_ARRAY(&ah->iniModesTxGain,
  716. ar9287Modes_tx_gain_9287_1_0,
  717. ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
  718. } else if (AR_SREV_9280_20(ah)) {
  719. ath9k_hw_init_txgain_ini(ah);
  720. } else if (AR_SREV_9285_12_OR_LATER(ah)) {
  721. u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
  722. /* txgain table */
  723. if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
  724. INIT_INI_ARRAY(&ah->iniModesTxGain,
  725. ar9285Modes_high_power_tx_gain_9285_1_2,
  726. ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
  727. } else {
  728. INIT_INI_ARRAY(&ah->iniModesTxGain,
  729. ar9285Modes_original_tx_gain_9285_1_2,
  730. ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
  731. }
  732. }
  733. }
  734. static void ath9k_hw_init_eeprom_fix(struct ath_hw *ah)
  735. {
  736. u32 i, j;
  737. if (ah->hw_version.devid == AR9280_DEVID_PCI) {
  738. /* EEPROM Fixup */
  739. for (i = 0; i < ah->iniModes.ia_rows; i++) {
  740. u32 reg = INI_RA(&ah->iniModes, i, 0);
  741. for (j = 1; j < ah->iniModes.ia_columns; j++) {
  742. u32 val = INI_RA(&ah->iniModes, i, j);
  743. INI_RA(&ah->iniModes, i, j) =
  744. ath9k_hw_ini_fixup(ah,
  745. &ah->eeprom.def,
  746. reg, val);
  747. }
  748. }
  749. }
  750. }
  751. int ath9k_hw_init(struct ath_hw *ah)
  752. {
  753. struct ath_common *common = ath9k_hw_common(ah);
  754. int r = 0;
  755. if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
  756. ath_print(common, ATH_DBG_FATAL,
  757. "Unsupported device ID: 0x%0x\n",
  758. ah->hw_version.devid);
  759. return -EOPNOTSUPP;
  760. }
  761. ath9k_hw_init_defaults(ah);
  762. ath9k_hw_init_config(ah);
  763. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  764. ath_print(common, ATH_DBG_FATAL,
  765. "Couldn't reset chip\n");
  766. return -EIO;
  767. }
  768. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  769. ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
  770. return -EIO;
  771. }
  772. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  773. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  774. (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
  775. ah->config.serialize_regmode =
  776. SER_REG_MODE_ON;
  777. } else {
  778. ah->config.serialize_regmode =
  779. SER_REG_MODE_OFF;
  780. }
  781. }
  782. ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
  783. ah->config.serialize_regmode);
  784. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  785. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  786. else
  787. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  788. if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
  789. ath_print(common, ATH_DBG_FATAL,
  790. "Mac Chip Rev 0x%02x.%x is not supported by "
  791. "this driver\n", ah->hw_version.macVersion,
  792. ah->hw_version.macRev);
  793. return -EOPNOTSUPP;
  794. }
  795. if (AR_SREV_9100(ah)) {
  796. ah->iq_caldata.calData = &iq_cal_multi_sample;
  797. ah->supp_cals = IQ_MISMATCH_CAL;
  798. ah->is_pciexpress = false;
  799. }
  800. if (AR_SREV_9271(ah))
  801. ah->is_pciexpress = false;
  802. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  803. ath9k_hw_init_cal_settings(ah);
  804. ah->ani_function = ATH9K_ANI_ALL;
  805. if (AR_SREV_9280_10_OR_LATER(ah)) {
  806. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  807. ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
  808. ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
  809. } else {
  810. ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
  811. ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
  812. }
  813. ath9k_hw_init_mode_regs(ah);
  814. if (ah->is_pciexpress)
  815. ath9k_hw_configpcipowersave(ah, 0, 0);
  816. else
  817. ath9k_hw_disablepcie(ah);
  818. /* Support for Japan ch.14 (2484) spread */
  819. if (AR_SREV_9287_11_OR_LATER(ah)) {
  820. INIT_INI_ARRAY(&ah->iniCckfirNormal,
  821. ar9287Common_normal_cck_fir_coeff_92871_1,
  822. ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
  823. INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
  824. ar9287Common_japan_2484_cck_fir_coeff_92871_1,
  825. ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
  826. }
  827. r = ath9k_hw_post_init(ah);
  828. if (r)
  829. return r;
  830. ath9k_hw_init_mode_gain_regs(ah);
  831. r = ath9k_hw_fill_cap_info(ah);
  832. if (r)
  833. return r;
  834. ath9k_hw_init_eeprom_fix(ah);
  835. r = ath9k_hw_init_macaddr(ah);
  836. if (r) {
  837. ath_print(common, ATH_DBG_FATAL,
  838. "Failed to initialize MAC address\n");
  839. return r;
  840. }
  841. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  842. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  843. else
  844. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  845. ath9k_init_nfcal_hist_buffer(ah);
  846. common->state = ATH_HW_INITIALIZED;
  847. return 0;
  848. }
  849. static void ath9k_hw_init_bb(struct ath_hw *ah,
  850. struct ath9k_channel *chan)
  851. {
  852. u32 synthDelay;
  853. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  854. if (IS_CHAN_B(chan))
  855. synthDelay = (4 * synthDelay) / 22;
  856. else
  857. synthDelay /= 10;
  858. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  859. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  860. }
  861. static void ath9k_hw_init_qos(struct ath_hw *ah)
  862. {
  863. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  864. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  865. REG_WRITE(ah, AR_QOS_NO_ACK,
  866. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  867. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  868. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  869. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  870. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  871. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  872. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  873. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  874. }
  875. static void ath9k_hw_init_pll(struct ath_hw *ah,
  876. struct ath9k_channel *chan)
  877. {
  878. u32 pll;
  879. if (AR_SREV_9100(ah)) {
  880. if (chan && IS_CHAN_5GHZ(chan))
  881. pll = 0x1450;
  882. else
  883. pll = 0x1458;
  884. } else {
  885. if (AR_SREV_9280_10_OR_LATER(ah)) {
  886. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  887. if (chan && IS_CHAN_HALF_RATE(chan))
  888. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  889. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  890. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  891. if (chan && IS_CHAN_5GHZ(chan)) {
  892. pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
  893. if (AR_SREV_9280_20(ah)) {
  894. if (((chan->channel % 20) == 0)
  895. || ((chan->channel % 10) == 0))
  896. pll = 0x2850;
  897. else
  898. pll = 0x142c;
  899. }
  900. } else {
  901. pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
  902. }
  903. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  904. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  905. if (chan && IS_CHAN_HALF_RATE(chan))
  906. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  907. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  908. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  909. if (chan && IS_CHAN_5GHZ(chan))
  910. pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
  911. else
  912. pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
  913. } else {
  914. pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
  915. if (chan && IS_CHAN_HALF_RATE(chan))
  916. pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
  917. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  918. pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
  919. if (chan && IS_CHAN_5GHZ(chan))
  920. pll |= SM(0xa, AR_RTC_PLL_DIV);
  921. else
  922. pll |= SM(0xb, AR_RTC_PLL_DIV);
  923. }
  924. }
  925. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  926. /* Switch the core clock for ar9271 to 117Mhz */
  927. if (AR_SREV_9271(ah)) {
  928. udelay(500);
  929. REG_WRITE(ah, 0x50040, 0x304);
  930. }
  931. udelay(RTC_PLL_SETTLE_DELAY);
  932. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  933. }
  934. static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
  935. {
  936. int rx_chainmask, tx_chainmask;
  937. rx_chainmask = ah->rxchainmask;
  938. tx_chainmask = ah->txchainmask;
  939. switch (rx_chainmask) {
  940. case 0x5:
  941. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  942. AR_PHY_SWAP_ALT_CHAIN);
  943. case 0x3:
  944. if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
  945. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
  946. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
  947. break;
  948. }
  949. case 0x1:
  950. case 0x2:
  951. case 0x7:
  952. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  953. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  954. break;
  955. default:
  956. break;
  957. }
  958. REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
  959. if (tx_chainmask == 0x5) {
  960. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  961. AR_PHY_SWAP_ALT_CHAIN);
  962. }
  963. if (AR_SREV_9100(ah))
  964. REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
  965. REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
  966. }
  967. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  968. enum nl80211_iftype opmode)
  969. {
  970. ah->mask_reg = AR_IMR_TXERR |
  971. AR_IMR_TXURN |
  972. AR_IMR_RXERR |
  973. AR_IMR_RXORN |
  974. AR_IMR_BCNMISC;
  975. if (ah->config.rx_intr_mitigation)
  976. ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  977. else
  978. ah->mask_reg |= AR_IMR_RXOK;
  979. ah->mask_reg |= AR_IMR_TXOK;
  980. if (opmode == NL80211_IFTYPE_AP)
  981. ah->mask_reg |= AR_IMR_MIB;
  982. REG_WRITE(ah, AR_IMR, ah->mask_reg);
  983. ah->imrs2_reg |= AR_IMR_S2_GTT;
  984. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  985. if (!AR_SREV_9100(ah)) {
  986. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  987. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  988. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  989. }
  990. }
  991. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  992. {
  993. u32 val = ath9k_hw_mac_to_clks(ah, us);
  994. val = min(val, (u32) 0xFFFF);
  995. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  996. }
  997. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  998. {
  999. u32 val = ath9k_hw_mac_to_clks(ah, us);
  1000. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  1001. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  1002. }
  1003. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  1004. {
  1005. u32 val = ath9k_hw_mac_to_clks(ah, us);
  1006. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  1007. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  1008. }
  1009. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  1010. {
  1011. if (tu > 0xFFFF) {
  1012. ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
  1013. "bad global tx timeout %u\n", tu);
  1014. ah->globaltxtimeout = (u32) -1;
  1015. return false;
  1016. } else {
  1017. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  1018. ah->globaltxtimeout = tu;
  1019. return true;
  1020. }
  1021. }
  1022. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  1023. {
  1024. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  1025. int acktimeout;
  1026. int slottime;
  1027. int sifstime;
  1028. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  1029. ah->misc_mode);
  1030. if (ah->misc_mode != 0)
  1031. REG_WRITE(ah, AR_PCU_MISC,
  1032. REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
  1033. if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
  1034. sifstime = 16;
  1035. else
  1036. sifstime = 10;
  1037. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  1038. slottime = ah->slottime + 3 * ah->coverage_class;
  1039. acktimeout = slottime + sifstime;
  1040. /*
  1041. * Workaround for early ACK timeouts, add an offset to match the
  1042. * initval's 64us ack timeout value.
  1043. * This was initially only meant to work around an issue with delayed
  1044. * BA frames in some implementations, but it has been found to fix ACK
  1045. * timeout issues in other cases as well.
  1046. */
  1047. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
  1048. acktimeout += 64 - sifstime - ah->slottime;
  1049. ath9k_hw_setslottime(ah, slottime);
  1050. ath9k_hw_set_ack_timeout(ah, acktimeout);
  1051. ath9k_hw_set_cts_timeout(ah, acktimeout);
  1052. if (ah->globaltxtimeout != (u32) -1)
  1053. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  1054. }
  1055. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  1056. void ath9k_hw_deinit(struct ath_hw *ah)
  1057. {
  1058. struct ath_common *common = ath9k_hw_common(ah);
  1059. if (common->state < ATH_HW_INITIALIZED)
  1060. goto free_hw;
  1061. if (!AR_SREV_9100(ah))
  1062. ath9k_hw_ani_disable(ah);
  1063. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  1064. free_hw:
  1065. if (!AR_SREV_9280_10_OR_LATER(ah))
  1066. ath9k_hw_rf_free_ext_banks(ah);
  1067. }
  1068. EXPORT_SYMBOL(ath9k_hw_deinit);
  1069. /*******/
  1070. /* INI */
  1071. /*******/
  1072. static void ath9k_hw_override_ini(struct ath_hw *ah,
  1073. struct ath9k_channel *chan)
  1074. {
  1075. u32 val;
  1076. /*
  1077. * Set the RX_ABORT and RX_DIS and clear if off only after
  1078. * RXE is set for MAC. This prevents frames with corrupted
  1079. * descriptor status.
  1080. */
  1081. REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  1082. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1083. val = REG_READ(ah, AR_PCU_MISC_MODE2);
  1084. if (!AR_SREV_9271(ah))
  1085. val &= ~AR_PCU_MISC_MODE2_HWWAR1;
  1086. if (AR_SREV_9287_10_OR_LATER(ah))
  1087. val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
  1088. REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
  1089. }
  1090. if (!AR_SREV_5416_20_OR_LATER(ah) ||
  1091. AR_SREV_9280_10_OR_LATER(ah))
  1092. return;
  1093. /*
  1094. * Disable BB clock gating
  1095. * Necessary to avoid issues on AR5416 2.0
  1096. */
  1097. REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
  1098. /*
  1099. * Disable RIFS search on some chips to avoid baseband
  1100. * hang issues.
  1101. */
  1102. if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
  1103. val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
  1104. val &= ~AR_PHY_RIFS_INIT_DELAY;
  1105. REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
  1106. }
  1107. }
  1108. static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
  1109. struct ar5416_eeprom_def *pEepData,
  1110. u32 reg, u32 value)
  1111. {
  1112. struct base_eep_header *pBase = &(pEepData->baseEepHeader);
  1113. struct ath_common *common = ath9k_hw_common(ah);
  1114. switch (ah->hw_version.devid) {
  1115. case AR9280_DEVID_PCI:
  1116. if (reg == 0x7894) {
  1117. ath_print(common, ATH_DBG_EEPROM,
  1118. "ini VAL: %x EEPROM: %x\n", value,
  1119. (pBase->version & 0xff));
  1120. if ((pBase->version & 0xff) > 0x0a) {
  1121. ath_print(common, ATH_DBG_EEPROM,
  1122. "PWDCLKIND: %d\n",
  1123. pBase->pwdclkind);
  1124. value &= ~AR_AN_TOP2_PWDCLKIND;
  1125. value |= AR_AN_TOP2_PWDCLKIND &
  1126. (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
  1127. } else {
  1128. ath_print(common, ATH_DBG_EEPROM,
  1129. "PWDCLKIND Earlier Rev\n");
  1130. }
  1131. ath_print(common, ATH_DBG_EEPROM,
  1132. "final ini VAL: %x\n", value);
  1133. }
  1134. break;
  1135. }
  1136. return value;
  1137. }
  1138. static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
  1139. struct ar5416_eeprom_def *pEepData,
  1140. u32 reg, u32 value)
  1141. {
  1142. if (ah->eep_map == EEP_MAP_4KBITS)
  1143. return value;
  1144. else
  1145. return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
  1146. }
  1147. static void ath9k_olc_init(struct ath_hw *ah)
  1148. {
  1149. u32 i;
  1150. if (OLC_FOR_AR9287_10_LATER) {
  1151. REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
  1152. AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
  1153. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
  1154. AR9287_AN_TXPC0_TXPCMODE,
  1155. AR9287_AN_TXPC0_TXPCMODE_S,
  1156. AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
  1157. udelay(100);
  1158. } else {
  1159. for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
  1160. ah->originalGain[i] =
  1161. MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
  1162. AR_PHY_TX_GAIN);
  1163. ah->PDADCdelta = 0;
  1164. }
  1165. }
  1166. static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
  1167. struct ath9k_channel *chan)
  1168. {
  1169. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  1170. if (IS_CHAN_B(chan))
  1171. ctl |= CTL_11B;
  1172. else if (IS_CHAN_G(chan))
  1173. ctl |= CTL_11G;
  1174. else
  1175. ctl |= CTL_11A;
  1176. return ctl;
  1177. }
  1178. static int ath9k_hw_process_ini(struct ath_hw *ah,
  1179. struct ath9k_channel *chan)
  1180. {
  1181. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1182. int i, regWrites = 0;
  1183. struct ieee80211_channel *channel = chan->chan;
  1184. u32 modesIndex, freqIndex;
  1185. switch (chan->chanmode) {
  1186. case CHANNEL_A:
  1187. case CHANNEL_A_HT20:
  1188. modesIndex = 1;
  1189. freqIndex = 1;
  1190. break;
  1191. case CHANNEL_A_HT40PLUS:
  1192. case CHANNEL_A_HT40MINUS:
  1193. modesIndex = 2;
  1194. freqIndex = 1;
  1195. break;
  1196. case CHANNEL_G:
  1197. case CHANNEL_G_HT20:
  1198. case CHANNEL_B:
  1199. modesIndex = 4;
  1200. freqIndex = 2;
  1201. break;
  1202. case CHANNEL_G_HT40PLUS:
  1203. case CHANNEL_G_HT40MINUS:
  1204. modesIndex = 3;
  1205. freqIndex = 2;
  1206. break;
  1207. default:
  1208. return -EINVAL;
  1209. }
  1210. /* Set correct baseband to analog shift setting to access analog chips */
  1211. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  1212. /* Write ADDAC shifts */
  1213. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
  1214. ah->eep_ops->set_addac(ah, chan);
  1215. if (AR_SREV_5416_22_OR_LATER(ah)) {
  1216. REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
  1217. } else {
  1218. struct ar5416IniArray temp;
  1219. u32 addacSize =
  1220. sizeof(u32) * ah->iniAddac.ia_rows *
  1221. ah->iniAddac.ia_columns;
  1222. /* For AR5416 2.0/2.1 */
  1223. memcpy(ah->addac5416_21,
  1224. ah->iniAddac.ia_array, addacSize);
  1225. /* override CLKDRV value at [row, column] = [31, 1] */
  1226. (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
  1227. temp.ia_array = ah->addac5416_21;
  1228. temp.ia_columns = ah->iniAddac.ia_columns;
  1229. temp.ia_rows = ah->iniAddac.ia_rows;
  1230. REG_WRITE_ARRAY(&temp, 1, regWrites);
  1231. }
  1232. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
  1233. for (i = 0; i < ah->iniModes.ia_rows; i++) {
  1234. u32 reg = INI_RA(&ah->iniModes, i, 0);
  1235. u32 val = INI_RA(&ah->iniModes, i, modesIndex);
  1236. REG_WRITE(ah, reg, val);
  1237. if (reg >= 0x7800 && reg < 0x78a0
  1238. && ah->config.analog_shiftreg) {
  1239. udelay(100);
  1240. }
  1241. DO_DELAY(regWrites);
  1242. }
  1243. if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
  1244. REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
  1245. if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
  1246. AR_SREV_9287_10_OR_LATER(ah))
  1247. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  1248. if (AR_SREV_9271_10(ah))
  1249. REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
  1250. modesIndex, regWrites);
  1251. /* Write common array parameters */
  1252. for (i = 0; i < ah->iniCommon.ia_rows; i++) {
  1253. u32 reg = INI_RA(&ah->iniCommon, i, 0);
  1254. u32 val = INI_RA(&ah->iniCommon, i, 1);
  1255. REG_WRITE(ah, reg, val);
  1256. if (reg >= 0x7800 && reg < 0x78a0
  1257. && ah->config.analog_shiftreg) {
  1258. udelay(100);
  1259. }
  1260. DO_DELAY(regWrites);
  1261. }
  1262. if (AR_SREV_9271(ah)) {
  1263. if (ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE) == 1)
  1264. REG_WRITE_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
  1265. modesIndex, regWrites);
  1266. else
  1267. REG_WRITE_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
  1268. modesIndex, regWrites);
  1269. }
  1270. ath9k_hw_write_regs(ah, freqIndex, regWrites);
  1271. if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
  1272. REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
  1273. regWrites);
  1274. }
  1275. ath9k_hw_override_ini(ah, chan);
  1276. ath9k_hw_set_regs(ah, chan);
  1277. ath9k_hw_init_chain_masks(ah);
  1278. if (OLC_FOR_AR9280_20_LATER)
  1279. ath9k_olc_init(ah);
  1280. /* Set TX power */
  1281. ah->eep_ops->set_txpower(ah, chan,
  1282. ath9k_regd_get_ctl(regulatory, chan),
  1283. channel->max_antenna_gain * 2,
  1284. channel->max_power * 2,
  1285. min((u32) MAX_RATE_POWER,
  1286. (u32) regulatory->power_limit));
  1287. /* Write analog registers */
  1288. if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
  1289. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1290. "ar5416SetRfRegs failed\n");
  1291. return -EIO;
  1292. }
  1293. return 0;
  1294. }
  1295. /****************************************/
  1296. /* Reset and Channel Switching Routines */
  1297. /****************************************/
  1298. static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
  1299. {
  1300. u32 rfMode = 0;
  1301. if (chan == NULL)
  1302. return;
  1303. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  1304. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  1305. if (!AR_SREV_9280_10_OR_LATER(ah))
  1306. rfMode |= (IS_CHAN_5GHZ(chan)) ?
  1307. AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
  1308. if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
  1309. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  1310. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  1311. }
  1312. static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
  1313. {
  1314. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  1315. }
  1316. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  1317. {
  1318. u32 regval;
  1319. /*
  1320. * set AHB_MODE not to do cacheline prefetches
  1321. */
  1322. regval = REG_READ(ah, AR_AHB_MODE);
  1323. REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
  1324. /*
  1325. * let mac dma reads be in 128 byte chunks
  1326. */
  1327. regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
  1328. REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
  1329. /*
  1330. * Restore TX Trigger Level to its pre-reset value.
  1331. * The initial value depends on whether aggregation is enabled, and is
  1332. * adjusted whenever underruns are detected.
  1333. */
  1334. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  1335. /*
  1336. * let mac dma writes be in 128 byte chunks
  1337. */
  1338. regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
  1339. REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
  1340. /*
  1341. * Setup receive FIFO threshold to hold off TX activities
  1342. */
  1343. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1344. /*
  1345. * reduce the number of usable entries in PCU TXBUF to avoid
  1346. * wrap around issues.
  1347. */
  1348. if (AR_SREV_9285(ah)) {
  1349. /* For AR9285 the number of Fifos are reduced to half.
  1350. * So set the usable tx buf size also to half to
  1351. * avoid data/delimiter underruns
  1352. */
  1353. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1354. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  1355. } else if (!AR_SREV_9271(ah)) {
  1356. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1357. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  1358. }
  1359. }
  1360. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  1361. {
  1362. u32 val;
  1363. val = REG_READ(ah, AR_STA_ID1);
  1364. val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
  1365. switch (opmode) {
  1366. case NL80211_IFTYPE_AP:
  1367. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
  1368. | AR_STA_ID1_KSRCH_MODE);
  1369. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1370. break;
  1371. case NL80211_IFTYPE_ADHOC:
  1372. case NL80211_IFTYPE_MESH_POINT:
  1373. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
  1374. | AR_STA_ID1_KSRCH_MODE);
  1375. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1376. break;
  1377. case NL80211_IFTYPE_STATION:
  1378. case NL80211_IFTYPE_MONITOR:
  1379. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  1380. break;
  1381. }
  1382. }
  1383. static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
  1384. u32 coef_scaled,
  1385. u32 *coef_mantissa,
  1386. u32 *coef_exponent)
  1387. {
  1388. u32 coef_exp, coef_man;
  1389. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1390. if ((coef_scaled >> coef_exp) & 0x1)
  1391. break;
  1392. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1393. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1394. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1395. *coef_exponent = coef_exp - 16;
  1396. }
  1397. static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
  1398. struct ath9k_channel *chan)
  1399. {
  1400. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  1401. u32 clockMhzScaled = 0x64000000;
  1402. struct chan_centers centers;
  1403. if (IS_CHAN_HALF_RATE(chan))
  1404. clockMhzScaled = clockMhzScaled >> 1;
  1405. else if (IS_CHAN_QUARTER_RATE(chan))
  1406. clockMhzScaled = clockMhzScaled >> 2;
  1407. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1408. coef_scaled = clockMhzScaled / centers.synth_center;
  1409. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  1410. &ds_coef_exp);
  1411. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  1412. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  1413. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  1414. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  1415. coef_scaled = (9 * coef_scaled) / 10;
  1416. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  1417. &ds_coef_exp);
  1418. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  1419. AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
  1420. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  1421. AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
  1422. }
  1423. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1424. {
  1425. u32 rst_flags;
  1426. u32 tmpReg;
  1427. if (AR_SREV_9100(ah)) {
  1428. u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
  1429. val &= ~AR_RTC_DERIVED_CLK_PERIOD;
  1430. val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
  1431. REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
  1432. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1433. }
  1434. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1435. AR_RTC_FORCE_WAKE_ON_INT);
  1436. if (AR_SREV_9100(ah)) {
  1437. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1438. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1439. } else {
  1440. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1441. if (tmpReg &
  1442. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1443. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1444. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1445. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1446. } else {
  1447. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1448. }
  1449. rst_flags = AR_RTC_RC_MAC_WARM;
  1450. if (type == ATH9K_RESET_COLD)
  1451. rst_flags |= AR_RTC_RC_MAC_COLD;
  1452. }
  1453. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1454. udelay(50);
  1455. REG_WRITE(ah, AR_RTC_RC, 0);
  1456. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1457. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  1458. "RTC stuck in MAC reset\n");
  1459. return false;
  1460. }
  1461. if (!AR_SREV_9100(ah))
  1462. REG_WRITE(ah, AR_RC, 0);
  1463. if (AR_SREV_9100(ah))
  1464. udelay(50);
  1465. return true;
  1466. }
  1467. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1468. {
  1469. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1470. AR_RTC_FORCE_WAKE_ON_INT);
  1471. if (!AR_SREV_9100(ah))
  1472. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1473. REG_WRITE(ah, AR_RTC_RESET, 0);
  1474. udelay(2);
  1475. if (!AR_SREV_9100(ah))
  1476. REG_WRITE(ah, AR_RC, 0);
  1477. REG_WRITE(ah, AR_RTC_RESET, 1);
  1478. if (!ath9k_hw_wait(ah,
  1479. AR_RTC_STATUS,
  1480. AR_RTC_STATUS_M,
  1481. AR_RTC_STATUS_ON,
  1482. AH_WAIT_TIMEOUT)) {
  1483. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  1484. "RTC not waking up\n");
  1485. return false;
  1486. }
  1487. ath9k_hw_read_revisions(ah);
  1488. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1489. }
  1490. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1491. {
  1492. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1493. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1494. switch (type) {
  1495. case ATH9K_RESET_POWER_ON:
  1496. return ath9k_hw_set_reset_power_on(ah);
  1497. case ATH9K_RESET_WARM:
  1498. case ATH9K_RESET_COLD:
  1499. return ath9k_hw_set_reset(ah, type);
  1500. default:
  1501. return false;
  1502. }
  1503. }
  1504. static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
  1505. {
  1506. u32 phymode;
  1507. u32 enableDacFifo = 0;
  1508. if (AR_SREV_9285_10_OR_LATER(ah))
  1509. enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
  1510. AR_PHY_FC_ENABLE_DAC_FIFO);
  1511. phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
  1512. | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
  1513. if (IS_CHAN_HT40(chan)) {
  1514. phymode |= AR_PHY_FC_DYN2040_EN;
  1515. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  1516. (chan->chanmode == CHANNEL_G_HT40PLUS))
  1517. phymode |= AR_PHY_FC_DYN2040_PRI_CH;
  1518. }
  1519. REG_WRITE(ah, AR_PHY_TURBO, phymode);
  1520. ath9k_hw_set11nmac2040(ah);
  1521. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  1522. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  1523. }
  1524. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1525. struct ath9k_channel *chan)
  1526. {
  1527. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  1528. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  1529. return false;
  1530. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1531. return false;
  1532. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1533. return false;
  1534. ah->chip_fullsleep = false;
  1535. ath9k_hw_init_pll(ah, chan);
  1536. ath9k_hw_set_rfmode(ah, chan);
  1537. return true;
  1538. }
  1539. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1540. struct ath9k_channel *chan)
  1541. {
  1542. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1543. struct ath_common *common = ath9k_hw_common(ah);
  1544. struct ieee80211_channel *channel = chan->chan;
  1545. u32 synthDelay, qnum;
  1546. int r;
  1547. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1548. if (ath9k_hw_numtxpending(ah, qnum)) {
  1549. ath_print(common, ATH_DBG_QUEUE,
  1550. "Transmit frames pending on "
  1551. "queue %d\n", qnum);
  1552. return false;
  1553. }
  1554. }
  1555. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  1556. if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  1557. AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
  1558. ath_print(common, ATH_DBG_FATAL,
  1559. "Could not kill baseband RX\n");
  1560. return false;
  1561. }
  1562. ath9k_hw_set_regs(ah, chan);
  1563. r = ah->ath9k_hw_rf_set_freq(ah, chan);
  1564. if (r) {
  1565. ath_print(common, ATH_DBG_FATAL,
  1566. "Failed to set channel\n");
  1567. return false;
  1568. }
  1569. ah->eep_ops->set_txpower(ah, chan,
  1570. ath9k_regd_get_ctl(regulatory, chan),
  1571. channel->max_antenna_gain * 2,
  1572. channel->max_power * 2,
  1573. min((u32) MAX_RATE_POWER,
  1574. (u32) regulatory->power_limit));
  1575. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  1576. if (IS_CHAN_B(chan))
  1577. synthDelay = (4 * synthDelay) / 22;
  1578. else
  1579. synthDelay /= 10;
  1580. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  1581. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  1582. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1583. ath9k_hw_set_delta_slope(ah, chan);
  1584. ah->ath9k_hw_spur_mitigate_freq(ah, chan);
  1585. if (!chan->oneTimeCalsDone)
  1586. chan->oneTimeCalsDone = true;
  1587. return true;
  1588. }
  1589. static void ath9k_enable_rfkill(struct ath_hw *ah)
  1590. {
  1591. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
  1592. AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
  1593. REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
  1594. AR_GPIO_INPUT_MUX2_RFSILENT);
  1595. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1596. REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
  1597. }
  1598. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1599. bool bChannelChange)
  1600. {
  1601. struct ath_common *common = ath9k_hw_common(ah);
  1602. u32 saveLedState;
  1603. struct ath9k_channel *curchan = ah->curchan;
  1604. u32 saveDefAntenna;
  1605. u32 macStaId1;
  1606. u64 tsf = 0;
  1607. int i, rx_chainmask, r;
  1608. ah->txchainmask = common->tx_chainmask;
  1609. ah->rxchainmask = common->rx_chainmask;
  1610. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1611. return -EIO;
  1612. if (curchan && !ah->chip_fullsleep)
  1613. ath9k_hw_getnf(ah, curchan);
  1614. if (bChannelChange &&
  1615. (ah->chip_fullsleep != true) &&
  1616. (ah->curchan != NULL) &&
  1617. (chan->channel != ah->curchan->channel) &&
  1618. ((chan->channelFlags & CHANNEL_ALL) ==
  1619. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1620. !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
  1621. IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
  1622. if (ath9k_hw_channel_change(ah, chan)) {
  1623. ath9k_hw_loadnf(ah, ah->curchan);
  1624. ath9k_hw_start_nfcal(ah);
  1625. return 0;
  1626. }
  1627. }
  1628. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1629. if (saveDefAntenna == 0)
  1630. saveDefAntenna = 1;
  1631. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1632. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1633. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1634. tsf = ath9k_hw_gettsf64(ah);
  1635. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1636. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1637. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1638. ath9k_hw_mark_phy_inactive(ah);
  1639. /* Only required on the first reset */
  1640. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1641. REG_WRITE(ah,
  1642. AR9271_RESET_POWER_DOWN_CONTROL,
  1643. AR9271_RADIO_RF_RST);
  1644. udelay(50);
  1645. }
  1646. if (!ath9k_hw_chip_reset(ah, chan)) {
  1647. ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
  1648. return -EINVAL;
  1649. }
  1650. /* Only required on the first reset */
  1651. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1652. ah->htc_reset_init = false;
  1653. REG_WRITE(ah,
  1654. AR9271_RESET_POWER_DOWN_CONTROL,
  1655. AR9271_GATE_MAC_CTL);
  1656. udelay(50);
  1657. }
  1658. /* Restore TSF */
  1659. if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1660. ath9k_hw_settsf64(ah, tsf);
  1661. if (AR_SREV_9280_10_OR_LATER(ah))
  1662. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1663. if (AR_SREV_9287_12_OR_LATER(ah)) {
  1664. /* Enable ASYNC FIFO */
  1665. REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
  1666. AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
  1667. REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
  1668. REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
  1669. AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
  1670. REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
  1671. AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
  1672. }
  1673. r = ath9k_hw_process_ini(ah, chan);
  1674. if (r)
  1675. return r;
  1676. /* Setup MFP options for CCMP */
  1677. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1678. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1679. * frames when constructing CCMP AAD. */
  1680. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1681. 0xc7ff);
  1682. ah->sw_mgmt_crypto = false;
  1683. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1684. /* Disable hardware crypto for management frames */
  1685. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1686. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1687. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1688. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1689. ah->sw_mgmt_crypto = true;
  1690. } else
  1691. ah->sw_mgmt_crypto = true;
  1692. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1693. ath9k_hw_set_delta_slope(ah, chan);
  1694. ah->ath9k_hw_spur_mitigate_freq(ah, chan);
  1695. ah->eep_ops->set_board_values(ah, chan);
  1696. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1697. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1698. | macStaId1
  1699. | AR_STA_ID1_RTS_USE_DEF
  1700. | (ah->config.
  1701. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1702. | ah->sta_id1_defaults);
  1703. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1704. ath_hw_setbssidmask(common);
  1705. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1706. ath9k_hw_write_associd(ah);
  1707. REG_WRITE(ah, AR_ISR, ~0);
  1708. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1709. r = ah->ath9k_hw_rf_set_freq(ah, chan);
  1710. if (r)
  1711. return r;
  1712. for (i = 0; i < AR_NUM_DCU; i++)
  1713. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1714. ah->intr_txqs = 0;
  1715. for (i = 0; i < ah->caps.total_queues; i++)
  1716. ath9k_hw_resettxqueue(ah, i);
  1717. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1718. ath9k_hw_init_qos(ah);
  1719. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1720. ath9k_enable_rfkill(ah);
  1721. ath9k_hw_init_global_settings(ah);
  1722. if (AR_SREV_9287_12_OR_LATER(ah)) {
  1723. REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
  1724. AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
  1725. REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
  1726. AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
  1727. REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
  1728. AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
  1729. REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
  1730. REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
  1731. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1732. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1733. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1734. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1735. }
  1736. if (AR_SREV_9287_12_OR_LATER(ah)) {
  1737. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1738. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1739. }
  1740. REG_WRITE(ah, AR_STA_ID1,
  1741. REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
  1742. ath9k_hw_set_dma(ah);
  1743. REG_WRITE(ah, AR_OBS, 8);
  1744. if (ah->config.rx_intr_mitigation) {
  1745. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1746. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1747. }
  1748. ath9k_hw_init_bb(ah, chan);
  1749. if (!ath9k_hw_init_cal(ah, chan))
  1750. return -EIO;
  1751. rx_chainmask = ah->rxchainmask;
  1752. if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
  1753. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  1754. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  1755. }
  1756. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1757. /*
  1758. * For big endian systems turn on swapping for descriptors
  1759. */
  1760. if (AR_SREV_9100(ah)) {
  1761. u32 mask;
  1762. mask = REG_READ(ah, AR_CFG);
  1763. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1764. ath_print(common, ATH_DBG_RESET,
  1765. "CFG Byte Swap Set 0x%x\n", mask);
  1766. } else {
  1767. mask =
  1768. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1769. REG_WRITE(ah, AR_CFG, mask);
  1770. ath_print(common, ATH_DBG_RESET,
  1771. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1772. }
  1773. } else {
  1774. /* Configure AR9271 target WLAN */
  1775. if (AR_SREV_9271(ah))
  1776. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1777. #ifdef __BIG_ENDIAN
  1778. else
  1779. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1780. #endif
  1781. }
  1782. if (ah->btcoex_hw.enabled)
  1783. ath9k_hw_btcoex_enable(ah);
  1784. return 0;
  1785. }
  1786. EXPORT_SYMBOL(ath9k_hw_reset);
  1787. /************************/
  1788. /* Key Cache Management */
  1789. /************************/
  1790. bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
  1791. {
  1792. u32 keyType;
  1793. if (entry >= ah->caps.keycache_size) {
  1794. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1795. "keychache entry %u out of range\n", entry);
  1796. return false;
  1797. }
  1798. keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
  1799. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
  1800. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
  1801. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
  1802. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
  1803. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
  1804. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
  1805. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
  1806. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
  1807. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  1808. u16 micentry = entry + 64;
  1809. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
  1810. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  1811. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
  1812. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  1813. }
  1814. return true;
  1815. }
  1816. EXPORT_SYMBOL(ath9k_hw_keyreset);
  1817. bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
  1818. {
  1819. u32 macHi, macLo;
  1820. if (entry >= ah->caps.keycache_size) {
  1821. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1822. "keychache entry %u out of range\n", entry);
  1823. return false;
  1824. }
  1825. if (mac != NULL) {
  1826. macHi = (mac[5] << 8) | mac[4];
  1827. macLo = (mac[3] << 24) |
  1828. (mac[2] << 16) |
  1829. (mac[1] << 8) |
  1830. mac[0];
  1831. macLo >>= 1;
  1832. macLo |= (macHi & 1) << 31;
  1833. macHi >>= 1;
  1834. } else {
  1835. macLo = macHi = 0;
  1836. }
  1837. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
  1838. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
  1839. return true;
  1840. }
  1841. EXPORT_SYMBOL(ath9k_hw_keysetmac);
  1842. bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
  1843. const struct ath9k_keyval *k,
  1844. const u8 *mac)
  1845. {
  1846. const struct ath9k_hw_capabilities *pCap = &ah->caps;
  1847. struct ath_common *common = ath9k_hw_common(ah);
  1848. u32 key0, key1, key2, key3, key4;
  1849. u32 keyType;
  1850. if (entry >= pCap->keycache_size) {
  1851. ath_print(common, ATH_DBG_FATAL,
  1852. "keycache entry %u out of range\n", entry);
  1853. return false;
  1854. }
  1855. switch (k->kv_type) {
  1856. case ATH9K_CIPHER_AES_OCB:
  1857. keyType = AR_KEYTABLE_TYPE_AES;
  1858. break;
  1859. case ATH9K_CIPHER_AES_CCM:
  1860. if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
  1861. ath_print(common, ATH_DBG_ANY,
  1862. "AES-CCM not supported by mac rev 0x%x\n",
  1863. ah->hw_version.macRev);
  1864. return false;
  1865. }
  1866. keyType = AR_KEYTABLE_TYPE_CCM;
  1867. break;
  1868. case ATH9K_CIPHER_TKIP:
  1869. keyType = AR_KEYTABLE_TYPE_TKIP;
  1870. if (ATH9K_IS_MIC_ENABLED(ah)
  1871. && entry + 64 >= pCap->keycache_size) {
  1872. ath_print(common, ATH_DBG_ANY,
  1873. "entry %u inappropriate for TKIP\n", entry);
  1874. return false;
  1875. }
  1876. break;
  1877. case ATH9K_CIPHER_WEP:
  1878. if (k->kv_len < WLAN_KEY_LEN_WEP40) {
  1879. ath_print(common, ATH_DBG_ANY,
  1880. "WEP key length %u too small\n", k->kv_len);
  1881. return false;
  1882. }
  1883. if (k->kv_len <= WLAN_KEY_LEN_WEP40)
  1884. keyType = AR_KEYTABLE_TYPE_40;
  1885. else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
  1886. keyType = AR_KEYTABLE_TYPE_104;
  1887. else
  1888. keyType = AR_KEYTABLE_TYPE_128;
  1889. break;
  1890. case ATH9K_CIPHER_CLR:
  1891. keyType = AR_KEYTABLE_TYPE_CLR;
  1892. break;
  1893. default:
  1894. ath_print(common, ATH_DBG_FATAL,
  1895. "cipher %u not supported\n", k->kv_type);
  1896. return false;
  1897. }
  1898. key0 = get_unaligned_le32(k->kv_val + 0);
  1899. key1 = get_unaligned_le16(k->kv_val + 4);
  1900. key2 = get_unaligned_le32(k->kv_val + 6);
  1901. key3 = get_unaligned_le16(k->kv_val + 10);
  1902. key4 = get_unaligned_le32(k->kv_val + 12);
  1903. if (k->kv_len <= WLAN_KEY_LEN_WEP104)
  1904. key4 &= 0xff;
  1905. /*
  1906. * Note: Key cache registers access special memory area that requires
  1907. * two 32-bit writes to actually update the values in the internal
  1908. * memory. Consequently, the exact order and pairs used here must be
  1909. * maintained.
  1910. */
  1911. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  1912. u16 micentry = entry + 64;
  1913. /*
  1914. * Write inverted key[47:0] first to avoid Michael MIC errors
  1915. * on frames that could be sent or received at the same time.
  1916. * The correct key will be written in the end once everything
  1917. * else is ready.
  1918. */
  1919. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
  1920. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
  1921. /* Write key[95:48] */
  1922. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  1923. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  1924. /* Write key[127:96] and key type */
  1925. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  1926. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  1927. /* Write MAC address for the entry */
  1928. (void) ath9k_hw_keysetmac(ah, entry, mac);
  1929. if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
  1930. /*
  1931. * TKIP uses two key cache entries:
  1932. * Michael MIC TX/RX keys in the same key cache entry
  1933. * (idx = main index + 64):
  1934. * key0 [31:0] = RX key [31:0]
  1935. * key1 [15:0] = TX key [31:16]
  1936. * key1 [31:16] = reserved
  1937. * key2 [31:0] = RX key [63:32]
  1938. * key3 [15:0] = TX key [15:0]
  1939. * key3 [31:16] = reserved
  1940. * key4 [31:0] = TX key [63:32]
  1941. */
  1942. u32 mic0, mic1, mic2, mic3, mic4;
  1943. mic0 = get_unaligned_le32(k->kv_mic + 0);
  1944. mic2 = get_unaligned_le32(k->kv_mic + 4);
  1945. mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
  1946. mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
  1947. mic4 = get_unaligned_le32(k->kv_txmic + 4);
  1948. /* Write RX[31:0] and TX[31:16] */
  1949. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  1950. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
  1951. /* Write RX[63:32] and TX[15:0] */
  1952. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  1953. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
  1954. /* Write TX[63:32] and keyType(reserved) */
  1955. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
  1956. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  1957. AR_KEYTABLE_TYPE_CLR);
  1958. } else {
  1959. /*
  1960. * TKIP uses four key cache entries (two for group
  1961. * keys):
  1962. * Michael MIC TX/RX keys are in different key cache
  1963. * entries (idx = main index + 64 for TX and
  1964. * main index + 32 + 96 for RX):
  1965. * key0 [31:0] = TX/RX MIC key [31:0]
  1966. * key1 [31:0] = reserved
  1967. * key2 [31:0] = TX/RX MIC key [63:32]
  1968. * key3 [31:0] = reserved
  1969. * key4 [31:0] = reserved
  1970. *
  1971. * Upper layer code will call this function separately
  1972. * for TX and RX keys when these registers offsets are
  1973. * used.
  1974. */
  1975. u32 mic0, mic2;
  1976. mic0 = get_unaligned_le32(k->kv_mic + 0);
  1977. mic2 = get_unaligned_le32(k->kv_mic + 4);
  1978. /* Write MIC key[31:0] */
  1979. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  1980. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  1981. /* Write MIC key[63:32] */
  1982. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  1983. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  1984. /* Write TX[63:32] and keyType(reserved) */
  1985. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
  1986. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  1987. AR_KEYTABLE_TYPE_CLR);
  1988. }
  1989. /* MAC address registers are reserved for the MIC entry */
  1990. REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
  1991. REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
  1992. /*
  1993. * Write the correct (un-inverted) key[47:0] last to enable
  1994. * TKIP now that all other registers are set with correct
  1995. * values.
  1996. */
  1997. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  1998. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  1999. } else {
  2000. /* Write key[47:0] */
  2001. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  2002. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  2003. /* Write key[95:48] */
  2004. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  2005. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  2006. /* Write key[127:96] and key type */
  2007. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  2008. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  2009. /* Write MAC address for the entry */
  2010. (void) ath9k_hw_keysetmac(ah, entry, mac);
  2011. }
  2012. return true;
  2013. }
  2014. EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
  2015. bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
  2016. {
  2017. if (entry < ah->caps.keycache_size) {
  2018. u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
  2019. if (val & AR_KEYTABLE_VALID)
  2020. return true;
  2021. }
  2022. return false;
  2023. }
  2024. EXPORT_SYMBOL(ath9k_hw_keyisvalid);
  2025. /******************************/
  2026. /* Power Management (Chipset) */
  2027. /******************************/
  2028. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  2029. {
  2030. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2031. if (setChip) {
  2032. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  2033. AR_RTC_FORCE_WAKE_EN);
  2034. if (!AR_SREV_9100(ah))
  2035. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  2036. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
  2037. REG_CLR_BIT(ah, (AR_RTC_RESET),
  2038. AR_RTC_RESET_EN);
  2039. }
  2040. }
  2041. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  2042. {
  2043. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2044. if (setChip) {
  2045. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2046. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2047. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  2048. AR_RTC_FORCE_WAKE_ON_INT);
  2049. } else {
  2050. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  2051. AR_RTC_FORCE_WAKE_EN);
  2052. }
  2053. }
  2054. }
  2055. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  2056. {
  2057. u32 val;
  2058. int i;
  2059. if (setChip) {
  2060. if ((REG_READ(ah, AR_RTC_STATUS) &
  2061. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  2062. if (ath9k_hw_set_reset_reg(ah,
  2063. ATH9K_RESET_POWER_ON) != true) {
  2064. return false;
  2065. }
  2066. ath9k_hw_init_pll(ah, NULL);
  2067. }
  2068. if (AR_SREV_9100(ah))
  2069. REG_SET_BIT(ah, AR_RTC_RESET,
  2070. AR_RTC_RESET_EN);
  2071. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  2072. AR_RTC_FORCE_WAKE_EN);
  2073. udelay(50);
  2074. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  2075. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  2076. if (val == AR_RTC_STATUS_ON)
  2077. break;
  2078. udelay(50);
  2079. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  2080. AR_RTC_FORCE_WAKE_EN);
  2081. }
  2082. if (i == 0) {
  2083. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  2084. "Failed to wakeup in %uus\n",
  2085. POWER_UP_TIME / 20);
  2086. return false;
  2087. }
  2088. }
  2089. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2090. return true;
  2091. }
  2092. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  2093. {
  2094. struct ath_common *common = ath9k_hw_common(ah);
  2095. int status = true, setChip = true;
  2096. static const char *modes[] = {
  2097. "AWAKE",
  2098. "FULL-SLEEP",
  2099. "NETWORK SLEEP",
  2100. "UNDEFINED"
  2101. };
  2102. if (ah->power_mode == mode)
  2103. return status;
  2104. ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
  2105. modes[ah->power_mode], modes[mode]);
  2106. switch (mode) {
  2107. case ATH9K_PM_AWAKE:
  2108. status = ath9k_hw_set_power_awake(ah, setChip);
  2109. break;
  2110. case ATH9K_PM_FULL_SLEEP:
  2111. ath9k_set_power_sleep(ah, setChip);
  2112. ah->chip_fullsleep = true;
  2113. break;
  2114. case ATH9K_PM_NETWORK_SLEEP:
  2115. ath9k_set_power_network_sleep(ah, setChip);
  2116. break;
  2117. default:
  2118. ath_print(common, ATH_DBG_FATAL,
  2119. "Unknown power mode %u\n", mode);
  2120. return false;
  2121. }
  2122. ah->power_mode = mode;
  2123. return status;
  2124. }
  2125. EXPORT_SYMBOL(ath9k_hw_setpower);
  2126. /*
  2127. * Helper for ASPM support.
  2128. *
  2129. * Disable PLL when in L0s as well as receiver clock when in L1.
  2130. * This power saving option must be enabled through the SerDes.
  2131. *
  2132. * Programming the SerDes must go through the same 288 bit serial shift
  2133. * register as the other analog registers. Hence the 9 writes.
  2134. */
  2135. void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
  2136. {
  2137. u8 i;
  2138. u32 val;
  2139. if (ah->is_pciexpress != true)
  2140. return;
  2141. /* Do not touch SerDes registers */
  2142. if (ah->config.pcie_powersave_enable == 2)
  2143. return;
  2144. /* Nothing to do on restore for 11N */
  2145. if (!restore) {
  2146. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2147. /*
  2148. * AR9280 2.0 or later chips use SerDes values from the
  2149. * initvals.h initialized depending on chipset during
  2150. * ath9k_hw_init()
  2151. */
  2152. for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
  2153. REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
  2154. INI_RA(&ah->iniPcieSerdes, i, 1));
  2155. }
  2156. } else if (AR_SREV_9280(ah) &&
  2157. (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
  2158. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
  2159. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  2160. /* RX shut off when elecidle is asserted */
  2161. REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
  2162. REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
  2163. REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
  2164. /* Shut off CLKREQ active in L1 */
  2165. if (ah->config.pcie_clock_req)
  2166. REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
  2167. else
  2168. REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
  2169. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  2170. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  2171. REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
  2172. /* Load the new settings */
  2173. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  2174. } else {
  2175. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  2176. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  2177. /* RX shut off when elecidle is asserted */
  2178. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
  2179. REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
  2180. REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
  2181. /*
  2182. * Ignore ah->ah_config.pcie_clock_req setting for
  2183. * pre-AR9280 11n
  2184. */
  2185. REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
  2186. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  2187. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  2188. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
  2189. /* Load the new settings */
  2190. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  2191. }
  2192. udelay(1000);
  2193. /* set bit 19 to allow forcing of pcie core into L1 state */
  2194. REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
  2195. /* Several PCIe massages to ensure proper behaviour */
  2196. if (ah->config.pcie_waen) {
  2197. val = ah->config.pcie_waen;
  2198. if (!power_off)
  2199. val &= (~AR_WA_D3_L1_DISABLE);
  2200. } else {
  2201. if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
  2202. AR_SREV_9287(ah)) {
  2203. val = AR9285_WA_DEFAULT;
  2204. if (!power_off)
  2205. val &= (~AR_WA_D3_L1_DISABLE);
  2206. } else if (AR_SREV_9280(ah)) {
  2207. /*
  2208. * On AR9280 chips bit 22 of 0x4004 needs to be
  2209. * set otherwise card may disappear.
  2210. */
  2211. val = AR9280_WA_DEFAULT;
  2212. if (!power_off)
  2213. val &= (~AR_WA_D3_L1_DISABLE);
  2214. } else
  2215. val = AR_WA_DEFAULT;
  2216. }
  2217. REG_WRITE(ah, AR_WA, val);
  2218. }
  2219. if (power_off) {
  2220. /*
  2221. * Set PCIe workaround bits
  2222. * bit 14 in WA register (disable L1) should only
  2223. * be set when device enters D3 and be cleared
  2224. * when device comes back to D0.
  2225. */
  2226. if (ah->config.pcie_waen) {
  2227. if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
  2228. REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
  2229. } else {
  2230. if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
  2231. AR_SREV_9287(ah)) &&
  2232. (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
  2233. (AR_SREV_9280(ah) &&
  2234. (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
  2235. REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
  2236. }
  2237. }
  2238. }
  2239. }
  2240. EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
  2241. /**********************/
  2242. /* Interrupt Handling */
  2243. /**********************/
  2244. bool ath9k_hw_intrpend(struct ath_hw *ah)
  2245. {
  2246. u32 host_isr;
  2247. if (AR_SREV_9100(ah))
  2248. return true;
  2249. host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
  2250. if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
  2251. return true;
  2252. host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  2253. if ((host_isr & AR_INTR_SYNC_DEFAULT)
  2254. && (host_isr != AR_INTR_SPURIOUS))
  2255. return true;
  2256. return false;
  2257. }
  2258. EXPORT_SYMBOL(ath9k_hw_intrpend);
  2259. bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
  2260. {
  2261. u32 isr = 0;
  2262. u32 mask2 = 0;
  2263. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2264. u32 sync_cause = 0;
  2265. bool fatal_int = false;
  2266. struct ath_common *common = ath9k_hw_common(ah);
  2267. if (!AR_SREV_9100(ah)) {
  2268. if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
  2269. if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
  2270. == AR_RTC_STATUS_ON) {
  2271. isr = REG_READ(ah, AR_ISR);
  2272. }
  2273. }
  2274. sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
  2275. AR_INTR_SYNC_DEFAULT;
  2276. *masked = 0;
  2277. if (!isr && !sync_cause)
  2278. return false;
  2279. } else {
  2280. *masked = 0;
  2281. isr = REG_READ(ah, AR_ISR);
  2282. }
  2283. if (isr) {
  2284. if (isr & AR_ISR_BCNMISC) {
  2285. u32 isr2;
  2286. isr2 = REG_READ(ah, AR_ISR_S2);
  2287. if (isr2 & AR_ISR_S2_TIM)
  2288. mask2 |= ATH9K_INT_TIM;
  2289. if (isr2 & AR_ISR_S2_DTIM)
  2290. mask2 |= ATH9K_INT_DTIM;
  2291. if (isr2 & AR_ISR_S2_DTIMSYNC)
  2292. mask2 |= ATH9K_INT_DTIMSYNC;
  2293. if (isr2 & (AR_ISR_S2_CABEND))
  2294. mask2 |= ATH9K_INT_CABEND;
  2295. if (isr2 & AR_ISR_S2_GTT)
  2296. mask2 |= ATH9K_INT_GTT;
  2297. if (isr2 & AR_ISR_S2_CST)
  2298. mask2 |= ATH9K_INT_CST;
  2299. if (isr2 & AR_ISR_S2_TSFOOR)
  2300. mask2 |= ATH9K_INT_TSFOOR;
  2301. }
  2302. isr = REG_READ(ah, AR_ISR_RAC);
  2303. if (isr == 0xffffffff) {
  2304. *masked = 0;
  2305. return false;
  2306. }
  2307. *masked = isr & ATH9K_INT_COMMON;
  2308. if (ah->config.rx_intr_mitigation) {
  2309. if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
  2310. *masked |= ATH9K_INT_RX;
  2311. }
  2312. if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
  2313. *masked |= ATH9K_INT_RX;
  2314. if (isr &
  2315. (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
  2316. AR_ISR_TXEOL)) {
  2317. u32 s0_s, s1_s;
  2318. *masked |= ATH9K_INT_TX;
  2319. s0_s = REG_READ(ah, AR_ISR_S0_S);
  2320. ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
  2321. ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
  2322. s1_s = REG_READ(ah, AR_ISR_S1_S);
  2323. ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
  2324. ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
  2325. }
  2326. if (isr & AR_ISR_RXORN) {
  2327. ath_print(common, ATH_DBG_INTERRUPT,
  2328. "receive FIFO overrun interrupt\n");
  2329. }
  2330. if (!AR_SREV_9100(ah)) {
  2331. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2332. u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
  2333. if (isr5 & AR_ISR_S5_TIM_TIMER)
  2334. *masked |= ATH9K_INT_TIM_TIMER;
  2335. }
  2336. }
  2337. *masked |= mask2;
  2338. }
  2339. if (AR_SREV_9100(ah))
  2340. return true;
  2341. if (isr & AR_ISR_GENTMR) {
  2342. u32 s5_s;
  2343. s5_s = REG_READ(ah, AR_ISR_S5_S);
  2344. if (isr & AR_ISR_GENTMR) {
  2345. ah->intr_gen_timer_trigger =
  2346. MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
  2347. ah->intr_gen_timer_thresh =
  2348. MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
  2349. if (ah->intr_gen_timer_trigger)
  2350. *masked |= ATH9K_INT_GENTIMER;
  2351. }
  2352. }
  2353. if (sync_cause) {
  2354. fatal_int =
  2355. (sync_cause &
  2356. (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
  2357. ? true : false;
  2358. if (fatal_int) {
  2359. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
  2360. ath_print(common, ATH_DBG_ANY,
  2361. "received PCI FATAL interrupt\n");
  2362. }
  2363. if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
  2364. ath_print(common, ATH_DBG_ANY,
  2365. "received PCI PERR interrupt\n");
  2366. }
  2367. *masked |= ATH9K_INT_FATAL;
  2368. }
  2369. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
  2370. ath_print(common, ATH_DBG_INTERRUPT,
  2371. "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
  2372. REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
  2373. REG_WRITE(ah, AR_RC, 0);
  2374. *masked |= ATH9K_INT_FATAL;
  2375. }
  2376. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
  2377. ath_print(common, ATH_DBG_INTERRUPT,
  2378. "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
  2379. }
  2380. REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
  2381. (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
  2382. }
  2383. return true;
  2384. }
  2385. EXPORT_SYMBOL(ath9k_hw_getisr);
  2386. enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
  2387. {
  2388. u32 omask = ah->mask_reg;
  2389. u32 mask, mask2;
  2390. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2391. struct ath_common *common = ath9k_hw_common(ah);
  2392. ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
  2393. if (omask & ATH9K_INT_GLOBAL) {
  2394. ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
  2395. REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
  2396. (void) REG_READ(ah, AR_IER);
  2397. if (!AR_SREV_9100(ah)) {
  2398. REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
  2399. (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
  2400. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  2401. (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
  2402. }
  2403. }
  2404. mask = ints & ATH9K_INT_COMMON;
  2405. mask2 = 0;
  2406. if (ints & ATH9K_INT_TX) {
  2407. if (ah->txok_interrupt_mask)
  2408. mask |= AR_IMR_TXOK;
  2409. if (ah->txdesc_interrupt_mask)
  2410. mask |= AR_IMR_TXDESC;
  2411. if (ah->txerr_interrupt_mask)
  2412. mask |= AR_IMR_TXERR;
  2413. if (ah->txeol_interrupt_mask)
  2414. mask |= AR_IMR_TXEOL;
  2415. }
  2416. if (ints & ATH9K_INT_RX) {
  2417. mask |= AR_IMR_RXERR;
  2418. if (ah->config.rx_intr_mitigation)
  2419. mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
  2420. else
  2421. mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
  2422. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
  2423. mask |= AR_IMR_GENTMR;
  2424. }
  2425. if (ints & (ATH9K_INT_BMISC)) {
  2426. mask |= AR_IMR_BCNMISC;
  2427. if (ints & ATH9K_INT_TIM)
  2428. mask2 |= AR_IMR_S2_TIM;
  2429. if (ints & ATH9K_INT_DTIM)
  2430. mask2 |= AR_IMR_S2_DTIM;
  2431. if (ints & ATH9K_INT_DTIMSYNC)
  2432. mask2 |= AR_IMR_S2_DTIMSYNC;
  2433. if (ints & ATH9K_INT_CABEND)
  2434. mask2 |= AR_IMR_S2_CABEND;
  2435. if (ints & ATH9K_INT_TSFOOR)
  2436. mask2 |= AR_IMR_S2_TSFOOR;
  2437. }
  2438. if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
  2439. mask |= AR_IMR_BCNMISC;
  2440. if (ints & ATH9K_INT_GTT)
  2441. mask2 |= AR_IMR_S2_GTT;
  2442. if (ints & ATH9K_INT_CST)
  2443. mask2 |= AR_IMR_S2_CST;
  2444. }
  2445. ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
  2446. REG_WRITE(ah, AR_IMR, mask);
  2447. ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
  2448. AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
  2449. AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
  2450. ah->imrs2_reg |= mask2;
  2451. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  2452. ah->mask_reg = ints;
  2453. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2454. if (ints & ATH9K_INT_TIM_TIMER)
  2455. REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
  2456. else
  2457. REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
  2458. }
  2459. if (ints & ATH9K_INT_GLOBAL) {
  2460. ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
  2461. REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
  2462. if (!AR_SREV_9100(ah)) {
  2463. REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
  2464. AR_INTR_MAC_IRQ);
  2465. REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
  2466. REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
  2467. AR_INTR_SYNC_DEFAULT);
  2468. REG_WRITE(ah, AR_INTR_SYNC_MASK,
  2469. AR_INTR_SYNC_DEFAULT);
  2470. }
  2471. ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
  2472. REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
  2473. }
  2474. return omask;
  2475. }
  2476. EXPORT_SYMBOL(ath9k_hw_set_interrupts);
  2477. /*******************/
  2478. /* Beacon Handling */
  2479. /*******************/
  2480. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  2481. {
  2482. int flags = 0;
  2483. ah->beacon_interval = beacon_period;
  2484. switch (ah->opmode) {
  2485. case NL80211_IFTYPE_STATION:
  2486. case NL80211_IFTYPE_MONITOR:
  2487. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  2488. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
  2489. REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
  2490. flags |= AR_TBTT_TIMER_EN;
  2491. break;
  2492. case NL80211_IFTYPE_ADHOC:
  2493. case NL80211_IFTYPE_MESH_POINT:
  2494. REG_SET_BIT(ah, AR_TXCFG,
  2495. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  2496. REG_WRITE(ah, AR_NEXT_NDP_TIMER,
  2497. TU_TO_USEC(next_beacon +
  2498. (ah->atim_window ? ah->
  2499. atim_window : 1)));
  2500. flags |= AR_NDP_TIMER_EN;
  2501. case NL80211_IFTYPE_AP:
  2502. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  2503. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
  2504. TU_TO_USEC(next_beacon -
  2505. ah->config.
  2506. dma_beacon_response_time));
  2507. REG_WRITE(ah, AR_NEXT_SWBA,
  2508. TU_TO_USEC(next_beacon -
  2509. ah->config.
  2510. sw_beacon_response_time));
  2511. flags |=
  2512. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  2513. break;
  2514. default:
  2515. ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
  2516. "%s: unsupported opmode: %d\n",
  2517. __func__, ah->opmode);
  2518. return;
  2519. break;
  2520. }
  2521. REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  2522. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  2523. REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
  2524. REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
  2525. beacon_period &= ~ATH9K_BEACON_ENA;
  2526. if (beacon_period & ATH9K_BEACON_RESET_TSF) {
  2527. ath9k_hw_reset_tsf(ah);
  2528. }
  2529. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  2530. }
  2531. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  2532. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  2533. const struct ath9k_beacon_state *bs)
  2534. {
  2535. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  2536. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2537. struct ath_common *common = ath9k_hw_common(ah);
  2538. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  2539. REG_WRITE(ah, AR_BEACON_PERIOD,
  2540. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  2541. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  2542. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  2543. REG_RMW_FIELD(ah, AR_RSSI_THR,
  2544. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  2545. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  2546. if (bs->bs_sleepduration > beaconintval)
  2547. beaconintval = bs->bs_sleepduration;
  2548. dtimperiod = bs->bs_dtimperiod;
  2549. if (bs->bs_sleepduration > dtimperiod)
  2550. dtimperiod = bs->bs_sleepduration;
  2551. if (beaconintval == dtimperiod)
  2552. nextTbtt = bs->bs_nextdtim;
  2553. else
  2554. nextTbtt = bs->bs_nexttbtt;
  2555. ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  2556. ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  2557. ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  2558. ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  2559. REG_WRITE(ah, AR_NEXT_DTIM,
  2560. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  2561. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  2562. REG_WRITE(ah, AR_SLEEP1,
  2563. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  2564. | AR_SLEEP1_ASSUME_DTIM);
  2565. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  2566. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  2567. else
  2568. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  2569. REG_WRITE(ah, AR_SLEEP2,
  2570. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  2571. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  2572. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  2573. REG_SET_BIT(ah, AR_TIMER_MODE,
  2574. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  2575. AR_DTIM_TIMER_EN);
  2576. /* TSF Out of Range Threshold */
  2577. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  2578. }
  2579. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  2580. /*******************/
  2581. /* HW Capabilities */
  2582. /*******************/
  2583. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  2584. {
  2585. struct ath9k_hw_capabilities *pCap = &ah->caps;
  2586. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  2587. struct ath_common *common = ath9k_hw_common(ah);
  2588. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  2589. u16 capField = 0, eeval;
  2590. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  2591. regulatory->current_rd = eeval;
  2592. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  2593. if (AR_SREV_9285_10_OR_LATER(ah))
  2594. eeval |= AR9285_RDEXT_DEFAULT;
  2595. regulatory->current_rd_ext = eeval;
  2596. capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
  2597. if (ah->opmode != NL80211_IFTYPE_AP &&
  2598. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  2599. if (regulatory->current_rd == 0x64 ||
  2600. regulatory->current_rd == 0x65)
  2601. regulatory->current_rd += 5;
  2602. else if (regulatory->current_rd == 0x41)
  2603. regulatory->current_rd = 0x43;
  2604. ath_print(common, ATH_DBG_REGULATORY,
  2605. "regdomain mapped to 0x%x\n", regulatory->current_rd);
  2606. }
  2607. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  2608. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  2609. ath_print(common, ATH_DBG_FATAL,
  2610. "no band has been marked as supported in EEPROM.\n");
  2611. return -EINVAL;
  2612. }
  2613. bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
  2614. if (eeval & AR5416_OPFLAGS_11A) {
  2615. set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
  2616. if (ah->config.ht_enable) {
  2617. if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
  2618. set_bit(ATH9K_MODE_11NA_HT20,
  2619. pCap->wireless_modes);
  2620. if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
  2621. set_bit(ATH9K_MODE_11NA_HT40PLUS,
  2622. pCap->wireless_modes);
  2623. set_bit(ATH9K_MODE_11NA_HT40MINUS,
  2624. pCap->wireless_modes);
  2625. }
  2626. }
  2627. }
  2628. if (eeval & AR5416_OPFLAGS_11G) {
  2629. set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
  2630. if (ah->config.ht_enable) {
  2631. if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
  2632. set_bit(ATH9K_MODE_11NG_HT20,
  2633. pCap->wireless_modes);
  2634. if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
  2635. set_bit(ATH9K_MODE_11NG_HT40PLUS,
  2636. pCap->wireless_modes);
  2637. set_bit(ATH9K_MODE_11NG_HT40MINUS,
  2638. pCap->wireless_modes);
  2639. }
  2640. }
  2641. }
  2642. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  2643. /*
  2644. * For AR9271 we will temporarilly uses the rx chainmax as read from
  2645. * the EEPROM.
  2646. */
  2647. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  2648. !(eeval & AR5416_OPFLAGS_11A) &&
  2649. !(AR_SREV_9271(ah)))
  2650. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  2651. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  2652. else
  2653. /* Use rx_chainmask from EEPROM. */
  2654. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  2655. if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
  2656. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  2657. pCap->low_2ghz_chan = 2312;
  2658. pCap->high_2ghz_chan = 2732;
  2659. pCap->low_5ghz_chan = 4920;
  2660. pCap->high_5ghz_chan = 6100;
  2661. pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
  2662. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
  2663. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
  2664. pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
  2665. pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
  2666. pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
  2667. if (ah->config.ht_enable)
  2668. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2669. else
  2670. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2671. pCap->hw_caps |= ATH9K_HW_CAP_GTT;
  2672. pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
  2673. pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
  2674. pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
  2675. if (capField & AR_EEPROM_EEPCAP_MAXQCU)
  2676. pCap->total_queues =
  2677. MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
  2678. else
  2679. pCap->total_queues = ATH9K_NUM_TX_QUEUES;
  2680. if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
  2681. pCap->keycache_size =
  2682. 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
  2683. else
  2684. pCap->keycache_size = AR_KEYTABLE_SIZE;
  2685. pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
  2686. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  2687. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
  2688. else
  2689. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
  2690. if (AR_SREV_9271(ah))
  2691. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  2692. else if (AR_SREV_9285_10_OR_LATER(ah))
  2693. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  2694. else if (AR_SREV_9280_10_OR_LATER(ah))
  2695. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2696. else
  2697. pCap->num_gpio_pins = AR_NUM_GPIO;
  2698. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  2699. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  2700. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2701. } else {
  2702. pCap->rts_aggr_limit = (8 * 1024);
  2703. }
  2704. pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
  2705. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  2706. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  2707. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  2708. ah->rfkill_gpio =
  2709. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  2710. ah->rfkill_polarity =
  2711. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  2712. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2713. }
  2714. #endif
  2715. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2716. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2717. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2718. else
  2719. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2720. if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
  2721. pCap->reg_cap =
  2722. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  2723. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
  2724. AR_EEPROM_EEREGCAP_EN_KK_U2 |
  2725. AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
  2726. } else {
  2727. pCap->reg_cap =
  2728. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  2729. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
  2730. }
  2731. /* Advertise midband for AR5416 with FCC midband set in eeprom */
  2732. if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
  2733. AR_SREV_5416(ah))
  2734. pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
  2735. pCap->num_antcfg_5ghz =
  2736. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
  2737. pCap->num_antcfg_2ghz =
  2738. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
  2739. if (AR_SREV_9280_10_OR_LATER(ah) &&
  2740. ath9k_hw_btcoex_supported(ah)) {
  2741. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
  2742. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
  2743. if (AR_SREV_9285(ah)) {
  2744. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  2745. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
  2746. } else {
  2747. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  2748. }
  2749. } else {
  2750. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  2751. }
  2752. return 0;
  2753. }
  2754. bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
  2755. u32 capability, u32 *result)
  2756. {
  2757. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  2758. switch (type) {
  2759. case ATH9K_CAP_CIPHER:
  2760. switch (capability) {
  2761. case ATH9K_CIPHER_AES_CCM:
  2762. case ATH9K_CIPHER_AES_OCB:
  2763. case ATH9K_CIPHER_TKIP:
  2764. case ATH9K_CIPHER_WEP:
  2765. case ATH9K_CIPHER_MIC:
  2766. case ATH9K_CIPHER_CLR:
  2767. return true;
  2768. default:
  2769. return false;
  2770. }
  2771. case ATH9K_CAP_TKIP_MIC:
  2772. switch (capability) {
  2773. case 0:
  2774. return true;
  2775. case 1:
  2776. return (ah->sta_id1_defaults &
  2777. AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
  2778. false;
  2779. }
  2780. case ATH9K_CAP_TKIP_SPLIT:
  2781. return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
  2782. false : true;
  2783. case ATH9K_CAP_DIVERSITY:
  2784. return (REG_READ(ah, AR_PHY_CCK_DETECT) &
  2785. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
  2786. true : false;
  2787. case ATH9K_CAP_MCAST_KEYSRCH:
  2788. switch (capability) {
  2789. case 0:
  2790. return true;
  2791. case 1:
  2792. if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
  2793. return false;
  2794. } else {
  2795. return (ah->sta_id1_defaults &
  2796. AR_STA_ID1_MCAST_KSRCH) ? true :
  2797. false;
  2798. }
  2799. }
  2800. return false;
  2801. case ATH9K_CAP_TXPOW:
  2802. switch (capability) {
  2803. case 0:
  2804. return 0;
  2805. case 1:
  2806. *result = regulatory->power_limit;
  2807. return 0;
  2808. case 2:
  2809. *result = regulatory->max_power_level;
  2810. return 0;
  2811. case 3:
  2812. *result = regulatory->tp_scale;
  2813. return 0;
  2814. }
  2815. return false;
  2816. case ATH9K_CAP_DS:
  2817. return (AR_SREV_9280_20_OR_LATER(ah) &&
  2818. (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
  2819. ? false : true;
  2820. default:
  2821. return false;
  2822. }
  2823. }
  2824. EXPORT_SYMBOL(ath9k_hw_getcapability);
  2825. bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
  2826. u32 capability, u32 setting, int *status)
  2827. {
  2828. u32 v;
  2829. switch (type) {
  2830. case ATH9K_CAP_TKIP_MIC:
  2831. if (setting)
  2832. ah->sta_id1_defaults |=
  2833. AR_STA_ID1_CRPT_MIC_ENABLE;
  2834. else
  2835. ah->sta_id1_defaults &=
  2836. ~AR_STA_ID1_CRPT_MIC_ENABLE;
  2837. return true;
  2838. case ATH9K_CAP_DIVERSITY:
  2839. v = REG_READ(ah, AR_PHY_CCK_DETECT);
  2840. if (setting)
  2841. v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  2842. else
  2843. v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  2844. REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
  2845. return true;
  2846. case ATH9K_CAP_MCAST_KEYSRCH:
  2847. if (setting)
  2848. ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
  2849. else
  2850. ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
  2851. return true;
  2852. default:
  2853. return false;
  2854. }
  2855. }
  2856. EXPORT_SYMBOL(ath9k_hw_setcapability);
  2857. /****************************/
  2858. /* GPIO / RFKILL / Antennae */
  2859. /****************************/
  2860. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2861. u32 gpio, u32 type)
  2862. {
  2863. int addr;
  2864. u32 gpio_shift, tmp;
  2865. if (gpio > 11)
  2866. addr = AR_GPIO_OUTPUT_MUX3;
  2867. else if (gpio > 5)
  2868. addr = AR_GPIO_OUTPUT_MUX2;
  2869. else
  2870. addr = AR_GPIO_OUTPUT_MUX1;
  2871. gpio_shift = (gpio % 6) * 5;
  2872. if (AR_SREV_9280_20_OR_LATER(ah)
  2873. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2874. REG_RMW(ah, addr, (type << gpio_shift),
  2875. (0x1f << gpio_shift));
  2876. } else {
  2877. tmp = REG_READ(ah, addr);
  2878. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2879. tmp &= ~(0x1f << gpio_shift);
  2880. tmp |= (type << gpio_shift);
  2881. REG_WRITE(ah, addr, tmp);
  2882. }
  2883. }
  2884. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2885. {
  2886. u32 gpio_shift;
  2887. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2888. gpio_shift = gpio << 1;
  2889. REG_RMW(ah,
  2890. AR_GPIO_OE_OUT,
  2891. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2892. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2893. }
  2894. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2895. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2896. {
  2897. #define MS_REG_READ(x, y) \
  2898. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2899. if (gpio >= ah->caps.num_gpio_pins)
  2900. return 0xffffffff;
  2901. if (AR_SREV_9271(ah))
  2902. return MS_REG_READ(AR9271, gpio) != 0;
  2903. else if (AR_SREV_9287_10_OR_LATER(ah))
  2904. return MS_REG_READ(AR9287, gpio) != 0;
  2905. else if (AR_SREV_9285_10_OR_LATER(ah))
  2906. return MS_REG_READ(AR9285, gpio) != 0;
  2907. else if (AR_SREV_9280_10_OR_LATER(ah))
  2908. return MS_REG_READ(AR928X, gpio) != 0;
  2909. else
  2910. return MS_REG_READ(AR, gpio) != 0;
  2911. }
  2912. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2913. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2914. u32 ah_signal_type)
  2915. {
  2916. u32 gpio_shift;
  2917. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2918. gpio_shift = 2 * gpio;
  2919. REG_RMW(ah,
  2920. AR_GPIO_OE_OUT,
  2921. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2922. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2923. }
  2924. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2925. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2926. {
  2927. if (AR_SREV_9271(ah))
  2928. val = ~val;
  2929. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2930. AR_GPIO_BIT(gpio));
  2931. }
  2932. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2933. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  2934. {
  2935. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  2936. }
  2937. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  2938. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2939. {
  2940. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2941. }
  2942. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2943. /*********************/
  2944. /* General Operation */
  2945. /*********************/
  2946. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2947. {
  2948. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2949. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2950. if (phybits & AR_PHY_ERR_RADAR)
  2951. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2952. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2953. bits |= ATH9K_RX_FILTER_PHYERR;
  2954. return bits;
  2955. }
  2956. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2957. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2958. {
  2959. u32 phybits;
  2960. REG_WRITE(ah, AR_RX_FILTER, bits);
  2961. phybits = 0;
  2962. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2963. phybits |= AR_PHY_ERR_RADAR;
  2964. if (bits & ATH9K_RX_FILTER_PHYERR)
  2965. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2966. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2967. if (phybits)
  2968. REG_WRITE(ah, AR_RXCFG,
  2969. REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
  2970. else
  2971. REG_WRITE(ah, AR_RXCFG,
  2972. REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
  2973. }
  2974. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2975. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2976. {
  2977. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2978. return false;
  2979. ath9k_hw_init_pll(ah, NULL);
  2980. return true;
  2981. }
  2982. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2983. bool ath9k_hw_disable(struct ath_hw *ah)
  2984. {
  2985. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2986. return false;
  2987. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2988. return false;
  2989. ath9k_hw_init_pll(ah, NULL);
  2990. return true;
  2991. }
  2992. EXPORT_SYMBOL(ath9k_hw_disable);
  2993. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
  2994. {
  2995. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  2996. struct ath9k_channel *chan = ah->curchan;
  2997. struct ieee80211_channel *channel = chan->chan;
  2998. regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
  2999. ah->eep_ops->set_txpower(ah, chan,
  3000. ath9k_regd_get_ctl(regulatory, chan),
  3001. channel->max_antenna_gain * 2,
  3002. channel->max_power * 2,
  3003. min((u32) MAX_RATE_POWER,
  3004. (u32) regulatory->power_limit));
  3005. }
  3006. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  3007. void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
  3008. {
  3009. memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
  3010. }
  3011. EXPORT_SYMBOL(ath9k_hw_setmac);
  3012. void ath9k_hw_setopmode(struct ath_hw *ah)
  3013. {
  3014. ath9k_hw_set_operating_mode(ah, ah->opmode);
  3015. }
  3016. EXPORT_SYMBOL(ath9k_hw_setopmode);
  3017. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  3018. {
  3019. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  3020. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  3021. }
  3022. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  3023. void ath9k_hw_write_associd(struct ath_hw *ah)
  3024. {
  3025. struct ath_common *common = ath9k_hw_common(ah);
  3026. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  3027. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  3028. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  3029. }
  3030. EXPORT_SYMBOL(ath9k_hw_write_associd);
  3031. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  3032. {
  3033. u64 tsf;
  3034. tsf = REG_READ(ah, AR_TSF_U32);
  3035. tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
  3036. return tsf;
  3037. }
  3038. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  3039. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  3040. {
  3041. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  3042. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  3043. }
  3044. EXPORT_SYMBOL(ath9k_hw_settsf64);
  3045. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  3046. {
  3047. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  3048. AH_TSF_WRITE_TIMEOUT))
  3049. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  3050. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  3051. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  3052. }
  3053. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  3054. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  3055. {
  3056. if (setting)
  3057. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  3058. else
  3059. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  3060. }
  3061. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  3062. /*
  3063. * Extend 15-bit time stamp from rx descriptor to
  3064. * a full 64-bit TSF using the current h/w TSF.
  3065. */
  3066. u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
  3067. {
  3068. u64 tsf;
  3069. tsf = ath9k_hw_gettsf64(ah);
  3070. if ((tsf & 0x7fff) < rstamp)
  3071. tsf -= 0x8000;
  3072. return (tsf & ~0x7fff) | rstamp;
  3073. }
  3074. EXPORT_SYMBOL(ath9k_hw_extend_tsf);
  3075. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  3076. {
  3077. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  3078. u32 macmode;
  3079. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  3080. macmode = AR_2040_JOINED_RX_CLEAR;
  3081. else
  3082. macmode = 0;
  3083. REG_WRITE(ah, AR_2040_MODE, macmode);
  3084. }
  3085. /* HW Generic timers configuration */
  3086. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  3087. {
  3088. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  3089. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  3090. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  3091. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  3092. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  3093. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  3094. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  3095. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  3096. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  3097. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  3098. AR_NDP2_TIMER_MODE, 0x0002},
  3099. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  3100. AR_NDP2_TIMER_MODE, 0x0004},
  3101. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  3102. AR_NDP2_TIMER_MODE, 0x0008},
  3103. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  3104. AR_NDP2_TIMER_MODE, 0x0010},
  3105. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  3106. AR_NDP2_TIMER_MODE, 0x0020},
  3107. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  3108. AR_NDP2_TIMER_MODE, 0x0040},
  3109. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  3110. AR_NDP2_TIMER_MODE, 0x0080}
  3111. };
  3112. /* HW generic timer primitives */
  3113. /* compute and clear index of rightmost 1 */
  3114. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  3115. {
  3116. u32 b;
  3117. b = *mask;
  3118. b &= (0-b);
  3119. *mask &= ~b;
  3120. b *= debruijn32;
  3121. b >>= 27;
  3122. return timer_table->gen_timer_index[b];
  3123. }
  3124. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  3125. {
  3126. return REG_READ(ah, AR_TSF_L32);
  3127. }
  3128. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  3129. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  3130. void (*trigger)(void *),
  3131. void (*overflow)(void *),
  3132. void *arg,
  3133. u8 timer_index)
  3134. {
  3135. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  3136. struct ath_gen_timer *timer;
  3137. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  3138. if (timer == NULL) {
  3139. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  3140. "Failed to allocate memory"
  3141. "for hw timer[%d]\n", timer_index);
  3142. return NULL;
  3143. }
  3144. /* allocate a hardware generic timer slot */
  3145. timer_table->timers[timer_index] = timer;
  3146. timer->index = timer_index;
  3147. timer->trigger = trigger;
  3148. timer->overflow = overflow;
  3149. timer->arg = arg;
  3150. return timer;
  3151. }
  3152. EXPORT_SYMBOL(ath_gen_timer_alloc);
  3153. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  3154. struct ath_gen_timer *timer,
  3155. u32 timer_next,
  3156. u32 timer_period)
  3157. {
  3158. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  3159. u32 tsf;
  3160. BUG_ON(!timer_period);
  3161. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  3162. tsf = ath9k_hw_gettsf32(ah);
  3163. ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
  3164. "curent tsf %x period %x"
  3165. "timer_next %x\n", tsf, timer_period, timer_next);
  3166. /*
  3167. * Pull timer_next forward if the current TSF already passed it
  3168. * because of software latency
  3169. */
  3170. if (timer_next < tsf)
  3171. timer_next = tsf + timer_period;
  3172. /*
  3173. * Program generic timer registers
  3174. */
  3175. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  3176. timer_next);
  3177. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  3178. timer_period);
  3179. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  3180. gen_tmr_configuration[timer->index].mode_mask);
  3181. /* Enable both trigger and thresh interrupt masks */
  3182. REG_SET_BIT(ah, AR_IMR_S5,
  3183. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  3184. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  3185. }
  3186. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  3187. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  3188. {
  3189. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  3190. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  3191. (timer->index >= ATH_MAX_GEN_TIMER)) {
  3192. return;
  3193. }
  3194. /* Clear generic timer enable bits. */
  3195. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  3196. gen_tmr_configuration[timer->index].mode_mask);
  3197. /* Disable both trigger and thresh interrupt masks */
  3198. REG_CLR_BIT(ah, AR_IMR_S5,
  3199. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  3200. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  3201. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  3202. }
  3203. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  3204. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  3205. {
  3206. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  3207. /* free the hardware generic timer slot */
  3208. timer_table->timers[timer->index] = NULL;
  3209. kfree(timer);
  3210. }
  3211. EXPORT_SYMBOL(ath_gen_timer_free);
  3212. /*
  3213. * Generic Timer Interrupts handling
  3214. */
  3215. void ath_gen_timer_isr(struct ath_hw *ah)
  3216. {
  3217. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  3218. struct ath_gen_timer *timer;
  3219. struct ath_common *common = ath9k_hw_common(ah);
  3220. u32 trigger_mask, thresh_mask, index;
  3221. /* get hardware generic timer interrupt status */
  3222. trigger_mask = ah->intr_gen_timer_trigger;
  3223. thresh_mask = ah->intr_gen_timer_thresh;
  3224. trigger_mask &= timer_table->timer_mask.val;
  3225. thresh_mask &= timer_table->timer_mask.val;
  3226. trigger_mask &= ~thresh_mask;
  3227. while (thresh_mask) {
  3228. index = rightmost_index(timer_table, &thresh_mask);
  3229. timer = timer_table->timers[index];
  3230. BUG_ON(!timer);
  3231. ath_print(common, ATH_DBG_HWTIMER,
  3232. "TSF overflow for Gen timer %d\n", index);
  3233. timer->overflow(timer->arg);
  3234. }
  3235. while (trigger_mask) {
  3236. index = rightmost_index(timer_table, &trigger_mask);
  3237. timer = timer_table->timers[index];
  3238. BUG_ON(!timer);
  3239. ath_print(common, ATH_DBG_HWTIMER,
  3240. "Gen timer[%d] trigger\n", index);
  3241. timer->trigger(timer->arg);
  3242. }
  3243. }
  3244. EXPORT_SYMBOL(ath_gen_timer_isr);
  3245. /********/
  3246. /* HTC */
  3247. /********/
  3248. void ath9k_hw_htc_resetinit(struct ath_hw *ah)
  3249. {
  3250. ah->htc_reset_init = true;
  3251. }
  3252. EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
  3253. static struct {
  3254. u32 version;
  3255. const char * name;
  3256. } ath_mac_bb_names[] = {
  3257. /* Devices with external radios */
  3258. { AR_SREV_VERSION_5416_PCI, "5416" },
  3259. { AR_SREV_VERSION_5416_PCIE, "5418" },
  3260. { AR_SREV_VERSION_9100, "9100" },
  3261. { AR_SREV_VERSION_9160, "9160" },
  3262. /* Single-chip solutions */
  3263. { AR_SREV_VERSION_9280, "9280" },
  3264. { AR_SREV_VERSION_9285, "9285" },
  3265. { AR_SREV_VERSION_9287, "9287" },
  3266. { AR_SREV_VERSION_9271, "9271" },
  3267. };
  3268. /* For devices with external radios */
  3269. static struct {
  3270. u16 version;
  3271. const char * name;
  3272. } ath_rf_names[] = {
  3273. { 0, "5133" },
  3274. { AR_RAD5133_SREV_MAJOR, "5133" },
  3275. { AR_RAD5122_SREV_MAJOR, "5122" },
  3276. { AR_RAD2133_SREV_MAJOR, "2133" },
  3277. { AR_RAD2122_SREV_MAJOR, "2122" }
  3278. };
  3279. /*
  3280. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  3281. */
  3282. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  3283. {
  3284. int i;
  3285. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  3286. if (ath_mac_bb_names[i].version == mac_bb_version) {
  3287. return ath_mac_bb_names[i].name;
  3288. }
  3289. }
  3290. return "????";
  3291. }
  3292. /*
  3293. * Return the RF name. "????" is returned if the RF is unknown.
  3294. * Used for devices with external radios.
  3295. */
  3296. static const char *ath9k_hw_rf_name(u16 rf_version)
  3297. {
  3298. int i;
  3299. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  3300. if (ath_rf_names[i].version == rf_version) {
  3301. return ath_rf_names[i].name;
  3302. }
  3303. }
  3304. return "????";
  3305. }
  3306. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  3307. {
  3308. int used;
  3309. /* chipsets >= AR9280 are single-chip */
  3310. if (AR_SREV_9280_10_OR_LATER(ah)) {
  3311. used = snprintf(hw_name, len,
  3312. "Atheros AR%s Rev:%x",
  3313. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  3314. ah->hw_version.macRev);
  3315. }
  3316. else {
  3317. used = snprintf(hw_name, len,
  3318. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  3319. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  3320. ah->hw_version.macRev,
  3321. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  3322. AR_RADIO_SREV_MAJOR)),
  3323. ah->hw_version.phyRev);
  3324. }
  3325. hw_name[used] = '\0';
  3326. }
  3327. EXPORT_SYMBOL(ath9k_hw_name);