mm.h 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/bug.h>
  7. #include <linux/list.h>
  8. #include <linux/mmzone.h>
  9. #include <linux/rbtree.h>
  10. #include <linux/prio_tree.h>
  11. #include <linux/atomic.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/mm_types.h>
  14. #include <linux/range.h>
  15. #include <linux/pfn.h>
  16. #include <linux/bit_spinlock.h>
  17. #include <linux/shrinker.h>
  18. struct mempolicy;
  19. struct anon_vma;
  20. struct file_ra_state;
  21. struct user_struct;
  22. struct writeback_control;
  23. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  24. extern unsigned long max_mapnr;
  25. #endif
  26. extern unsigned long num_physpages;
  27. extern unsigned long totalram_pages;
  28. extern void * high_memory;
  29. extern int page_cluster;
  30. #ifdef CONFIG_SYSCTL
  31. extern int sysctl_legacy_va_layout;
  32. #else
  33. #define sysctl_legacy_va_layout 0
  34. #endif
  35. #include <asm/page.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/processor.h>
  38. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  39. /* to align the pointer to the (next) page boundary */
  40. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  41. /*
  42. * Linux kernel virtual memory manager primitives.
  43. * The idea being to have a "virtual" mm in the same way
  44. * we have a virtual fs - giving a cleaner interface to the
  45. * mm details, and allowing different kinds of memory mappings
  46. * (from shared memory to executable loading to arbitrary
  47. * mmap() functions).
  48. */
  49. extern struct kmem_cache *vm_area_cachep;
  50. #ifndef CONFIG_MMU
  51. extern struct rb_root nommu_region_tree;
  52. extern struct rw_semaphore nommu_region_sem;
  53. extern unsigned int kobjsize(const void *objp);
  54. #endif
  55. /*
  56. * vm_flags in vm_area_struct, see mm_types.h.
  57. */
  58. #define VM_READ 0x00000001 /* currently active flags */
  59. #define VM_WRITE 0x00000002
  60. #define VM_EXEC 0x00000004
  61. #define VM_SHARED 0x00000008
  62. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  63. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  64. #define VM_MAYWRITE 0x00000020
  65. #define VM_MAYEXEC 0x00000040
  66. #define VM_MAYSHARE 0x00000080
  67. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  68. #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
  69. #define VM_GROWSUP 0x00000200
  70. #else
  71. #define VM_GROWSUP 0x00000000
  72. #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
  73. #endif
  74. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  75. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  76. #define VM_EXECUTABLE 0x00001000
  77. #define VM_LOCKED 0x00002000
  78. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  79. /* Used by sys_madvise() */
  80. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  81. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  82. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  83. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  84. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  85. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  86. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  87. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  88. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  89. #ifndef CONFIG_TRANSPARENT_HUGEPAGE
  90. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  91. #else
  92. #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
  93. #endif
  94. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  95. #define VM_NODUMP 0x04000000 /* Do not include in the core dump */
  96. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  97. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  98. #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
  99. #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
  100. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  101. /* Bits set in the VMA until the stack is in its final location */
  102. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  103. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  104. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  105. #endif
  106. #ifdef CONFIG_STACK_GROWSUP
  107. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  108. #else
  109. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  110. #endif
  111. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  112. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  113. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  114. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  115. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  116. /*
  117. * Special vmas that are non-mergable, non-mlock()able.
  118. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  119. */
  120. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
  121. /*
  122. * mapping from the currently active vm_flags protection bits (the
  123. * low four bits) to a page protection mask..
  124. */
  125. extern pgprot_t protection_map[16];
  126. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  127. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  128. #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
  129. #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
  130. #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
  131. #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
  132. /*
  133. * This interface is used by x86 PAT code to identify a pfn mapping that is
  134. * linear over entire vma. This is to optimize PAT code that deals with
  135. * marking the physical region with a particular prot. This is not for generic
  136. * mm use. Note also that this check will not work if the pfn mapping is
  137. * linear for a vma starting at physical address 0. In which case PAT code
  138. * falls back to slow path of reserving physical range page by page.
  139. */
  140. static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
  141. {
  142. return !!(vma->vm_flags & VM_PFN_AT_MMAP);
  143. }
  144. static inline int is_pfn_mapping(struct vm_area_struct *vma)
  145. {
  146. return !!(vma->vm_flags & VM_PFNMAP);
  147. }
  148. /*
  149. * vm_fault is filled by the the pagefault handler and passed to the vma's
  150. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  151. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  152. *
  153. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  154. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  155. * mapping support.
  156. */
  157. struct vm_fault {
  158. unsigned int flags; /* FAULT_FLAG_xxx flags */
  159. pgoff_t pgoff; /* Logical page offset based on vma */
  160. void __user *virtual_address; /* Faulting virtual address */
  161. struct page *page; /* ->fault handlers should return a
  162. * page here, unless VM_FAULT_NOPAGE
  163. * is set (which is also implied by
  164. * VM_FAULT_ERROR).
  165. */
  166. };
  167. /*
  168. * These are the virtual MM functions - opening of an area, closing and
  169. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  170. * to the functions called when a no-page or a wp-page exception occurs.
  171. */
  172. struct vm_operations_struct {
  173. void (*open)(struct vm_area_struct * area);
  174. void (*close)(struct vm_area_struct * area);
  175. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  176. /* notification that a previously read-only page is about to become
  177. * writable, if an error is returned it will cause a SIGBUS */
  178. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  179. /* called by access_process_vm when get_user_pages() fails, typically
  180. * for use by special VMAs that can switch between memory and hardware
  181. */
  182. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  183. void *buf, int len, int write);
  184. #ifdef CONFIG_NUMA
  185. /*
  186. * set_policy() op must add a reference to any non-NULL @new mempolicy
  187. * to hold the policy upon return. Caller should pass NULL @new to
  188. * remove a policy and fall back to surrounding context--i.e. do not
  189. * install a MPOL_DEFAULT policy, nor the task or system default
  190. * mempolicy.
  191. */
  192. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  193. /*
  194. * get_policy() op must add reference [mpol_get()] to any policy at
  195. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  196. * in mm/mempolicy.c will do this automatically.
  197. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  198. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  199. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  200. * must return NULL--i.e., do not "fallback" to task or system default
  201. * policy.
  202. */
  203. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  204. unsigned long addr);
  205. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  206. const nodemask_t *to, unsigned long flags);
  207. #endif
  208. };
  209. struct mmu_gather;
  210. struct inode;
  211. #define page_private(page) ((page)->private)
  212. #define set_page_private(page, v) ((page)->private = (v))
  213. /*
  214. * FIXME: take this include out, include page-flags.h in
  215. * files which need it (119 of them)
  216. */
  217. #include <linux/page-flags.h>
  218. #include <linux/huge_mm.h>
  219. /*
  220. * Methods to modify the page usage count.
  221. *
  222. * What counts for a page usage:
  223. * - cache mapping (page->mapping)
  224. * - private data (page->private)
  225. * - page mapped in a task's page tables, each mapping
  226. * is counted separately
  227. *
  228. * Also, many kernel routines increase the page count before a critical
  229. * routine so they can be sure the page doesn't go away from under them.
  230. */
  231. /*
  232. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  233. */
  234. static inline int put_page_testzero(struct page *page)
  235. {
  236. VM_BUG_ON(atomic_read(&page->_count) == 0);
  237. return atomic_dec_and_test(&page->_count);
  238. }
  239. /*
  240. * Try to grab a ref unless the page has a refcount of zero, return false if
  241. * that is the case.
  242. */
  243. static inline int get_page_unless_zero(struct page *page)
  244. {
  245. return atomic_inc_not_zero(&page->_count);
  246. }
  247. extern int page_is_ram(unsigned long pfn);
  248. /* Support for virtually mapped pages */
  249. struct page *vmalloc_to_page(const void *addr);
  250. unsigned long vmalloc_to_pfn(const void *addr);
  251. /*
  252. * Determine if an address is within the vmalloc range
  253. *
  254. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  255. * is no special casing required.
  256. */
  257. static inline int is_vmalloc_addr(const void *x)
  258. {
  259. #ifdef CONFIG_MMU
  260. unsigned long addr = (unsigned long)x;
  261. return addr >= VMALLOC_START && addr < VMALLOC_END;
  262. #else
  263. return 0;
  264. #endif
  265. }
  266. #ifdef CONFIG_MMU
  267. extern int is_vmalloc_or_module_addr(const void *x);
  268. #else
  269. static inline int is_vmalloc_or_module_addr(const void *x)
  270. {
  271. return 0;
  272. }
  273. #endif
  274. static inline void compound_lock(struct page *page)
  275. {
  276. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  277. VM_BUG_ON(PageSlab(page));
  278. bit_spin_lock(PG_compound_lock, &page->flags);
  279. #endif
  280. }
  281. static inline void compound_unlock(struct page *page)
  282. {
  283. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  284. VM_BUG_ON(PageSlab(page));
  285. bit_spin_unlock(PG_compound_lock, &page->flags);
  286. #endif
  287. }
  288. static inline unsigned long compound_lock_irqsave(struct page *page)
  289. {
  290. unsigned long uninitialized_var(flags);
  291. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  292. local_irq_save(flags);
  293. compound_lock(page);
  294. #endif
  295. return flags;
  296. }
  297. static inline void compound_unlock_irqrestore(struct page *page,
  298. unsigned long flags)
  299. {
  300. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  301. compound_unlock(page);
  302. local_irq_restore(flags);
  303. #endif
  304. }
  305. static inline struct page *compound_head(struct page *page)
  306. {
  307. if (unlikely(PageTail(page)))
  308. return page->first_page;
  309. return page;
  310. }
  311. /*
  312. * The atomic page->_mapcount, starts from -1: so that transitions
  313. * both from it and to it can be tracked, using atomic_inc_and_test
  314. * and atomic_add_negative(-1).
  315. */
  316. static inline void reset_page_mapcount(struct page *page)
  317. {
  318. atomic_set(&(page)->_mapcount, -1);
  319. }
  320. static inline int page_mapcount(struct page *page)
  321. {
  322. return atomic_read(&(page)->_mapcount) + 1;
  323. }
  324. static inline int page_count(struct page *page)
  325. {
  326. return atomic_read(&compound_head(page)->_count);
  327. }
  328. static inline void get_huge_page_tail(struct page *page)
  329. {
  330. /*
  331. * __split_huge_page_refcount() cannot run
  332. * from under us.
  333. */
  334. VM_BUG_ON(page_mapcount(page) < 0);
  335. VM_BUG_ON(atomic_read(&page->_count) != 0);
  336. atomic_inc(&page->_mapcount);
  337. }
  338. extern bool __get_page_tail(struct page *page);
  339. static inline void get_page(struct page *page)
  340. {
  341. if (unlikely(PageTail(page)))
  342. if (likely(__get_page_tail(page)))
  343. return;
  344. /*
  345. * Getting a normal page or the head of a compound page
  346. * requires to already have an elevated page->_count.
  347. */
  348. VM_BUG_ON(atomic_read(&page->_count) <= 0);
  349. atomic_inc(&page->_count);
  350. }
  351. static inline struct page *virt_to_head_page(const void *x)
  352. {
  353. struct page *page = virt_to_page(x);
  354. return compound_head(page);
  355. }
  356. /*
  357. * Setup the page count before being freed into the page allocator for
  358. * the first time (boot or memory hotplug)
  359. */
  360. static inline void init_page_count(struct page *page)
  361. {
  362. atomic_set(&page->_count, 1);
  363. }
  364. /*
  365. * PageBuddy() indicate that the page is free and in the buddy system
  366. * (see mm/page_alloc.c).
  367. *
  368. * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
  369. * -2 so that an underflow of the page_mapcount() won't be mistaken
  370. * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
  371. * efficiently by most CPU architectures.
  372. */
  373. #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
  374. static inline int PageBuddy(struct page *page)
  375. {
  376. return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
  377. }
  378. static inline void __SetPageBuddy(struct page *page)
  379. {
  380. VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
  381. atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
  382. }
  383. static inline void __ClearPageBuddy(struct page *page)
  384. {
  385. VM_BUG_ON(!PageBuddy(page));
  386. atomic_set(&page->_mapcount, -1);
  387. }
  388. void put_page(struct page *page);
  389. void put_pages_list(struct list_head *pages);
  390. void split_page(struct page *page, unsigned int order);
  391. int split_free_page(struct page *page);
  392. /*
  393. * Compound pages have a destructor function. Provide a
  394. * prototype for that function and accessor functions.
  395. * These are _only_ valid on the head of a PG_compound page.
  396. */
  397. typedef void compound_page_dtor(struct page *);
  398. static inline void set_compound_page_dtor(struct page *page,
  399. compound_page_dtor *dtor)
  400. {
  401. page[1].lru.next = (void *)dtor;
  402. }
  403. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  404. {
  405. return (compound_page_dtor *)page[1].lru.next;
  406. }
  407. static inline int compound_order(struct page *page)
  408. {
  409. if (!PageHead(page))
  410. return 0;
  411. return (unsigned long)page[1].lru.prev;
  412. }
  413. static inline int compound_trans_order(struct page *page)
  414. {
  415. int order;
  416. unsigned long flags;
  417. if (!PageHead(page))
  418. return 0;
  419. flags = compound_lock_irqsave(page);
  420. order = compound_order(page);
  421. compound_unlock_irqrestore(page, flags);
  422. return order;
  423. }
  424. static inline void set_compound_order(struct page *page, unsigned long order)
  425. {
  426. page[1].lru.prev = (void *)order;
  427. }
  428. #ifdef CONFIG_MMU
  429. /*
  430. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  431. * servicing faults for write access. In the normal case, do always want
  432. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  433. * that do not have writing enabled, when used by access_process_vm.
  434. */
  435. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  436. {
  437. if (likely(vma->vm_flags & VM_WRITE))
  438. pte = pte_mkwrite(pte);
  439. return pte;
  440. }
  441. #endif
  442. /*
  443. * Multiple processes may "see" the same page. E.g. for untouched
  444. * mappings of /dev/null, all processes see the same page full of
  445. * zeroes, and text pages of executables and shared libraries have
  446. * only one copy in memory, at most, normally.
  447. *
  448. * For the non-reserved pages, page_count(page) denotes a reference count.
  449. * page_count() == 0 means the page is free. page->lru is then used for
  450. * freelist management in the buddy allocator.
  451. * page_count() > 0 means the page has been allocated.
  452. *
  453. * Pages are allocated by the slab allocator in order to provide memory
  454. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  455. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  456. * unless a particular usage is carefully commented. (the responsibility of
  457. * freeing the kmalloc memory is the caller's, of course).
  458. *
  459. * A page may be used by anyone else who does a __get_free_page().
  460. * In this case, page_count still tracks the references, and should only
  461. * be used through the normal accessor functions. The top bits of page->flags
  462. * and page->virtual store page management information, but all other fields
  463. * are unused and could be used privately, carefully. The management of this
  464. * page is the responsibility of the one who allocated it, and those who have
  465. * subsequently been given references to it.
  466. *
  467. * The other pages (we may call them "pagecache pages") are completely
  468. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  469. * The following discussion applies only to them.
  470. *
  471. * A pagecache page contains an opaque `private' member, which belongs to the
  472. * page's address_space. Usually, this is the address of a circular list of
  473. * the page's disk buffers. PG_private must be set to tell the VM to call
  474. * into the filesystem to release these pages.
  475. *
  476. * A page may belong to an inode's memory mapping. In this case, page->mapping
  477. * is the pointer to the inode, and page->index is the file offset of the page,
  478. * in units of PAGE_CACHE_SIZE.
  479. *
  480. * If pagecache pages are not associated with an inode, they are said to be
  481. * anonymous pages. These may become associated with the swapcache, and in that
  482. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  483. *
  484. * In either case (swapcache or inode backed), the pagecache itself holds one
  485. * reference to the page. Setting PG_private should also increment the
  486. * refcount. The each user mapping also has a reference to the page.
  487. *
  488. * The pagecache pages are stored in a per-mapping radix tree, which is
  489. * rooted at mapping->page_tree, and indexed by offset.
  490. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  491. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  492. *
  493. * All pagecache pages may be subject to I/O:
  494. * - inode pages may need to be read from disk,
  495. * - inode pages which have been modified and are MAP_SHARED may need
  496. * to be written back to the inode on disk,
  497. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  498. * modified may need to be swapped out to swap space and (later) to be read
  499. * back into memory.
  500. */
  501. /*
  502. * The zone field is never updated after free_area_init_core()
  503. * sets it, so none of the operations on it need to be atomic.
  504. */
  505. /*
  506. * page->flags layout:
  507. *
  508. * There are three possibilities for how page->flags get
  509. * laid out. The first is for the normal case, without
  510. * sparsemem. The second is for sparsemem when there is
  511. * plenty of space for node and section. The last is when
  512. * we have run out of space and have to fall back to an
  513. * alternate (slower) way of determining the node.
  514. *
  515. * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
  516. * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
  517. * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
  518. */
  519. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  520. #define SECTIONS_WIDTH SECTIONS_SHIFT
  521. #else
  522. #define SECTIONS_WIDTH 0
  523. #endif
  524. #define ZONES_WIDTH ZONES_SHIFT
  525. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
  526. #define NODES_WIDTH NODES_SHIFT
  527. #else
  528. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  529. #error "Vmemmap: No space for nodes field in page flags"
  530. #endif
  531. #define NODES_WIDTH 0
  532. #endif
  533. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  534. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  535. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  536. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  537. /*
  538. * We are going to use the flags for the page to node mapping if its in
  539. * there. This includes the case where there is no node, so it is implicit.
  540. */
  541. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  542. #define NODE_NOT_IN_PAGE_FLAGS
  543. #endif
  544. /*
  545. * Define the bit shifts to access each section. For non-existent
  546. * sections we define the shift as 0; that plus a 0 mask ensures
  547. * the compiler will optimise away reference to them.
  548. */
  549. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  550. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  551. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  552. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  553. #ifdef NODE_NOT_IN_PAGE_FLAGS
  554. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  555. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  556. SECTIONS_PGOFF : ZONES_PGOFF)
  557. #else
  558. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  559. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  560. NODES_PGOFF : ZONES_PGOFF)
  561. #endif
  562. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  563. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  564. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  565. #endif
  566. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  567. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  568. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  569. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  570. static inline enum zone_type page_zonenum(const struct page *page)
  571. {
  572. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  573. }
  574. /*
  575. * The identification function is only used by the buddy allocator for
  576. * determining if two pages could be buddies. We are not really
  577. * identifying a zone since we could be using a the section number
  578. * id if we have not node id available in page flags.
  579. * We guarantee only that it will return the same value for two
  580. * combinable pages in a zone.
  581. */
  582. static inline int page_zone_id(struct page *page)
  583. {
  584. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  585. }
  586. static inline int zone_to_nid(struct zone *zone)
  587. {
  588. #ifdef CONFIG_NUMA
  589. return zone->node;
  590. #else
  591. return 0;
  592. #endif
  593. }
  594. #ifdef NODE_NOT_IN_PAGE_FLAGS
  595. extern int page_to_nid(const struct page *page);
  596. #else
  597. static inline int page_to_nid(const struct page *page)
  598. {
  599. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  600. }
  601. #endif
  602. static inline struct zone *page_zone(const struct page *page)
  603. {
  604. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  605. }
  606. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  607. static inline void set_page_section(struct page *page, unsigned long section)
  608. {
  609. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  610. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  611. }
  612. static inline unsigned long page_to_section(const struct page *page)
  613. {
  614. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  615. }
  616. #endif
  617. static inline void set_page_zone(struct page *page, enum zone_type zone)
  618. {
  619. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  620. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  621. }
  622. static inline void set_page_node(struct page *page, unsigned long node)
  623. {
  624. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  625. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  626. }
  627. static inline void set_page_links(struct page *page, enum zone_type zone,
  628. unsigned long node, unsigned long pfn)
  629. {
  630. set_page_zone(page, zone);
  631. set_page_node(page, node);
  632. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  633. set_page_section(page, pfn_to_section_nr(pfn));
  634. #endif
  635. }
  636. /*
  637. * Some inline functions in vmstat.h depend on page_zone()
  638. */
  639. #include <linux/vmstat.h>
  640. static __always_inline void *lowmem_page_address(const struct page *page)
  641. {
  642. return __va(PFN_PHYS(page_to_pfn(page)));
  643. }
  644. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  645. #define HASHED_PAGE_VIRTUAL
  646. #endif
  647. #if defined(WANT_PAGE_VIRTUAL)
  648. #define page_address(page) ((page)->virtual)
  649. #define set_page_address(page, address) \
  650. do { \
  651. (page)->virtual = (address); \
  652. } while(0)
  653. #define page_address_init() do { } while(0)
  654. #endif
  655. #if defined(HASHED_PAGE_VIRTUAL)
  656. void *page_address(const struct page *page);
  657. void set_page_address(struct page *page, void *virtual);
  658. void page_address_init(void);
  659. #endif
  660. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  661. #define page_address(page) lowmem_page_address(page)
  662. #define set_page_address(page, address) do { } while(0)
  663. #define page_address_init() do { } while(0)
  664. #endif
  665. /*
  666. * On an anonymous page mapped into a user virtual memory area,
  667. * page->mapping points to its anon_vma, not to a struct address_space;
  668. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  669. *
  670. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  671. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  672. * and then page->mapping points, not to an anon_vma, but to a private
  673. * structure which KSM associates with that merged page. See ksm.h.
  674. *
  675. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  676. *
  677. * Please note that, confusingly, "page_mapping" refers to the inode
  678. * address_space which maps the page from disk; whereas "page_mapped"
  679. * refers to user virtual address space into which the page is mapped.
  680. */
  681. #define PAGE_MAPPING_ANON 1
  682. #define PAGE_MAPPING_KSM 2
  683. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  684. extern struct address_space swapper_space;
  685. static inline struct address_space *page_mapping(struct page *page)
  686. {
  687. struct address_space *mapping = page->mapping;
  688. VM_BUG_ON(PageSlab(page));
  689. if (unlikely(PageSwapCache(page)))
  690. mapping = &swapper_space;
  691. else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
  692. mapping = NULL;
  693. return mapping;
  694. }
  695. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  696. static inline void *page_rmapping(struct page *page)
  697. {
  698. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  699. }
  700. extern struct address_space *__page_file_mapping(struct page *);
  701. static inline
  702. struct address_space *page_file_mapping(struct page *page)
  703. {
  704. if (unlikely(PageSwapCache(page)))
  705. return __page_file_mapping(page);
  706. return page->mapping;
  707. }
  708. static inline int PageAnon(struct page *page)
  709. {
  710. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  711. }
  712. /*
  713. * Return the pagecache index of the passed page. Regular pagecache pages
  714. * use ->index whereas swapcache pages use ->private
  715. */
  716. static inline pgoff_t page_index(struct page *page)
  717. {
  718. if (unlikely(PageSwapCache(page)))
  719. return page_private(page);
  720. return page->index;
  721. }
  722. extern pgoff_t __page_file_index(struct page *page);
  723. /*
  724. * Return the file index of the page. Regular pagecache pages use ->index
  725. * whereas swapcache pages use swp_offset(->private)
  726. */
  727. static inline pgoff_t page_file_index(struct page *page)
  728. {
  729. if (unlikely(PageSwapCache(page)))
  730. return __page_file_index(page);
  731. return page->index;
  732. }
  733. /*
  734. * Return true if this page is mapped into pagetables.
  735. */
  736. static inline int page_mapped(struct page *page)
  737. {
  738. return atomic_read(&(page)->_mapcount) >= 0;
  739. }
  740. /*
  741. * Different kinds of faults, as returned by handle_mm_fault().
  742. * Used to decide whether a process gets delivered SIGBUS or
  743. * just gets major/minor fault counters bumped up.
  744. */
  745. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  746. #define VM_FAULT_OOM 0x0001
  747. #define VM_FAULT_SIGBUS 0x0002
  748. #define VM_FAULT_MAJOR 0x0004
  749. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  750. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  751. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  752. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  753. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  754. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  755. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  756. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
  757. VM_FAULT_HWPOISON_LARGE)
  758. /* Encode hstate index for a hwpoisoned large page */
  759. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  760. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  761. /*
  762. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  763. */
  764. extern void pagefault_out_of_memory(void);
  765. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  766. /*
  767. * Flags passed to show_mem() and show_free_areas() to suppress output in
  768. * various contexts.
  769. */
  770. #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
  771. extern void show_free_areas(unsigned int flags);
  772. extern bool skip_free_areas_node(unsigned int flags, int nid);
  773. int shmem_zero_setup(struct vm_area_struct *);
  774. extern int can_do_mlock(void);
  775. extern int user_shm_lock(size_t, struct user_struct *);
  776. extern void user_shm_unlock(size_t, struct user_struct *);
  777. /*
  778. * Parameter block passed down to zap_pte_range in exceptional cases.
  779. */
  780. struct zap_details {
  781. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  782. struct address_space *check_mapping; /* Check page->mapping if set */
  783. pgoff_t first_index; /* Lowest page->index to unmap */
  784. pgoff_t last_index; /* Highest page->index to unmap */
  785. };
  786. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  787. pte_t pte);
  788. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  789. unsigned long size);
  790. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  791. unsigned long size, struct zap_details *);
  792. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  793. unsigned long start, unsigned long end);
  794. /**
  795. * mm_walk - callbacks for walk_page_range
  796. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  797. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  798. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  799. * this handler is required to be able to handle
  800. * pmd_trans_huge() pmds. They may simply choose to
  801. * split_huge_page() instead of handling it explicitly.
  802. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  803. * @pte_hole: if set, called for each hole at all levels
  804. * @hugetlb_entry: if set, called for each hugetlb entry
  805. * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
  806. * is used.
  807. *
  808. * (see walk_page_range for more details)
  809. */
  810. struct mm_walk {
  811. int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
  812. int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
  813. int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
  814. int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
  815. int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
  816. int (*hugetlb_entry)(pte_t *, unsigned long,
  817. unsigned long, unsigned long, struct mm_walk *);
  818. struct mm_struct *mm;
  819. void *private;
  820. };
  821. int walk_page_range(unsigned long addr, unsigned long end,
  822. struct mm_walk *walk);
  823. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  824. unsigned long end, unsigned long floor, unsigned long ceiling);
  825. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  826. struct vm_area_struct *vma);
  827. void unmap_mapping_range(struct address_space *mapping,
  828. loff_t const holebegin, loff_t const holelen, int even_cows);
  829. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  830. unsigned long *pfn);
  831. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  832. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  833. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  834. void *buf, int len, int write);
  835. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  836. loff_t const holebegin, loff_t const holelen)
  837. {
  838. unmap_mapping_range(mapping, holebegin, holelen, 0);
  839. }
  840. extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
  841. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  842. extern int vmtruncate(struct inode *inode, loff_t offset);
  843. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  844. int truncate_inode_page(struct address_space *mapping, struct page *page);
  845. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  846. int invalidate_inode_page(struct page *page);
  847. #ifdef CONFIG_MMU
  848. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  849. unsigned long address, unsigned int flags);
  850. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  851. unsigned long address, unsigned int fault_flags);
  852. #else
  853. static inline int handle_mm_fault(struct mm_struct *mm,
  854. struct vm_area_struct *vma, unsigned long address,
  855. unsigned int flags)
  856. {
  857. /* should never happen if there's no MMU */
  858. BUG();
  859. return VM_FAULT_SIGBUS;
  860. }
  861. static inline int fixup_user_fault(struct task_struct *tsk,
  862. struct mm_struct *mm, unsigned long address,
  863. unsigned int fault_flags)
  864. {
  865. /* should never happen if there's no MMU */
  866. BUG();
  867. return -EFAULT;
  868. }
  869. #endif
  870. extern int make_pages_present(unsigned long addr, unsigned long end);
  871. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  872. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  873. void *buf, int len, int write);
  874. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  875. unsigned long start, int len, unsigned int foll_flags,
  876. struct page **pages, struct vm_area_struct **vmas,
  877. int *nonblocking);
  878. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  879. unsigned long start, int nr_pages, int write, int force,
  880. struct page **pages, struct vm_area_struct **vmas);
  881. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  882. struct page **pages);
  883. struct kvec;
  884. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  885. struct page **pages);
  886. int get_kernel_page(unsigned long start, int write, struct page **pages);
  887. struct page *get_dump_page(unsigned long addr);
  888. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  889. extern void do_invalidatepage(struct page *page, unsigned long offset);
  890. int __set_page_dirty_nobuffers(struct page *page);
  891. int __set_page_dirty_no_writeback(struct page *page);
  892. int redirty_page_for_writepage(struct writeback_control *wbc,
  893. struct page *page);
  894. void account_page_dirtied(struct page *page, struct address_space *mapping);
  895. void account_page_writeback(struct page *page);
  896. int set_page_dirty(struct page *page);
  897. int set_page_dirty_lock(struct page *page);
  898. int clear_page_dirty_for_io(struct page *page);
  899. /* Is the vma a continuation of the stack vma above it? */
  900. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  901. {
  902. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  903. }
  904. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  905. unsigned long addr)
  906. {
  907. return (vma->vm_flags & VM_GROWSDOWN) &&
  908. (vma->vm_start == addr) &&
  909. !vma_growsdown(vma->vm_prev, addr);
  910. }
  911. /* Is the vma a continuation of the stack vma below it? */
  912. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  913. {
  914. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  915. }
  916. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  917. unsigned long addr)
  918. {
  919. return (vma->vm_flags & VM_GROWSUP) &&
  920. (vma->vm_end == addr) &&
  921. !vma_growsup(vma->vm_next, addr);
  922. }
  923. extern pid_t
  924. vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
  925. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  926. unsigned long old_addr, struct vm_area_struct *new_vma,
  927. unsigned long new_addr, unsigned long len);
  928. extern unsigned long do_mremap(unsigned long addr,
  929. unsigned long old_len, unsigned long new_len,
  930. unsigned long flags, unsigned long new_addr);
  931. extern int mprotect_fixup(struct vm_area_struct *vma,
  932. struct vm_area_struct **pprev, unsigned long start,
  933. unsigned long end, unsigned long newflags);
  934. /*
  935. * doesn't attempt to fault and will return short.
  936. */
  937. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  938. struct page **pages);
  939. /*
  940. * per-process(per-mm_struct) statistics.
  941. */
  942. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  943. {
  944. long val = atomic_long_read(&mm->rss_stat.count[member]);
  945. #ifdef SPLIT_RSS_COUNTING
  946. /*
  947. * counter is updated in asynchronous manner and may go to minus.
  948. * But it's never be expected number for users.
  949. */
  950. if (val < 0)
  951. val = 0;
  952. #endif
  953. return (unsigned long)val;
  954. }
  955. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  956. {
  957. atomic_long_add(value, &mm->rss_stat.count[member]);
  958. }
  959. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  960. {
  961. atomic_long_inc(&mm->rss_stat.count[member]);
  962. }
  963. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  964. {
  965. atomic_long_dec(&mm->rss_stat.count[member]);
  966. }
  967. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  968. {
  969. return get_mm_counter(mm, MM_FILEPAGES) +
  970. get_mm_counter(mm, MM_ANONPAGES);
  971. }
  972. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  973. {
  974. return max(mm->hiwater_rss, get_mm_rss(mm));
  975. }
  976. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  977. {
  978. return max(mm->hiwater_vm, mm->total_vm);
  979. }
  980. static inline void update_hiwater_rss(struct mm_struct *mm)
  981. {
  982. unsigned long _rss = get_mm_rss(mm);
  983. if ((mm)->hiwater_rss < _rss)
  984. (mm)->hiwater_rss = _rss;
  985. }
  986. static inline void update_hiwater_vm(struct mm_struct *mm)
  987. {
  988. if (mm->hiwater_vm < mm->total_vm)
  989. mm->hiwater_vm = mm->total_vm;
  990. }
  991. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  992. struct mm_struct *mm)
  993. {
  994. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  995. if (*maxrss < hiwater_rss)
  996. *maxrss = hiwater_rss;
  997. }
  998. #if defined(SPLIT_RSS_COUNTING)
  999. void sync_mm_rss(struct mm_struct *mm);
  1000. #else
  1001. static inline void sync_mm_rss(struct mm_struct *mm)
  1002. {
  1003. }
  1004. #endif
  1005. int vma_wants_writenotify(struct vm_area_struct *vma);
  1006. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1007. spinlock_t **ptl);
  1008. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1009. spinlock_t **ptl)
  1010. {
  1011. pte_t *ptep;
  1012. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1013. return ptep;
  1014. }
  1015. #ifdef __PAGETABLE_PUD_FOLDED
  1016. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1017. unsigned long address)
  1018. {
  1019. return 0;
  1020. }
  1021. #else
  1022. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1023. #endif
  1024. #ifdef __PAGETABLE_PMD_FOLDED
  1025. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1026. unsigned long address)
  1027. {
  1028. return 0;
  1029. }
  1030. #else
  1031. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1032. #endif
  1033. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1034. pmd_t *pmd, unsigned long address);
  1035. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1036. /*
  1037. * The following ifdef needed to get the 4level-fixup.h header to work.
  1038. * Remove it when 4level-fixup.h has been removed.
  1039. */
  1040. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1041. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1042. {
  1043. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1044. NULL: pud_offset(pgd, address);
  1045. }
  1046. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1047. {
  1048. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1049. NULL: pmd_offset(pud, address);
  1050. }
  1051. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1052. #if USE_SPLIT_PTLOCKS
  1053. /*
  1054. * We tuck a spinlock to guard each pagetable page into its struct page,
  1055. * at page->private, with BUILD_BUG_ON to make sure that this will not
  1056. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  1057. * When freeing, reset page->mapping so free_pages_check won't complain.
  1058. */
  1059. #define __pte_lockptr(page) &((page)->ptl)
  1060. #define pte_lock_init(_page) do { \
  1061. spin_lock_init(__pte_lockptr(_page)); \
  1062. } while (0)
  1063. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  1064. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  1065. #else /* !USE_SPLIT_PTLOCKS */
  1066. /*
  1067. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1068. */
  1069. #define pte_lock_init(page) do {} while (0)
  1070. #define pte_lock_deinit(page) do {} while (0)
  1071. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  1072. #endif /* USE_SPLIT_PTLOCKS */
  1073. static inline void pgtable_page_ctor(struct page *page)
  1074. {
  1075. pte_lock_init(page);
  1076. inc_zone_page_state(page, NR_PAGETABLE);
  1077. }
  1078. static inline void pgtable_page_dtor(struct page *page)
  1079. {
  1080. pte_lock_deinit(page);
  1081. dec_zone_page_state(page, NR_PAGETABLE);
  1082. }
  1083. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1084. ({ \
  1085. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1086. pte_t *__pte = pte_offset_map(pmd, address); \
  1087. *(ptlp) = __ptl; \
  1088. spin_lock(__ptl); \
  1089. __pte; \
  1090. })
  1091. #define pte_unmap_unlock(pte, ptl) do { \
  1092. spin_unlock(ptl); \
  1093. pte_unmap(pte); \
  1094. } while (0)
  1095. #define pte_alloc_map(mm, vma, pmd, address) \
  1096. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1097. pmd, address))? \
  1098. NULL: pte_offset_map(pmd, address))
  1099. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1100. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1101. pmd, address))? \
  1102. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1103. #define pte_alloc_kernel(pmd, address) \
  1104. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1105. NULL: pte_offset_kernel(pmd, address))
  1106. extern void free_area_init(unsigned long * zones_size);
  1107. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1108. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1109. extern void free_initmem(void);
  1110. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1111. /*
  1112. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1113. * zones, allocate the backing mem_map and account for memory holes in a more
  1114. * architecture independent manner. This is a substitute for creating the
  1115. * zone_sizes[] and zholes_size[] arrays and passing them to
  1116. * free_area_init_node()
  1117. *
  1118. * An architecture is expected to register range of page frames backed by
  1119. * physical memory with memblock_add[_node]() before calling
  1120. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1121. * usage, an architecture is expected to do something like
  1122. *
  1123. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1124. * max_highmem_pfn};
  1125. * for_each_valid_physical_page_range()
  1126. * memblock_add_node(base, size, nid)
  1127. * free_area_init_nodes(max_zone_pfns);
  1128. *
  1129. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1130. * registered physical page range. Similarly
  1131. * sparse_memory_present_with_active_regions() calls memory_present() for
  1132. * each range when SPARSEMEM is enabled.
  1133. *
  1134. * See mm/page_alloc.c for more information on each function exposed by
  1135. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1136. */
  1137. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1138. unsigned long node_map_pfn_alignment(void);
  1139. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1140. unsigned long end_pfn);
  1141. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1142. unsigned long end_pfn);
  1143. extern void get_pfn_range_for_nid(unsigned int nid,
  1144. unsigned long *start_pfn, unsigned long *end_pfn);
  1145. extern unsigned long find_min_pfn_with_active_regions(void);
  1146. extern void free_bootmem_with_active_regions(int nid,
  1147. unsigned long max_low_pfn);
  1148. extern void sparse_memory_present_with_active_regions(int nid);
  1149. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1150. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1151. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1152. static inline int __early_pfn_to_nid(unsigned long pfn)
  1153. {
  1154. return 0;
  1155. }
  1156. #else
  1157. /* please see mm/page_alloc.c */
  1158. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1159. #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1160. /* there is a per-arch backend function. */
  1161. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1162. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1163. #endif
  1164. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1165. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1166. unsigned long, enum memmap_context);
  1167. extern void setup_per_zone_wmarks(void);
  1168. extern int __meminit init_per_zone_wmark_min(void);
  1169. extern void mem_init(void);
  1170. extern void __init mmap_init(void);
  1171. extern void show_mem(unsigned int flags);
  1172. extern void si_meminfo(struct sysinfo * val);
  1173. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1174. extern int after_bootmem;
  1175. extern __printf(3, 4)
  1176. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
  1177. extern void setup_per_cpu_pageset(void);
  1178. extern void zone_pcp_update(struct zone *zone);
  1179. extern void zone_pcp_reset(struct zone *zone);
  1180. /* nommu.c */
  1181. extern atomic_long_t mmap_pages_allocated;
  1182. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1183. /* prio_tree.c */
  1184. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  1185. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  1186. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  1187. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  1188. struct prio_tree_iter *iter);
  1189. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  1190. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  1191. (vma = vma_prio_tree_next(vma, iter)); )
  1192. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  1193. struct list_head *list)
  1194. {
  1195. vma->shared.vm_set.parent = NULL;
  1196. list_add_tail(&vma->shared.vm_set.list, list);
  1197. }
  1198. /* mmap.c */
  1199. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1200. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1201. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1202. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1203. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1204. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1205. struct mempolicy *);
  1206. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1207. extern int split_vma(struct mm_struct *,
  1208. struct vm_area_struct *, unsigned long addr, int new_below);
  1209. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1210. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1211. struct rb_node **, struct rb_node *);
  1212. extern void unlink_file_vma(struct vm_area_struct *);
  1213. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1214. unsigned long addr, unsigned long len, pgoff_t pgoff);
  1215. extern void exit_mmap(struct mm_struct *);
  1216. extern int mm_take_all_locks(struct mm_struct *mm);
  1217. extern void mm_drop_all_locks(struct mm_struct *mm);
  1218. /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
  1219. extern void added_exe_file_vma(struct mm_struct *mm);
  1220. extern void removed_exe_file_vma(struct mm_struct *mm);
  1221. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1222. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1223. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1224. extern int install_special_mapping(struct mm_struct *mm,
  1225. unsigned long addr, unsigned long len,
  1226. unsigned long flags, struct page **pages);
  1227. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1228. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1229. unsigned long len, unsigned long flags,
  1230. vm_flags_t vm_flags, unsigned long pgoff);
  1231. extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
  1232. unsigned long, unsigned long,
  1233. unsigned long, unsigned long);
  1234. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1235. /* These take the mm semaphore themselves */
  1236. extern unsigned long vm_brk(unsigned long, unsigned long);
  1237. extern int vm_munmap(unsigned long, size_t);
  1238. extern unsigned long vm_mmap(struct file *, unsigned long,
  1239. unsigned long, unsigned long,
  1240. unsigned long, unsigned long);
  1241. /* truncate.c */
  1242. extern void truncate_inode_pages(struct address_space *, loff_t);
  1243. extern void truncate_inode_pages_range(struct address_space *,
  1244. loff_t lstart, loff_t lend);
  1245. /* generic vm_area_ops exported for stackable file systems */
  1246. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1247. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1248. /* mm/page-writeback.c */
  1249. int write_one_page(struct page *page, int wait);
  1250. void task_dirty_inc(struct task_struct *tsk);
  1251. /* readahead.c */
  1252. #define VM_MAX_READAHEAD 128 /* kbytes */
  1253. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1254. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1255. pgoff_t offset, unsigned long nr_to_read);
  1256. void page_cache_sync_readahead(struct address_space *mapping,
  1257. struct file_ra_state *ra,
  1258. struct file *filp,
  1259. pgoff_t offset,
  1260. unsigned long size);
  1261. void page_cache_async_readahead(struct address_space *mapping,
  1262. struct file_ra_state *ra,
  1263. struct file *filp,
  1264. struct page *pg,
  1265. pgoff_t offset,
  1266. unsigned long size);
  1267. unsigned long max_sane_readahead(unsigned long nr);
  1268. unsigned long ra_submit(struct file_ra_state *ra,
  1269. struct address_space *mapping,
  1270. struct file *filp);
  1271. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1272. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1273. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1274. extern int expand_downwards(struct vm_area_struct *vma,
  1275. unsigned long address);
  1276. #if VM_GROWSUP
  1277. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1278. #else
  1279. #define expand_upwards(vma, address) do { } while (0)
  1280. #endif
  1281. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1282. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1283. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1284. struct vm_area_struct **pprev);
  1285. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1286. NULL if none. Assume start_addr < end_addr. */
  1287. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1288. {
  1289. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1290. if (vma && end_addr <= vma->vm_start)
  1291. vma = NULL;
  1292. return vma;
  1293. }
  1294. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1295. {
  1296. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1297. }
  1298. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1299. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1300. unsigned long vm_start, unsigned long vm_end)
  1301. {
  1302. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1303. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1304. vma = NULL;
  1305. return vma;
  1306. }
  1307. #ifdef CONFIG_MMU
  1308. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1309. #else
  1310. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1311. {
  1312. return __pgprot(0);
  1313. }
  1314. #endif
  1315. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1316. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1317. unsigned long pfn, unsigned long size, pgprot_t);
  1318. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1319. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1320. unsigned long pfn);
  1321. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1322. unsigned long pfn);
  1323. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  1324. unsigned int foll_flags);
  1325. #define FOLL_WRITE 0x01 /* check pte is writable */
  1326. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1327. #define FOLL_GET 0x04 /* do get_page on page */
  1328. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1329. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1330. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1331. * and return without waiting upon it */
  1332. #define FOLL_MLOCK 0x40 /* mark page as mlocked */
  1333. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1334. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1335. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1336. void *data);
  1337. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1338. unsigned long size, pte_fn_t fn, void *data);
  1339. #ifdef CONFIG_PROC_FS
  1340. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1341. #else
  1342. static inline void vm_stat_account(struct mm_struct *mm,
  1343. unsigned long flags, struct file *file, long pages)
  1344. {
  1345. mm->total_vm += pages;
  1346. }
  1347. #endif /* CONFIG_PROC_FS */
  1348. #ifdef CONFIG_DEBUG_PAGEALLOC
  1349. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1350. #ifdef CONFIG_HIBERNATION
  1351. extern bool kernel_page_present(struct page *page);
  1352. #endif /* CONFIG_HIBERNATION */
  1353. #else
  1354. static inline void
  1355. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1356. #ifdef CONFIG_HIBERNATION
  1357. static inline bool kernel_page_present(struct page *page) { return true; }
  1358. #endif /* CONFIG_HIBERNATION */
  1359. #endif
  1360. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1361. #ifdef __HAVE_ARCH_GATE_AREA
  1362. int in_gate_area_no_mm(unsigned long addr);
  1363. int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1364. #else
  1365. int in_gate_area_no_mm(unsigned long addr);
  1366. #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
  1367. #endif /* __HAVE_ARCH_GATE_AREA */
  1368. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1369. void __user *, size_t *, loff_t *);
  1370. unsigned long shrink_slab(struct shrink_control *shrink,
  1371. unsigned long nr_pages_scanned,
  1372. unsigned long lru_pages);
  1373. #ifndef CONFIG_MMU
  1374. #define randomize_va_space 0
  1375. #else
  1376. extern int randomize_va_space;
  1377. #endif
  1378. const char * arch_vma_name(struct vm_area_struct *vma);
  1379. void print_vma_addr(char *prefix, unsigned long rip);
  1380. void sparse_mem_maps_populate_node(struct page **map_map,
  1381. unsigned long pnum_begin,
  1382. unsigned long pnum_end,
  1383. unsigned long map_count,
  1384. int nodeid);
  1385. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1386. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1387. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1388. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1389. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1390. void *vmemmap_alloc_block(unsigned long size, int node);
  1391. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1392. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1393. int vmemmap_populate_basepages(struct page *start_page,
  1394. unsigned long pages, int node);
  1395. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1396. void vmemmap_populate_print_last(void);
  1397. enum mf_flags {
  1398. MF_COUNT_INCREASED = 1 << 0,
  1399. MF_ACTION_REQUIRED = 1 << 1,
  1400. MF_MUST_KILL = 1 << 2,
  1401. };
  1402. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  1403. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  1404. extern int unpoison_memory(unsigned long pfn);
  1405. extern int sysctl_memory_failure_early_kill;
  1406. extern int sysctl_memory_failure_recovery;
  1407. extern void shake_page(struct page *p, int access);
  1408. extern atomic_long_t mce_bad_pages;
  1409. extern int soft_offline_page(struct page *page, int flags);
  1410. extern void dump_page(struct page *page);
  1411. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1412. extern void clear_huge_page(struct page *page,
  1413. unsigned long addr,
  1414. unsigned int pages_per_huge_page);
  1415. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1416. unsigned long addr, struct vm_area_struct *vma,
  1417. unsigned int pages_per_huge_page);
  1418. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1419. #ifdef CONFIG_DEBUG_PAGEALLOC
  1420. extern unsigned int _debug_guardpage_minorder;
  1421. static inline unsigned int debug_guardpage_minorder(void)
  1422. {
  1423. return _debug_guardpage_minorder;
  1424. }
  1425. static inline bool page_is_guard(struct page *page)
  1426. {
  1427. return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  1428. }
  1429. #else
  1430. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  1431. static inline bool page_is_guard(struct page *page) { return false; }
  1432. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1433. #endif /* __KERNEL__ */
  1434. #endif /* _LINUX_MM_H */