memory.c 96 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/module.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <asm/io.h>
  56. #include <asm/pgalloc.h>
  57. #include <asm/uaccess.h>
  58. #include <asm/tlb.h>
  59. #include <asm/tlbflush.h>
  60. #include <asm/pgtable.h>
  61. #include "internal.h"
  62. #ifndef CONFIG_NEED_MULTIPLE_NODES
  63. /* use the per-pgdat data instead for discontigmem - mbligh */
  64. unsigned long max_mapnr;
  65. struct page *mem_map;
  66. EXPORT_SYMBOL(max_mapnr);
  67. EXPORT_SYMBOL(mem_map);
  68. #endif
  69. unsigned long num_physpages;
  70. /*
  71. * A number of key systems in x86 including ioremap() rely on the assumption
  72. * that high_memory defines the upper bound on direct map memory, then end
  73. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  74. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  75. * and ZONE_HIGHMEM.
  76. */
  77. void * high_memory;
  78. EXPORT_SYMBOL(num_physpages);
  79. EXPORT_SYMBOL(high_memory);
  80. /*
  81. * Randomize the address space (stacks, mmaps, brk, etc.).
  82. *
  83. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  84. * as ancient (libc5 based) binaries can segfault. )
  85. */
  86. int randomize_va_space __read_mostly =
  87. #ifdef CONFIG_COMPAT_BRK
  88. 1;
  89. #else
  90. 2;
  91. #endif
  92. static int __init disable_randmaps(char *s)
  93. {
  94. randomize_va_space = 0;
  95. return 1;
  96. }
  97. __setup("norandmaps", disable_randmaps);
  98. unsigned long zero_pfn __read_mostly;
  99. unsigned long highest_memmap_pfn __read_mostly;
  100. /*
  101. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  102. */
  103. static int __init init_zero_pfn(void)
  104. {
  105. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  106. return 0;
  107. }
  108. core_initcall(init_zero_pfn);
  109. #if defined(SPLIT_RSS_COUNTING)
  110. static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
  111. {
  112. int i;
  113. for (i = 0; i < NR_MM_COUNTERS; i++) {
  114. if (task->rss_stat.count[i]) {
  115. add_mm_counter(mm, i, task->rss_stat.count[i]);
  116. task->rss_stat.count[i] = 0;
  117. }
  118. }
  119. task->rss_stat.events = 0;
  120. }
  121. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  122. {
  123. struct task_struct *task = current;
  124. if (likely(task->mm == mm))
  125. task->rss_stat.count[member] += val;
  126. else
  127. add_mm_counter(mm, member, val);
  128. }
  129. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  130. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  131. /* sync counter once per 64 page faults */
  132. #define TASK_RSS_EVENTS_THRESH (64)
  133. static void check_sync_rss_stat(struct task_struct *task)
  134. {
  135. if (unlikely(task != current))
  136. return;
  137. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  138. __sync_task_rss_stat(task, task->mm);
  139. }
  140. unsigned long get_mm_counter(struct mm_struct *mm, int member)
  141. {
  142. long val = 0;
  143. /*
  144. * Don't use task->mm here...for avoiding to use task_get_mm()..
  145. * The caller must guarantee task->mm is not invalid.
  146. */
  147. val = atomic_long_read(&mm->rss_stat.count[member]);
  148. /*
  149. * counter is updated in asynchronous manner and may go to minus.
  150. * But it's never be expected number for users.
  151. */
  152. if (val < 0)
  153. return 0;
  154. return (unsigned long)val;
  155. }
  156. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  157. {
  158. __sync_task_rss_stat(task, mm);
  159. }
  160. #else
  161. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  162. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  163. static void check_sync_rss_stat(struct task_struct *task)
  164. {
  165. }
  166. #endif
  167. /*
  168. * If a p?d_bad entry is found while walking page tables, report
  169. * the error, before resetting entry to p?d_none. Usually (but
  170. * very seldom) called out from the p?d_none_or_clear_bad macros.
  171. */
  172. void pgd_clear_bad(pgd_t *pgd)
  173. {
  174. pgd_ERROR(*pgd);
  175. pgd_clear(pgd);
  176. }
  177. void pud_clear_bad(pud_t *pud)
  178. {
  179. pud_ERROR(*pud);
  180. pud_clear(pud);
  181. }
  182. void pmd_clear_bad(pmd_t *pmd)
  183. {
  184. pmd_ERROR(*pmd);
  185. pmd_clear(pmd);
  186. }
  187. /*
  188. * Note: this doesn't free the actual pages themselves. That
  189. * has been handled earlier when unmapping all the memory regions.
  190. */
  191. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  192. unsigned long addr)
  193. {
  194. pgtable_t token = pmd_pgtable(*pmd);
  195. pmd_clear(pmd);
  196. pte_free_tlb(tlb, token, addr);
  197. tlb->mm->nr_ptes--;
  198. }
  199. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  200. unsigned long addr, unsigned long end,
  201. unsigned long floor, unsigned long ceiling)
  202. {
  203. pmd_t *pmd;
  204. unsigned long next;
  205. unsigned long start;
  206. start = addr;
  207. pmd = pmd_offset(pud, addr);
  208. do {
  209. next = pmd_addr_end(addr, end);
  210. if (pmd_none_or_clear_bad(pmd))
  211. continue;
  212. free_pte_range(tlb, pmd, addr);
  213. } while (pmd++, addr = next, addr != end);
  214. start &= PUD_MASK;
  215. if (start < floor)
  216. return;
  217. if (ceiling) {
  218. ceiling &= PUD_MASK;
  219. if (!ceiling)
  220. return;
  221. }
  222. if (end - 1 > ceiling - 1)
  223. return;
  224. pmd = pmd_offset(pud, start);
  225. pud_clear(pud);
  226. pmd_free_tlb(tlb, pmd, start);
  227. }
  228. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  229. unsigned long addr, unsigned long end,
  230. unsigned long floor, unsigned long ceiling)
  231. {
  232. pud_t *pud;
  233. unsigned long next;
  234. unsigned long start;
  235. start = addr;
  236. pud = pud_offset(pgd, addr);
  237. do {
  238. next = pud_addr_end(addr, end);
  239. if (pud_none_or_clear_bad(pud))
  240. continue;
  241. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  242. } while (pud++, addr = next, addr != end);
  243. start &= PGDIR_MASK;
  244. if (start < floor)
  245. return;
  246. if (ceiling) {
  247. ceiling &= PGDIR_MASK;
  248. if (!ceiling)
  249. return;
  250. }
  251. if (end - 1 > ceiling - 1)
  252. return;
  253. pud = pud_offset(pgd, start);
  254. pgd_clear(pgd);
  255. pud_free_tlb(tlb, pud, start);
  256. }
  257. /*
  258. * This function frees user-level page tables of a process.
  259. *
  260. * Must be called with pagetable lock held.
  261. */
  262. void free_pgd_range(struct mmu_gather *tlb,
  263. unsigned long addr, unsigned long end,
  264. unsigned long floor, unsigned long ceiling)
  265. {
  266. pgd_t *pgd;
  267. unsigned long next;
  268. /*
  269. * The next few lines have given us lots of grief...
  270. *
  271. * Why are we testing PMD* at this top level? Because often
  272. * there will be no work to do at all, and we'd prefer not to
  273. * go all the way down to the bottom just to discover that.
  274. *
  275. * Why all these "- 1"s? Because 0 represents both the bottom
  276. * of the address space and the top of it (using -1 for the
  277. * top wouldn't help much: the masks would do the wrong thing).
  278. * The rule is that addr 0 and floor 0 refer to the bottom of
  279. * the address space, but end 0 and ceiling 0 refer to the top
  280. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  281. * that end 0 case should be mythical).
  282. *
  283. * Wherever addr is brought up or ceiling brought down, we must
  284. * be careful to reject "the opposite 0" before it confuses the
  285. * subsequent tests. But what about where end is brought down
  286. * by PMD_SIZE below? no, end can't go down to 0 there.
  287. *
  288. * Whereas we round start (addr) and ceiling down, by different
  289. * masks at different levels, in order to test whether a table
  290. * now has no other vmas using it, so can be freed, we don't
  291. * bother to round floor or end up - the tests don't need that.
  292. */
  293. addr &= PMD_MASK;
  294. if (addr < floor) {
  295. addr += PMD_SIZE;
  296. if (!addr)
  297. return;
  298. }
  299. if (ceiling) {
  300. ceiling &= PMD_MASK;
  301. if (!ceiling)
  302. return;
  303. }
  304. if (end - 1 > ceiling - 1)
  305. end -= PMD_SIZE;
  306. if (addr > end - 1)
  307. return;
  308. pgd = pgd_offset(tlb->mm, addr);
  309. do {
  310. next = pgd_addr_end(addr, end);
  311. if (pgd_none_or_clear_bad(pgd))
  312. continue;
  313. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  314. } while (pgd++, addr = next, addr != end);
  315. }
  316. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  317. unsigned long floor, unsigned long ceiling)
  318. {
  319. while (vma) {
  320. struct vm_area_struct *next = vma->vm_next;
  321. unsigned long addr = vma->vm_start;
  322. /*
  323. * Hide vma from rmap and truncate_pagecache before freeing
  324. * pgtables
  325. */
  326. unlink_anon_vmas(vma);
  327. unlink_file_vma(vma);
  328. if (is_vm_hugetlb_page(vma)) {
  329. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  330. floor, next? next->vm_start: ceiling);
  331. } else {
  332. /*
  333. * Optimization: gather nearby vmas into one call down
  334. */
  335. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  336. && !is_vm_hugetlb_page(next)) {
  337. vma = next;
  338. next = vma->vm_next;
  339. unlink_anon_vmas(vma);
  340. unlink_file_vma(vma);
  341. }
  342. free_pgd_range(tlb, addr, vma->vm_end,
  343. floor, next? next->vm_start: ceiling);
  344. }
  345. vma = next;
  346. }
  347. }
  348. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  349. {
  350. pgtable_t new = pte_alloc_one(mm, address);
  351. if (!new)
  352. return -ENOMEM;
  353. /*
  354. * Ensure all pte setup (eg. pte page lock and page clearing) are
  355. * visible before the pte is made visible to other CPUs by being
  356. * put into page tables.
  357. *
  358. * The other side of the story is the pointer chasing in the page
  359. * table walking code (when walking the page table without locking;
  360. * ie. most of the time). Fortunately, these data accesses consist
  361. * of a chain of data-dependent loads, meaning most CPUs (alpha
  362. * being the notable exception) will already guarantee loads are
  363. * seen in-order. See the alpha page table accessors for the
  364. * smp_read_barrier_depends() barriers in page table walking code.
  365. */
  366. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  367. spin_lock(&mm->page_table_lock);
  368. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  369. mm->nr_ptes++;
  370. pmd_populate(mm, pmd, new);
  371. new = NULL;
  372. }
  373. spin_unlock(&mm->page_table_lock);
  374. if (new)
  375. pte_free(mm, new);
  376. return 0;
  377. }
  378. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  379. {
  380. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  381. if (!new)
  382. return -ENOMEM;
  383. smp_wmb(); /* See comment in __pte_alloc */
  384. spin_lock(&init_mm.page_table_lock);
  385. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  386. pmd_populate_kernel(&init_mm, pmd, new);
  387. new = NULL;
  388. }
  389. spin_unlock(&init_mm.page_table_lock);
  390. if (new)
  391. pte_free_kernel(&init_mm, new);
  392. return 0;
  393. }
  394. static inline void init_rss_vec(int *rss)
  395. {
  396. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  397. }
  398. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  399. {
  400. int i;
  401. if (current->mm == mm)
  402. sync_mm_rss(current, mm);
  403. for (i = 0; i < NR_MM_COUNTERS; i++)
  404. if (rss[i])
  405. add_mm_counter(mm, i, rss[i]);
  406. }
  407. /*
  408. * This function is called to print an error when a bad pte
  409. * is found. For example, we might have a PFN-mapped pte in
  410. * a region that doesn't allow it.
  411. *
  412. * The calling function must still handle the error.
  413. */
  414. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  415. pte_t pte, struct page *page)
  416. {
  417. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  418. pud_t *pud = pud_offset(pgd, addr);
  419. pmd_t *pmd = pmd_offset(pud, addr);
  420. struct address_space *mapping;
  421. pgoff_t index;
  422. static unsigned long resume;
  423. static unsigned long nr_shown;
  424. static unsigned long nr_unshown;
  425. /*
  426. * Allow a burst of 60 reports, then keep quiet for that minute;
  427. * or allow a steady drip of one report per second.
  428. */
  429. if (nr_shown == 60) {
  430. if (time_before(jiffies, resume)) {
  431. nr_unshown++;
  432. return;
  433. }
  434. if (nr_unshown) {
  435. printk(KERN_ALERT
  436. "BUG: Bad page map: %lu messages suppressed\n",
  437. nr_unshown);
  438. nr_unshown = 0;
  439. }
  440. nr_shown = 0;
  441. }
  442. if (nr_shown++ == 0)
  443. resume = jiffies + 60 * HZ;
  444. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  445. index = linear_page_index(vma, addr);
  446. printk(KERN_ALERT
  447. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  448. current->comm,
  449. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  450. if (page)
  451. dump_page(page);
  452. printk(KERN_ALERT
  453. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  454. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  455. /*
  456. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  457. */
  458. if (vma->vm_ops)
  459. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  460. (unsigned long)vma->vm_ops->fault);
  461. if (vma->vm_file && vma->vm_file->f_op)
  462. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  463. (unsigned long)vma->vm_file->f_op->mmap);
  464. dump_stack();
  465. add_taint(TAINT_BAD_PAGE);
  466. }
  467. static inline int is_cow_mapping(unsigned int flags)
  468. {
  469. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  470. }
  471. #ifndef is_zero_pfn
  472. static inline int is_zero_pfn(unsigned long pfn)
  473. {
  474. return pfn == zero_pfn;
  475. }
  476. #endif
  477. #ifndef my_zero_pfn
  478. static inline unsigned long my_zero_pfn(unsigned long addr)
  479. {
  480. return zero_pfn;
  481. }
  482. #endif
  483. /*
  484. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  485. *
  486. * "Special" mappings do not wish to be associated with a "struct page" (either
  487. * it doesn't exist, or it exists but they don't want to touch it). In this
  488. * case, NULL is returned here. "Normal" mappings do have a struct page.
  489. *
  490. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  491. * pte bit, in which case this function is trivial. Secondly, an architecture
  492. * may not have a spare pte bit, which requires a more complicated scheme,
  493. * described below.
  494. *
  495. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  496. * special mapping (even if there are underlying and valid "struct pages").
  497. * COWed pages of a VM_PFNMAP are always normal.
  498. *
  499. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  500. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  501. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  502. * mapping will always honor the rule
  503. *
  504. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  505. *
  506. * And for normal mappings this is false.
  507. *
  508. * This restricts such mappings to be a linear translation from virtual address
  509. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  510. * as the vma is not a COW mapping; in that case, we know that all ptes are
  511. * special (because none can have been COWed).
  512. *
  513. *
  514. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  515. *
  516. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  517. * page" backing, however the difference is that _all_ pages with a struct
  518. * page (that is, those where pfn_valid is true) are refcounted and considered
  519. * normal pages by the VM. The disadvantage is that pages are refcounted
  520. * (which can be slower and simply not an option for some PFNMAP users). The
  521. * advantage is that we don't have to follow the strict linearity rule of
  522. * PFNMAP mappings in order to support COWable mappings.
  523. *
  524. */
  525. #ifdef __HAVE_ARCH_PTE_SPECIAL
  526. # define HAVE_PTE_SPECIAL 1
  527. #else
  528. # define HAVE_PTE_SPECIAL 0
  529. #endif
  530. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  531. pte_t pte)
  532. {
  533. unsigned long pfn = pte_pfn(pte);
  534. if (HAVE_PTE_SPECIAL) {
  535. if (likely(!pte_special(pte)))
  536. goto check_pfn;
  537. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  538. return NULL;
  539. if (!is_zero_pfn(pfn))
  540. print_bad_pte(vma, addr, pte, NULL);
  541. return NULL;
  542. }
  543. /* !HAVE_PTE_SPECIAL case follows: */
  544. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  545. if (vma->vm_flags & VM_MIXEDMAP) {
  546. if (!pfn_valid(pfn))
  547. return NULL;
  548. goto out;
  549. } else {
  550. unsigned long off;
  551. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  552. if (pfn == vma->vm_pgoff + off)
  553. return NULL;
  554. if (!is_cow_mapping(vma->vm_flags))
  555. return NULL;
  556. }
  557. }
  558. if (is_zero_pfn(pfn))
  559. return NULL;
  560. check_pfn:
  561. if (unlikely(pfn > highest_memmap_pfn)) {
  562. print_bad_pte(vma, addr, pte, NULL);
  563. return NULL;
  564. }
  565. /*
  566. * NOTE! We still have PageReserved() pages in the page tables.
  567. * eg. VDSO mappings can cause them to exist.
  568. */
  569. out:
  570. return pfn_to_page(pfn);
  571. }
  572. /*
  573. * copy one vm_area from one task to the other. Assumes the page tables
  574. * already present in the new task to be cleared in the whole range
  575. * covered by this vma.
  576. */
  577. static inline unsigned long
  578. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  579. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  580. unsigned long addr, int *rss)
  581. {
  582. unsigned long vm_flags = vma->vm_flags;
  583. pte_t pte = *src_pte;
  584. struct page *page;
  585. /* pte contains position in swap or file, so copy. */
  586. if (unlikely(!pte_present(pte))) {
  587. if (!pte_file(pte)) {
  588. swp_entry_t entry = pte_to_swp_entry(pte);
  589. if (swap_duplicate(entry) < 0)
  590. return entry.val;
  591. /* make sure dst_mm is on swapoff's mmlist. */
  592. if (unlikely(list_empty(&dst_mm->mmlist))) {
  593. spin_lock(&mmlist_lock);
  594. if (list_empty(&dst_mm->mmlist))
  595. list_add(&dst_mm->mmlist,
  596. &src_mm->mmlist);
  597. spin_unlock(&mmlist_lock);
  598. }
  599. if (likely(!non_swap_entry(entry)))
  600. rss[MM_SWAPENTS]++;
  601. else if (is_write_migration_entry(entry) &&
  602. is_cow_mapping(vm_flags)) {
  603. /*
  604. * COW mappings require pages in both parent
  605. * and child to be set to read.
  606. */
  607. make_migration_entry_read(&entry);
  608. pte = swp_entry_to_pte(entry);
  609. set_pte_at(src_mm, addr, src_pte, pte);
  610. }
  611. }
  612. goto out_set_pte;
  613. }
  614. /*
  615. * If it's a COW mapping, write protect it both
  616. * in the parent and the child
  617. */
  618. if (is_cow_mapping(vm_flags)) {
  619. ptep_set_wrprotect(src_mm, addr, src_pte);
  620. pte = pte_wrprotect(pte);
  621. }
  622. /*
  623. * If it's a shared mapping, mark it clean in
  624. * the child
  625. */
  626. if (vm_flags & VM_SHARED)
  627. pte = pte_mkclean(pte);
  628. pte = pte_mkold(pte);
  629. page = vm_normal_page(vma, addr, pte);
  630. if (page) {
  631. get_page(page);
  632. page_dup_rmap(page);
  633. if (PageAnon(page))
  634. rss[MM_ANONPAGES]++;
  635. else
  636. rss[MM_FILEPAGES]++;
  637. }
  638. out_set_pte:
  639. set_pte_at(dst_mm, addr, dst_pte, pte);
  640. return 0;
  641. }
  642. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  643. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  644. unsigned long addr, unsigned long end)
  645. {
  646. pte_t *orig_src_pte, *orig_dst_pte;
  647. pte_t *src_pte, *dst_pte;
  648. spinlock_t *src_ptl, *dst_ptl;
  649. int progress = 0;
  650. int rss[NR_MM_COUNTERS];
  651. swp_entry_t entry = (swp_entry_t){0};
  652. again:
  653. init_rss_vec(rss);
  654. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  655. if (!dst_pte)
  656. return -ENOMEM;
  657. src_pte = pte_offset_map_nested(src_pmd, addr);
  658. src_ptl = pte_lockptr(src_mm, src_pmd);
  659. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  660. orig_src_pte = src_pte;
  661. orig_dst_pte = dst_pte;
  662. arch_enter_lazy_mmu_mode();
  663. do {
  664. /*
  665. * We are holding two locks at this point - either of them
  666. * could generate latencies in another task on another CPU.
  667. */
  668. if (progress >= 32) {
  669. progress = 0;
  670. if (need_resched() ||
  671. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  672. break;
  673. }
  674. if (pte_none(*src_pte)) {
  675. progress++;
  676. continue;
  677. }
  678. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  679. vma, addr, rss);
  680. if (entry.val)
  681. break;
  682. progress += 8;
  683. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  684. arch_leave_lazy_mmu_mode();
  685. spin_unlock(src_ptl);
  686. pte_unmap_nested(orig_src_pte);
  687. add_mm_rss_vec(dst_mm, rss);
  688. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  689. cond_resched();
  690. if (entry.val) {
  691. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  692. return -ENOMEM;
  693. progress = 0;
  694. }
  695. if (addr != end)
  696. goto again;
  697. return 0;
  698. }
  699. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  700. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  701. unsigned long addr, unsigned long end)
  702. {
  703. pmd_t *src_pmd, *dst_pmd;
  704. unsigned long next;
  705. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  706. if (!dst_pmd)
  707. return -ENOMEM;
  708. src_pmd = pmd_offset(src_pud, addr);
  709. do {
  710. next = pmd_addr_end(addr, end);
  711. if (pmd_none_or_clear_bad(src_pmd))
  712. continue;
  713. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  714. vma, addr, next))
  715. return -ENOMEM;
  716. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  717. return 0;
  718. }
  719. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  720. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  721. unsigned long addr, unsigned long end)
  722. {
  723. pud_t *src_pud, *dst_pud;
  724. unsigned long next;
  725. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  726. if (!dst_pud)
  727. return -ENOMEM;
  728. src_pud = pud_offset(src_pgd, addr);
  729. do {
  730. next = pud_addr_end(addr, end);
  731. if (pud_none_or_clear_bad(src_pud))
  732. continue;
  733. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  734. vma, addr, next))
  735. return -ENOMEM;
  736. } while (dst_pud++, src_pud++, addr = next, addr != end);
  737. return 0;
  738. }
  739. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  740. struct vm_area_struct *vma)
  741. {
  742. pgd_t *src_pgd, *dst_pgd;
  743. unsigned long next;
  744. unsigned long addr = vma->vm_start;
  745. unsigned long end = vma->vm_end;
  746. int ret;
  747. /*
  748. * Don't copy ptes where a page fault will fill them correctly.
  749. * Fork becomes much lighter when there are big shared or private
  750. * readonly mappings. The tradeoff is that copy_page_range is more
  751. * efficient than faulting.
  752. */
  753. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  754. if (!vma->anon_vma)
  755. return 0;
  756. }
  757. if (is_vm_hugetlb_page(vma))
  758. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  759. if (unlikely(is_pfn_mapping(vma))) {
  760. /*
  761. * We do not free on error cases below as remove_vma
  762. * gets called on error from higher level routine
  763. */
  764. ret = track_pfn_vma_copy(vma);
  765. if (ret)
  766. return ret;
  767. }
  768. /*
  769. * We need to invalidate the secondary MMU mappings only when
  770. * there could be a permission downgrade on the ptes of the
  771. * parent mm. And a permission downgrade will only happen if
  772. * is_cow_mapping() returns true.
  773. */
  774. if (is_cow_mapping(vma->vm_flags))
  775. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  776. ret = 0;
  777. dst_pgd = pgd_offset(dst_mm, addr);
  778. src_pgd = pgd_offset(src_mm, addr);
  779. do {
  780. next = pgd_addr_end(addr, end);
  781. if (pgd_none_or_clear_bad(src_pgd))
  782. continue;
  783. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  784. vma, addr, next))) {
  785. ret = -ENOMEM;
  786. break;
  787. }
  788. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  789. if (is_cow_mapping(vma->vm_flags))
  790. mmu_notifier_invalidate_range_end(src_mm,
  791. vma->vm_start, end);
  792. return ret;
  793. }
  794. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  795. struct vm_area_struct *vma, pmd_t *pmd,
  796. unsigned long addr, unsigned long end,
  797. long *zap_work, struct zap_details *details)
  798. {
  799. struct mm_struct *mm = tlb->mm;
  800. pte_t *pte;
  801. spinlock_t *ptl;
  802. int rss[NR_MM_COUNTERS];
  803. init_rss_vec(rss);
  804. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  805. arch_enter_lazy_mmu_mode();
  806. do {
  807. pte_t ptent = *pte;
  808. if (pte_none(ptent)) {
  809. (*zap_work)--;
  810. continue;
  811. }
  812. (*zap_work) -= PAGE_SIZE;
  813. if (pte_present(ptent)) {
  814. struct page *page;
  815. page = vm_normal_page(vma, addr, ptent);
  816. if (unlikely(details) && page) {
  817. /*
  818. * unmap_shared_mapping_pages() wants to
  819. * invalidate cache without truncating:
  820. * unmap shared but keep private pages.
  821. */
  822. if (details->check_mapping &&
  823. details->check_mapping != page->mapping)
  824. continue;
  825. /*
  826. * Each page->index must be checked when
  827. * invalidating or truncating nonlinear.
  828. */
  829. if (details->nonlinear_vma &&
  830. (page->index < details->first_index ||
  831. page->index > details->last_index))
  832. continue;
  833. }
  834. ptent = ptep_get_and_clear_full(mm, addr, pte,
  835. tlb->fullmm);
  836. tlb_remove_tlb_entry(tlb, pte, addr);
  837. if (unlikely(!page))
  838. continue;
  839. if (unlikely(details) && details->nonlinear_vma
  840. && linear_page_index(details->nonlinear_vma,
  841. addr) != page->index)
  842. set_pte_at(mm, addr, pte,
  843. pgoff_to_pte(page->index));
  844. if (PageAnon(page))
  845. rss[MM_ANONPAGES]--;
  846. else {
  847. if (pte_dirty(ptent))
  848. set_page_dirty(page);
  849. if (pte_young(ptent) &&
  850. likely(!VM_SequentialReadHint(vma)))
  851. mark_page_accessed(page);
  852. rss[MM_FILEPAGES]--;
  853. }
  854. page_remove_rmap(page);
  855. if (unlikely(page_mapcount(page) < 0))
  856. print_bad_pte(vma, addr, ptent, page);
  857. tlb_remove_page(tlb, page);
  858. continue;
  859. }
  860. /*
  861. * If details->check_mapping, we leave swap entries;
  862. * if details->nonlinear_vma, we leave file entries.
  863. */
  864. if (unlikely(details))
  865. continue;
  866. if (pte_file(ptent)) {
  867. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  868. print_bad_pte(vma, addr, ptent, NULL);
  869. } else {
  870. swp_entry_t entry = pte_to_swp_entry(ptent);
  871. if (!non_swap_entry(entry))
  872. rss[MM_SWAPENTS]--;
  873. if (unlikely(!free_swap_and_cache(entry)))
  874. print_bad_pte(vma, addr, ptent, NULL);
  875. }
  876. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  877. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  878. add_mm_rss_vec(mm, rss);
  879. arch_leave_lazy_mmu_mode();
  880. pte_unmap_unlock(pte - 1, ptl);
  881. return addr;
  882. }
  883. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  884. struct vm_area_struct *vma, pud_t *pud,
  885. unsigned long addr, unsigned long end,
  886. long *zap_work, struct zap_details *details)
  887. {
  888. pmd_t *pmd;
  889. unsigned long next;
  890. pmd = pmd_offset(pud, addr);
  891. do {
  892. next = pmd_addr_end(addr, end);
  893. if (pmd_none_or_clear_bad(pmd)) {
  894. (*zap_work)--;
  895. continue;
  896. }
  897. next = zap_pte_range(tlb, vma, pmd, addr, next,
  898. zap_work, details);
  899. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  900. return addr;
  901. }
  902. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  903. struct vm_area_struct *vma, pgd_t *pgd,
  904. unsigned long addr, unsigned long end,
  905. long *zap_work, struct zap_details *details)
  906. {
  907. pud_t *pud;
  908. unsigned long next;
  909. pud = pud_offset(pgd, addr);
  910. do {
  911. next = pud_addr_end(addr, end);
  912. if (pud_none_or_clear_bad(pud)) {
  913. (*zap_work)--;
  914. continue;
  915. }
  916. next = zap_pmd_range(tlb, vma, pud, addr, next,
  917. zap_work, details);
  918. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  919. return addr;
  920. }
  921. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  922. struct vm_area_struct *vma,
  923. unsigned long addr, unsigned long end,
  924. long *zap_work, struct zap_details *details)
  925. {
  926. pgd_t *pgd;
  927. unsigned long next;
  928. if (details && !details->check_mapping && !details->nonlinear_vma)
  929. details = NULL;
  930. BUG_ON(addr >= end);
  931. mem_cgroup_uncharge_start();
  932. tlb_start_vma(tlb, vma);
  933. pgd = pgd_offset(vma->vm_mm, addr);
  934. do {
  935. next = pgd_addr_end(addr, end);
  936. if (pgd_none_or_clear_bad(pgd)) {
  937. (*zap_work)--;
  938. continue;
  939. }
  940. next = zap_pud_range(tlb, vma, pgd, addr, next,
  941. zap_work, details);
  942. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  943. tlb_end_vma(tlb, vma);
  944. mem_cgroup_uncharge_end();
  945. return addr;
  946. }
  947. #ifdef CONFIG_PREEMPT
  948. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  949. #else
  950. /* No preempt: go for improved straight-line efficiency */
  951. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  952. #endif
  953. /**
  954. * unmap_vmas - unmap a range of memory covered by a list of vma's
  955. * @tlbp: address of the caller's struct mmu_gather
  956. * @vma: the starting vma
  957. * @start_addr: virtual address at which to start unmapping
  958. * @end_addr: virtual address at which to end unmapping
  959. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  960. * @details: details of nonlinear truncation or shared cache invalidation
  961. *
  962. * Returns the end address of the unmapping (restart addr if interrupted).
  963. *
  964. * Unmap all pages in the vma list.
  965. *
  966. * We aim to not hold locks for too long (for scheduling latency reasons).
  967. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  968. * return the ending mmu_gather to the caller.
  969. *
  970. * Only addresses between `start' and `end' will be unmapped.
  971. *
  972. * The VMA list must be sorted in ascending virtual address order.
  973. *
  974. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  975. * range after unmap_vmas() returns. So the only responsibility here is to
  976. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  977. * drops the lock and schedules.
  978. */
  979. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  980. struct vm_area_struct *vma, unsigned long start_addr,
  981. unsigned long end_addr, unsigned long *nr_accounted,
  982. struct zap_details *details)
  983. {
  984. long zap_work = ZAP_BLOCK_SIZE;
  985. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  986. int tlb_start_valid = 0;
  987. unsigned long start = start_addr;
  988. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  989. int fullmm = (*tlbp)->fullmm;
  990. struct mm_struct *mm = vma->vm_mm;
  991. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  992. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  993. unsigned long end;
  994. start = max(vma->vm_start, start_addr);
  995. if (start >= vma->vm_end)
  996. continue;
  997. end = min(vma->vm_end, end_addr);
  998. if (end <= vma->vm_start)
  999. continue;
  1000. if (vma->vm_flags & VM_ACCOUNT)
  1001. *nr_accounted += (end - start) >> PAGE_SHIFT;
  1002. if (unlikely(is_pfn_mapping(vma)))
  1003. untrack_pfn_vma(vma, 0, 0);
  1004. while (start != end) {
  1005. if (!tlb_start_valid) {
  1006. tlb_start = start;
  1007. tlb_start_valid = 1;
  1008. }
  1009. if (unlikely(is_vm_hugetlb_page(vma))) {
  1010. /*
  1011. * It is undesirable to test vma->vm_file as it
  1012. * should be non-null for valid hugetlb area.
  1013. * However, vm_file will be NULL in the error
  1014. * cleanup path of do_mmap_pgoff. When
  1015. * hugetlbfs ->mmap method fails,
  1016. * do_mmap_pgoff() nullifies vma->vm_file
  1017. * before calling this function to clean up.
  1018. * Since no pte has actually been setup, it is
  1019. * safe to do nothing in this case.
  1020. */
  1021. if (vma->vm_file) {
  1022. unmap_hugepage_range(vma, start, end, NULL);
  1023. zap_work -= (end - start) /
  1024. pages_per_huge_page(hstate_vma(vma));
  1025. }
  1026. start = end;
  1027. } else
  1028. start = unmap_page_range(*tlbp, vma,
  1029. start, end, &zap_work, details);
  1030. if (zap_work > 0) {
  1031. BUG_ON(start != end);
  1032. break;
  1033. }
  1034. tlb_finish_mmu(*tlbp, tlb_start, start);
  1035. if (need_resched() ||
  1036. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  1037. if (i_mmap_lock) {
  1038. *tlbp = NULL;
  1039. goto out;
  1040. }
  1041. cond_resched();
  1042. }
  1043. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  1044. tlb_start_valid = 0;
  1045. zap_work = ZAP_BLOCK_SIZE;
  1046. }
  1047. }
  1048. out:
  1049. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1050. return start; /* which is now the end (or restart) address */
  1051. }
  1052. /**
  1053. * zap_page_range - remove user pages in a given range
  1054. * @vma: vm_area_struct holding the applicable pages
  1055. * @address: starting address of pages to zap
  1056. * @size: number of bytes to zap
  1057. * @details: details of nonlinear truncation or shared cache invalidation
  1058. */
  1059. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1060. unsigned long size, struct zap_details *details)
  1061. {
  1062. struct mm_struct *mm = vma->vm_mm;
  1063. struct mmu_gather *tlb;
  1064. unsigned long end = address + size;
  1065. unsigned long nr_accounted = 0;
  1066. lru_add_drain();
  1067. tlb = tlb_gather_mmu(mm, 0);
  1068. update_hiwater_rss(mm);
  1069. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  1070. if (tlb)
  1071. tlb_finish_mmu(tlb, address, end);
  1072. return end;
  1073. }
  1074. /**
  1075. * zap_vma_ptes - remove ptes mapping the vma
  1076. * @vma: vm_area_struct holding ptes to be zapped
  1077. * @address: starting address of pages to zap
  1078. * @size: number of bytes to zap
  1079. *
  1080. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1081. *
  1082. * The entire address range must be fully contained within the vma.
  1083. *
  1084. * Returns 0 if successful.
  1085. */
  1086. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1087. unsigned long size)
  1088. {
  1089. if (address < vma->vm_start || address + size > vma->vm_end ||
  1090. !(vma->vm_flags & VM_PFNMAP))
  1091. return -1;
  1092. zap_page_range(vma, address, size, NULL);
  1093. return 0;
  1094. }
  1095. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1096. /**
  1097. * follow_page - look up a page descriptor from a user-virtual address
  1098. * @vma: vm_area_struct mapping @address
  1099. * @address: virtual address to look up
  1100. * @flags: flags modifying lookup behaviour
  1101. *
  1102. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1103. *
  1104. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1105. * an error pointer if there is a mapping to something not represented
  1106. * by a page descriptor (see also vm_normal_page()).
  1107. */
  1108. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1109. unsigned int flags)
  1110. {
  1111. pgd_t *pgd;
  1112. pud_t *pud;
  1113. pmd_t *pmd;
  1114. pte_t *ptep, pte;
  1115. spinlock_t *ptl;
  1116. struct page *page;
  1117. struct mm_struct *mm = vma->vm_mm;
  1118. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1119. if (!IS_ERR(page)) {
  1120. BUG_ON(flags & FOLL_GET);
  1121. goto out;
  1122. }
  1123. page = NULL;
  1124. pgd = pgd_offset(mm, address);
  1125. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1126. goto no_page_table;
  1127. pud = pud_offset(pgd, address);
  1128. if (pud_none(*pud))
  1129. goto no_page_table;
  1130. if (pud_huge(*pud)) {
  1131. BUG_ON(flags & FOLL_GET);
  1132. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1133. goto out;
  1134. }
  1135. if (unlikely(pud_bad(*pud)))
  1136. goto no_page_table;
  1137. pmd = pmd_offset(pud, address);
  1138. if (pmd_none(*pmd))
  1139. goto no_page_table;
  1140. if (pmd_huge(*pmd)) {
  1141. BUG_ON(flags & FOLL_GET);
  1142. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1143. goto out;
  1144. }
  1145. if (unlikely(pmd_bad(*pmd)))
  1146. goto no_page_table;
  1147. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1148. pte = *ptep;
  1149. if (!pte_present(pte))
  1150. goto no_page;
  1151. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1152. goto unlock;
  1153. page = vm_normal_page(vma, address, pte);
  1154. if (unlikely(!page)) {
  1155. if ((flags & FOLL_DUMP) ||
  1156. !is_zero_pfn(pte_pfn(pte)))
  1157. goto bad_page;
  1158. page = pte_page(pte);
  1159. }
  1160. if (flags & FOLL_GET)
  1161. get_page(page);
  1162. if (flags & FOLL_TOUCH) {
  1163. if ((flags & FOLL_WRITE) &&
  1164. !pte_dirty(pte) && !PageDirty(page))
  1165. set_page_dirty(page);
  1166. /*
  1167. * pte_mkyoung() would be more correct here, but atomic care
  1168. * is needed to avoid losing the dirty bit: it is easier to use
  1169. * mark_page_accessed().
  1170. */
  1171. mark_page_accessed(page);
  1172. }
  1173. unlock:
  1174. pte_unmap_unlock(ptep, ptl);
  1175. out:
  1176. return page;
  1177. bad_page:
  1178. pte_unmap_unlock(ptep, ptl);
  1179. return ERR_PTR(-EFAULT);
  1180. no_page:
  1181. pte_unmap_unlock(ptep, ptl);
  1182. if (!pte_none(pte))
  1183. return page;
  1184. no_page_table:
  1185. /*
  1186. * When core dumping an enormous anonymous area that nobody
  1187. * has touched so far, we don't want to allocate unnecessary pages or
  1188. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1189. * then get_dump_page() will return NULL to leave a hole in the dump.
  1190. * But we can only make this optimization where a hole would surely
  1191. * be zero-filled if handle_mm_fault() actually did handle it.
  1192. */
  1193. if ((flags & FOLL_DUMP) &&
  1194. (!vma->vm_ops || !vma->vm_ops->fault))
  1195. return ERR_PTR(-EFAULT);
  1196. return page;
  1197. }
  1198. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1199. unsigned long start, int nr_pages, unsigned int gup_flags,
  1200. struct page **pages, struct vm_area_struct **vmas)
  1201. {
  1202. int i;
  1203. unsigned long vm_flags;
  1204. if (nr_pages <= 0)
  1205. return 0;
  1206. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1207. /*
  1208. * Require read or write permissions.
  1209. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1210. */
  1211. vm_flags = (gup_flags & FOLL_WRITE) ?
  1212. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1213. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1214. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1215. i = 0;
  1216. do {
  1217. struct vm_area_struct *vma;
  1218. vma = find_extend_vma(mm, start);
  1219. if (!vma && in_gate_area(tsk, start)) {
  1220. unsigned long pg = start & PAGE_MASK;
  1221. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1222. pgd_t *pgd;
  1223. pud_t *pud;
  1224. pmd_t *pmd;
  1225. pte_t *pte;
  1226. /* user gate pages are read-only */
  1227. if (gup_flags & FOLL_WRITE)
  1228. return i ? : -EFAULT;
  1229. if (pg > TASK_SIZE)
  1230. pgd = pgd_offset_k(pg);
  1231. else
  1232. pgd = pgd_offset_gate(mm, pg);
  1233. BUG_ON(pgd_none(*pgd));
  1234. pud = pud_offset(pgd, pg);
  1235. BUG_ON(pud_none(*pud));
  1236. pmd = pmd_offset(pud, pg);
  1237. if (pmd_none(*pmd))
  1238. return i ? : -EFAULT;
  1239. pte = pte_offset_map(pmd, pg);
  1240. if (pte_none(*pte)) {
  1241. pte_unmap(pte);
  1242. return i ? : -EFAULT;
  1243. }
  1244. if (pages) {
  1245. struct page *page;
  1246. page = vm_normal_page(gate_vma, start, *pte);
  1247. if (!page) {
  1248. if (!(gup_flags & FOLL_DUMP) &&
  1249. is_zero_pfn(pte_pfn(*pte)))
  1250. page = pte_page(*pte);
  1251. else {
  1252. pte_unmap(pte);
  1253. return i ? : -EFAULT;
  1254. }
  1255. }
  1256. pages[i] = page;
  1257. get_page(page);
  1258. }
  1259. pte_unmap(pte);
  1260. if (vmas)
  1261. vmas[i] = gate_vma;
  1262. i++;
  1263. start += PAGE_SIZE;
  1264. nr_pages--;
  1265. continue;
  1266. }
  1267. if (!vma ||
  1268. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1269. !(vm_flags & vma->vm_flags))
  1270. return i ? : -EFAULT;
  1271. if (is_vm_hugetlb_page(vma)) {
  1272. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1273. &start, &nr_pages, i, gup_flags);
  1274. continue;
  1275. }
  1276. do {
  1277. struct page *page;
  1278. unsigned int foll_flags = gup_flags;
  1279. /*
  1280. * If we have a pending SIGKILL, don't keep faulting
  1281. * pages and potentially allocating memory.
  1282. */
  1283. if (unlikely(fatal_signal_pending(current)))
  1284. return i ? i : -ERESTARTSYS;
  1285. cond_resched();
  1286. while (!(page = follow_page(vma, start, foll_flags))) {
  1287. int ret;
  1288. ret = handle_mm_fault(mm, vma, start,
  1289. (foll_flags & FOLL_WRITE) ?
  1290. FAULT_FLAG_WRITE : 0);
  1291. if (ret & VM_FAULT_ERROR) {
  1292. if (ret & VM_FAULT_OOM)
  1293. return i ? i : -ENOMEM;
  1294. if (ret &
  1295. (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
  1296. return i ? i : -EFAULT;
  1297. BUG();
  1298. }
  1299. if (ret & VM_FAULT_MAJOR)
  1300. tsk->maj_flt++;
  1301. else
  1302. tsk->min_flt++;
  1303. /*
  1304. * The VM_FAULT_WRITE bit tells us that
  1305. * do_wp_page has broken COW when necessary,
  1306. * even if maybe_mkwrite decided not to set
  1307. * pte_write. We can thus safely do subsequent
  1308. * page lookups as if they were reads. But only
  1309. * do so when looping for pte_write is futile:
  1310. * in some cases userspace may also be wanting
  1311. * to write to the gotten user page, which a
  1312. * read fault here might prevent (a readonly
  1313. * page might get reCOWed by userspace write).
  1314. */
  1315. if ((ret & VM_FAULT_WRITE) &&
  1316. !(vma->vm_flags & VM_WRITE))
  1317. foll_flags &= ~FOLL_WRITE;
  1318. cond_resched();
  1319. }
  1320. if (IS_ERR(page))
  1321. return i ? i : PTR_ERR(page);
  1322. if (pages) {
  1323. pages[i] = page;
  1324. flush_anon_page(vma, page, start);
  1325. flush_dcache_page(page);
  1326. }
  1327. if (vmas)
  1328. vmas[i] = vma;
  1329. i++;
  1330. start += PAGE_SIZE;
  1331. nr_pages--;
  1332. } while (nr_pages && start < vma->vm_end);
  1333. } while (nr_pages);
  1334. return i;
  1335. }
  1336. /**
  1337. * get_user_pages() - pin user pages in memory
  1338. * @tsk: task_struct of target task
  1339. * @mm: mm_struct of target mm
  1340. * @start: starting user address
  1341. * @nr_pages: number of pages from start to pin
  1342. * @write: whether pages will be written to by the caller
  1343. * @force: whether to force write access even if user mapping is
  1344. * readonly. This will result in the page being COWed even
  1345. * in MAP_SHARED mappings. You do not want this.
  1346. * @pages: array that receives pointers to the pages pinned.
  1347. * Should be at least nr_pages long. Or NULL, if caller
  1348. * only intends to ensure the pages are faulted in.
  1349. * @vmas: array of pointers to vmas corresponding to each page.
  1350. * Or NULL if the caller does not require them.
  1351. *
  1352. * Returns number of pages pinned. This may be fewer than the number
  1353. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1354. * were pinned, returns -errno. Each page returned must be released
  1355. * with a put_page() call when it is finished with. vmas will only
  1356. * remain valid while mmap_sem is held.
  1357. *
  1358. * Must be called with mmap_sem held for read or write.
  1359. *
  1360. * get_user_pages walks a process's page tables and takes a reference to
  1361. * each struct page that each user address corresponds to at a given
  1362. * instant. That is, it takes the page that would be accessed if a user
  1363. * thread accesses the given user virtual address at that instant.
  1364. *
  1365. * This does not guarantee that the page exists in the user mappings when
  1366. * get_user_pages returns, and there may even be a completely different
  1367. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1368. * and subsequently re faulted). However it does guarantee that the page
  1369. * won't be freed completely. And mostly callers simply care that the page
  1370. * contains data that was valid *at some point in time*. Typically, an IO
  1371. * or similar operation cannot guarantee anything stronger anyway because
  1372. * locks can't be held over the syscall boundary.
  1373. *
  1374. * If write=0, the page must not be written to. If the page is written to,
  1375. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1376. * after the page is finished with, and before put_page is called.
  1377. *
  1378. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1379. * handle on the memory by some means other than accesses via the user virtual
  1380. * addresses. The pages may be submitted for DMA to devices or accessed via
  1381. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1382. * use the correct cache flushing APIs.
  1383. *
  1384. * See also get_user_pages_fast, for performance critical applications.
  1385. */
  1386. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1387. unsigned long start, int nr_pages, int write, int force,
  1388. struct page **pages, struct vm_area_struct **vmas)
  1389. {
  1390. int flags = FOLL_TOUCH;
  1391. if (pages)
  1392. flags |= FOLL_GET;
  1393. if (write)
  1394. flags |= FOLL_WRITE;
  1395. if (force)
  1396. flags |= FOLL_FORCE;
  1397. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
  1398. }
  1399. EXPORT_SYMBOL(get_user_pages);
  1400. /**
  1401. * get_dump_page() - pin user page in memory while writing it to core dump
  1402. * @addr: user address
  1403. *
  1404. * Returns struct page pointer of user page pinned for dump,
  1405. * to be freed afterwards by page_cache_release() or put_page().
  1406. *
  1407. * Returns NULL on any kind of failure - a hole must then be inserted into
  1408. * the corefile, to preserve alignment with its headers; and also returns
  1409. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1410. * allowing a hole to be left in the corefile to save diskspace.
  1411. *
  1412. * Called without mmap_sem, but after all other threads have been killed.
  1413. */
  1414. #ifdef CONFIG_ELF_CORE
  1415. struct page *get_dump_page(unsigned long addr)
  1416. {
  1417. struct vm_area_struct *vma;
  1418. struct page *page;
  1419. if (__get_user_pages(current, current->mm, addr, 1,
  1420. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
  1421. return NULL;
  1422. flush_cache_page(vma, addr, page_to_pfn(page));
  1423. return page;
  1424. }
  1425. #endif /* CONFIG_ELF_CORE */
  1426. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1427. spinlock_t **ptl)
  1428. {
  1429. pgd_t * pgd = pgd_offset(mm, addr);
  1430. pud_t * pud = pud_alloc(mm, pgd, addr);
  1431. if (pud) {
  1432. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1433. if (pmd)
  1434. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1435. }
  1436. return NULL;
  1437. }
  1438. /*
  1439. * This is the old fallback for page remapping.
  1440. *
  1441. * For historical reasons, it only allows reserved pages. Only
  1442. * old drivers should use this, and they needed to mark their
  1443. * pages reserved for the old functions anyway.
  1444. */
  1445. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1446. struct page *page, pgprot_t prot)
  1447. {
  1448. struct mm_struct *mm = vma->vm_mm;
  1449. int retval;
  1450. pte_t *pte;
  1451. spinlock_t *ptl;
  1452. retval = -EINVAL;
  1453. if (PageAnon(page))
  1454. goto out;
  1455. retval = -ENOMEM;
  1456. flush_dcache_page(page);
  1457. pte = get_locked_pte(mm, addr, &ptl);
  1458. if (!pte)
  1459. goto out;
  1460. retval = -EBUSY;
  1461. if (!pte_none(*pte))
  1462. goto out_unlock;
  1463. /* Ok, finally just insert the thing.. */
  1464. get_page(page);
  1465. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1466. page_add_file_rmap(page);
  1467. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1468. retval = 0;
  1469. pte_unmap_unlock(pte, ptl);
  1470. return retval;
  1471. out_unlock:
  1472. pte_unmap_unlock(pte, ptl);
  1473. out:
  1474. return retval;
  1475. }
  1476. /**
  1477. * vm_insert_page - insert single page into user vma
  1478. * @vma: user vma to map to
  1479. * @addr: target user address of this page
  1480. * @page: source kernel page
  1481. *
  1482. * This allows drivers to insert individual pages they've allocated
  1483. * into a user vma.
  1484. *
  1485. * The page has to be a nice clean _individual_ kernel allocation.
  1486. * If you allocate a compound page, you need to have marked it as
  1487. * such (__GFP_COMP), or manually just split the page up yourself
  1488. * (see split_page()).
  1489. *
  1490. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1491. * took an arbitrary page protection parameter. This doesn't allow
  1492. * that. Your vma protection will have to be set up correctly, which
  1493. * means that if you want a shared writable mapping, you'd better
  1494. * ask for a shared writable mapping!
  1495. *
  1496. * The page does not need to be reserved.
  1497. */
  1498. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1499. struct page *page)
  1500. {
  1501. if (addr < vma->vm_start || addr >= vma->vm_end)
  1502. return -EFAULT;
  1503. if (!page_count(page))
  1504. return -EINVAL;
  1505. vma->vm_flags |= VM_INSERTPAGE;
  1506. return insert_page(vma, addr, page, vma->vm_page_prot);
  1507. }
  1508. EXPORT_SYMBOL(vm_insert_page);
  1509. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1510. unsigned long pfn, pgprot_t prot)
  1511. {
  1512. struct mm_struct *mm = vma->vm_mm;
  1513. int retval;
  1514. pte_t *pte, entry;
  1515. spinlock_t *ptl;
  1516. retval = -ENOMEM;
  1517. pte = get_locked_pte(mm, addr, &ptl);
  1518. if (!pte)
  1519. goto out;
  1520. retval = -EBUSY;
  1521. if (!pte_none(*pte))
  1522. goto out_unlock;
  1523. /* Ok, finally just insert the thing.. */
  1524. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1525. set_pte_at(mm, addr, pte, entry);
  1526. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1527. retval = 0;
  1528. out_unlock:
  1529. pte_unmap_unlock(pte, ptl);
  1530. out:
  1531. return retval;
  1532. }
  1533. /**
  1534. * vm_insert_pfn - insert single pfn into user vma
  1535. * @vma: user vma to map to
  1536. * @addr: target user address of this page
  1537. * @pfn: source kernel pfn
  1538. *
  1539. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1540. * they've allocated into a user vma. Same comments apply.
  1541. *
  1542. * This function should only be called from a vm_ops->fault handler, and
  1543. * in that case the handler should return NULL.
  1544. *
  1545. * vma cannot be a COW mapping.
  1546. *
  1547. * As this is called only for pages that do not currently exist, we
  1548. * do not need to flush old virtual caches or the TLB.
  1549. */
  1550. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1551. unsigned long pfn)
  1552. {
  1553. int ret;
  1554. pgprot_t pgprot = vma->vm_page_prot;
  1555. /*
  1556. * Technically, architectures with pte_special can avoid all these
  1557. * restrictions (same for remap_pfn_range). However we would like
  1558. * consistency in testing and feature parity among all, so we should
  1559. * try to keep these invariants in place for everybody.
  1560. */
  1561. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1562. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1563. (VM_PFNMAP|VM_MIXEDMAP));
  1564. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1565. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1566. if (addr < vma->vm_start || addr >= vma->vm_end)
  1567. return -EFAULT;
  1568. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1569. return -EINVAL;
  1570. ret = insert_pfn(vma, addr, pfn, pgprot);
  1571. if (ret)
  1572. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1573. return ret;
  1574. }
  1575. EXPORT_SYMBOL(vm_insert_pfn);
  1576. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1577. unsigned long pfn)
  1578. {
  1579. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1580. if (addr < vma->vm_start || addr >= vma->vm_end)
  1581. return -EFAULT;
  1582. /*
  1583. * If we don't have pte special, then we have to use the pfn_valid()
  1584. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1585. * refcount the page if pfn_valid is true (hence insert_page rather
  1586. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1587. * without pte special, it would there be refcounted as a normal page.
  1588. */
  1589. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1590. struct page *page;
  1591. page = pfn_to_page(pfn);
  1592. return insert_page(vma, addr, page, vma->vm_page_prot);
  1593. }
  1594. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1595. }
  1596. EXPORT_SYMBOL(vm_insert_mixed);
  1597. /*
  1598. * maps a range of physical memory into the requested pages. the old
  1599. * mappings are removed. any references to nonexistent pages results
  1600. * in null mappings (currently treated as "copy-on-access")
  1601. */
  1602. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1603. unsigned long addr, unsigned long end,
  1604. unsigned long pfn, pgprot_t prot)
  1605. {
  1606. pte_t *pte;
  1607. spinlock_t *ptl;
  1608. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1609. if (!pte)
  1610. return -ENOMEM;
  1611. arch_enter_lazy_mmu_mode();
  1612. do {
  1613. BUG_ON(!pte_none(*pte));
  1614. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1615. pfn++;
  1616. } while (pte++, addr += PAGE_SIZE, addr != end);
  1617. arch_leave_lazy_mmu_mode();
  1618. pte_unmap_unlock(pte - 1, ptl);
  1619. return 0;
  1620. }
  1621. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1622. unsigned long addr, unsigned long end,
  1623. unsigned long pfn, pgprot_t prot)
  1624. {
  1625. pmd_t *pmd;
  1626. unsigned long next;
  1627. pfn -= addr >> PAGE_SHIFT;
  1628. pmd = pmd_alloc(mm, pud, addr);
  1629. if (!pmd)
  1630. return -ENOMEM;
  1631. do {
  1632. next = pmd_addr_end(addr, end);
  1633. if (remap_pte_range(mm, pmd, addr, next,
  1634. pfn + (addr >> PAGE_SHIFT), prot))
  1635. return -ENOMEM;
  1636. } while (pmd++, addr = next, addr != end);
  1637. return 0;
  1638. }
  1639. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1640. unsigned long addr, unsigned long end,
  1641. unsigned long pfn, pgprot_t prot)
  1642. {
  1643. pud_t *pud;
  1644. unsigned long next;
  1645. pfn -= addr >> PAGE_SHIFT;
  1646. pud = pud_alloc(mm, pgd, addr);
  1647. if (!pud)
  1648. return -ENOMEM;
  1649. do {
  1650. next = pud_addr_end(addr, end);
  1651. if (remap_pmd_range(mm, pud, addr, next,
  1652. pfn + (addr >> PAGE_SHIFT), prot))
  1653. return -ENOMEM;
  1654. } while (pud++, addr = next, addr != end);
  1655. return 0;
  1656. }
  1657. /**
  1658. * remap_pfn_range - remap kernel memory to userspace
  1659. * @vma: user vma to map to
  1660. * @addr: target user address to start at
  1661. * @pfn: physical address of kernel memory
  1662. * @size: size of map area
  1663. * @prot: page protection flags for this mapping
  1664. *
  1665. * Note: this is only safe if the mm semaphore is held when called.
  1666. */
  1667. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1668. unsigned long pfn, unsigned long size, pgprot_t prot)
  1669. {
  1670. pgd_t *pgd;
  1671. unsigned long next;
  1672. unsigned long end = addr + PAGE_ALIGN(size);
  1673. struct mm_struct *mm = vma->vm_mm;
  1674. int err;
  1675. /*
  1676. * Physically remapped pages are special. Tell the
  1677. * rest of the world about it:
  1678. * VM_IO tells people not to look at these pages
  1679. * (accesses can have side effects).
  1680. * VM_RESERVED is specified all over the place, because
  1681. * in 2.4 it kept swapout's vma scan off this vma; but
  1682. * in 2.6 the LRU scan won't even find its pages, so this
  1683. * flag means no more than count its pages in reserved_vm,
  1684. * and omit it from core dump, even when VM_IO turned off.
  1685. * VM_PFNMAP tells the core MM that the base pages are just
  1686. * raw PFN mappings, and do not have a "struct page" associated
  1687. * with them.
  1688. *
  1689. * There's a horrible special case to handle copy-on-write
  1690. * behaviour that some programs depend on. We mark the "original"
  1691. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1692. */
  1693. if (addr == vma->vm_start && end == vma->vm_end) {
  1694. vma->vm_pgoff = pfn;
  1695. vma->vm_flags |= VM_PFN_AT_MMAP;
  1696. } else if (is_cow_mapping(vma->vm_flags))
  1697. return -EINVAL;
  1698. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1699. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1700. if (err) {
  1701. /*
  1702. * To indicate that track_pfn related cleanup is not
  1703. * needed from higher level routine calling unmap_vmas
  1704. */
  1705. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1706. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1707. return -EINVAL;
  1708. }
  1709. BUG_ON(addr >= end);
  1710. pfn -= addr >> PAGE_SHIFT;
  1711. pgd = pgd_offset(mm, addr);
  1712. flush_cache_range(vma, addr, end);
  1713. do {
  1714. next = pgd_addr_end(addr, end);
  1715. err = remap_pud_range(mm, pgd, addr, next,
  1716. pfn + (addr >> PAGE_SHIFT), prot);
  1717. if (err)
  1718. break;
  1719. } while (pgd++, addr = next, addr != end);
  1720. if (err)
  1721. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1722. return err;
  1723. }
  1724. EXPORT_SYMBOL(remap_pfn_range);
  1725. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1726. unsigned long addr, unsigned long end,
  1727. pte_fn_t fn, void *data)
  1728. {
  1729. pte_t *pte;
  1730. int err;
  1731. pgtable_t token;
  1732. spinlock_t *uninitialized_var(ptl);
  1733. pte = (mm == &init_mm) ?
  1734. pte_alloc_kernel(pmd, addr) :
  1735. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1736. if (!pte)
  1737. return -ENOMEM;
  1738. BUG_ON(pmd_huge(*pmd));
  1739. arch_enter_lazy_mmu_mode();
  1740. token = pmd_pgtable(*pmd);
  1741. do {
  1742. err = fn(pte++, token, addr, data);
  1743. if (err)
  1744. break;
  1745. } while (addr += PAGE_SIZE, addr != end);
  1746. arch_leave_lazy_mmu_mode();
  1747. if (mm != &init_mm)
  1748. pte_unmap_unlock(pte-1, ptl);
  1749. return err;
  1750. }
  1751. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1752. unsigned long addr, unsigned long end,
  1753. pte_fn_t fn, void *data)
  1754. {
  1755. pmd_t *pmd;
  1756. unsigned long next;
  1757. int err;
  1758. BUG_ON(pud_huge(*pud));
  1759. pmd = pmd_alloc(mm, pud, addr);
  1760. if (!pmd)
  1761. return -ENOMEM;
  1762. do {
  1763. next = pmd_addr_end(addr, end);
  1764. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1765. if (err)
  1766. break;
  1767. } while (pmd++, addr = next, addr != end);
  1768. return err;
  1769. }
  1770. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1771. unsigned long addr, unsigned long end,
  1772. pte_fn_t fn, void *data)
  1773. {
  1774. pud_t *pud;
  1775. unsigned long next;
  1776. int err;
  1777. pud = pud_alloc(mm, pgd, addr);
  1778. if (!pud)
  1779. return -ENOMEM;
  1780. do {
  1781. next = pud_addr_end(addr, end);
  1782. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1783. if (err)
  1784. break;
  1785. } while (pud++, addr = next, addr != end);
  1786. return err;
  1787. }
  1788. /*
  1789. * Scan a region of virtual memory, filling in page tables as necessary
  1790. * and calling a provided function on each leaf page table.
  1791. */
  1792. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1793. unsigned long size, pte_fn_t fn, void *data)
  1794. {
  1795. pgd_t *pgd;
  1796. unsigned long next;
  1797. unsigned long end = addr + size;
  1798. int err;
  1799. BUG_ON(addr >= end);
  1800. pgd = pgd_offset(mm, addr);
  1801. do {
  1802. next = pgd_addr_end(addr, end);
  1803. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1804. if (err)
  1805. break;
  1806. } while (pgd++, addr = next, addr != end);
  1807. return err;
  1808. }
  1809. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1810. /*
  1811. * handle_pte_fault chooses page fault handler according to an entry
  1812. * which was read non-atomically. Before making any commitment, on
  1813. * those architectures or configurations (e.g. i386 with PAE) which
  1814. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1815. * must check under lock before unmapping the pte and proceeding
  1816. * (but do_wp_page is only called after already making such a check;
  1817. * and do_anonymous_page and do_no_page can safely check later on).
  1818. */
  1819. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1820. pte_t *page_table, pte_t orig_pte)
  1821. {
  1822. int same = 1;
  1823. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1824. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1825. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1826. spin_lock(ptl);
  1827. same = pte_same(*page_table, orig_pte);
  1828. spin_unlock(ptl);
  1829. }
  1830. #endif
  1831. pte_unmap(page_table);
  1832. return same;
  1833. }
  1834. /*
  1835. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1836. * servicing faults for write access. In the normal case, do always want
  1837. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1838. * that do not have writing enabled, when used by access_process_vm.
  1839. */
  1840. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1841. {
  1842. if (likely(vma->vm_flags & VM_WRITE))
  1843. pte = pte_mkwrite(pte);
  1844. return pte;
  1845. }
  1846. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1847. {
  1848. /*
  1849. * If the source page was a PFN mapping, we don't have
  1850. * a "struct page" for it. We do a best-effort copy by
  1851. * just copying from the original user address. If that
  1852. * fails, we just zero-fill it. Live with it.
  1853. */
  1854. if (unlikely(!src)) {
  1855. void *kaddr = kmap_atomic(dst, KM_USER0);
  1856. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1857. /*
  1858. * This really shouldn't fail, because the page is there
  1859. * in the page tables. But it might just be unreadable,
  1860. * in which case we just give up and fill the result with
  1861. * zeroes.
  1862. */
  1863. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1864. memset(kaddr, 0, PAGE_SIZE);
  1865. kunmap_atomic(kaddr, KM_USER0);
  1866. flush_dcache_page(dst);
  1867. } else
  1868. copy_user_highpage(dst, src, va, vma);
  1869. }
  1870. /*
  1871. * This routine handles present pages, when users try to write
  1872. * to a shared page. It is done by copying the page to a new address
  1873. * and decrementing the shared-page counter for the old page.
  1874. *
  1875. * Note that this routine assumes that the protection checks have been
  1876. * done by the caller (the low-level page fault routine in most cases).
  1877. * Thus we can safely just mark it writable once we've done any necessary
  1878. * COW.
  1879. *
  1880. * We also mark the page dirty at this point even though the page will
  1881. * change only once the write actually happens. This avoids a few races,
  1882. * and potentially makes it more efficient.
  1883. *
  1884. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1885. * but allow concurrent faults), with pte both mapped and locked.
  1886. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1887. */
  1888. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1889. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1890. spinlock_t *ptl, pte_t orig_pte)
  1891. {
  1892. struct page *old_page, *new_page;
  1893. pte_t entry;
  1894. int reuse = 0, ret = 0;
  1895. int page_mkwrite = 0;
  1896. struct page *dirty_page = NULL;
  1897. old_page = vm_normal_page(vma, address, orig_pte);
  1898. if (!old_page) {
  1899. /*
  1900. * VM_MIXEDMAP !pfn_valid() case
  1901. *
  1902. * We should not cow pages in a shared writeable mapping.
  1903. * Just mark the pages writable as we can't do any dirty
  1904. * accounting on raw pfn maps.
  1905. */
  1906. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1907. (VM_WRITE|VM_SHARED))
  1908. goto reuse;
  1909. goto gotten;
  1910. }
  1911. /*
  1912. * Take out anonymous pages first, anonymous shared vmas are
  1913. * not dirty accountable.
  1914. */
  1915. if (PageAnon(old_page) && !PageKsm(old_page)) {
  1916. if (!trylock_page(old_page)) {
  1917. page_cache_get(old_page);
  1918. pte_unmap_unlock(page_table, ptl);
  1919. lock_page(old_page);
  1920. page_table = pte_offset_map_lock(mm, pmd, address,
  1921. &ptl);
  1922. if (!pte_same(*page_table, orig_pte)) {
  1923. unlock_page(old_page);
  1924. page_cache_release(old_page);
  1925. goto unlock;
  1926. }
  1927. page_cache_release(old_page);
  1928. }
  1929. reuse = reuse_swap_page(old_page);
  1930. if (reuse)
  1931. /*
  1932. * The page is all ours. Move it to our anon_vma so
  1933. * the rmap code will not search our parent or siblings.
  1934. * Protected against the rmap code by the page lock.
  1935. */
  1936. page_move_anon_rmap(old_page, vma, address);
  1937. unlock_page(old_page);
  1938. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1939. (VM_WRITE|VM_SHARED))) {
  1940. /*
  1941. * Only catch write-faults on shared writable pages,
  1942. * read-only shared pages can get COWed by
  1943. * get_user_pages(.write=1, .force=1).
  1944. */
  1945. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1946. struct vm_fault vmf;
  1947. int tmp;
  1948. vmf.virtual_address = (void __user *)(address &
  1949. PAGE_MASK);
  1950. vmf.pgoff = old_page->index;
  1951. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1952. vmf.page = old_page;
  1953. /*
  1954. * Notify the address space that the page is about to
  1955. * become writable so that it can prohibit this or wait
  1956. * for the page to get into an appropriate state.
  1957. *
  1958. * We do this without the lock held, so that it can
  1959. * sleep if it needs to.
  1960. */
  1961. page_cache_get(old_page);
  1962. pte_unmap_unlock(page_table, ptl);
  1963. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  1964. if (unlikely(tmp &
  1965. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  1966. ret = tmp;
  1967. goto unwritable_page;
  1968. }
  1969. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  1970. lock_page(old_page);
  1971. if (!old_page->mapping) {
  1972. ret = 0; /* retry the fault */
  1973. unlock_page(old_page);
  1974. goto unwritable_page;
  1975. }
  1976. } else
  1977. VM_BUG_ON(!PageLocked(old_page));
  1978. /*
  1979. * Since we dropped the lock we need to revalidate
  1980. * the PTE as someone else may have changed it. If
  1981. * they did, we just return, as we can count on the
  1982. * MMU to tell us if they didn't also make it writable.
  1983. */
  1984. page_table = pte_offset_map_lock(mm, pmd, address,
  1985. &ptl);
  1986. if (!pte_same(*page_table, orig_pte)) {
  1987. unlock_page(old_page);
  1988. page_cache_release(old_page);
  1989. goto unlock;
  1990. }
  1991. page_mkwrite = 1;
  1992. }
  1993. dirty_page = old_page;
  1994. get_page(dirty_page);
  1995. reuse = 1;
  1996. }
  1997. if (reuse) {
  1998. reuse:
  1999. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2000. entry = pte_mkyoung(orig_pte);
  2001. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2002. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2003. update_mmu_cache(vma, address, page_table);
  2004. ret |= VM_FAULT_WRITE;
  2005. goto unlock;
  2006. }
  2007. /*
  2008. * Ok, we need to copy. Oh, well..
  2009. */
  2010. page_cache_get(old_page);
  2011. gotten:
  2012. pte_unmap_unlock(page_table, ptl);
  2013. if (unlikely(anon_vma_prepare(vma)))
  2014. goto oom;
  2015. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2016. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2017. if (!new_page)
  2018. goto oom;
  2019. } else {
  2020. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2021. if (!new_page)
  2022. goto oom;
  2023. cow_user_page(new_page, old_page, address, vma);
  2024. }
  2025. __SetPageUptodate(new_page);
  2026. /*
  2027. * Don't let another task, with possibly unlocked vma,
  2028. * keep the mlocked page.
  2029. */
  2030. if ((vma->vm_flags & VM_LOCKED) && old_page) {
  2031. lock_page(old_page); /* for LRU manipulation */
  2032. clear_page_mlock(old_page);
  2033. unlock_page(old_page);
  2034. }
  2035. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2036. goto oom_free_new;
  2037. /*
  2038. * Re-check the pte - we dropped the lock
  2039. */
  2040. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2041. if (likely(pte_same(*page_table, orig_pte))) {
  2042. if (old_page) {
  2043. if (!PageAnon(old_page)) {
  2044. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2045. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2046. }
  2047. } else
  2048. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2049. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2050. entry = mk_pte(new_page, vma->vm_page_prot);
  2051. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2052. /*
  2053. * Clear the pte entry and flush it first, before updating the
  2054. * pte with the new entry. This will avoid a race condition
  2055. * seen in the presence of one thread doing SMC and another
  2056. * thread doing COW.
  2057. */
  2058. ptep_clear_flush(vma, address, page_table);
  2059. page_add_new_anon_rmap(new_page, vma, address);
  2060. /*
  2061. * We call the notify macro here because, when using secondary
  2062. * mmu page tables (such as kvm shadow page tables), we want the
  2063. * new page to be mapped directly into the secondary page table.
  2064. */
  2065. set_pte_at_notify(mm, address, page_table, entry);
  2066. update_mmu_cache(vma, address, page_table);
  2067. if (old_page) {
  2068. /*
  2069. * Only after switching the pte to the new page may
  2070. * we remove the mapcount here. Otherwise another
  2071. * process may come and find the rmap count decremented
  2072. * before the pte is switched to the new page, and
  2073. * "reuse" the old page writing into it while our pte
  2074. * here still points into it and can be read by other
  2075. * threads.
  2076. *
  2077. * The critical issue is to order this
  2078. * page_remove_rmap with the ptp_clear_flush above.
  2079. * Those stores are ordered by (if nothing else,)
  2080. * the barrier present in the atomic_add_negative
  2081. * in page_remove_rmap.
  2082. *
  2083. * Then the TLB flush in ptep_clear_flush ensures that
  2084. * no process can access the old page before the
  2085. * decremented mapcount is visible. And the old page
  2086. * cannot be reused until after the decremented
  2087. * mapcount is visible. So transitively, TLBs to
  2088. * old page will be flushed before it can be reused.
  2089. */
  2090. page_remove_rmap(old_page);
  2091. }
  2092. /* Free the old page.. */
  2093. new_page = old_page;
  2094. ret |= VM_FAULT_WRITE;
  2095. } else
  2096. mem_cgroup_uncharge_page(new_page);
  2097. if (new_page)
  2098. page_cache_release(new_page);
  2099. if (old_page)
  2100. page_cache_release(old_page);
  2101. unlock:
  2102. pte_unmap_unlock(page_table, ptl);
  2103. if (dirty_page) {
  2104. /*
  2105. * Yes, Virginia, this is actually required to prevent a race
  2106. * with clear_page_dirty_for_io() from clearing the page dirty
  2107. * bit after it clear all dirty ptes, but before a racing
  2108. * do_wp_page installs a dirty pte.
  2109. *
  2110. * do_no_page is protected similarly.
  2111. */
  2112. if (!page_mkwrite) {
  2113. wait_on_page_locked(dirty_page);
  2114. set_page_dirty_balance(dirty_page, page_mkwrite);
  2115. }
  2116. put_page(dirty_page);
  2117. if (page_mkwrite) {
  2118. struct address_space *mapping = dirty_page->mapping;
  2119. set_page_dirty(dirty_page);
  2120. unlock_page(dirty_page);
  2121. page_cache_release(dirty_page);
  2122. if (mapping) {
  2123. /*
  2124. * Some device drivers do not set page.mapping
  2125. * but still dirty their pages
  2126. */
  2127. balance_dirty_pages_ratelimited(mapping);
  2128. }
  2129. }
  2130. /* file_update_time outside page_lock */
  2131. if (vma->vm_file)
  2132. file_update_time(vma->vm_file);
  2133. }
  2134. return ret;
  2135. oom_free_new:
  2136. page_cache_release(new_page);
  2137. oom:
  2138. if (old_page) {
  2139. if (page_mkwrite) {
  2140. unlock_page(old_page);
  2141. page_cache_release(old_page);
  2142. }
  2143. page_cache_release(old_page);
  2144. }
  2145. return VM_FAULT_OOM;
  2146. unwritable_page:
  2147. page_cache_release(old_page);
  2148. return ret;
  2149. }
  2150. /*
  2151. * Helper functions for unmap_mapping_range().
  2152. *
  2153. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2154. *
  2155. * We have to restart searching the prio_tree whenever we drop the lock,
  2156. * since the iterator is only valid while the lock is held, and anyway
  2157. * a later vma might be split and reinserted earlier while lock dropped.
  2158. *
  2159. * The list of nonlinear vmas could be handled more efficiently, using
  2160. * a placeholder, but handle it in the same way until a need is shown.
  2161. * It is important to search the prio_tree before nonlinear list: a vma
  2162. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2163. * while the lock is dropped; but never shifted from list to prio_tree.
  2164. *
  2165. * In order to make forward progress despite restarting the search,
  2166. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2167. * quickly skip it next time around. Since the prio_tree search only
  2168. * shows us those vmas affected by unmapping the range in question, we
  2169. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2170. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2171. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2172. * i_mmap_lock.
  2173. *
  2174. * In order to make forward progress despite repeatedly restarting some
  2175. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2176. * and restart from that address when we reach that vma again. It might
  2177. * have been split or merged, shrunk or extended, but never shifted: so
  2178. * restart_addr remains valid so long as it remains in the vma's range.
  2179. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2180. * values so we can save vma's restart_addr in its truncate_count field.
  2181. */
  2182. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2183. static void reset_vma_truncate_counts(struct address_space *mapping)
  2184. {
  2185. struct vm_area_struct *vma;
  2186. struct prio_tree_iter iter;
  2187. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2188. vma->vm_truncate_count = 0;
  2189. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2190. vma->vm_truncate_count = 0;
  2191. }
  2192. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2193. unsigned long start_addr, unsigned long end_addr,
  2194. struct zap_details *details)
  2195. {
  2196. unsigned long restart_addr;
  2197. int need_break;
  2198. /*
  2199. * files that support invalidating or truncating portions of the
  2200. * file from under mmaped areas must have their ->fault function
  2201. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2202. * This provides synchronisation against concurrent unmapping here.
  2203. */
  2204. again:
  2205. restart_addr = vma->vm_truncate_count;
  2206. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2207. start_addr = restart_addr;
  2208. if (start_addr >= end_addr) {
  2209. /* Top of vma has been split off since last time */
  2210. vma->vm_truncate_count = details->truncate_count;
  2211. return 0;
  2212. }
  2213. }
  2214. restart_addr = zap_page_range(vma, start_addr,
  2215. end_addr - start_addr, details);
  2216. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2217. if (restart_addr >= end_addr) {
  2218. /* We have now completed this vma: mark it so */
  2219. vma->vm_truncate_count = details->truncate_count;
  2220. if (!need_break)
  2221. return 0;
  2222. } else {
  2223. /* Note restart_addr in vma's truncate_count field */
  2224. vma->vm_truncate_count = restart_addr;
  2225. if (!need_break)
  2226. goto again;
  2227. }
  2228. spin_unlock(details->i_mmap_lock);
  2229. cond_resched();
  2230. spin_lock(details->i_mmap_lock);
  2231. return -EINTR;
  2232. }
  2233. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2234. struct zap_details *details)
  2235. {
  2236. struct vm_area_struct *vma;
  2237. struct prio_tree_iter iter;
  2238. pgoff_t vba, vea, zba, zea;
  2239. restart:
  2240. vma_prio_tree_foreach(vma, &iter, root,
  2241. details->first_index, details->last_index) {
  2242. /* Skip quickly over those we have already dealt with */
  2243. if (vma->vm_truncate_count == details->truncate_count)
  2244. continue;
  2245. vba = vma->vm_pgoff;
  2246. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2247. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2248. zba = details->first_index;
  2249. if (zba < vba)
  2250. zba = vba;
  2251. zea = details->last_index;
  2252. if (zea > vea)
  2253. zea = vea;
  2254. if (unmap_mapping_range_vma(vma,
  2255. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2256. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2257. details) < 0)
  2258. goto restart;
  2259. }
  2260. }
  2261. static inline void unmap_mapping_range_list(struct list_head *head,
  2262. struct zap_details *details)
  2263. {
  2264. struct vm_area_struct *vma;
  2265. /*
  2266. * In nonlinear VMAs there is no correspondence between virtual address
  2267. * offset and file offset. So we must perform an exhaustive search
  2268. * across *all* the pages in each nonlinear VMA, not just the pages
  2269. * whose virtual address lies outside the file truncation point.
  2270. */
  2271. restart:
  2272. list_for_each_entry(vma, head, shared.vm_set.list) {
  2273. /* Skip quickly over those we have already dealt with */
  2274. if (vma->vm_truncate_count == details->truncate_count)
  2275. continue;
  2276. details->nonlinear_vma = vma;
  2277. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2278. vma->vm_end, details) < 0)
  2279. goto restart;
  2280. }
  2281. }
  2282. /**
  2283. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2284. * @mapping: the address space containing mmaps to be unmapped.
  2285. * @holebegin: byte in first page to unmap, relative to the start of
  2286. * the underlying file. This will be rounded down to a PAGE_SIZE
  2287. * boundary. Note that this is different from truncate_pagecache(), which
  2288. * must keep the partial page. In contrast, we must get rid of
  2289. * partial pages.
  2290. * @holelen: size of prospective hole in bytes. This will be rounded
  2291. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2292. * end of the file.
  2293. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2294. * but 0 when invalidating pagecache, don't throw away private data.
  2295. */
  2296. void unmap_mapping_range(struct address_space *mapping,
  2297. loff_t const holebegin, loff_t const holelen, int even_cows)
  2298. {
  2299. struct zap_details details;
  2300. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2301. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2302. /* Check for overflow. */
  2303. if (sizeof(holelen) > sizeof(hlen)) {
  2304. long long holeend =
  2305. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2306. if (holeend & ~(long long)ULONG_MAX)
  2307. hlen = ULONG_MAX - hba + 1;
  2308. }
  2309. details.check_mapping = even_cows? NULL: mapping;
  2310. details.nonlinear_vma = NULL;
  2311. details.first_index = hba;
  2312. details.last_index = hba + hlen - 1;
  2313. if (details.last_index < details.first_index)
  2314. details.last_index = ULONG_MAX;
  2315. details.i_mmap_lock = &mapping->i_mmap_lock;
  2316. spin_lock(&mapping->i_mmap_lock);
  2317. /* Protect against endless unmapping loops */
  2318. mapping->truncate_count++;
  2319. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2320. if (mapping->truncate_count == 0)
  2321. reset_vma_truncate_counts(mapping);
  2322. mapping->truncate_count++;
  2323. }
  2324. details.truncate_count = mapping->truncate_count;
  2325. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2326. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2327. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2328. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2329. spin_unlock(&mapping->i_mmap_lock);
  2330. }
  2331. EXPORT_SYMBOL(unmap_mapping_range);
  2332. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2333. {
  2334. struct address_space *mapping = inode->i_mapping;
  2335. /*
  2336. * If the underlying filesystem is not going to provide
  2337. * a way to truncate a range of blocks (punch a hole) -
  2338. * we should return failure right now.
  2339. */
  2340. if (!inode->i_op->truncate_range)
  2341. return -ENOSYS;
  2342. mutex_lock(&inode->i_mutex);
  2343. down_write(&inode->i_alloc_sem);
  2344. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2345. truncate_inode_pages_range(mapping, offset, end);
  2346. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2347. inode->i_op->truncate_range(inode, offset, end);
  2348. up_write(&inode->i_alloc_sem);
  2349. mutex_unlock(&inode->i_mutex);
  2350. return 0;
  2351. }
  2352. /*
  2353. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2354. * but allow concurrent faults), and pte mapped but not yet locked.
  2355. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2356. */
  2357. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2358. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2359. unsigned int flags, pte_t orig_pte)
  2360. {
  2361. spinlock_t *ptl;
  2362. struct page *page;
  2363. swp_entry_t entry;
  2364. pte_t pte;
  2365. struct mem_cgroup *ptr = NULL;
  2366. int exclusive = 0;
  2367. int ret = 0;
  2368. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2369. goto out;
  2370. entry = pte_to_swp_entry(orig_pte);
  2371. if (unlikely(non_swap_entry(entry))) {
  2372. if (is_migration_entry(entry)) {
  2373. migration_entry_wait(mm, pmd, address);
  2374. } else if (is_hwpoison_entry(entry)) {
  2375. ret = VM_FAULT_HWPOISON;
  2376. } else {
  2377. print_bad_pte(vma, address, orig_pte, NULL);
  2378. ret = VM_FAULT_SIGBUS;
  2379. }
  2380. goto out;
  2381. }
  2382. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2383. page = lookup_swap_cache(entry);
  2384. if (!page) {
  2385. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2386. page = swapin_readahead(entry,
  2387. GFP_HIGHUSER_MOVABLE, vma, address);
  2388. if (!page) {
  2389. /*
  2390. * Back out if somebody else faulted in this pte
  2391. * while we released the pte lock.
  2392. */
  2393. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2394. if (likely(pte_same(*page_table, orig_pte)))
  2395. ret = VM_FAULT_OOM;
  2396. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2397. goto unlock;
  2398. }
  2399. /* Had to read the page from swap area: Major fault */
  2400. ret = VM_FAULT_MAJOR;
  2401. count_vm_event(PGMAJFAULT);
  2402. } else if (PageHWPoison(page)) {
  2403. /*
  2404. * hwpoisoned dirty swapcache pages are kept for killing
  2405. * owner processes (which may be unknown at hwpoison time)
  2406. */
  2407. ret = VM_FAULT_HWPOISON;
  2408. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2409. goto out_release;
  2410. }
  2411. lock_page(page);
  2412. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2413. page = ksm_might_need_to_copy(page, vma, address);
  2414. if (!page) {
  2415. ret = VM_FAULT_OOM;
  2416. goto out;
  2417. }
  2418. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2419. ret = VM_FAULT_OOM;
  2420. goto out_page;
  2421. }
  2422. /*
  2423. * Back out if somebody else already faulted in this pte.
  2424. */
  2425. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2426. if (unlikely(!pte_same(*page_table, orig_pte)))
  2427. goto out_nomap;
  2428. if (unlikely(!PageUptodate(page))) {
  2429. ret = VM_FAULT_SIGBUS;
  2430. goto out_nomap;
  2431. }
  2432. /*
  2433. * The page isn't present yet, go ahead with the fault.
  2434. *
  2435. * Be careful about the sequence of operations here.
  2436. * To get its accounting right, reuse_swap_page() must be called
  2437. * while the page is counted on swap but not yet in mapcount i.e.
  2438. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2439. * must be called after the swap_free(), or it will never succeed.
  2440. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2441. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2442. * in page->private. In this case, a record in swap_cgroup is silently
  2443. * discarded at swap_free().
  2444. */
  2445. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2446. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2447. pte = mk_pte(page, vma->vm_page_prot);
  2448. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2449. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2450. flags &= ~FAULT_FLAG_WRITE;
  2451. ret |= VM_FAULT_WRITE;
  2452. exclusive = 1;
  2453. }
  2454. flush_icache_page(vma, page);
  2455. set_pte_at(mm, address, page_table, pte);
  2456. do_page_add_anon_rmap(page, vma, address, exclusive);
  2457. /* It's better to call commit-charge after rmap is established */
  2458. mem_cgroup_commit_charge_swapin(page, ptr);
  2459. swap_free(entry);
  2460. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2461. try_to_free_swap(page);
  2462. unlock_page(page);
  2463. if (flags & FAULT_FLAG_WRITE) {
  2464. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2465. if (ret & VM_FAULT_ERROR)
  2466. ret &= VM_FAULT_ERROR;
  2467. goto out;
  2468. }
  2469. /* No need to invalidate - it was non-present before */
  2470. update_mmu_cache(vma, address, page_table);
  2471. unlock:
  2472. pte_unmap_unlock(page_table, ptl);
  2473. out:
  2474. return ret;
  2475. out_nomap:
  2476. mem_cgroup_cancel_charge_swapin(ptr);
  2477. pte_unmap_unlock(page_table, ptl);
  2478. out_page:
  2479. unlock_page(page);
  2480. out_release:
  2481. page_cache_release(page);
  2482. return ret;
  2483. }
  2484. /*
  2485. * This is like a special single-page "expand_{down|up}wards()",
  2486. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2487. * doesn't hit another vma.
  2488. */
  2489. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2490. {
  2491. address &= PAGE_MASK;
  2492. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2493. struct vm_area_struct *prev = vma->vm_prev;
  2494. /*
  2495. * Is there a mapping abutting this one below?
  2496. *
  2497. * That's only ok if it's the same stack mapping
  2498. * that has gotten split..
  2499. */
  2500. if (prev && prev->vm_end == address)
  2501. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2502. expand_stack(vma, address - PAGE_SIZE);
  2503. }
  2504. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2505. struct vm_area_struct *next = vma->vm_next;
  2506. /* As VM_GROWSDOWN but s/below/above/ */
  2507. if (next && next->vm_start == address + PAGE_SIZE)
  2508. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2509. expand_upwards(vma, address + PAGE_SIZE);
  2510. }
  2511. return 0;
  2512. }
  2513. /*
  2514. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2515. * but allow concurrent faults), and pte mapped but not yet locked.
  2516. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2517. */
  2518. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2519. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2520. unsigned int flags)
  2521. {
  2522. struct page *page;
  2523. spinlock_t *ptl;
  2524. pte_t entry;
  2525. pte_unmap(page_table);
  2526. /* Check if we need to add a guard page to the stack */
  2527. if (check_stack_guard_page(vma, address) < 0)
  2528. return VM_FAULT_SIGBUS;
  2529. /* Use the zero-page for reads */
  2530. if (!(flags & FAULT_FLAG_WRITE)) {
  2531. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2532. vma->vm_page_prot));
  2533. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2534. if (!pte_none(*page_table))
  2535. goto unlock;
  2536. goto setpte;
  2537. }
  2538. /* Allocate our own private page. */
  2539. if (unlikely(anon_vma_prepare(vma)))
  2540. goto oom;
  2541. page = alloc_zeroed_user_highpage_movable(vma, address);
  2542. if (!page)
  2543. goto oom;
  2544. __SetPageUptodate(page);
  2545. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2546. goto oom_free_page;
  2547. entry = mk_pte(page, vma->vm_page_prot);
  2548. if (vma->vm_flags & VM_WRITE)
  2549. entry = pte_mkwrite(pte_mkdirty(entry));
  2550. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2551. if (!pte_none(*page_table))
  2552. goto release;
  2553. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2554. page_add_new_anon_rmap(page, vma, address);
  2555. setpte:
  2556. set_pte_at(mm, address, page_table, entry);
  2557. /* No need to invalidate - it was non-present before */
  2558. update_mmu_cache(vma, address, page_table);
  2559. unlock:
  2560. pte_unmap_unlock(page_table, ptl);
  2561. return 0;
  2562. release:
  2563. mem_cgroup_uncharge_page(page);
  2564. page_cache_release(page);
  2565. goto unlock;
  2566. oom_free_page:
  2567. page_cache_release(page);
  2568. oom:
  2569. return VM_FAULT_OOM;
  2570. }
  2571. /*
  2572. * __do_fault() tries to create a new page mapping. It aggressively
  2573. * tries to share with existing pages, but makes a separate copy if
  2574. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2575. * the next page fault.
  2576. *
  2577. * As this is called only for pages that do not currently exist, we
  2578. * do not need to flush old virtual caches or the TLB.
  2579. *
  2580. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2581. * but allow concurrent faults), and pte neither mapped nor locked.
  2582. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2583. */
  2584. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2585. unsigned long address, pmd_t *pmd,
  2586. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2587. {
  2588. pte_t *page_table;
  2589. spinlock_t *ptl;
  2590. struct page *page;
  2591. pte_t entry;
  2592. int anon = 0;
  2593. int charged = 0;
  2594. struct page *dirty_page = NULL;
  2595. struct vm_fault vmf;
  2596. int ret;
  2597. int page_mkwrite = 0;
  2598. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2599. vmf.pgoff = pgoff;
  2600. vmf.flags = flags;
  2601. vmf.page = NULL;
  2602. ret = vma->vm_ops->fault(vma, &vmf);
  2603. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2604. return ret;
  2605. if (unlikely(PageHWPoison(vmf.page))) {
  2606. if (ret & VM_FAULT_LOCKED)
  2607. unlock_page(vmf.page);
  2608. return VM_FAULT_HWPOISON;
  2609. }
  2610. /*
  2611. * For consistency in subsequent calls, make the faulted page always
  2612. * locked.
  2613. */
  2614. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2615. lock_page(vmf.page);
  2616. else
  2617. VM_BUG_ON(!PageLocked(vmf.page));
  2618. /*
  2619. * Should we do an early C-O-W break?
  2620. */
  2621. page = vmf.page;
  2622. if (flags & FAULT_FLAG_WRITE) {
  2623. if (!(vma->vm_flags & VM_SHARED)) {
  2624. anon = 1;
  2625. if (unlikely(anon_vma_prepare(vma))) {
  2626. ret = VM_FAULT_OOM;
  2627. goto out;
  2628. }
  2629. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2630. vma, address);
  2631. if (!page) {
  2632. ret = VM_FAULT_OOM;
  2633. goto out;
  2634. }
  2635. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2636. ret = VM_FAULT_OOM;
  2637. page_cache_release(page);
  2638. goto out;
  2639. }
  2640. charged = 1;
  2641. /*
  2642. * Don't let another task, with possibly unlocked vma,
  2643. * keep the mlocked page.
  2644. */
  2645. if (vma->vm_flags & VM_LOCKED)
  2646. clear_page_mlock(vmf.page);
  2647. copy_user_highpage(page, vmf.page, address, vma);
  2648. __SetPageUptodate(page);
  2649. } else {
  2650. /*
  2651. * If the page will be shareable, see if the backing
  2652. * address space wants to know that the page is about
  2653. * to become writable
  2654. */
  2655. if (vma->vm_ops->page_mkwrite) {
  2656. int tmp;
  2657. unlock_page(page);
  2658. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2659. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2660. if (unlikely(tmp &
  2661. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2662. ret = tmp;
  2663. goto unwritable_page;
  2664. }
  2665. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2666. lock_page(page);
  2667. if (!page->mapping) {
  2668. ret = 0; /* retry the fault */
  2669. unlock_page(page);
  2670. goto unwritable_page;
  2671. }
  2672. } else
  2673. VM_BUG_ON(!PageLocked(page));
  2674. page_mkwrite = 1;
  2675. }
  2676. }
  2677. }
  2678. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2679. /*
  2680. * This silly early PAGE_DIRTY setting removes a race
  2681. * due to the bad i386 page protection. But it's valid
  2682. * for other architectures too.
  2683. *
  2684. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2685. * an exclusive copy of the page, or this is a shared mapping,
  2686. * so we can make it writable and dirty to avoid having to
  2687. * handle that later.
  2688. */
  2689. /* Only go through if we didn't race with anybody else... */
  2690. if (likely(pte_same(*page_table, orig_pte))) {
  2691. flush_icache_page(vma, page);
  2692. entry = mk_pte(page, vma->vm_page_prot);
  2693. if (flags & FAULT_FLAG_WRITE)
  2694. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2695. if (anon) {
  2696. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2697. page_add_new_anon_rmap(page, vma, address);
  2698. } else {
  2699. inc_mm_counter_fast(mm, MM_FILEPAGES);
  2700. page_add_file_rmap(page);
  2701. if (flags & FAULT_FLAG_WRITE) {
  2702. dirty_page = page;
  2703. get_page(dirty_page);
  2704. }
  2705. }
  2706. set_pte_at(mm, address, page_table, entry);
  2707. /* no need to invalidate: a not-present page won't be cached */
  2708. update_mmu_cache(vma, address, page_table);
  2709. } else {
  2710. if (charged)
  2711. mem_cgroup_uncharge_page(page);
  2712. if (anon)
  2713. page_cache_release(page);
  2714. else
  2715. anon = 1; /* no anon but release faulted_page */
  2716. }
  2717. pte_unmap_unlock(page_table, ptl);
  2718. out:
  2719. if (dirty_page) {
  2720. struct address_space *mapping = page->mapping;
  2721. if (set_page_dirty(dirty_page))
  2722. page_mkwrite = 1;
  2723. unlock_page(dirty_page);
  2724. put_page(dirty_page);
  2725. if (page_mkwrite && mapping) {
  2726. /*
  2727. * Some device drivers do not set page.mapping but still
  2728. * dirty their pages
  2729. */
  2730. balance_dirty_pages_ratelimited(mapping);
  2731. }
  2732. /* file_update_time outside page_lock */
  2733. if (vma->vm_file)
  2734. file_update_time(vma->vm_file);
  2735. } else {
  2736. unlock_page(vmf.page);
  2737. if (anon)
  2738. page_cache_release(vmf.page);
  2739. }
  2740. return ret;
  2741. unwritable_page:
  2742. page_cache_release(page);
  2743. return ret;
  2744. }
  2745. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2746. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2747. unsigned int flags, pte_t orig_pte)
  2748. {
  2749. pgoff_t pgoff = (((address & PAGE_MASK)
  2750. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2751. pte_unmap(page_table);
  2752. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2753. }
  2754. /*
  2755. * Fault of a previously existing named mapping. Repopulate the pte
  2756. * from the encoded file_pte if possible. This enables swappable
  2757. * nonlinear vmas.
  2758. *
  2759. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2760. * but allow concurrent faults), and pte mapped but not yet locked.
  2761. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2762. */
  2763. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2764. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2765. unsigned int flags, pte_t orig_pte)
  2766. {
  2767. pgoff_t pgoff;
  2768. flags |= FAULT_FLAG_NONLINEAR;
  2769. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2770. return 0;
  2771. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2772. /*
  2773. * Page table corrupted: show pte and kill process.
  2774. */
  2775. print_bad_pte(vma, address, orig_pte, NULL);
  2776. return VM_FAULT_SIGBUS;
  2777. }
  2778. pgoff = pte_to_pgoff(orig_pte);
  2779. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2780. }
  2781. /*
  2782. * These routines also need to handle stuff like marking pages dirty
  2783. * and/or accessed for architectures that don't do it in hardware (most
  2784. * RISC architectures). The early dirtying is also good on the i386.
  2785. *
  2786. * There is also a hook called "update_mmu_cache()" that architectures
  2787. * with external mmu caches can use to update those (ie the Sparc or
  2788. * PowerPC hashed page tables that act as extended TLBs).
  2789. *
  2790. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2791. * but allow concurrent faults), and pte mapped but not yet locked.
  2792. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2793. */
  2794. static inline int handle_pte_fault(struct mm_struct *mm,
  2795. struct vm_area_struct *vma, unsigned long address,
  2796. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2797. {
  2798. pte_t entry;
  2799. spinlock_t *ptl;
  2800. entry = *pte;
  2801. if (!pte_present(entry)) {
  2802. if (pte_none(entry)) {
  2803. if (vma->vm_ops) {
  2804. if (likely(vma->vm_ops->fault))
  2805. return do_linear_fault(mm, vma, address,
  2806. pte, pmd, flags, entry);
  2807. }
  2808. return do_anonymous_page(mm, vma, address,
  2809. pte, pmd, flags);
  2810. }
  2811. if (pte_file(entry))
  2812. return do_nonlinear_fault(mm, vma, address,
  2813. pte, pmd, flags, entry);
  2814. return do_swap_page(mm, vma, address,
  2815. pte, pmd, flags, entry);
  2816. }
  2817. ptl = pte_lockptr(mm, pmd);
  2818. spin_lock(ptl);
  2819. if (unlikely(!pte_same(*pte, entry)))
  2820. goto unlock;
  2821. if (flags & FAULT_FLAG_WRITE) {
  2822. if (!pte_write(entry))
  2823. return do_wp_page(mm, vma, address,
  2824. pte, pmd, ptl, entry);
  2825. entry = pte_mkdirty(entry);
  2826. }
  2827. entry = pte_mkyoung(entry);
  2828. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2829. update_mmu_cache(vma, address, pte);
  2830. } else {
  2831. /*
  2832. * This is needed only for protection faults but the arch code
  2833. * is not yet telling us if this is a protection fault or not.
  2834. * This still avoids useless tlb flushes for .text page faults
  2835. * with threads.
  2836. */
  2837. if (flags & FAULT_FLAG_WRITE)
  2838. flush_tlb_page(vma, address);
  2839. }
  2840. unlock:
  2841. pte_unmap_unlock(pte, ptl);
  2842. return 0;
  2843. }
  2844. /*
  2845. * By the time we get here, we already hold the mm semaphore
  2846. */
  2847. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2848. unsigned long address, unsigned int flags)
  2849. {
  2850. pgd_t *pgd;
  2851. pud_t *pud;
  2852. pmd_t *pmd;
  2853. pte_t *pte;
  2854. __set_current_state(TASK_RUNNING);
  2855. count_vm_event(PGFAULT);
  2856. /* do counter updates before entering really critical section. */
  2857. check_sync_rss_stat(current);
  2858. if (unlikely(is_vm_hugetlb_page(vma)))
  2859. return hugetlb_fault(mm, vma, address, flags);
  2860. pgd = pgd_offset(mm, address);
  2861. pud = pud_alloc(mm, pgd, address);
  2862. if (!pud)
  2863. return VM_FAULT_OOM;
  2864. pmd = pmd_alloc(mm, pud, address);
  2865. if (!pmd)
  2866. return VM_FAULT_OOM;
  2867. pte = pte_alloc_map(mm, pmd, address);
  2868. if (!pte)
  2869. return VM_FAULT_OOM;
  2870. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2871. }
  2872. #ifndef __PAGETABLE_PUD_FOLDED
  2873. /*
  2874. * Allocate page upper directory.
  2875. * We've already handled the fast-path in-line.
  2876. */
  2877. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2878. {
  2879. pud_t *new = pud_alloc_one(mm, address);
  2880. if (!new)
  2881. return -ENOMEM;
  2882. smp_wmb(); /* See comment in __pte_alloc */
  2883. spin_lock(&mm->page_table_lock);
  2884. if (pgd_present(*pgd)) /* Another has populated it */
  2885. pud_free(mm, new);
  2886. else
  2887. pgd_populate(mm, pgd, new);
  2888. spin_unlock(&mm->page_table_lock);
  2889. return 0;
  2890. }
  2891. #endif /* __PAGETABLE_PUD_FOLDED */
  2892. #ifndef __PAGETABLE_PMD_FOLDED
  2893. /*
  2894. * Allocate page middle directory.
  2895. * We've already handled the fast-path in-line.
  2896. */
  2897. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2898. {
  2899. pmd_t *new = pmd_alloc_one(mm, address);
  2900. if (!new)
  2901. return -ENOMEM;
  2902. smp_wmb(); /* See comment in __pte_alloc */
  2903. spin_lock(&mm->page_table_lock);
  2904. #ifndef __ARCH_HAS_4LEVEL_HACK
  2905. if (pud_present(*pud)) /* Another has populated it */
  2906. pmd_free(mm, new);
  2907. else
  2908. pud_populate(mm, pud, new);
  2909. #else
  2910. if (pgd_present(*pud)) /* Another has populated it */
  2911. pmd_free(mm, new);
  2912. else
  2913. pgd_populate(mm, pud, new);
  2914. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2915. spin_unlock(&mm->page_table_lock);
  2916. return 0;
  2917. }
  2918. #endif /* __PAGETABLE_PMD_FOLDED */
  2919. int make_pages_present(unsigned long addr, unsigned long end)
  2920. {
  2921. int ret, len, write;
  2922. struct vm_area_struct * vma;
  2923. vma = find_vma(current->mm, addr);
  2924. if (!vma)
  2925. return -ENOMEM;
  2926. write = (vma->vm_flags & VM_WRITE) != 0;
  2927. BUG_ON(addr >= end);
  2928. BUG_ON(end > vma->vm_end);
  2929. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2930. ret = get_user_pages(current, current->mm, addr,
  2931. len, write, 0, NULL, NULL);
  2932. if (ret < 0)
  2933. return ret;
  2934. return ret == len ? 0 : -EFAULT;
  2935. }
  2936. #if !defined(__HAVE_ARCH_GATE_AREA)
  2937. #if defined(AT_SYSINFO_EHDR)
  2938. static struct vm_area_struct gate_vma;
  2939. static int __init gate_vma_init(void)
  2940. {
  2941. gate_vma.vm_mm = NULL;
  2942. gate_vma.vm_start = FIXADDR_USER_START;
  2943. gate_vma.vm_end = FIXADDR_USER_END;
  2944. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2945. gate_vma.vm_page_prot = __P101;
  2946. /*
  2947. * Make sure the vDSO gets into every core dump.
  2948. * Dumping its contents makes post-mortem fully interpretable later
  2949. * without matching up the same kernel and hardware config to see
  2950. * what PC values meant.
  2951. */
  2952. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2953. return 0;
  2954. }
  2955. __initcall(gate_vma_init);
  2956. #endif
  2957. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2958. {
  2959. #ifdef AT_SYSINFO_EHDR
  2960. return &gate_vma;
  2961. #else
  2962. return NULL;
  2963. #endif
  2964. }
  2965. int in_gate_area_no_task(unsigned long addr)
  2966. {
  2967. #ifdef AT_SYSINFO_EHDR
  2968. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2969. return 1;
  2970. #endif
  2971. return 0;
  2972. }
  2973. #endif /* __HAVE_ARCH_GATE_AREA */
  2974. static int follow_pte(struct mm_struct *mm, unsigned long address,
  2975. pte_t **ptepp, spinlock_t **ptlp)
  2976. {
  2977. pgd_t *pgd;
  2978. pud_t *pud;
  2979. pmd_t *pmd;
  2980. pte_t *ptep;
  2981. pgd = pgd_offset(mm, address);
  2982. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2983. goto out;
  2984. pud = pud_offset(pgd, address);
  2985. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2986. goto out;
  2987. pmd = pmd_offset(pud, address);
  2988. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2989. goto out;
  2990. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2991. if (pmd_huge(*pmd))
  2992. goto out;
  2993. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  2994. if (!ptep)
  2995. goto out;
  2996. if (!pte_present(*ptep))
  2997. goto unlock;
  2998. *ptepp = ptep;
  2999. return 0;
  3000. unlock:
  3001. pte_unmap_unlock(ptep, *ptlp);
  3002. out:
  3003. return -EINVAL;
  3004. }
  3005. /**
  3006. * follow_pfn - look up PFN at a user virtual address
  3007. * @vma: memory mapping
  3008. * @address: user virtual address
  3009. * @pfn: location to store found PFN
  3010. *
  3011. * Only IO mappings and raw PFN mappings are allowed.
  3012. *
  3013. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3014. */
  3015. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3016. unsigned long *pfn)
  3017. {
  3018. int ret = -EINVAL;
  3019. spinlock_t *ptl;
  3020. pte_t *ptep;
  3021. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3022. return ret;
  3023. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3024. if (ret)
  3025. return ret;
  3026. *pfn = pte_pfn(*ptep);
  3027. pte_unmap_unlock(ptep, ptl);
  3028. return 0;
  3029. }
  3030. EXPORT_SYMBOL(follow_pfn);
  3031. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3032. int follow_phys(struct vm_area_struct *vma,
  3033. unsigned long address, unsigned int flags,
  3034. unsigned long *prot, resource_size_t *phys)
  3035. {
  3036. int ret = -EINVAL;
  3037. pte_t *ptep, pte;
  3038. spinlock_t *ptl;
  3039. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3040. goto out;
  3041. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3042. goto out;
  3043. pte = *ptep;
  3044. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3045. goto unlock;
  3046. *prot = pgprot_val(pte_pgprot(pte));
  3047. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3048. ret = 0;
  3049. unlock:
  3050. pte_unmap_unlock(ptep, ptl);
  3051. out:
  3052. return ret;
  3053. }
  3054. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3055. void *buf, int len, int write)
  3056. {
  3057. resource_size_t phys_addr;
  3058. unsigned long prot = 0;
  3059. void __iomem *maddr;
  3060. int offset = addr & (PAGE_SIZE-1);
  3061. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3062. return -EINVAL;
  3063. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3064. if (write)
  3065. memcpy_toio(maddr + offset, buf, len);
  3066. else
  3067. memcpy_fromio(buf, maddr + offset, len);
  3068. iounmap(maddr);
  3069. return len;
  3070. }
  3071. #endif
  3072. /*
  3073. * Access another process' address space.
  3074. * Source/target buffer must be kernel space,
  3075. * Do not walk the page table directly, use get_user_pages
  3076. */
  3077. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  3078. {
  3079. struct mm_struct *mm;
  3080. struct vm_area_struct *vma;
  3081. void *old_buf = buf;
  3082. mm = get_task_mm(tsk);
  3083. if (!mm)
  3084. return 0;
  3085. down_read(&mm->mmap_sem);
  3086. /* ignore errors, just check how much was successfully transferred */
  3087. while (len) {
  3088. int bytes, ret, offset;
  3089. void *maddr;
  3090. struct page *page = NULL;
  3091. ret = get_user_pages(tsk, mm, addr, 1,
  3092. write, 1, &page, &vma);
  3093. if (ret <= 0) {
  3094. /*
  3095. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3096. * we can access using slightly different code.
  3097. */
  3098. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3099. vma = find_vma(mm, addr);
  3100. if (!vma)
  3101. break;
  3102. if (vma->vm_ops && vma->vm_ops->access)
  3103. ret = vma->vm_ops->access(vma, addr, buf,
  3104. len, write);
  3105. if (ret <= 0)
  3106. #endif
  3107. break;
  3108. bytes = ret;
  3109. } else {
  3110. bytes = len;
  3111. offset = addr & (PAGE_SIZE-1);
  3112. if (bytes > PAGE_SIZE-offset)
  3113. bytes = PAGE_SIZE-offset;
  3114. maddr = kmap(page);
  3115. if (write) {
  3116. copy_to_user_page(vma, page, addr,
  3117. maddr + offset, buf, bytes);
  3118. set_page_dirty_lock(page);
  3119. } else {
  3120. copy_from_user_page(vma, page, addr,
  3121. buf, maddr + offset, bytes);
  3122. }
  3123. kunmap(page);
  3124. page_cache_release(page);
  3125. }
  3126. len -= bytes;
  3127. buf += bytes;
  3128. addr += bytes;
  3129. }
  3130. up_read(&mm->mmap_sem);
  3131. mmput(mm);
  3132. return buf - old_buf;
  3133. }
  3134. /*
  3135. * Print the name of a VMA.
  3136. */
  3137. void print_vma_addr(char *prefix, unsigned long ip)
  3138. {
  3139. struct mm_struct *mm = current->mm;
  3140. struct vm_area_struct *vma;
  3141. /*
  3142. * Do not print if we are in atomic
  3143. * contexts (in exception stacks, etc.):
  3144. */
  3145. if (preempt_count())
  3146. return;
  3147. down_read(&mm->mmap_sem);
  3148. vma = find_vma(mm, ip);
  3149. if (vma && vma->vm_file) {
  3150. struct file *f = vma->vm_file;
  3151. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3152. if (buf) {
  3153. char *p, *s;
  3154. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3155. if (IS_ERR(p))
  3156. p = "?";
  3157. s = strrchr(p, '/');
  3158. if (s)
  3159. p = s+1;
  3160. printk("%s%s[%lx+%lx]", prefix, p,
  3161. vma->vm_start,
  3162. vma->vm_end - vma->vm_start);
  3163. free_page((unsigned long)buf);
  3164. }
  3165. }
  3166. up_read(&current->mm->mmap_sem);
  3167. }
  3168. #ifdef CONFIG_PROVE_LOCKING
  3169. void might_fault(void)
  3170. {
  3171. /*
  3172. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3173. * holding the mmap_sem, this is safe because kernel memory doesn't
  3174. * get paged out, therefore we'll never actually fault, and the
  3175. * below annotations will generate false positives.
  3176. */
  3177. if (segment_eq(get_fs(), KERNEL_DS))
  3178. return;
  3179. might_sleep();
  3180. /*
  3181. * it would be nicer only to annotate paths which are not under
  3182. * pagefault_disable, however that requires a larger audit and
  3183. * providing helpers like get_user_atomic.
  3184. */
  3185. if (!in_atomic() && current->mm)
  3186. might_lock_read(&current->mm->mmap_sem);
  3187. }
  3188. EXPORT_SYMBOL(might_fault);
  3189. #endif