task_mmu.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830
  1. #include <linux/mm.h>
  2. #include <linux/hugetlb.h>
  3. #include <linux/mount.h>
  4. #include <linux/seq_file.h>
  5. #include <linux/highmem.h>
  6. #include <linux/ptrace.h>
  7. #include <linux/slab.h>
  8. #include <linux/pagemap.h>
  9. #include <linux/mempolicy.h>
  10. #include <linux/swap.h>
  11. #include <linux/swapops.h>
  12. #include <asm/elf.h>
  13. #include <asm/uaccess.h>
  14. #include <asm/tlbflush.h>
  15. #include "internal.h"
  16. void task_mem(struct seq_file *m, struct mm_struct *mm)
  17. {
  18. unsigned long data, text, lib, swap;
  19. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  20. /*
  21. * Note: to minimize their overhead, mm maintains hiwater_vm and
  22. * hiwater_rss only when about to *lower* total_vm or rss. Any
  23. * collector of these hiwater stats must therefore get total_vm
  24. * and rss too, which will usually be the higher. Barriers? not
  25. * worth the effort, such snapshots can always be inconsistent.
  26. */
  27. hiwater_vm = total_vm = mm->total_vm;
  28. if (hiwater_vm < mm->hiwater_vm)
  29. hiwater_vm = mm->hiwater_vm;
  30. hiwater_rss = total_rss = get_mm_rss(mm);
  31. if (hiwater_rss < mm->hiwater_rss)
  32. hiwater_rss = mm->hiwater_rss;
  33. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  34. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  35. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  36. swap = get_mm_counter(mm, MM_SWAPENTS);
  37. seq_printf(m,
  38. "VmPeak:\t%8lu kB\n"
  39. "VmSize:\t%8lu kB\n"
  40. "VmLck:\t%8lu kB\n"
  41. "VmHWM:\t%8lu kB\n"
  42. "VmRSS:\t%8lu kB\n"
  43. "VmData:\t%8lu kB\n"
  44. "VmStk:\t%8lu kB\n"
  45. "VmExe:\t%8lu kB\n"
  46. "VmLib:\t%8lu kB\n"
  47. "VmPTE:\t%8lu kB\n"
  48. "VmSwap:\t%8lu kB\n",
  49. hiwater_vm << (PAGE_SHIFT-10),
  50. (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
  51. mm->locked_vm << (PAGE_SHIFT-10),
  52. hiwater_rss << (PAGE_SHIFT-10),
  53. total_rss << (PAGE_SHIFT-10),
  54. data << (PAGE_SHIFT-10),
  55. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  56. (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
  57. swap << (PAGE_SHIFT-10));
  58. }
  59. unsigned long task_vsize(struct mm_struct *mm)
  60. {
  61. return PAGE_SIZE * mm->total_vm;
  62. }
  63. int task_statm(struct mm_struct *mm, int *shared, int *text,
  64. int *data, int *resident)
  65. {
  66. *shared = get_mm_counter(mm, MM_FILEPAGES);
  67. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  68. >> PAGE_SHIFT;
  69. *data = mm->total_vm - mm->shared_vm;
  70. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  71. return mm->total_vm;
  72. }
  73. static void pad_len_spaces(struct seq_file *m, int len)
  74. {
  75. len = 25 + sizeof(void*) * 6 - len;
  76. if (len < 1)
  77. len = 1;
  78. seq_printf(m, "%*c", len, ' ');
  79. }
  80. static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
  81. {
  82. if (vma && vma != priv->tail_vma) {
  83. struct mm_struct *mm = vma->vm_mm;
  84. up_read(&mm->mmap_sem);
  85. mmput(mm);
  86. }
  87. }
  88. static void *m_start(struct seq_file *m, loff_t *pos)
  89. {
  90. struct proc_maps_private *priv = m->private;
  91. unsigned long last_addr = m->version;
  92. struct mm_struct *mm;
  93. struct vm_area_struct *vma, *tail_vma = NULL;
  94. loff_t l = *pos;
  95. /* Clear the per syscall fields in priv */
  96. priv->task = NULL;
  97. priv->tail_vma = NULL;
  98. /*
  99. * We remember last_addr rather than next_addr to hit with
  100. * mmap_cache most of the time. We have zero last_addr at
  101. * the beginning and also after lseek. We will have -1 last_addr
  102. * after the end of the vmas.
  103. */
  104. if (last_addr == -1UL)
  105. return NULL;
  106. priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
  107. if (!priv->task)
  108. return NULL;
  109. mm = mm_for_maps(priv->task);
  110. if (!mm)
  111. return NULL;
  112. down_read(&mm->mmap_sem);
  113. tail_vma = get_gate_vma(priv->task);
  114. priv->tail_vma = tail_vma;
  115. /* Start with last addr hint */
  116. vma = find_vma(mm, last_addr);
  117. if (last_addr && vma) {
  118. vma = vma->vm_next;
  119. goto out;
  120. }
  121. /*
  122. * Check the vma index is within the range and do
  123. * sequential scan until m_index.
  124. */
  125. vma = NULL;
  126. if ((unsigned long)l < mm->map_count) {
  127. vma = mm->mmap;
  128. while (l-- && vma)
  129. vma = vma->vm_next;
  130. goto out;
  131. }
  132. if (l != mm->map_count)
  133. tail_vma = NULL; /* After gate vma */
  134. out:
  135. if (vma)
  136. return vma;
  137. /* End of vmas has been reached */
  138. m->version = (tail_vma != NULL)? 0: -1UL;
  139. up_read(&mm->mmap_sem);
  140. mmput(mm);
  141. return tail_vma;
  142. }
  143. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  144. {
  145. struct proc_maps_private *priv = m->private;
  146. struct vm_area_struct *vma = v;
  147. struct vm_area_struct *tail_vma = priv->tail_vma;
  148. (*pos)++;
  149. if (vma && (vma != tail_vma) && vma->vm_next)
  150. return vma->vm_next;
  151. vma_stop(priv, vma);
  152. return (vma != tail_vma)? tail_vma: NULL;
  153. }
  154. static void m_stop(struct seq_file *m, void *v)
  155. {
  156. struct proc_maps_private *priv = m->private;
  157. struct vm_area_struct *vma = v;
  158. vma_stop(priv, vma);
  159. if (priv->task)
  160. put_task_struct(priv->task);
  161. }
  162. static int do_maps_open(struct inode *inode, struct file *file,
  163. const struct seq_operations *ops)
  164. {
  165. struct proc_maps_private *priv;
  166. int ret = -ENOMEM;
  167. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  168. if (priv) {
  169. priv->pid = proc_pid(inode);
  170. ret = seq_open(file, ops);
  171. if (!ret) {
  172. struct seq_file *m = file->private_data;
  173. m->private = priv;
  174. } else {
  175. kfree(priv);
  176. }
  177. }
  178. return ret;
  179. }
  180. static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
  181. {
  182. struct mm_struct *mm = vma->vm_mm;
  183. struct file *file = vma->vm_file;
  184. int flags = vma->vm_flags;
  185. unsigned long ino = 0;
  186. unsigned long long pgoff = 0;
  187. unsigned long start;
  188. dev_t dev = 0;
  189. int len;
  190. if (file) {
  191. struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
  192. dev = inode->i_sb->s_dev;
  193. ino = inode->i_ino;
  194. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  195. }
  196. /* We don't show the stack guard page in /proc/maps */
  197. start = vma->vm_start;
  198. if (vma->vm_flags & VM_GROWSDOWN)
  199. start += PAGE_SIZE;
  200. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
  201. start,
  202. vma->vm_end,
  203. flags & VM_READ ? 'r' : '-',
  204. flags & VM_WRITE ? 'w' : '-',
  205. flags & VM_EXEC ? 'x' : '-',
  206. flags & VM_MAYSHARE ? 's' : 'p',
  207. pgoff,
  208. MAJOR(dev), MINOR(dev), ino, &len);
  209. /*
  210. * Print the dentry name for named mappings, and a
  211. * special [heap] marker for the heap:
  212. */
  213. if (file) {
  214. pad_len_spaces(m, len);
  215. seq_path(m, &file->f_path, "\n");
  216. } else {
  217. const char *name = arch_vma_name(vma);
  218. if (!name) {
  219. if (mm) {
  220. if (vma->vm_start <= mm->start_brk &&
  221. vma->vm_end >= mm->brk) {
  222. name = "[heap]";
  223. } else if (vma->vm_start <= mm->start_stack &&
  224. vma->vm_end >= mm->start_stack) {
  225. name = "[stack]";
  226. }
  227. } else {
  228. name = "[vdso]";
  229. }
  230. }
  231. if (name) {
  232. pad_len_spaces(m, len);
  233. seq_puts(m, name);
  234. }
  235. }
  236. seq_putc(m, '\n');
  237. }
  238. static int show_map(struct seq_file *m, void *v)
  239. {
  240. struct vm_area_struct *vma = v;
  241. struct proc_maps_private *priv = m->private;
  242. struct task_struct *task = priv->task;
  243. show_map_vma(m, vma);
  244. if (m->count < m->size) /* vma is copied successfully */
  245. m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
  246. return 0;
  247. }
  248. static const struct seq_operations proc_pid_maps_op = {
  249. .start = m_start,
  250. .next = m_next,
  251. .stop = m_stop,
  252. .show = show_map
  253. };
  254. static int maps_open(struct inode *inode, struct file *file)
  255. {
  256. return do_maps_open(inode, file, &proc_pid_maps_op);
  257. }
  258. const struct file_operations proc_maps_operations = {
  259. .open = maps_open,
  260. .read = seq_read,
  261. .llseek = seq_lseek,
  262. .release = seq_release_private,
  263. };
  264. /*
  265. * Proportional Set Size(PSS): my share of RSS.
  266. *
  267. * PSS of a process is the count of pages it has in memory, where each
  268. * page is divided by the number of processes sharing it. So if a
  269. * process has 1000 pages all to itself, and 1000 shared with one other
  270. * process, its PSS will be 1500.
  271. *
  272. * To keep (accumulated) division errors low, we adopt a 64bit
  273. * fixed-point pss counter to minimize division errors. So (pss >>
  274. * PSS_SHIFT) would be the real byte count.
  275. *
  276. * A shift of 12 before division means (assuming 4K page size):
  277. * - 1M 3-user-pages add up to 8KB errors;
  278. * - supports mapcount up to 2^24, or 16M;
  279. * - supports PSS up to 2^52 bytes, or 4PB.
  280. */
  281. #define PSS_SHIFT 12
  282. #ifdef CONFIG_PROC_PAGE_MONITOR
  283. struct mem_size_stats {
  284. struct vm_area_struct *vma;
  285. unsigned long resident;
  286. unsigned long shared_clean;
  287. unsigned long shared_dirty;
  288. unsigned long private_clean;
  289. unsigned long private_dirty;
  290. unsigned long referenced;
  291. unsigned long swap;
  292. u64 pss;
  293. };
  294. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  295. struct mm_walk *walk)
  296. {
  297. struct mem_size_stats *mss = walk->private;
  298. struct vm_area_struct *vma = mss->vma;
  299. pte_t *pte, ptent;
  300. spinlock_t *ptl;
  301. struct page *page;
  302. int mapcount;
  303. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  304. for (; addr != end; pte++, addr += PAGE_SIZE) {
  305. ptent = *pte;
  306. if (is_swap_pte(ptent)) {
  307. mss->swap += PAGE_SIZE;
  308. continue;
  309. }
  310. if (!pte_present(ptent))
  311. continue;
  312. page = vm_normal_page(vma, addr, ptent);
  313. if (!page)
  314. continue;
  315. mss->resident += PAGE_SIZE;
  316. /* Accumulate the size in pages that have been accessed. */
  317. if (pte_young(ptent) || PageReferenced(page))
  318. mss->referenced += PAGE_SIZE;
  319. mapcount = page_mapcount(page);
  320. if (mapcount >= 2) {
  321. if (pte_dirty(ptent))
  322. mss->shared_dirty += PAGE_SIZE;
  323. else
  324. mss->shared_clean += PAGE_SIZE;
  325. mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
  326. } else {
  327. if (pte_dirty(ptent))
  328. mss->private_dirty += PAGE_SIZE;
  329. else
  330. mss->private_clean += PAGE_SIZE;
  331. mss->pss += (PAGE_SIZE << PSS_SHIFT);
  332. }
  333. }
  334. pte_unmap_unlock(pte - 1, ptl);
  335. cond_resched();
  336. return 0;
  337. }
  338. static int show_smap(struct seq_file *m, void *v)
  339. {
  340. struct proc_maps_private *priv = m->private;
  341. struct task_struct *task = priv->task;
  342. struct vm_area_struct *vma = v;
  343. struct mem_size_stats mss;
  344. struct mm_walk smaps_walk = {
  345. .pmd_entry = smaps_pte_range,
  346. .mm = vma->vm_mm,
  347. .private = &mss,
  348. };
  349. memset(&mss, 0, sizeof mss);
  350. mss.vma = vma;
  351. /* mmap_sem is held in m_start */
  352. if (vma->vm_mm && !is_vm_hugetlb_page(vma))
  353. walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
  354. show_map_vma(m, vma);
  355. seq_printf(m,
  356. "Size: %8lu kB\n"
  357. "Rss: %8lu kB\n"
  358. "Pss: %8lu kB\n"
  359. "Shared_Clean: %8lu kB\n"
  360. "Shared_Dirty: %8lu kB\n"
  361. "Private_Clean: %8lu kB\n"
  362. "Private_Dirty: %8lu kB\n"
  363. "Referenced: %8lu kB\n"
  364. "Swap: %8lu kB\n"
  365. "KernelPageSize: %8lu kB\n"
  366. "MMUPageSize: %8lu kB\n",
  367. (vma->vm_end - vma->vm_start) >> 10,
  368. mss.resident >> 10,
  369. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  370. mss.shared_clean >> 10,
  371. mss.shared_dirty >> 10,
  372. mss.private_clean >> 10,
  373. mss.private_dirty >> 10,
  374. mss.referenced >> 10,
  375. mss.swap >> 10,
  376. vma_kernel_pagesize(vma) >> 10,
  377. vma_mmu_pagesize(vma) >> 10);
  378. if (m->count < m->size) /* vma is copied successfully */
  379. m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
  380. return 0;
  381. }
  382. static const struct seq_operations proc_pid_smaps_op = {
  383. .start = m_start,
  384. .next = m_next,
  385. .stop = m_stop,
  386. .show = show_smap
  387. };
  388. static int smaps_open(struct inode *inode, struct file *file)
  389. {
  390. return do_maps_open(inode, file, &proc_pid_smaps_op);
  391. }
  392. const struct file_operations proc_smaps_operations = {
  393. .open = smaps_open,
  394. .read = seq_read,
  395. .llseek = seq_lseek,
  396. .release = seq_release_private,
  397. };
  398. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  399. unsigned long end, struct mm_walk *walk)
  400. {
  401. struct vm_area_struct *vma = walk->private;
  402. pte_t *pte, ptent;
  403. spinlock_t *ptl;
  404. struct page *page;
  405. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  406. for (; addr != end; pte++, addr += PAGE_SIZE) {
  407. ptent = *pte;
  408. if (!pte_present(ptent))
  409. continue;
  410. page = vm_normal_page(vma, addr, ptent);
  411. if (!page)
  412. continue;
  413. /* Clear accessed and referenced bits. */
  414. ptep_test_and_clear_young(vma, addr, pte);
  415. ClearPageReferenced(page);
  416. }
  417. pte_unmap_unlock(pte - 1, ptl);
  418. cond_resched();
  419. return 0;
  420. }
  421. #define CLEAR_REFS_ALL 1
  422. #define CLEAR_REFS_ANON 2
  423. #define CLEAR_REFS_MAPPED 3
  424. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  425. size_t count, loff_t *ppos)
  426. {
  427. struct task_struct *task;
  428. char buffer[PROC_NUMBUF];
  429. struct mm_struct *mm;
  430. struct vm_area_struct *vma;
  431. long type;
  432. memset(buffer, 0, sizeof(buffer));
  433. if (count > sizeof(buffer) - 1)
  434. count = sizeof(buffer) - 1;
  435. if (copy_from_user(buffer, buf, count))
  436. return -EFAULT;
  437. if (strict_strtol(strstrip(buffer), 10, &type))
  438. return -EINVAL;
  439. if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
  440. return -EINVAL;
  441. task = get_proc_task(file->f_path.dentry->d_inode);
  442. if (!task)
  443. return -ESRCH;
  444. mm = get_task_mm(task);
  445. if (mm) {
  446. struct mm_walk clear_refs_walk = {
  447. .pmd_entry = clear_refs_pte_range,
  448. .mm = mm,
  449. };
  450. down_read(&mm->mmap_sem);
  451. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  452. clear_refs_walk.private = vma;
  453. if (is_vm_hugetlb_page(vma))
  454. continue;
  455. /*
  456. * Writing 1 to /proc/pid/clear_refs affects all pages.
  457. *
  458. * Writing 2 to /proc/pid/clear_refs only affects
  459. * Anonymous pages.
  460. *
  461. * Writing 3 to /proc/pid/clear_refs only affects file
  462. * mapped pages.
  463. */
  464. if (type == CLEAR_REFS_ANON && vma->vm_file)
  465. continue;
  466. if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
  467. continue;
  468. walk_page_range(vma->vm_start, vma->vm_end,
  469. &clear_refs_walk);
  470. }
  471. flush_tlb_mm(mm);
  472. up_read(&mm->mmap_sem);
  473. mmput(mm);
  474. }
  475. put_task_struct(task);
  476. return count;
  477. }
  478. const struct file_operations proc_clear_refs_operations = {
  479. .write = clear_refs_write,
  480. };
  481. struct pagemapread {
  482. int pos, len;
  483. u64 *buffer;
  484. };
  485. #define PM_ENTRY_BYTES sizeof(u64)
  486. #define PM_STATUS_BITS 3
  487. #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
  488. #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
  489. #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
  490. #define PM_PSHIFT_BITS 6
  491. #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
  492. #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
  493. #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
  494. #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
  495. #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
  496. #define PM_PRESENT PM_STATUS(4LL)
  497. #define PM_SWAP PM_STATUS(2LL)
  498. #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
  499. #define PM_END_OF_BUFFER 1
  500. static int add_to_pagemap(unsigned long addr, u64 pfn,
  501. struct pagemapread *pm)
  502. {
  503. pm->buffer[pm->pos++] = pfn;
  504. if (pm->pos >= pm->len)
  505. return PM_END_OF_BUFFER;
  506. return 0;
  507. }
  508. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  509. struct mm_walk *walk)
  510. {
  511. struct pagemapread *pm = walk->private;
  512. unsigned long addr;
  513. int err = 0;
  514. for (addr = start; addr < end; addr += PAGE_SIZE) {
  515. err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
  516. if (err)
  517. break;
  518. }
  519. return err;
  520. }
  521. static u64 swap_pte_to_pagemap_entry(pte_t pte)
  522. {
  523. swp_entry_t e = pte_to_swp_entry(pte);
  524. return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
  525. }
  526. static u64 pte_to_pagemap_entry(pte_t pte)
  527. {
  528. u64 pme = 0;
  529. if (is_swap_pte(pte))
  530. pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
  531. | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
  532. else if (pte_present(pte))
  533. pme = PM_PFRAME(pte_pfn(pte))
  534. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
  535. return pme;
  536. }
  537. static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  538. struct mm_walk *walk)
  539. {
  540. struct vm_area_struct *vma;
  541. struct pagemapread *pm = walk->private;
  542. pte_t *pte;
  543. int err = 0;
  544. /* find the first VMA at or above 'addr' */
  545. vma = find_vma(walk->mm, addr);
  546. for (; addr != end; addr += PAGE_SIZE) {
  547. u64 pfn = PM_NOT_PRESENT;
  548. /* check to see if we've left 'vma' behind
  549. * and need a new, higher one */
  550. if (vma && (addr >= vma->vm_end))
  551. vma = find_vma(walk->mm, addr);
  552. /* check that 'vma' actually covers this address,
  553. * and that it isn't a huge page vma */
  554. if (vma && (vma->vm_start <= addr) &&
  555. !is_vm_hugetlb_page(vma)) {
  556. pte = pte_offset_map(pmd, addr);
  557. pfn = pte_to_pagemap_entry(*pte);
  558. /* unmap before userspace copy */
  559. pte_unmap(pte);
  560. }
  561. err = add_to_pagemap(addr, pfn, pm);
  562. if (err)
  563. return err;
  564. }
  565. cond_resched();
  566. return err;
  567. }
  568. #ifdef CONFIG_HUGETLB_PAGE
  569. static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
  570. {
  571. u64 pme = 0;
  572. if (pte_present(pte))
  573. pme = PM_PFRAME(pte_pfn(pte) + offset)
  574. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
  575. return pme;
  576. }
  577. /* This function walks within one hugetlb entry in the single call */
  578. static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
  579. unsigned long addr, unsigned long end,
  580. struct mm_walk *walk)
  581. {
  582. struct pagemapread *pm = walk->private;
  583. int err = 0;
  584. u64 pfn;
  585. for (; addr != end; addr += PAGE_SIZE) {
  586. int offset = (addr & ~hmask) >> PAGE_SHIFT;
  587. pfn = huge_pte_to_pagemap_entry(*pte, offset);
  588. err = add_to_pagemap(addr, pfn, pm);
  589. if (err)
  590. return err;
  591. }
  592. cond_resched();
  593. return err;
  594. }
  595. #endif /* HUGETLB_PAGE */
  596. /*
  597. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  598. *
  599. * For each page in the address space, this file contains one 64-bit entry
  600. * consisting of the following:
  601. *
  602. * Bits 0-55 page frame number (PFN) if present
  603. * Bits 0-4 swap type if swapped
  604. * Bits 5-55 swap offset if swapped
  605. * Bits 55-60 page shift (page size = 1<<page shift)
  606. * Bit 61 reserved for future use
  607. * Bit 62 page swapped
  608. * Bit 63 page present
  609. *
  610. * If the page is not present but in swap, then the PFN contains an
  611. * encoding of the swap file number and the page's offset into the
  612. * swap. Unmapped pages return a null PFN. This allows determining
  613. * precisely which pages are mapped (or in swap) and comparing mapped
  614. * pages between processes.
  615. *
  616. * Efficient users of this interface will use /proc/pid/maps to
  617. * determine which areas of memory are actually mapped and llseek to
  618. * skip over unmapped regions.
  619. */
  620. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  621. static ssize_t pagemap_read(struct file *file, char __user *buf,
  622. size_t count, loff_t *ppos)
  623. {
  624. struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
  625. struct mm_struct *mm;
  626. struct pagemapread pm;
  627. int ret = -ESRCH;
  628. struct mm_walk pagemap_walk = {};
  629. unsigned long src;
  630. unsigned long svpfn;
  631. unsigned long start_vaddr;
  632. unsigned long end_vaddr;
  633. int copied = 0;
  634. if (!task)
  635. goto out;
  636. ret = -EACCES;
  637. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  638. goto out_task;
  639. ret = -EINVAL;
  640. /* file position must be aligned */
  641. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  642. goto out_task;
  643. ret = 0;
  644. if (!count)
  645. goto out_task;
  646. mm = get_task_mm(task);
  647. if (!mm)
  648. goto out_task;
  649. pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  650. pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
  651. ret = -ENOMEM;
  652. if (!pm.buffer)
  653. goto out_mm;
  654. pagemap_walk.pmd_entry = pagemap_pte_range;
  655. pagemap_walk.pte_hole = pagemap_pte_hole;
  656. #ifdef CONFIG_HUGETLB_PAGE
  657. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  658. #endif
  659. pagemap_walk.mm = mm;
  660. pagemap_walk.private = &pm;
  661. src = *ppos;
  662. svpfn = src / PM_ENTRY_BYTES;
  663. start_vaddr = svpfn << PAGE_SHIFT;
  664. end_vaddr = TASK_SIZE_OF(task);
  665. /* watch out for wraparound */
  666. if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
  667. start_vaddr = end_vaddr;
  668. /*
  669. * The odds are that this will stop walking way
  670. * before end_vaddr, because the length of the
  671. * user buffer is tracked in "pm", and the walk
  672. * will stop when we hit the end of the buffer.
  673. */
  674. ret = 0;
  675. while (count && (start_vaddr < end_vaddr)) {
  676. int len;
  677. unsigned long end;
  678. pm.pos = 0;
  679. end = start_vaddr + PAGEMAP_WALK_SIZE;
  680. /* overflow ? */
  681. if (end < start_vaddr || end > end_vaddr)
  682. end = end_vaddr;
  683. down_read(&mm->mmap_sem);
  684. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  685. up_read(&mm->mmap_sem);
  686. start_vaddr = end;
  687. len = min(count, PM_ENTRY_BYTES * pm.pos);
  688. if (copy_to_user(buf, pm.buffer, len)) {
  689. ret = -EFAULT;
  690. goto out_free;
  691. }
  692. copied += len;
  693. buf += len;
  694. count -= len;
  695. }
  696. *ppos += copied;
  697. if (!ret || ret == PM_END_OF_BUFFER)
  698. ret = copied;
  699. out_free:
  700. kfree(pm.buffer);
  701. out_mm:
  702. mmput(mm);
  703. out_task:
  704. put_task_struct(task);
  705. out:
  706. return ret;
  707. }
  708. const struct file_operations proc_pagemap_operations = {
  709. .llseek = mem_lseek, /* borrow this */
  710. .read = pagemap_read,
  711. };
  712. #endif /* CONFIG_PROC_PAGE_MONITOR */
  713. #ifdef CONFIG_NUMA
  714. extern int show_numa_map(struct seq_file *m, void *v);
  715. static const struct seq_operations proc_pid_numa_maps_op = {
  716. .start = m_start,
  717. .next = m_next,
  718. .stop = m_stop,
  719. .show = show_numa_map,
  720. };
  721. static int numa_maps_open(struct inode *inode, struct file *file)
  722. {
  723. return do_maps_open(inode, file, &proc_pid_numa_maps_op);
  724. }
  725. const struct file_operations proc_numa_maps_operations = {
  726. .open = numa_maps_open,
  727. .read = seq_read,
  728. .llseek = seq_lseek,
  729. .release = seq_release_private,
  730. };
  731. #endif