smtc.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340
  1. /* Copyright (C) 2004 Mips Technologies, Inc */
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/cpumask.h>
  5. #include <linux/interrupt.h>
  6. #include <asm/cpu.h>
  7. #include <asm/processor.h>
  8. #include <asm/atomic.h>
  9. #include <asm/system.h>
  10. #include <asm/hardirq.h>
  11. #include <asm/hazards.h>
  12. #include <asm/mmu_context.h>
  13. #include <asm/smp.h>
  14. #include <asm/mipsregs.h>
  15. #include <asm/cacheflush.h>
  16. #include <asm/time.h>
  17. #include <asm/addrspace.h>
  18. #include <asm/smtc.h>
  19. #include <asm/smtc_ipi.h>
  20. #include <asm/smtc_proc.h>
  21. /*
  22. * This file should be built into the kernel only if CONFIG_MIPS_MT_SMTC is set.
  23. */
  24. /*
  25. * MIPSCPU_INT_BASE is identically defined in both
  26. * asm-mips/mips-boards/maltaint.h and asm-mips/mips-boards/simint.h,
  27. * but as yet there's no properly organized include structure that
  28. * will ensure that the right *int.h file will be included for a
  29. * given platform build.
  30. */
  31. #define MIPSCPU_INT_BASE 16
  32. #define MIPS_CPU_IPI_IRQ 1
  33. #define LOCK_MT_PRA() \
  34. local_irq_save(flags); \
  35. mtflags = dmt()
  36. #define UNLOCK_MT_PRA() \
  37. emt(mtflags); \
  38. local_irq_restore(flags)
  39. #define LOCK_CORE_PRA() \
  40. local_irq_save(flags); \
  41. mtflags = dvpe()
  42. #define UNLOCK_CORE_PRA() \
  43. evpe(mtflags); \
  44. local_irq_restore(flags)
  45. /*
  46. * Data structures purely associated with SMTC parallelism
  47. */
  48. /*
  49. * Table for tracking ASIDs whose lifetime is prolonged.
  50. */
  51. asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
  52. /*
  53. * Clock interrupt "latch" buffers, per "CPU"
  54. */
  55. unsigned int ipi_timer_latch[NR_CPUS];
  56. /*
  57. * Number of InterProcessor Interupt (IPI) message buffers to allocate
  58. */
  59. #define IPIBUF_PER_CPU 4
  60. struct smtc_ipi_q IPIQ[NR_CPUS];
  61. struct smtc_ipi_q freeIPIq;
  62. /* Forward declarations */
  63. void ipi_decode(struct smtc_ipi *);
  64. void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
  65. void setup_cross_vpe_interrupts(void);
  66. void init_smtc_stats(void);
  67. /* Global SMTC Status */
  68. unsigned int smtc_status = 0;
  69. /* Boot command line configuration overrides */
  70. static int vpelimit = 0;
  71. static int tclimit = 0;
  72. static int ipibuffers = 0;
  73. static int nostlb = 0;
  74. static int asidmask = 0;
  75. unsigned long smtc_asid_mask = 0xff;
  76. static int __init maxvpes(char *str)
  77. {
  78. get_option(&str, &vpelimit);
  79. return 1;
  80. }
  81. static int __init maxtcs(char *str)
  82. {
  83. get_option(&str, &tclimit);
  84. return 1;
  85. }
  86. static int __init ipibufs(char *str)
  87. {
  88. get_option(&str, &ipibuffers);
  89. return 1;
  90. }
  91. static int __init stlb_disable(char *s)
  92. {
  93. nostlb = 1;
  94. return 1;
  95. }
  96. static int __init asidmask_set(char *str)
  97. {
  98. get_option(&str, &asidmask);
  99. switch (asidmask) {
  100. case 0x1:
  101. case 0x3:
  102. case 0x7:
  103. case 0xf:
  104. case 0x1f:
  105. case 0x3f:
  106. case 0x7f:
  107. case 0xff:
  108. smtc_asid_mask = (unsigned long)asidmask;
  109. break;
  110. default:
  111. printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
  112. }
  113. return 1;
  114. }
  115. __setup("maxvpes=", maxvpes);
  116. __setup("maxtcs=", maxtcs);
  117. __setup("ipibufs=", ipibufs);
  118. __setup("nostlb", stlb_disable);
  119. __setup("asidmask=", asidmask_set);
  120. /* Enable additional debug checks before going into CPU idle loop */
  121. #define SMTC_IDLE_HOOK_DEBUG
  122. #ifdef SMTC_IDLE_HOOK_DEBUG
  123. static int hang_trig = 0;
  124. static int __init hangtrig_enable(char *s)
  125. {
  126. hang_trig = 1;
  127. return 1;
  128. }
  129. __setup("hangtrig", hangtrig_enable);
  130. #define DEFAULT_BLOCKED_IPI_LIMIT 32
  131. static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
  132. static int __init tintq(char *str)
  133. {
  134. get_option(&str, &timerq_limit);
  135. return 1;
  136. }
  137. __setup("tintq=", tintq);
  138. int imstuckcount[2][8];
  139. /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
  140. int vpemask[2][8] = {{0,1,1,0,0,0,0,1},{0,1,0,0,0,0,0,1}};
  141. int tcnoprog[NR_CPUS];
  142. static atomic_t idle_hook_initialized = {0};
  143. static int clock_hang_reported[NR_CPUS];
  144. #endif /* SMTC_IDLE_HOOK_DEBUG */
  145. /* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
  146. void __init sanitize_tlb_entries(void)
  147. {
  148. printk("Deprecated sanitize_tlb_entries() invoked\n");
  149. }
  150. /*
  151. * Configure shared TLB - VPC configuration bit must be set by caller
  152. */
  153. void smtc_configure_tlb(void)
  154. {
  155. int i,tlbsiz,vpes;
  156. unsigned long mvpconf0;
  157. unsigned long config1val;
  158. /* Set up ASID preservation table */
  159. for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
  160. for(i = 0; i < MAX_SMTC_ASIDS; i++) {
  161. smtc_live_asid[vpes][i] = 0;
  162. }
  163. }
  164. mvpconf0 = read_c0_mvpconf0();
  165. if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
  166. >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
  167. /* If we have multiple VPEs, try to share the TLB */
  168. if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
  169. /*
  170. * If TLB sizing is programmable, shared TLB
  171. * size is the total available complement.
  172. * Otherwise, we have to take the sum of all
  173. * static VPE TLB entries.
  174. */
  175. if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
  176. >> MVPCONF0_PTLBE_SHIFT)) == 0) {
  177. /*
  178. * If there's more than one VPE, there had better
  179. * be more than one TC, because we need one to bind
  180. * to each VPE in turn to be able to read
  181. * its configuration state!
  182. */
  183. settc(1);
  184. /* Stop the TC from doing anything foolish */
  185. write_tc_c0_tchalt(TCHALT_H);
  186. mips_ihb();
  187. /* No need to un-Halt - that happens later anyway */
  188. for (i=0; i < vpes; i++) {
  189. write_tc_c0_tcbind(i);
  190. /*
  191. * To be 100% sure we're really getting the right
  192. * information, we exit the configuration state
  193. * and do an IHB after each rebinding.
  194. */
  195. write_c0_mvpcontrol(
  196. read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
  197. mips_ihb();
  198. /*
  199. * Only count if the MMU Type indicated is TLB
  200. */
  201. if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
  202. config1val = read_vpe_c0_config1();
  203. tlbsiz += ((config1val >> 25) & 0x3f) + 1;
  204. }
  205. /* Put core back in configuration state */
  206. write_c0_mvpcontrol(
  207. read_c0_mvpcontrol() | MVPCONTROL_VPC );
  208. mips_ihb();
  209. }
  210. }
  211. write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
  212. ehb();
  213. /*
  214. * Setup kernel data structures to use software total,
  215. * rather than read the per-VPE Config1 value. The values
  216. * for "CPU 0" gets copied to all the other CPUs as part
  217. * of their initialization in smtc_cpu_setup().
  218. */
  219. /* MIPS32 limits TLB indices to 64 */
  220. if (tlbsiz > 64)
  221. tlbsiz = 64;
  222. cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
  223. smtc_status |= SMTC_TLB_SHARED;
  224. local_flush_tlb_all();
  225. printk("TLB of %d entry pairs shared by %d VPEs\n",
  226. tlbsiz, vpes);
  227. } else {
  228. printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
  229. }
  230. }
  231. }
  232. /*
  233. * Incrementally build the CPU map out of constituent MIPS MT cores,
  234. * using the specified available VPEs and TCs. Plaform code needs
  235. * to ensure that each MIPS MT core invokes this routine on reset,
  236. * one at a time(!).
  237. *
  238. * This version of the build_cpu_map and prepare_cpus routines assumes
  239. * that *all* TCs of a MIPS MT core will be used for Linux, and that
  240. * they will be spread across *all* available VPEs (to minimise the
  241. * loss of efficiency due to exception service serialization).
  242. * An improved version would pick up configuration information and
  243. * possibly leave some TCs/VPEs as "slave" processors.
  244. *
  245. * Use c0_MVPConf0 to find out how many TCs are available, setting up
  246. * phys_cpu_present_map and the logical/physical mappings.
  247. */
  248. int __init mipsmt_build_cpu_map(int start_cpu_slot)
  249. {
  250. int i, ntcs;
  251. /*
  252. * The CPU map isn't actually used for anything at this point,
  253. * so it's not clear what else we should do apart from set
  254. * everything up so that "logical" = "physical".
  255. */
  256. ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
  257. for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
  258. cpu_set(i, phys_cpu_present_map);
  259. __cpu_number_map[i] = i;
  260. __cpu_logical_map[i] = i;
  261. }
  262. /* Initialize map of CPUs with FPUs */
  263. cpus_clear(mt_fpu_cpumask);
  264. /* One of those TC's is the one booting, and not a secondary... */
  265. printk("%i available secondary CPU TC(s)\n", i - 1);
  266. return i;
  267. }
  268. /*
  269. * Common setup before any secondaries are started
  270. * Make sure all CPU's are in a sensible state before we boot any of the
  271. * secondaries.
  272. *
  273. * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
  274. * as possible across the available VPEs.
  275. */
  276. static void smtc_tc_setup(int vpe, int tc, int cpu)
  277. {
  278. settc(tc);
  279. write_tc_c0_tchalt(TCHALT_H);
  280. mips_ihb();
  281. write_tc_c0_tcstatus((read_tc_c0_tcstatus()
  282. & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
  283. | TCSTATUS_A);
  284. write_tc_c0_tccontext(0);
  285. /* Bind tc to vpe */
  286. write_tc_c0_tcbind(vpe);
  287. /* In general, all TCs should have the same cpu_data indications */
  288. memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
  289. /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
  290. if (cpu_data[0].cputype == CPU_34K)
  291. cpu_data[cpu].options &= ~MIPS_CPU_FPU;
  292. cpu_data[cpu].vpe_id = vpe;
  293. cpu_data[cpu].tc_id = tc;
  294. }
  295. void mipsmt_prepare_cpus(void)
  296. {
  297. int i, vpe, tc, ntc, nvpe, tcpervpe, slop, cpu;
  298. unsigned long flags;
  299. unsigned long val;
  300. int nipi;
  301. struct smtc_ipi *pipi;
  302. /* disable interrupts so we can disable MT */
  303. local_irq_save(flags);
  304. /* disable MT so we can configure */
  305. dvpe();
  306. dmt();
  307. spin_lock_init(&freeIPIq.lock);
  308. /*
  309. * We probably don't have as many VPEs as we do SMP "CPUs",
  310. * but it's possible - and in any case we'll never use more!
  311. */
  312. for (i=0; i<NR_CPUS; i++) {
  313. IPIQ[i].head = IPIQ[i].tail = NULL;
  314. spin_lock_init(&IPIQ[i].lock);
  315. IPIQ[i].depth = 0;
  316. ipi_timer_latch[i] = 0;
  317. }
  318. /* cpu_data index starts at zero */
  319. cpu = 0;
  320. cpu_data[cpu].vpe_id = 0;
  321. cpu_data[cpu].tc_id = 0;
  322. cpu++;
  323. /* Report on boot-time options */
  324. mips_mt_set_cpuoptions ();
  325. if (vpelimit > 0)
  326. printk("Limit of %d VPEs set\n", vpelimit);
  327. if (tclimit > 0)
  328. printk("Limit of %d TCs set\n", tclimit);
  329. if (nostlb) {
  330. printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
  331. }
  332. if (asidmask)
  333. printk("ASID mask value override to 0x%x\n", asidmask);
  334. /* Temporary */
  335. #ifdef SMTC_IDLE_HOOK_DEBUG
  336. if (hang_trig)
  337. printk("Logic Analyser Trigger on suspected TC hang\n");
  338. #endif /* SMTC_IDLE_HOOK_DEBUG */
  339. /* Put MVPE's into 'configuration state' */
  340. write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
  341. val = read_c0_mvpconf0();
  342. nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
  343. if (vpelimit > 0 && nvpe > vpelimit)
  344. nvpe = vpelimit;
  345. ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
  346. if (ntc > NR_CPUS)
  347. ntc = NR_CPUS;
  348. if (tclimit > 0 && ntc > tclimit)
  349. ntc = tclimit;
  350. tcpervpe = ntc / nvpe;
  351. slop = ntc % nvpe; /* Residual TCs, < NVPE */
  352. /* Set up shared TLB */
  353. smtc_configure_tlb();
  354. for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
  355. /*
  356. * Set the MVP bits.
  357. */
  358. settc(tc);
  359. write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
  360. if (vpe != 0)
  361. printk(", ");
  362. printk("VPE %d: TC", vpe);
  363. for (i = 0; i < tcpervpe; i++) {
  364. /*
  365. * TC 0 is bound to VPE 0 at reset,
  366. * and is presumably executing this
  367. * code. Leave it alone!
  368. */
  369. if (tc != 0) {
  370. smtc_tc_setup(vpe,tc, cpu);
  371. cpu++;
  372. }
  373. printk(" %d", tc);
  374. tc++;
  375. }
  376. if (slop) {
  377. if (tc != 0) {
  378. smtc_tc_setup(vpe,tc, cpu);
  379. cpu++;
  380. }
  381. printk(" %d", tc);
  382. tc++;
  383. slop--;
  384. }
  385. if (vpe != 0) {
  386. /*
  387. * Clear any stale software interrupts from VPE's Cause
  388. */
  389. write_vpe_c0_cause(0);
  390. /*
  391. * Clear ERL/EXL of VPEs other than 0
  392. * and set restricted interrupt enable/mask.
  393. */
  394. write_vpe_c0_status((read_vpe_c0_status()
  395. & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
  396. | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
  397. | ST0_IE));
  398. /*
  399. * set config to be the same as vpe0,
  400. * particularly kseg0 coherency alg
  401. */
  402. write_vpe_c0_config(read_c0_config());
  403. /* Clear any pending timer interrupt */
  404. write_vpe_c0_compare(0);
  405. /* Propagate Config7 */
  406. write_vpe_c0_config7(read_c0_config7());
  407. write_vpe_c0_count(read_c0_count());
  408. }
  409. /* enable multi-threading within VPE */
  410. write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
  411. /* enable the VPE */
  412. write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
  413. }
  414. /*
  415. * Pull any physically present but unused TCs out of circulation.
  416. */
  417. while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
  418. cpu_clear(tc, phys_cpu_present_map);
  419. cpu_clear(tc, cpu_present_map);
  420. tc++;
  421. }
  422. /* release config state */
  423. write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
  424. printk("\n");
  425. /* Set up coprocessor affinity CPU mask(s) */
  426. for (tc = 0; tc < ntc; tc++) {
  427. if (cpu_data[tc].options & MIPS_CPU_FPU)
  428. cpu_set(tc, mt_fpu_cpumask);
  429. }
  430. /* set up ipi interrupts... */
  431. /* If we have multiple VPEs running, set up the cross-VPE interrupt */
  432. if (nvpe > 1)
  433. setup_cross_vpe_interrupts();
  434. /* Set up queue of free IPI "messages". */
  435. nipi = NR_CPUS * IPIBUF_PER_CPU;
  436. if (ipibuffers > 0)
  437. nipi = ipibuffers;
  438. pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
  439. if (pipi == NULL)
  440. panic("kmalloc of IPI message buffers failed\n");
  441. else
  442. printk("IPI buffer pool of %d buffers\n", nipi);
  443. for (i = 0; i < nipi; i++) {
  444. smtc_ipi_nq(&freeIPIq, pipi);
  445. pipi++;
  446. }
  447. /* Arm multithreading and enable other VPEs - but all TCs are Halted */
  448. emt(EMT_ENABLE);
  449. evpe(EVPE_ENABLE);
  450. local_irq_restore(flags);
  451. /* Initialize SMTC /proc statistics/diagnostics */
  452. init_smtc_stats();
  453. }
  454. /*
  455. * Setup the PC, SP, and GP of a secondary processor and start it
  456. * running!
  457. * smp_bootstrap is the place to resume from
  458. * __KSTK_TOS(idle) is apparently the stack pointer
  459. * (unsigned long)idle->thread_info the gp
  460. *
  461. */
  462. void smtc_boot_secondary(int cpu, struct task_struct *idle)
  463. {
  464. extern u32 kernelsp[NR_CPUS];
  465. long flags;
  466. int mtflags;
  467. LOCK_MT_PRA();
  468. if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
  469. dvpe();
  470. }
  471. settc(cpu_data[cpu].tc_id);
  472. /* pc */
  473. write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
  474. /* stack pointer */
  475. kernelsp[cpu] = __KSTK_TOS(idle);
  476. write_tc_gpr_sp(__KSTK_TOS(idle));
  477. /* global pointer */
  478. write_tc_gpr_gp((unsigned long)idle->thread_info);
  479. smtc_status |= SMTC_MTC_ACTIVE;
  480. write_tc_c0_tchalt(0);
  481. if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
  482. evpe(EVPE_ENABLE);
  483. }
  484. UNLOCK_MT_PRA();
  485. }
  486. void smtc_init_secondary(void)
  487. {
  488. /*
  489. * Start timer on secondary VPEs if necessary.
  490. * plat_timer_setup has already have been invoked by init/main
  491. * on "boot" TC. Like per_cpu_trap_init() hack, this assumes that
  492. * SMTC init code assigns TCs consdecutively and in ascending order
  493. * to across available VPEs.
  494. */
  495. if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
  496. ((read_c0_tcbind() & TCBIND_CURVPE)
  497. != cpu_data[smp_processor_id() - 1].vpe_id)){
  498. write_c0_compare (read_c0_count() + mips_hpt_frequency/HZ);
  499. }
  500. local_irq_enable();
  501. }
  502. void smtc_smp_finish(void)
  503. {
  504. printk("TC %d going on-line as CPU %d\n",
  505. cpu_data[smp_processor_id()].tc_id, smp_processor_id());
  506. }
  507. void smtc_cpus_done(void)
  508. {
  509. }
  510. /*
  511. * Support for SMTC-optimized driver IRQ registration
  512. */
  513. /*
  514. * SMTC Kernel needs to manipulate low-level CPU interrupt mask
  515. * in do_IRQ. These are passed in setup_irq_smtc() and stored
  516. * in this table.
  517. */
  518. int setup_irq_smtc(unsigned int irq, struct irqaction * new,
  519. unsigned long hwmask)
  520. {
  521. irq_hwmask[irq] = hwmask;
  522. return setup_irq(irq, new);
  523. }
  524. /*
  525. * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
  526. * Within a VPE one TC can interrupt another by different approaches.
  527. * The easiest to get right would probably be to make all TCs except
  528. * the target IXMT and set a software interrupt, but an IXMT-based
  529. * scheme requires that a handler must run before a new IPI could
  530. * be sent, which would break the "broadcast" loops in MIPS MT.
  531. * A more gonzo approach within a VPE is to halt the TC, extract
  532. * its Restart, Status, and a couple of GPRs, and program the Restart
  533. * address to emulate an interrupt.
  534. *
  535. * Within a VPE, one can be confident that the target TC isn't in
  536. * a critical EXL state when halted, since the write to the Halt
  537. * register could not have issued on the writing thread if the
  538. * halting thread had EXL set. So k0 and k1 of the target TC
  539. * can be used by the injection code. Across VPEs, one can't
  540. * be certain that the target TC isn't in a critical exception
  541. * state. So we try a two-step process of sending a software
  542. * interrupt to the target VPE, which either handles the event
  543. * itself (if it was the target) or injects the event within
  544. * the VPE.
  545. */
  546. void smtc_ipi_qdump(void)
  547. {
  548. int i;
  549. for (i = 0; i < NR_CPUS ;i++) {
  550. printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
  551. i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
  552. IPIQ[i].depth);
  553. }
  554. }
  555. /*
  556. * The standard atomic.h primitives don't quite do what we want
  557. * here: We need an atomic add-and-return-previous-value (which
  558. * could be done with atomic_add_return and a decrement) and an
  559. * atomic set/zero-and-return-previous-value (which can't really
  560. * be done with the atomic.h primitives). And since this is
  561. * MIPS MT, we can assume that we have LL/SC.
  562. */
  563. static __inline__ int atomic_postincrement(unsigned int *pv)
  564. {
  565. unsigned long result;
  566. unsigned long temp;
  567. __asm__ __volatile__(
  568. "1: ll %0, %2 \n"
  569. " addu %1, %0, 1 \n"
  570. " sc %1, %2 \n"
  571. " beqz %1, 1b \n"
  572. " sync \n"
  573. : "=&r" (result), "=&r" (temp), "=m" (*pv)
  574. : "m" (*pv)
  575. : "memory");
  576. return result;
  577. }
  578. /* No longer used in IPI dispatch, but retained for future recycling */
  579. static __inline__ int atomic_postclear(unsigned int *pv)
  580. {
  581. unsigned long result;
  582. unsigned long temp;
  583. __asm__ __volatile__(
  584. "1: ll %0, %2 \n"
  585. " or %1, $0, $0 \n"
  586. " sc %1, %2 \n"
  587. " beqz %1, 1b \n"
  588. " sync \n"
  589. : "=&r" (result), "=&r" (temp), "=m" (*pv)
  590. : "m" (*pv)
  591. : "memory");
  592. return result;
  593. }
  594. void smtc_send_ipi(int cpu, int type, unsigned int action)
  595. {
  596. int tcstatus;
  597. struct smtc_ipi *pipi;
  598. long flags;
  599. int mtflags;
  600. if (cpu == smp_processor_id()) {
  601. printk("Cannot Send IPI to self!\n");
  602. return;
  603. }
  604. /* Set up a descriptor, to be delivered either promptly or queued */
  605. pipi = smtc_ipi_dq(&freeIPIq);
  606. if (pipi == NULL) {
  607. bust_spinlocks(1);
  608. mips_mt_regdump(dvpe());
  609. panic("IPI Msg. Buffers Depleted\n");
  610. }
  611. pipi->type = type;
  612. pipi->arg = (void *)action;
  613. pipi->dest = cpu;
  614. if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
  615. /* If not on same VPE, enqueue and send cross-VPE interupt */
  616. smtc_ipi_nq(&IPIQ[cpu], pipi);
  617. LOCK_CORE_PRA();
  618. settc(cpu_data[cpu].tc_id);
  619. write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
  620. UNLOCK_CORE_PRA();
  621. } else {
  622. /*
  623. * Not sufficient to do a LOCK_MT_PRA (dmt) here,
  624. * since ASID shootdown on the other VPE may
  625. * collide with this operation.
  626. */
  627. LOCK_CORE_PRA();
  628. settc(cpu_data[cpu].tc_id);
  629. /* Halt the targeted TC */
  630. write_tc_c0_tchalt(TCHALT_H);
  631. mips_ihb();
  632. /*
  633. * Inspect TCStatus - if IXMT is set, we have to queue
  634. * a message. Otherwise, we set up the "interrupt"
  635. * of the other TC
  636. */
  637. tcstatus = read_tc_c0_tcstatus();
  638. if ((tcstatus & TCSTATUS_IXMT) != 0) {
  639. /*
  640. * Spin-waiting here can deadlock,
  641. * so we queue the message for the target TC.
  642. */
  643. write_tc_c0_tchalt(0);
  644. UNLOCK_CORE_PRA();
  645. /* Try to reduce redundant timer interrupt messages */
  646. if (type == SMTC_CLOCK_TICK) {
  647. if (atomic_postincrement(&ipi_timer_latch[cpu])!=0){
  648. smtc_ipi_nq(&freeIPIq, pipi);
  649. return;
  650. }
  651. }
  652. smtc_ipi_nq(&IPIQ[cpu], pipi);
  653. } else {
  654. post_direct_ipi(cpu, pipi);
  655. write_tc_c0_tchalt(0);
  656. UNLOCK_CORE_PRA();
  657. }
  658. }
  659. }
  660. /*
  661. * Send IPI message to Halted TC, TargTC/TargVPE already having been set
  662. */
  663. void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
  664. {
  665. struct pt_regs *kstack;
  666. unsigned long tcstatus;
  667. unsigned long tcrestart;
  668. extern u32 kernelsp[NR_CPUS];
  669. extern void __smtc_ipi_vector(void);
  670. /* Extract Status, EPC from halted TC */
  671. tcstatus = read_tc_c0_tcstatus();
  672. tcrestart = read_tc_c0_tcrestart();
  673. /* If TCRestart indicates a WAIT instruction, advance the PC */
  674. if ((tcrestart & 0x80000000)
  675. && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
  676. tcrestart += 4;
  677. }
  678. /*
  679. * Save on TC's future kernel stack
  680. *
  681. * CU bit of Status is indicator that TC was
  682. * already running on a kernel stack...
  683. */
  684. if (tcstatus & ST0_CU0) {
  685. /* Note that this "- 1" is pointer arithmetic */
  686. kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
  687. } else {
  688. kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
  689. }
  690. kstack->cp0_epc = (long)tcrestart;
  691. /* Save TCStatus */
  692. kstack->cp0_tcstatus = tcstatus;
  693. /* Pass token of operation to be performed kernel stack pad area */
  694. kstack->pad0[4] = (unsigned long)pipi;
  695. /* Pass address of function to be called likewise */
  696. kstack->pad0[5] = (unsigned long)&ipi_decode;
  697. /* Set interrupt exempt and kernel mode */
  698. tcstatus |= TCSTATUS_IXMT;
  699. tcstatus &= ~TCSTATUS_TKSU;
  700. write_tc_c0_tcstatus(tcstatus);
  701. ehb();
  702. /* Set TC Restart address to be SMTC IPI vector */
  703. write_tc_c0_tcrestart(__smtc_ipi_vector);
  704. }
  705. static void ipi_resched_interrupt(void)
  706. {
  707. /* Return from interrupt should be enough to cause scheduler check */
  708. }
  709. static void ipi_call_interrupt(void)
  710. {
  711. /* Invoke generic function invocation code in smp.c */
  712. smp_call_function_interrupt();
  713. }
  714. void ipi_decode(struct smtc_ipi *pipi)
  715. {
  716. void *arg_copy = pipi->arg;
  717. int type_copy = pipi->type;
  718. int dest_copy = pipi->dest;
  719. smtc_ipi_nq(&freeIPIq, pipi);
  720. switch (type_copy) {
  721. case SMTC_CLOCK_TICK:
  722. /* Invoke Clock "Interrupt" */
  723. ipi_timer_latch[dest_copy] = 0;
  724. #ifdef SMTC_IDLE_HOOK_DEBUG
  725. clock_hang_reported[dest_copy] = 0;
  726. #endif /* SMTC_IDLE_HOOK_DEBUG */
  727. local_timer_interrupt(0, NULL);
  728. break;
  729. case LINUX_SMP_IPI:
  730. switch ((int)arg_copy) {
  731. case SMP_RESCHEDULE_YOURSELF:
  732. ipi_resched_interrupt();
  733. break;
  734. case SMP_CALL_FUNCTION:
  735. ipi_call_interrupt();
  736. break;
  737. default:
  738. printk("Impossible SMTC IPI Argument 0x%x\n",
  739. (int)arg_copy);
  740. break;
  741. }
  742. break;
  743. default:
  744. printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
  745. break;
  746. }
  747. }
  748. void deferred_smtc_ipi(void)
  749. {
  750. struct smtc_ipi *pipi;
  751. unsigned long flags;
  752. /* DEBUG */
  753. int q = smp_processor_id();
  754. /*
  755. * Test is not atomic, but much faster than a dequeue,
  756. * and the vast majority of invocations will have a null queue.
  757. */
  758. if (IPIQ[q].head != NULL) {
  759. while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
  760. /* ipi_decode() should be called with interrupts off */
  761. local_irq_save(flags);
  762. ipi_decode(pipi);
  763. local_irq_restore(flags);
  764. }
  765. }
  766. }
  767. /*
  768. * Send clock tick to all TCs except the one executing the funtion
  769. */
  770. void smtc_timer_broadcast(int vpe)
  771. {
  772. int cpu;
  773. int myTC = cpu_data[smp_processor_id()].tc_id;
  774. int myVPE = cpu_data[smp_processor_id()].vpe_id;
  775. smtc_cpu_stats[smp_processor_id()].timerints++;
  776. for_each_online_cpu(cpu) {
  777. if (cpu_data[cpu].vpe_id == myVPE &&
  778. cpu_data[cpu].tc_id != myTC)
  779. smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
  780. }
  781. }
  782. /*
  783. * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
  784. * set via cross-VPE MTTR manipulation of the Cause register. It would be
  785. * in some regards preferable to have external logic for "doorbell" hardware
  786. * interrupts.
  787. */
  788. static int cpu_ipi_irq = MIPSCPU_INT_BASE + MIPS_CPU_IPI_IRQ;
  789. static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
  790. {
  791. int my_vpe = cpu_data[smp_processor_id()].vpe_id;
  792. int my_tc = cpu_data[smp_processor_id()].tc_id;
  793. int cpu;
  794. struct smtc_ipi *pipi;
  795. unsigned long tcstatus;
  796. int sent;
  797. long flags;
  798. unsigned int mtflags;
  799. unsigned int vpflags;
  800. /*
  801. * So long as cross-VPE interrupts are done via
  802. * MFTR/MTTR read-modify-writes of Cause, we need
  803. * to stop other VPEs whenever the local VPE does
  804. * anything similar.
  805. */
  806. local_irq_save(flags);
  807. vpflags = dvpe();
  808. clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
  809. set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
  810. irq_enable_hazard();
  811. evpe(vpflags);
  812. local_irq_restore(flags);
  813. /*
  814. * Cross-VPE Interrupt handler: Try to directly deliver IPIs
  815. * queued for TCs on this VPE other than the current one.
  816. * Return-from-interrupt should cause us to drain the queue
  817. * for the current TC, so we ought not to have to do it explicitly here.
  818. */
  819. for_each_online_cpu(cpu) {
  820. if (cpu_data[cpu].vpe_id != my_vpe)
  821. continue;
  822. pipi = smtc_ipi_dq(&IPIQ[cpu]);
  823. if (pipi != NULL) {
  824. if (cpu_data[cpu].tc_id != my_tc) {
  825. sent = 0;
  826. LOCK_MT_PRA();
  827. settc(cpu_data[cpu].tc_id);
  828. write_tc_c0_tchalt(TCHALT_H);
  829. mips_ihb();
  830. tcstatus = read_tc_c0_tcstatus();
  831. if ((tcstatus & TCSTATUS_IXMT) == 0) {
  832. post_direct_ipi(cpu, pipi);
  833. sent = 1;
  834. }
  835. write_tc_c0_tchalt(0);
  836. UNLOCK_MT_PRA();
  837. if (!sent) {
  838. smtc_ipi_req(&IPIQ[cpu], pipi);
  839. }
  840. } else {
  841. /*
  842. * ipi_decode() should be called
  843. * with interrupts off
  844. */
  845. local_irq_save(flags);
  846. ipi_decode(pipi);
  847. local_irq_restore(flags);
  848. }
  849. }
  850. }
  851. return IRQ_HANDLED;
  852. }
  853. static void ipi_irq_dispatch(void)
  854. {
  855. do_IRQ(cpu_ipi_irq);
  856. }
  857. static struct irqaction irq_ipi;
  858. void setup_cross_vpe_interrupts(void)
  859. {
  860. if (!cpu_has_vint)
  861. panic("SMTC Kernel requires Vectored Interupt support");
  862. set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
  863. irq_ipi.handler = ipi_interrupt;
  864. irq_ipi.flags = IRQF_DISABLED;
  865. irq_ipi.name = "SMTC_IPI";
  866. setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
  867. irq_desc[cpu_ipi_irq].status |= IRQ_PER_CPU;
  868. set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
  869. }
  870. /*
  871. * SMTC-specific hacks invoked from elsewhere in the kernel.
  872. */
  873. void smtc_ipi_replay(void)
  874. {
  875. /*
  876. * To the extent that we've ever turned interrupts off,
  877. * we may have accumulated deferred IPIs. This is subtle.
  878. * If we use the smtc_ipi_qdepth() macro, we'll get an
  879. * exact number - but we'll also disable interrupts
  880. * and create a window of failure where a new IPI gets
  881. * queued after we test the depth but before we re-enable
  882. * interrupts. So long as IXMT never gets set, however,
  883. * we should be OK: If we pick up something and dispatch
  884. * it here, that's great. If we see nothing, but concurrent
  885. * with this operation, another TC sends us an IPI, IXMT
  886. * is clear, and we'll handle it as a real pseudo-interrupt
  887. * and not a pseudo-pseudo interrupt.
  888. */
  889. if (IPIQ[smp_processor_id()].depth > 0) {
  890. struct smtc_ipi *pipi;
  891. extern void self_ipi(struct smtc_ipi *);
  892. while ((pipi = smtc_ipi_dq(&IPIQ[smp_processor_id()]))) {
  893. self_ipi(pipi);
  894. smtc_cpu_stats[smp_processor_id()].selfipis++;
  895. }
  896. }
  897. }
  898. void smtc_idle_loop_hook(void)
  899. {
  900. #ifdef SMTC_IDLE_HOOK_DEBUG
  901. int im;
  902. int flags;
  903. int mtflags;
  904. int bit;
  905. int vpe;
  906. int tc;
  907. int hook_ntcs;
  908. /*
  909. * printk within DMT-protected regions can deadlock,
  910. * so buffer diagnostic messages for later output.
  911. */
  912. char *pdb_msg;
  913. char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
  914. if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
  915. if (atomic_add_return(1, &idle_hook_initialized) == 1) {
  916. int mvpconf0;
  917. /* Tedious stuff to just do once */
  918. mvpconf0 = read_c0_mvpconf0();
  919. hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
  920. if (hook_ntcs > NR_CPUS)
  921. hook_ntcs = NR_CPUS;
  922. for (tc = 0; tc < hook_ntcs; tc++) {
  923. tcnoprog[tc] = 0;
  924. clock_hang_reported[tc] = 0;
  925. }
  926. for (vpe = 0; vpe < 2; vpe++)
  927. for (im = 0; im < 8; im++)
  928. imstuckcount[vpe][im] = 0;
  929. printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
  930. atomic_set(&idle_hook_initialized, 1000);
  931. } else {
  932. /* Someone else is initializing in parallel - let 'em finish */
  933. while (atomic_read(&idle_hook_initialized) < 1000)
  934. ;
  935. }
  936. }
  937. /* Have we stupidly left IXMT set somewhere? */
  938. if (read_c0_tcstatus() & 0x400) {
  939. write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
  940. ehb();
  941. printk("Dangling IXMT in cpu_idle()\n");
  942. }
  943. /* Have we stupidly left an IM bit turned off? */
  944. #define IM_LIMIT 2000
  945. local_irq_save(flags);
  946. mtflags = dmt();
  947. pdb_msg = &id_ho_db_msg[0];
  948. im = read_c0_status();
  949. vpe = cpu_data[smp_processor_id()].vpe_id;
  950. for (bit = 0; bit < 8; bit++) {
  951. /*
  952. * In current prototype, I/O interrupts
  953. * are masked for VPE > 0
  954. */
  955. if (vpemask[vpe][bit]) {
  956. if (!(im & (0x100 << bit)))
  957. imstuckcount[vpe][bit]++;
  958. else
  959. imstuckcount[vpe][bit] = 0;
  960. if (imstuckcount[vpe][bit] > IM_LIMIT) {
  961. set_c0_status(0x100 << bit);
  962. ehb();
  963. imstuckcount[vpe][bit] = 0;
  964. pdb_msg += sprintf(pdb_msg,
  965. "Dangling IM %d fixed for VPE %d\n", bit,
  966. vpe);
  967. }
  968. }
  969. }
  970. /*
  971. * Now that we limit outstanding timer IPIs, check for hung TC
  972. */
  973. for (tc = 0; tc < NR_CPUS; tc++) {
  974. /* Don't check ourself - we'll dequeue IPIs just below */
  975. if ((tc != smp_processor_id()) &&
  976. ipi_timer_latch[tc] > timerq_limit) {
  977. if (clock_hang_reported[tc] == 0) {
  978. pdb_msg += sprintf(pdb_msg,
  979. "TC %d looks hung with timer latch at %d\n",
  980. tc, ipi_timer_latch[tc]);
  981. clock_hang_reported[tc]++;
  982. }
  983. }
  984. }
  985. emt(mtflags);
  986. local_irq_restore(flags);
  987. if (pdb_msg != &id_ho_db_msg[0])
  988. printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
  989. #endif /* SMTC_IDLE_HOOK_DEBUG */
  990. /*
  991. * Replay any accumulated deferred IPIs. If "Instant Replay"
  992. * is in use, there should never be any.
  993. */
  994. #ifndef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
  995. smtc_ipi_replay();
  996. #endif /* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY */
  997. }
  998. void smtc_soft_dump(void)
  999. {
  1000. int i;
  1001. printk("Counter Interrupts taken per CPU (TC)\n");
  1002. for (i=0; i < NR_CPUS; i++) {
  1003. printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
  1004. }
  1005. printk("Self-IPI invocations:\n");
  1006. for (i=0; i < NR_CPUS; i++) {
  1007. printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
  1008. }
  1009. smtc_ipi_qdump();
  1010. printk("Timer IPI Backlogs:\n");
  1011. for (i=0; i < NR_CPUS; i++) {
  1012. printk("%d: %d\n", i, ipi_timer_latch[i]);
  1013. }
  1014. printk("%d Recoveries of \"stolen\" FPU\n",
  1015. atomic_read(&smtc_fpu_recoveries));
  1016. }
  1017. /*
  1018. * TLB management routines special to SMTC
  1019. */
  1020. void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
  1021. {
  1022. unsigned long flags, mtflags, tcstat, prevhalt, asid;
  1023. int tlb, i;
  1024. /*
  1025. * It would be nice to be able to use a spinlock here,
  1026. * but this is invoked from within TLB flush routines
  1027. * that protect themselves with DVPE, so if a lock is
  1028. * held by another TC, it'll never be freed.
  1029. *
  1030. * DVPE/DMT must not be done with interrupts enabled,
  1031. * so even so most callers will already have disabled
  1032. * them, let's be really careful...
  1033. */
  1034. local_irq_save(flags);
  1035. if (smtc_status & SMTC_TLB_SHARED) {
  1036. mtflags = dvpe();
  1037. tlb = 0;
  1038. } else {
  1039. mtflags = dmt();
  1040. tlb = cpu_data[cpu].vpe_id;
  1041. }
  1042. asid = asid_cache(cpu);
  1043. do {
  1044. if (!((asid += ASID_INC) & ASID_MASK) ) {
  1045. if (cpu_has_vtag_icache)
  1046. flush_icache_all();
  1047. /* Traverse all online CPUs (hack requires contigous range) */
  1048. for (i = 0; i < num_online_cpus(); i++) {
  1049. /*
  1050. * We don't need to worry about our own CPU, nor those of
  1051. * CPUs who don't share our TLB.
  1052. */
  1053. if ((i != smp_processor_id()) &&
  1054. ((smtc_status & SMTC_TLB_SHARED) ||
  1055. (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
  1056. settc(cpu_data[i].tc_id);
  1057. prevhalt = read_tc_c0_tchalt() & TCHALT_H;
  1058. if (!prevhalt) {
  1059. write_tc_c0_tchalt(TCHALT_H);
  1060. mips_ihb();
  1061. }
  1062. tcstat = read_tc_c0_tcstatus();
  1063. smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
  1064. if (!prevhalt)
  1065. write_tc_c0_tchalt(0);
  1066. }
  1067. }
  1068. if (!asid) /* fix version if needed */
  1069. asid = ASID_FIRST_VERSION;
  1070. local_flush_tlb_all(); /* start new asid cycle */
  1071. }
  1072. } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
  1073. /*
  1074. * SMTC shares the TLB within VPEs and possibly across all VPEs.
  1075. */
  1076. for (i = 0; i < num_online_cpus(); i++) {
  1077. if ((smtc_status & SMTC_TLB_SHARED) ||
  1078. (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
  1079. cpu_context(i, mm) = asid_cache(i) = asid;
  1080. }
  1081. if (smtc_status & SMTC_TLB_SHARED)
  1082. evpe(mtflags);
  1083. else
  1084. emt(mtflags);
  1085. local_irq_restore(flags);
  1086. }
  1087. /*
  1088. * Invoked from macros defined in mmu_context.h
  1089. * which must already have disabled interrupts
  1090. * and done a DVPE or DMT as appropriate.
  1091. */
  1092. void smtc_flush_tlb_asid(unsigned long asid)
  1093. {
  1094. int entry;
  1095. unsigned long ehi;
  1096. entry = read_c0_wired();
  1097. /* Traverse all non-wired entries */
  1098. while (entry < current_cpu_data.tlbsize) {
  1099. write_c0_index(entry);
  1100. ehb();
  1101. tlb_read();
  1102. ehb();
  1103. ehi = read_c0_entryhi();
  1104. if ((ehi & ASID_MASK) == asid) {
  1105. /*
  1106. * Invalidate only entries with specified ASID,
  1107. * makiing sure all entries differ.
  1108. */
  1109. write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
  1110. write_c0_entrylo0(0);
  1111. write_c0_entrylo1(0);
  1112. mtc0_tlbw_hazard();
  1113. tlb_write_indexed();
  1114. }
  1115. entry++;
  1116. }
  1117. write_c0_index(PARKED_INDEX);
  1118. tlbw_use_hazard();
  1119. }
  1120. /*
  1121. * Support for single-threading cache flush operations.
  1122. */
  1123. int halt_state_save[NR_CPUS];
  1124. /*
  1125. * To really, really be sure that nothing is being done
  1126. * by other TCs, halt them all. This code assumes that
  1127. * a DVPE has already been done, so while their Halted
  1128. * state is theoretically architecturally unstable, in
  1129. * practice, it's not going to change while we're looking
  1130. * at it.
  1131. */
  1132. void smtc_cflush_lockdown(void)
  1133. {
  1134. int cpu;
  1135. for_each_online_cpu(cpu) {
  1136. if (cpu != smp_processor_id()) {
  1137. settc(cpu_data[cpu].tc_id);
  1138. halt_state_save[cpu] = read_tc_c0_tchalt();
  1139. write_tc_c0_tchalt(TCHALT_H);
  1140. }
  1141. }
  1142. mips_ihb();
  1143. }
  1144. /* It would be cheating to change the cpu_online states during a flush! */
  1145. void smtc_cflush_release(void)
  1146. {
  1147. int cpu;
  1148. /*
  1149. * Start with a hazard barrier to ensure
  1150. * that all CACHE ops have played through.
  1151. */
  1152. mips_ihb();
  1153. for_each_online_cpu(cpu) {
  1154. if (cpu != smp_processor_id()) {
  1155. settc(cpu_data[cpu].tc_id);
  1156. write_tc_c0_tchalt(halt_state_save[cpu]);
  1157. }
  1158. }
  1159. mips_ihb();
  1160. }