perf_event_amd.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411
  1. #ifdef CONFIG_CPU_SUP_AMD
  2. static DEFINE_RAW_SPINLOCK(amd_nb_lock);
  3. static __initconst u64 amd_hw_cache_event_ids
  4. [PERF_COUNT_HW_CACHE_MAX]
  5. [PERF_COUNT_HW_CACHE_OP_MAX]
  6. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  7. {
  8. [ C(L1D) ] = {
  9. [ C(OP_READ) ] = {
  10. [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
  11. [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */
  12. },
  13. [ C(OP_WRITE) ] = {
  14. [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
  15. [ C(RESULT_MISS) ] = 0,
  16. },
  17. [ C(OP_PREFETCH) ] = {
  18. [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
  19. [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
  20. },
  21. },
  22. [ C(L1I ) ] = {
  23. [ C(OP_READ) ] = {
  24. [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
  25. [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
  26. },
  27. [ C(OP_WRITE) ] = {
  28. [ C(RESULT_ACCESS) ] = -1,
  29. [ C(RESULT_MISS) ] = -1,
  30. },
  31. [ C(OP_PREFETCH) ] = {
  32. [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
  33. [ C(RESULT_MISS) ] = 0,
  34. },
  35. },
  36. [ C(LL ) ] = {
  37. [ C(OP_READ) ] = {
  38. [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
  39. [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
  40. },
  41. [ C(OP_WRITE) ] = {
  42. [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
  43. [ C(RESULT_MISS) ] = 0,
  44. },
  45. [ C(OP_PREFETCH) ] = {
  46. [ C(RESULT_ACCESS) ] = 0,
  47. [ C(RESULT_MISS) ] = 0,
  48. },
  49. },
  50. [ C(DTLB) ] = {
  51. [ C(OP_READ) ] = {
  52. [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
  53. [ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */
  54. },
  55. [ C(OP_WRITE) ] = {
  56. [ C(RESULT_ACCESS) ] = 0,
  57. [ C(RESULT_MISS) ] = 0,
  58. },
  59. [ C(OP_PREFETCH) ] = {
  60. [ C(RESULT_ACCESS) ] = 0,
  61. [ C(RESULT_MISS) ] = 0,
  62. },
  63. },
  64. [ C(ITLB) ] = {
  65. [ C(OP_READ) ] = {
  66. [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
  67. [ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */
  68. },
  69. [ C(OP_WRITE) ] = {
  70. [ C(RESULT_ACCESS) ] = -1,
  71. [ C(RESULT_MISS) ] = -1,
  72. },
  73. [ C(OP_PREFETCH) ] = {
  74. [ C(RESULT_ACCESS) ] = -1,
  75. [ C(RESULT_MISS) ] = -1,
  76. },
  77. },
  78. [ C(BPU ) ] = {
  79. [ C(OP_READ) ] = {
  80. [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
  81. [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
  82. },
  83. [ C(OP_WRITE) ] = {
  84. [ C(RESULT_ACCESS) ] = -1,
  85. [ C(RESULT_MISS) ] = -1,
  86. },
  87. [ C(OP_PREFETCH) ] = {
  88. [ C(RESULT_ACCESS) ] = -1,
  89. [ C(RESULT_MISS) ] = -1,
  90. },
  91. },
  92. };
  93. /*
  94. * AMD Performance Monitor K7 and later.
  95. */
  96. static const u64 amd_perfmon_event_map[] =
  97. {
  98. [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
  99. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  100. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
  101. [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
  102. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
  103. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
  104. };
  105. static u64 amd_pmu_event_map(int hw_event)
  106. {
  107. return amd_perfmon_event_map[hw_event];
  108. }
  109. static u64 amd_pmu_raw_event(u64 hw_event)
  110. {
  111. return hw_event & AMD64_RAW_EVENT_MASK;
  112. }
  113. /*
  114. * AMD64 events are detected based on their event codes.
  115. */
  116. static inline int amd_is_nb_event(struct hw_perf_event *hwc)
  117. {
  118. return (hwc->config & 0xe0) == 0xe0;
  119. }
  120. static inline int amd_has_nb(struct cpu_hw_events *cpuc)
  121. {
  122. struct amd_nb *nb = cpuc->amd_nb;
  123. return nb && nb->nb_id != -1;
  124. }
  125. static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
  126. struct perf_event *event)
  127. {
  128. struct hw_perf_event *hwc = &event->hw;
  129. struct amd_nb *nb = cpuc->amd_nb;
  130. int i;
  131. /*
  132. * only care about NB events
  133. */
  134. if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
  135. return;
  136. /*
  137. * need to scan whole list because event may not have
  138. * been assigned during scheduling
  139. *
  140. * no race condition possible because event can only
  141. * be removed on one CPU at a time AND PMU is disabled
  142. * when we come here
  143. */
  144. for (i = 0; i < x86_pmu.num_counters; i++) {
  145. if (nb->owners[i] == event) {
  146. cmpxchg(nb->owners+i, event, NULL);
  147. break;
  148. }
  149. }
  150. }
  151. /*
  152. * AMD64 NorthBridge events need special treatment because
  153. * counter access needs to be synchronized across all cores
  154. * of a package. Refer to BKDG section 3.12
  155. *
  156. * NB events are events measuring L3 cache, Hypertransport
  157. * traffic. They are identified by an event code >= 0xe00.
  158. * They measure events on the NorthBride which is shared
  159. * by all cores on a package. NB events are counted on a
  160. * shared set of counters. When a NB event is programmed
  161. * in a counter, the data actually comes from a shared
  162. * counter. Thus, access to those counters needs to be
  163. * synchronized.
  164. *
  165. * We implement the synchronization such that no two cores
  166. * can be measuring NB events using the same counters. Thus,
  167. * we maintain a per-NB allocation table. The available slot
  168. * is propagated using the event_constraint structure.
  169. *
  170. * We provide only one choice for each NB event based on
  171. * the fact that only NB events have restrictions. Consequently,
  172. * if a counter is available, there is a guarantee the NB event
  173. * will be assigned to it. If no slot is available, an empty
  174. * constraint is returned and scheduling will eventually fail
  175. * for this event.
  176. *
  177. * Note that all cores attached the same NB compete for the same
  178. * counters to host NB events, this is why we use atomic ops. Some
  179. * multi-chip CPUs may have more than one NB.
  180. *
  181. * Given that resources are allocated (cmpxchg), they must be
  182. * eventually freed for others to use. This is accomplished by
  183. * calling amd_put_event_constraints().
  184. *
  185. * Non NB events are not impacted by this restriction.
  186. */
  187. static struct event_constraint *
  188. amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  189. {
  190. struct hw_perf_event *hwc = &event->hw;
  191. struct amd_nb *nb = cpuc->amd_nb;
  192. struct perf_event *old = NULL;
  193. int max = x86_pmu.num_counters;
  194. int i, j, k = -1;
  195. /*
  196. * if not NB event or no NB, then no constraints
  197. */
  198. if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
  199. return &unconstrained;
  200. /*
  201. * detect if already present, if so reuse
  202. *
  203. * cannot merge with actual allocation
  204. * because of possible holes
  205. *
  206. * event can already be present yet not assigned (in hwc->idx)
  207. * because of successive calls to x86_schedule_events() from
  208. * hw_perf_group_sched_in() without hw_perf_enable()
  209. */
  210. for (i = 0; i < max; i++) {
  211. /*
  212. * keep track of first free slot
  213. */
  214. if (k == -1 && !nb->owners[i])
  215. k = i;
  216. /* already present, reuse */
  217. if (nb->owners[i] == event)
  218. goto done;
  219. }
  220. /*
  221. * not present, so grab a new slot
  222. * starting either at:
  223. */
  224. if (hwc->idx != -1) {
  225. /* previous assignment */
  226. i = hwc->idx;
  227. } else if (k != -1) {
  228. /* start from free slot found */
  229. i = k;
  230. } else {
  231. /*
  232. * event not found, no slot found in
  233. * first pass, try again from the
  234. * beginning
  235. */
  236. i = 0;
  237. }
  238. j = i;
  239. do {
  240. old = cmpxchg(nb->owners+i, NULL, event);
  241. if (!old)
  242. break;
  243. if (++i == max)
  244. i = 0;
  245. } while (i != j);
  246. done:
  247. if (!old)
  248. return &nb->event_constraints[i];
  249. return &emptyconstraint;
  250. }
  251. static struct amd_nb *amd_alloc_nb(int cpu, int nb_id)
  252. {
  253. struct amd_nb *nb;
  254. int i;
  255. nb = kmalloc(sizeof(struct amd_nb), GFP_KERNEL);
  256. if (!nb)
  257. return NULL;
  258. memset(nb, 0, sizeof(*nb));
  259. nb->nb_id = nb_id;
  260. /*
  261. * initialize all possible NB constraints
  262. */
  263. for (i = 0; i < x86_pmu.num_counters; i++) {
  264. __set_bit(i, nb->event_constraints[i].idxmsk);
  265. nb->event_constraints[i].weight = 1;
  266. }
  267. return nb;
  268. }
  269. static int amd_pmu_cpu_prepare(int cpu)
  270. {
  271. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  272. WARN_ON_ONCE(cpuc->amd_nb);
  273. if (boot_cpu_data.x86_max_cores < 2)
  274. return NOTIFY_OK;
  275. cpuc->amd_nb = amd_alloc_nb(cpu, -1);
  276. if (!cpuc->amd_nb)
  277. return NOTIFY_BAD;
  278. return NOTIFY_OK;
  279. }
  280. static void amd_pmu_cpu_starting(int cpu)
  281. {
  282. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  283. struct amd_nb *nb;
  284. int i, nb_id;
  285. if (boot_cpu_data.x86_max_cores < 2)
  286. return;
  287. nb_id = amd_get_nb_id(cpu);
  288. WARN_ON_ONCE(nb_id == BAD_APICID);
  289. raw_spin_lock(&amd_nb_lock);
  290. for_each_online_cpu(i) {
  291. nb = per_cpu(cpu_hw_events, i).amd_nb;
  292. if (WARN_ON_ONCE(!nb))
  293. continue;
  294. if (nb->nb_id == nb_id) {
  295. kfree(cpuc->amd_nb);
  296. cpuc->amd_nb = nb;
  297. break;
  298. }
  299. }
  300. cpuc->amd_nb->nb_id = nb_id;
  301. cpuc->amd_nb->refcnt++;
  302. raw_spin_unlock(&amd_nb_lock);
  303. }
  304. static void amd_pmu_cpu_dead(int cpu)
  305. {
  306. struct cpu_hw_events *cpuhw;
  307. if (boot_cpu_data.x86_max_cores < 2)
  308. return;
  309. cpuhw = &per_cpu(cpu_hw_events, cpu);
  310. raw_spin_lock(&amd_nb_lock);
  311. if (cpuhw->amd_nb) {
  312. struct amd_nb *nb = cpuhw->amd_nb;
  313. if (nb->nb_id == -1 || --nb->refcnt == 0)
  314. kfree(nb);
  315. cpuhw->amd_nb = NULL;
  316. }
  317. raw_spin_unlock(&amd_nb_lock);
  318. }
  319. static __initconst struct x86_pmu amd_pmu = {
  320. .name = "AMD",
  321. .handle_irq = x86_pmu_handle_irq,
  322. .disable_all = x86_pmu_disable_all,
  323. .enable_all = x86_pmu_enable_all,
  324. .enable = x86_pmu_enable_event,
  325. .disable = x86_pmu_disable_event,
  326. .hw_config = x86_hw_config,
  327. .schedule_events = x86_schedule_events,
  328. .eventsel = MSR_K7_EVNTSEL0,
  329. .perfctr = MSR_K7_PERFCTR0,
  330. .event_map = amd_pmu_event_map,
  331. .raw_event = amd_pmu_raw_event,
  332. .max_events = ARRAY_SIZE(amd_perfmon_event_map),
  333. .num_counters = 4,
  334. .cntval_bits = 48,
  335. .cntval_mask = (1ULL << 48) - 1,
  336. .apic = 1,
  337. /* use highest bit to detect overflow */
  338. .max_period = (1ULL << 47) - 1,
  339. .get_event_constraints = amd_get_event_constraints,
  340. .put_event_constraints = amd_put_event_constraints,
  341. .cpu_prepare = amd_pmu_cpu_prepare,
  342. .cpu_starting = amd_pmu_cpu_starting,
  343. .cpu_dead = amd_pmu_cpu_dead,
  344. };
  345. static __init int amd_pmu_init(void)
  346. {
  347. /* Performance-monitoring supported from K7 and later: */
  348. if (boot_cpu_data.x86 < 6)
  349. return -ENODEV;
  350. x86_pmu = amd_pmu;
  351. /* Events are common for all AMDs */
  352. memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
  353. sizeof(hw_cache_event_ids));
  354. return 0;
  355. }
  356. #else /* CONFIG_CPU_SUP_AMD */
  357. static int amd_pmu_init(void)
  358. {
  359. return 0;
  360. }
  361. #endif