caps.c 87 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/fs.h>
  3. #include <linux/kernel.h>
  4. #include <linux/sched.h>
  5. #include <linux/slab.h>
  6. #include <linux/vmalloc.h>
  7. #include <linux/wait.h>
  8. #include <linux/writeback.h>
  9. #include "super.h"
  10. #include "mds_client.h"
  11. #include "cache.h"
  12. #include <linux/ceph/decode.h>
  13. #include <linux/ceph/messenger.h>
  14. /*
  15. * Capability management
  16. *
  17. * The Ceph metadata servers control client access to inode metadata
  18. * and file data by issuing capabilities, granting clients permission
  19. * to read and/or write both inode field and file data to OSDs
  20. * (storage nodes). Each capability consists of a set of bits
  21. * indicating which operations are allowed.
  22. *
  23. * If the client holds a *_SHARED cap, the client has a coherent value
  24. * that can be safely read from the cached inode.
  25. *
  26. * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
  27. * client is allowed to change inode attributes (e.g., file size,
  28. * mtime), note its dirty state in the ceph_cap, and asynchronously
  29. * flush that metadata change to the MDS.
  30. *
  31. * In the event of a conflicting operation (perhaps by another
  32. * client), the MDS will revoke the conflicting client capabilities.
  33. *
  34. * In order for a client to cache an inode, it must hold a capability
  35. * with at least one MDS server. When inodes are released, release
  36. * notifications are batched and periodically sent en masse to the MDS
  37. * cluster to release server state.
  38. */
  39. /*
  40. * Generate readable cap strings for debugging output.
  41. */
  42. #define MAX_CAP_STR 20
  43. static char cap_str[MAX_CAP_STR][40];
  44. static DEFINE_SPINLOCK(cap_str_lock);
  45. static int last_cap_str;
  46. static char *gcap_string(char *s, int c)
  47. {
  48. if (c & CEPH_CAP_GSHARED)
  49. *s++ = 's';
  50. if (c & CEPH_CAP_GEXCL)
  51. *s++ = 'x';
  52. if (c & CEPH_CAP_GCACHE)
  53. *s++ = 'c';
  54. if (c & CEPH_CAP_GRD)
  55. *s++ = 'r';
  56. if (c & CEPH_CAP_GWR)
  57. *s++ = 'w';
  58. if (c & CEPH_CAP_GBUFFER)
  59. *s++ = 'b';
  60. if (c & CEPH_CAP_GLAZYIO)
  61. *s++ = 'l';
  62. return s;
  63. }
  64. const char *ceph_cap_string(int caps)
  65. {
  66. int i;
  67. char *s;
  68. int c;
  69. spin_lock(&cap_str_lock);
  70. i = last_cap_str++;
  71. if (last_cap_str == MAX_CAP_STR)
  72. last_cap_str = 0;
  73. spin_unlock(&cap_str_lock);
  74. s = cap_str[i];
  75. if (caps & CEPH_CAP_PIN)
  76. *s++ = 'p';
  77. c = (caps >> CEPH_CAP_SAUTH) & 3;
  78. if (c) {
  79. *s++ = 'A';
  80. s = gcap_string(s, c);
  81. }
  82. c = (caps >> CEPH_CAP_SLINK) & 3;
  83. if (c) {
  84. *s++ = 'L';
  85. s = gcap_string(s, c);
  86. }
  87. c = (caps >> CEPH_CAP_SXATTR) & 3;
  88. if (c) {
  89. *s++ = 'X';
  90. s = gcap_string(s, c);
  91. }
  92. c = caps >> CEPH_CAP_SFILE;
  93. if (c) {
  94. *s++ = 'F';
  95. s = gcap_string(s, c);
  96. }
  97. if (s == cap_str[i])
  98. *s++ = '-';
  99. *s = 0;
  100. return cap_str[i];
  101. }
  102. void ceph_caps_init(struct ceph_mds_client *mdsc)
  103. {
  104. INIT_LIST_HEAD(&mdsc->caps_list);
  105. spin_lock_init(&mdsc->caps_list_lock);
  106. }
  107. void ceph_caps_finalize(struct ceph_mds_client *mdsc)
  108. {
  109. struct ceph_cap *cap;
  110. spin_lock(&mdsc->caps_list_lock);
  111. while (!list_empty(&mdsc->caps_list)) {
  112. cap = list_first_entry(&mdsc->caps_list,
  113. struct ceph_cap, caps_item);
  114. list_del(&cap->caps_item);
  115. kmem_cache_free(ceph_cap_cachep, cap);
  116. }
  117. mdsc->caps_total_count = 0;
  118. mdsc->caps_avail_count = 0;
  119. mdsc->caps_use_count = 0;
  120. mdsc->caps_reserve_count = 0;
  121. mdsc->caps_min_count = 0;
  122. spin_unlock(&mdsc->caps_list_lock);
  123. }
  124. void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
  125. {
  126. spin_lock(&mdsc->caps_list_lock);
  127. mdsc->caps_min_count += delta;
  128. BUG_ON(mdsc->caps_min_count < 0);
  129. spin_unlock(&mdsc->caps_list_lock);
  130. }
  131. void ceph_reserve_caps(struct ceph_mds_client *mdsc,
  132. struct ceph_cap_reservation *ctx, int need)
  133. {
  134. int i;
  135. struct ceph_cap *cap;
  136. int have;
  137. int alloc = 0;
  138. LIST_HEAD(newcaps);
  139. dout("reserve caps ctx=%p need=%d\n", ctx, need);
  140. /* first reserve any caps that are already allocated */
  141. spin_lock(&mdsc->caps_list_lock);
  142. if (mdsc->caps_avail_count >= need)
  143. have = need;
  144. else
  145. have = mdsc->caps_avail_count;
  146. mdsc->caps_avail_count -= have;
  147. mdsc->caps_reserve_count += have;
  148. BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
  149. mdsc->caps_reserve_count +
  150. mdsc->caps_avail_count);
  151. spin_unlock(&mdsc->caps_list_lock);
  152. for (i = have; i < need; i++) {
  153. cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
  154. if (!cap)
  155. break;
  156. list_add(&cap->caps_item, &newcaps);
  157. alloc++;
  158. }
  159. /* we didn't manage to reserve as much as we needed */
  160. if (have + alloc != need)
  161. pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
  162. ctx, need, have + alloc);
  163. spin_lock(&mdsc->caps_list_lock);
  164. mdsc->caps_total_count += alloc;
  165. mdsc->caps_reserve_count += alloc;
  166. list_splice(&newcaps, &mdsc->caps_list);
  167. BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
  168. mdsc->caps_reserve_count +
  169. mdsc->caps_avail_count);
  170. spin_unlock(&mdsc->caps_list_lock);
  171. ctx->count = need;
  172. dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
  173. ctx, mdsc->caps_total_count, mdsc->caps_use_count,
  174. mdsc->caps_reserve_count, mdsc->caps_avail_count);
  175. }
  176. int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
  177. struct ceph_cap_reservation *ctx)
  178. {
  179. dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
  180. if (ctx->count) {
  181. spin_lock(&mdsc->caps_list_lock);
  182. BUG_ON(mdsc->caps_reserve_count < ctx->count);
  183. mdsc->caps_reserve_count -= ctx->count;
  184. mdsc->caps_avail_count += ctx->count;
  185. ctx->count = 0;
  186. dout("unreserve caps %d = %d used + %d resv + %d avail\n",
  187. mdsc->caps_total_count, mdsc->caps_use_count,
  188. mdsc->caps_reserve_count, mdsc->caps_avail_count);
  189. BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
  190. mdsc->caps_reserve_count +
  191. mdsc->caps_avail_count);
  192. spin_unlock(&mdsc->caps_list_lock);
  193. }
  194. return 0;
  195. }
  196. static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
  197. struct ceph_cap_reservation *ctx)
  198. {
  199. struct ceph_cap *cap = NULL;
  200. /* temporary, until we do something about cap import/export */
  201. if (!ctx) {
  202. cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
  203. if (cap) {
  204. spin_lock(&mdsc->caps_list_lock);
  205. mdsc->caps_use_count++;
  206. mdsc->caps_total_count++;
  207. spin_unlock(&mdsc->caps_list_lock);
  208. }
  209. return cap;
  210. }
  211. spin_lock(&mdsc->caps_list_lock);
  212. dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
  213. ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
  214. mdsc->caps_reserve_count, mdsc->caps_avail_count);
  215. BUG_ON(!ctx->count);
  216. BUG_ON(ctx->count > mdsc->caps_reserve_count);
  217. BUG_ON(list_empty(&mdsc->caps_list));
  218. ctx->count--;
  219. mdsc->caps_reserve_count--;
  220. mdsc->caps_use_count++;
  221. cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
  222. list_del(&cap->caps_item);
  223. BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
  224. mdsc->caps_reserve_count + mdsc->caps_avail_count);
  225. spin_unlock(&mdsc->caps_list_lock);
  226. return cap;
  227. }
  228. void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
  229. {
  230. spin_lock(&mdsc->caps_list_lock);
  231. dout("put_cap %p %d = %d used + %d resv + %d avail\n",
  232. cap, mdsc->caps_total_count, mdsc->caps_use_count,
  233. mdsc->caps_reserve_count, mdsc->caps_avail_count);
  234. mdsc->caps_use_count--;
  235. /*
  236. * Keep some preallocated caps around (ceph_min_count), to
  237. * avoid lots of free/alloc churn.
  238. */
  239. if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
  240. mdsc->caps_min_count) {
  241. mdsc->caps_total_count--;
  242. kmem_cache_free(ceph_cap_cachep, cap);
  243. } else {
  244. mdsc->caps_avail_count++;
  245. list_add(&cap->caps_item, &mdsc->caps_list);
  246. }
  247. BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
  248. mdsc->caps_reserve_count + mdsc->caps_avail_count);
  249. spin_unlock(&mdsc->caps_list_lock);
  250. }
  251. void ceph_reservation_status(struct ceph_fs_client *fsc,
  252. int *total, int *avail, int *used, int *reserved,
  253. int *min)
  254. {
  255. struct ceph_mds_client *mdsc = fsc->mdsc;
  256. if (total)
  257. *total = mdsc->caps_total_count;
  258. if (avail)
  259. *avail = mdsc->caps_avail_count;
  260. if (used)
  261. *used = mdsc->caps_use_count;
  262. if (reserved)
  263. *reserved = mdsc->caps_reserve_count;
  264. if (min)
  265. *min = mdsc->caps_min_count;
  266. }
  267. /*
  268. * Find ceph_cap for given mds, if any.
  269. *
  270. * Called with i_ceph_lock held.
  271. */
  272. static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
  273. {
  274. struct ceph_cap *cap;
  275. struct rb_node *n = ci->i_caps.rb_node;
  276. while (n) {
  277. cap = rb_entry(n, struct ceph_cap, ci_node);
  278. if (mds < cap->mds)
  279. n = n->rb_left;
  280. else if (mds > cap->mds)
  281. n = n->rb_right;
  282. else
  283. return cap;
  284. }
  285. return NULL;
  286. }
  287. struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
  288. {
  289. struct ceph_cap *cap;
  290. spin_lock(&ci->i_ceph_lock);
  291. cap = __get_cap_for_mds(ci, mds);
  292. spin_unlock(&ci->i_ceph_lock);
  293. return cap;
  294. }
  295. /*
  296. * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
  297. */
  298. static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
  299. {
  300. struct ceph_cap *cap;
  301. int mds = -1;
  302. struct rb_node *p;
  303. /* prefer mds with WR|BUFFER|EXCL caps */
  304. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  305. cap = rb_entry(p, struct ceph_cap, ci_node);
  306. mds = cap->mds;
  307. if (cap->issued & (CEPH_CAP_FILE_WR |
  308. CEPH_CAP_FILE_BUFFER |
  309. CEPH_CAP_FILE_EXCL))
  310. break;
  311. }
  312. return mds;
  313. }
  314. int ceph_get_cap_mds(struct inode *inode)
  315. {
  316. struct ceph_inode_info *ci = ceph_inode(inode);
  317. int mds;
  318. spin_lock(&ci->i_ceph_lock);
  319. mds = __ceph_get_cap_mds(ceph_inode(inode));
  320. spin_unlock(&ci->i_ceph_lock);
  321. return mds;
  322. }
  323. /*
  324. * Called under i_ceph_lock.
  325. */
  326. static void __insert_cap_node(struct ceph_inode_info *ci,
  327. struct ceph_cap *new)
  328. {
  329. struct rb_node **p = &ci->i_caps.rb_node;
  330. struct rb_node *parent = NULL;
  331. struct ceph_cap *cap = NULL;
  332. while (*p) {
  333. parent = *p;
  334. cap = rb_entry(parent, struct ceph_cap, ci_node);
  335. if (new->mds < cap->mds)
  336. p = &(*p)->rb_left;
  337. else if (new->mds > cap->mds)
  338. p = &(*p)->rb_right;
  339. else
  340. BUG();
  341. }
  342. rb_link_node(&new->ci_node, parent, p);
  343. rb_insert_color(&new->ci_node, &ci->i_caps);
  344. }
  345. /*
  346. * (re)set cap hold timeouts, which control the delayed release
  347. * of unused caps back to the MDS. Should be called on cap use.
  348. */
  349. static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
  350. struct ceph_inode_info *ci)
  351. {
  352. struct ceph_mount_options *ma = mdsc->fsc->mount_options;
  353. ci->i_hold_caps_min = round_jiffies(jiffies +
  354. ma->caps_wanted_delay_min * HZ);
  355. ci->i_hold_caps_max = round_jiffies(jiffies +
  356. ma->caps_wanted_delay_max * HZ);
  357. dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
  358. ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
  359. }
  360. /*
  361. * (Re)queue cap at the end of the delayed cap release list.
  362. *
  363. * If I_FLUSH is set, leave the inode at the front of the list.
  364. *
  365. * Caller holds i_ceph_lock
  366. * -> we take mdsc->cap_delay_lock
  367. */
  368. static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
  369. struct ceph_inode_info *ci)
  370. {
  371. __cap_set_timeouts(mdsc, ci);
  372. dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
  373. ci->i_ceph_flags, ci->i_hold_caps_max);
  374. if (!mdsc->stopping) {
  375. spin_lock(&mdsc->cap_delay_lock);
  376. if (!list_empty(&ci->i_cap_delay_list)) {
  377. if (ci->i_ceph_flags & CEPH_I_FLUSH)
  378. goto no_change;
  379. list_del_init(&ci->i_cap_delay_list);
  380. }
  381. list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
  382. no_change:
  383. spin_unlock(&mdsc->cap_delay_lock);
  384. }
  385. }
  386. /*
  387. * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
  388. * indicating we should send a cap message to flush dirty metadata
  389. * asap, and move to the front of the delayed cap list.
  390. */
  391. static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
  392. struct ceph_inode_info *ci)
  393. {
  394. dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
  395. spin_lock(&mdsc->cap_delay_lock);
  396. ci->i_ceph_flags |= CEPH_I_FLUSH;
  397. if (!list_empty(&ci->i_cap_delay_list))
  398. list_del_init(&ci->i_cap_delay_list);
  399. list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
  400. spin_unlock(&mdsc->cap_delay_lock);
  401. }
  402. /*
  403. * Cancel delayed work on cap.
  404. *
  405. * Caller must hold i_ceph_lock.
  406. */
  407. static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
  408. struct ceph_inode_info *ci)
  409. {
  410. dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
  411. if (list_empty(&ci->i_cap_delay_list))
  412. return;
  413. spin_lock(&mdsc->cap_delay_lock);
  414. list_del_init(&ci->i_cap_delay_list);
  415. spin_unlock(&mdsc->cap_delay_lock);
  416. }
  417. /*
  418. * Common issue checks for add_cap, handle_cap_grant.
  419. */
  420. static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
  421. unsigned issued)
  422. {
  423. unsigned had = __ceph_caps_issued(ci, NULL);
  424. /*
  425. * Each time we receive FILE_CACHE anew, we increment
  426. * i_rdcache_gen.
  427. */
  428. if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
  429. (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) {
  430. ci->i_rdcache_gen++;
  431. }
  432. /*
  433. * if we are newly issued FILE_SHARED, mark dir not complete; we
  434. * don't know what happened to this directory while we didn't
  435. * have the cap.
  436. */
  437. if ((issued & CEPH_CAP_FILE_SHARED) &&
  438. (had & CEPH_CAP_FILE_SHARED) == 0) {
  439. ci->i_shared_gen++;
  440. if (S_ISDIR(ci->vfs_inode.i_mode)) {
  441. dout(" marking %p NOT complete\n", &ci->vfs_inode);
  442. __ceph_dir_clear_complete(ci);
  443. }
  444. }
  445. }
  446. /*
  447. * Add a capability under the given MDS session.
  448. *
  449. * Caller should hold session snap_rwsem (read) and s_mutex.
  450. *
  451. * @fmode is the open file mode, if we are opening a file, otherwise
  452. * it is < 0. (This is so we can atomically add the cap and add an
  453. * open file reference to it.)
  454. */
  455. int ceph_add_cap(struct inode *inode,
  456. struct ceph_mds_session *session, u64 cap_id,
  457. int fmode, unsigned issued, unsigned wanted,
  458. unsigned seq, unsigned mseq, u64 realmino, int flags,
  459. struct ceph_cap_reservation *caps_reservation)
  460. {
  461. struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
  462. struct ceph_inode_info *ci = ceph_inode(inode);
  463. struct ceph_cap *new_cap = NULL;
  464. struct ceph_cap *cap;
  465. int mds = session->s_mds;
  466. int actual_wanted;
  467. dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
  468. session->s_mds, cap_id, ceph_cap_string(issued), seq);
  469. /*
  470. * If we are opening the file, include file mode wanted bits
  471. * in wanted.
  472. */
  473. if (fmode >= 0)
  474. wanted |= ceph_caps_for_mode(fmode);
  475. retry:
  476. spin_lock(&ci->i_ceph_lock);
  477. cap = __get_cap_for_mds(ci, mds);
  478. if (!cap) {
  479. if (new_cap) {
  480. cap = new_cap;
  481. new_cap = NULL;
  482. } else {
  483. spin_unlock(&ci->i_ceph_lock);
  484. new_cap = get_cap(mdsc, caps_reservation);
  485. if (new_cap == NULL)
  486. return -ENOMEM;
  487. goto retry;
  488. }
  489. cap->issued = 0;
  490. cap->implemented = 0;
  491. cap->mds = mds;
  492. cap->mds_wanted = 0;
  493. cap->mseq = 0;
  494. cap->ci = ci;
  495. __insert_cap_node(ci, cap);
  496. /* clear out old exporting info? (i.e. on cap import) */
  497. if (ci->i_cap_exporting_mds == mds) {
  498. ci->i_cap_exporting_issued = 0;
  499. ci->i_cap_exporting_mseq = 0;
  500. ci->i_cap_exporting_mds = -1;
  501. }
  502. /* add to session cap list */
  503. cap->session = session;
  504. spin_lock(&session->s_cap_lock);
  505. list_add_tail(&cap->session_caps, &session->s_caps);
  506. session->s_nr_caps++;
  507. spin_unlock(&session->s_cap_lock);
  508. } else if (new_cap)
  509. ceph_put_cap(mdsc, new_cap);
  510. if (!ci->i_snap_realm) {
  511. /*
  512. * add this inode to the appropriate snap realm
  513. */
  514. struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
  515. realmino);
  516. if (realm) {
  517. ceph_get_snap_realm(mdsc, realm);
  518. spin_lock(&realm->inodes_with_caps_lock);
  519. ci->i_snap_realm = realm;
  520. list_add(&ci->i_snap_realm_item,
  521. &realm->inodes_with_caps);
  522. spin_unlock(&realm->inodes_with_caps_lock);
  523. } else {
  524. pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
  525. realmino);
  526. WARN_ON(!realm);
  527. }
  528. }
  529. __check_cap_issue(ci, cap, issued);
  530. /*
  531. * If we are issued caps we don't want, or the mds' wanted
  532. * value appears to be off, queue a check so we'll release
  533. * later and/or update the mds wanted value.
  534. */
  535. actual_wanted = __ceph_caps_wanted(ci);
  536. if ((wanted & ~actual_wanted) ||
  537. (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
  538. dout(" issued %s, mds wanted %s, actual %s, queueing\n",
  539. ceph_cap_string(issued), ceph_cap_string(wanted),
  540. ceph_cap_string(actual_wanted));
  541. __cap_delay_requeue(mdsc, ci);
  542. }
  543. if (flags & CEPH_CAP_FLAG_AUTH) {
  544. if (ci->i_auth_cap == NULL ||
  545. ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0)
  546. ci->i_auth_cap = cap;
  547. } else if (ci->i_auth_cap == cap) {
  548. ci->i_auth_cap = NULL;
  549. spin_lock(&mdsc->cap_dirty_lock);
  550. if (!list_empty(&ci->i_dirty_item)) {
  551. dout(" moving %p to cap_dirty_migrating\n", inode);
  552. list_move(&ci->i_dirty_item,
  553. &mdsc->cap_dirty_migrating);
  554. }
  555. spin_unlock(&mdsc->cap_dirty_lock);
  556. }
  557. dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
  558. inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
  559. ceph_cap_string(issued|cap->issued), seq, mds);
  560. cap->cap_id = cap_id;
  561. cap->issued = issued;
  562. cap->implemented |= issued;
  563. if (mseq > cap->mseq)
  564. cap->mds_wanted = wanted;
  565. else
  566. cap->mds_wanted |= wanted;
  567. cap->seq = seq;
  568. cap->issue_seq = seq;
  569. cap->mseq = mseq;
  570. cap->cap_gen = session->s_cap_gen;
  571. if (fmode >= 0)
  572. __ceph_get_fmode(ci, fmode);
  573. spin_unlock(&ci->i_ceph_lock);
  574. wake_up_all(&ci->i_cap_wq);
  575. return 0;
  576. }
  577. /*
  578. * Return true if cap has not timed out and belongs to the current
  579. * generation of the MDS session (i.e. has not gone 'stale' due to
  580. * us losing touch with the mds).
  581. */
  582. static int __cap_is_valid(struct ceph_cap *cap)
  583. {
  584. unsigned long ttl;
  585. u32 gen;
  586. spin_lock(&cap->session->s_gen_ttl_lock);
  587. gen = cap->session->s_cap_gen;
  588. ttl = cap->session->s_cap_ttl;
  589. spin_unlock(&cap->session->s_gen_ttl_lock);
  590. if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
  591. dout("__cap_is_valid %p cap %p issued %s "
  592. "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
  593. cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
  594. return 0;
  595. }
  596. return 1;
  597. }
  598. /*
  599. * Return set of valid cap bits issued to us. Note that caps time
  600. * out, and may be invalidated in bulk if the client session times out
  601. * and session->s_cap_gen is bumped.
  602. */
  603. int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
  604. {
  605. int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
  606. struct ceph_cap *cap;
  607. struct rb_node *p;
  608. if (implemented)
  609. *implemented = 0;
  610. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  611. cap = rb_entry(p, struct ceph_cap, ci_node);
  612. if (!__cap_is_valid(cap))
  613. continue;
  614. dout("__ceph_caps_issued %p cap %p issued %s\n",
  615. &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
  616. have |= cap->issued;
  617. if (implemented)
  618. *implemented |= cap->implemented;
  619. }
  620. /*
  621. * exclude caps issued by non-auth MDS, but are been revoking
  622. * by the auth MDS. The non-auth MDS should be revoking/exporting
  623. * these caps, but the message is delayed.
  624. */
  625. if (ci->i_auth_cap) {
  626. cap = ci->i_auth_cap;
  627. have &= ~cap->implemented | cap->issued;
  628. }
  629. return have;
  630. }
  631. /*
  632. * Get cap bits issued by caps other than @ocap
  633. */
  634. int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
  635. {
  636. int have = ci->i_snap_caps;
  637. struct ceph_cap *cap;
  638. struct rb_node *p;
  639. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  640. cap = rb_entry(p, struct ceph_cap, ci_node);
  641. if (cap == ocap)
  642. continue;
  643. if (!__cap_is_valid(cap))
  644. continue;
  645. have |= cap->issued;
  646. }
  647. return have;
  648. }
  649. /*
  650. * Move a cap to the end of the LRU (oldest caps at list head, newest
  651. * at list tail).
  652. */
  653. static void __touch_cap(struct ceph_cap *cap)
  654. {
  655. struct ceph_mds_session *s = cap->session;
  656. spin_lock(&s->s_cap_lock);
  657. if (s->s_cap_iterator == NULL) {
  658. dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
  659. s->s_mds);
  660. list_move_tail(&cap->session_caps, &s->s_caps);
  661. } else {
  662. dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
  663. &cap->ci->vfs_inode, cap, s->s_mds);
  664. }
  665. spin_unlock(&s->s_cap_lock);
  666. }
  667. /*
  668. * Check if we hold the given mask. If so, move the cap(s) to the
  669. * front of their respective LRUs. (This is the preferred way for
  670. * callers to check for caps they want.)
  671. */
  672. int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
  673. {
  674. struct ceph_cap *cap;
  675. struct rb_node *p;
  676. int have = ci->i_snap_caps;
  677. if ((have & mask) == mask) {
  678. dout("__ceph_caps_issued_mask %p snap issued %s"
  679. " (mask %s)\n", &ci->vfs_inode,
  680. ceph_cap_string(have),
  681. ceph_cap_string(mask));
  682. return 1;
  683. }
  684. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  685. cap = rb_entry(p, struct ceph_cap, ci_node);
  686. if (!__cap_is_valid(cap))
  687. continue;
  688. if ((cap->issued & mask) == mask) {
  689. dout("__ceph_caps_issued_mask %p cap %p issued %s"
  690. " (mask %s)\n", &ci->vfs_inode, cap,
  691. ceph_cap_string(cap->issued),
  692. ceph_cap_string(mask));
  693. if (touch)
  694. __touch_cap(cap);
  695. return 1;
  696. }
  697. /* does a combination of caps satisfy mask? */
  698. have |= cap->issued;
  699. if ((have & mask) == mask) {
  700. dout("__ceph_caps_issued_mask %p combo issued %s"
  701. " (mask %s)\n", &ci->vfs_inode,
  702. ceph_cap_string(cap->issued),
  703. ceph_cap_string(mask));
  704. if (touch) {
  705. struct rb_node *q;
  706. /* touch this + preceding caps */
  707. __touch_cap(cap);
  708. for (q = rb_first(&ci->i_caps); q != p;
  709. q = rb_next(q)) {
  710. cap = rb_entry(q, struct ceph_cap,
  711. ci_node);
  712. if (!__cap_is_valid(cap))
  713. continue;
  714. __touch_cap(cap);
  715. }
  716. }
  717. return 1;
  718. }
  719. }
  720. return 0;
  721. }
  722. /*
  723. * Return true if mask caps are currently being revoked by an MDS.
  724. */
  725. int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
  726. struct ceph_cap *ocap, int mask)
  727. {
  728. struct ceph_cap *cap;
  729. struct rb_node *p;
  730. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  731. cap = rb_entry(p, struct ceph_cap, ci_node);
  732. if (cap != ocap && __cap_is_valid(cap) &&
  733. (cap->implemented & ~cap->issued & mask))
  734. return 1;
  735. }
  736. return 0;
  737. }
  738. int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
  739. {
  740. struct inode *inode = &ci->vfs_inode;
  741. int ret;
  742. spin_lock(&ci->i_ceph_lock);
  743. ret = __ceph_caps_revoking_other(ci, NULL, mask);
  744. spin_unlock(&ci->i_ceph_lock);
  745. dout("ceph_caps_revoking %p %s = %d\n", inode,
  746. ceph_cap_string(mask), ret);
  747. return ret;
  748. }
  749. int __ceph_caps_used(struct ceph_inode_info *ci)
  750. {
  751. int used = 0;
  752. if (ci->i_pin_ref)
  753. used |= CEPH_CAP_PIN;
  754. if (ci->i_rd_ref)
  755. used |= CEPH_CAP_FILE_RD;
  756. if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
  757. used |= CEPH_CAP_FILE_CACHE;
  758. if (ci->i_wr_ref)
  759. used |= CEPH_CAP_FILE_WR;
  760. if (ci->i_wb_ref || ci->i_wrbuffer_ref)
  761. used |= CEPH_CAP_FILE_BUFFER;
  762. return used;
  763. }
  764. /*
  765. * wanted, by virtue of open file modes
  766. */
  767. int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
  768. {
  769. int want = 0;
  770. int mode;
  771. for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
  772. if (ci->i_nr_by_mode[mode])
  773. want |= ceph_caps_for_mode(mode);
  774. return want;
  775. }
  776. /*
  777. * Return caps we have registered with the MDS(s) as 'wanted'.
  778. */
  779. int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
  780. {
  781. struct ceph_cap *cap;
  782. struct rb_node *p;
  783. int mds_wanted = 0;
  784. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  785. cap = rb_entry(p, struct ceph_cap, ci_node);
  786. if (!__cap_is_valid(cap))
  787. continue;
  788. mds_wanted |= cap->mds_wanted;
  789. }
  790. return mds_wanted;
  791. }
  792. /*
  793. * called under i_ceph_lock
  794. */
  795. static int __ceph_is_any_caps(struct ceph_inode_info *ci)
  796. {
  797. return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
  798. }
  799. /*
  800. * Remove a cap. Take steps to deal with a racing iterate_session_caps.
  801. *
  802. * caller should hold i_ceph_lock.
  803. * caller will not hold session s_mutex if called from destroy_inode.
  804. */
  805. void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release)
  806. {
  807. struct ceph_mds_session *session = cap->session;
  808. struct ceph_inode_info *ci = cap->ci;
  809. struct ceph_mds_client *mdsc =
  810. ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
  811. int removed = 0;
  812. dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
  813. /* remove from session list */
  814. spin_lock(&session->s_cap_lock);
  815. if (queue_release)
  816. __queue_cap_release(session, ci->i_vino.ino, cap->cap_id,
  817. cap->mseq, cap->issue_seq);
  818. if (session->s_cap_iterator == cap) {
  819. /* not yet, we are iterating over this very cap */
  820. dout("__ceph_remove_cap delaying %p removal from session %p\n",
  821. cap, cap->session);
  822. } else {
  823. list_del_init(&cap->session_caps);
  824. session->s_nr_caps--;
  825. cap->session = NULL;
  826. removed = 1;
  827. }
  828. /* protect backpointer with s_cap_lock: see iterate_session_caps */
  829. cap->ci = NULL;
  830. spin_unlock(&session->s_cap_lock);
  831. /* remove from inode list */
  832. rb_erase(&cap->ci_node, &ci->i_caps);
  833. if (ci->i_auth_cap == cap)
  834. ci->i_auth_cap = NULL;
  835. if (removed)
  836. ceph_put_cap(mdsc, cap);
  837. if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
  838. struct ceph_snap_realm *realm = ci->i_snap_realm;
  839. spin_lock(&realm->inodes_with_caps_lock);
  840. list_del_init(&ci->i_snap_realm_item);
  841. ci->i_snap_realm_counter++;
  842. ci->i_snap_realm = NULL;
  843. spin_unlock(&realm->inodes_with_caps_lock);
  844. ceph_put_snap_realm(mdsc, realm);
  845. }
  846. if (!__ceph_is_any_real_caps(ci))
  847. __cap_delay_cancel(mdsc, ci);
  848. }
  849. /*
  850. * Build and send a cap message to the given MDS.
  851. *
  852. * Caller should be holding s_mutex.
  853. */
  854. static int send_cap_msg(struct ceph_mds_session *session,
  855. u64 ino, u64 cid, int op,
  856. int caps, int wanted, int dirty,
  857. u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
  858. u64 size, u64 max_size,
  859. struct timespec *mtime, struct timespec *atime,
  860. u64 time_warp_seq,
  861. kuid_t uid, kgid_t gid, umode_t mode,
  862. u64 xattr_version,
  863. struct ceph_buffer *xattrs_buf,
  864. u64 follows)
  865. {
  866. struct ceph_mds_caps *fc;
  867. struct ceph_msg *msg;
  868. dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
  869. " seq %u/%u mseq %u follows %lld size %llu/%llu"
  870. " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
  871. cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
  872. ceph_cap_string(dirty),
  873. seq, issue_seq, mseq, follows, size, max_size,
  874. xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
  875. msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
  876. if (!msg)
  877. return -ENOMEM;
  878. msg->hdr.tid = cpu_to_le64(flush_tid);
  879. fc = msg->front.iov_base;
  880. memset(fc, 0, sizeof(*fc));
  881. fc->cap_id = cpu_to_le64(cid);
  882. fc->op = cpu_to_le32(op);
  883. fc->seq = cpu_to_le32(seq);
  884. fc->issue_seq = cpu_to_le32(issue_seq);
  885. fc->migrate_seq = cpu_to_le32(mseq);
  886. fc->caps = cpu_to_le32(caps);
  887. fc->wanted = cpu_to_le32(wanted);
  888. fc->dirty = cpu_to_le32(dirty);
  889. fc->ino = cpu_to_le64(ino);
  890. fc->snap_follows = cpu_to_le64(follows);
  891. fc->size = cpu_to_le64(size);
  892. fc->max_size = cpu_to_le64(max_size);
  893. if (mtime)
  894. ceph_encode_timespec(&fc->mtime, mtime);
  895. if (atime)
  896. ceph_encode_timespec(&fc->atime, atime);
  897. fc->time_warp_seq = cpu_to_le32(time_warp_seq);
  898. fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid));
  899. fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid));
  900. fc->mode = cpu_to_le32(mode);
  901. fc->xattr_version = cpu_to_le64(xattr_version);
  902. if (xattrs_buf) {
  903. msg->middle = ceph_buffer_get(xattrs_buf);
  904. fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
  905. msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
  906. }
  907. ceph_con_send(&session->s_con, msg);
  908. return 0;
  909. }
  910. void __queue_cap_release(struct ceph_mds_session *session,
  911. u64 ino, u64 cap_id, u32 migrate_seq,
  912. u32 issue_seq)
  913. {
  914. struct ceph_msg *msg;
  915. struct ceph_mds_cap_release *head;
  916. struct ceph_mds_cap_item *item;
  917. BUG_ON(!session->s_num_cap_releases);
  918. msg = list_first_entry(&session->s_cap_releases,
  919. struct ceph_msg, list_head);
  920. dout(" adding %llx release to mds%d msg %p (%d left)\n",
  921. ino, session->s_mds, msg, session->s_num_cap_releases);
  922. BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
  923. head = msg->front.iov_base;
  924. le32_add_cpu(&head->num, 1);
  925. item = msg->front.iov_base + msg->front.iov_len;
  926. item->ino = cpu_to_le64(ino);
  927. item->cap_id = cpu_to_le64(cap_id);
  928. item->migrate_seq = cpu_to_le32(migrate_seq);
  929. item->seq = cpu_to_le32(issue_seq);
  930. session->s_num_cap_releases--;
  931. msg->front.iov_len += sizeof(*item);
  932. if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
  933. dout(" release msg %p full\n", msg);
  934. list_move_tail(&msg->list_head, &session->s_cap_releases_done);
  935. } else {
  936. dout(" release msg %p at %d/%d (%d)\n", msg,
  937. (int)le32_to_cpu(head->num),
  938. (int)CEPH_CAPS_PER_RELEASE,
  939. (int)msg->front.iov_len);
  940. }
  941. }
  942. /*
  943. * Queue cap releases when an inode is dropped from our cache. Since
  944. * inode is about to be destroyed, there is no need for i_ceph_lock.
  945. */
  946. void ceph_queue_caps_release(struct inode *inode)
  947. {
  948. struct ceph_inode_info *ci = ceph_inode(inode);
  949. struct rb_node *p;
  950. p = rb_first(&ci->i_caps);
  951. while (p) {
  952. struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
  953. p = rb_next(p);
  954. __ceph_remove_cap(cap, true);
  955. }
  956. }
  957. /*
  958. * Send a cap msg on the given inode. Update our caps state, then
  959. * drop i_ceph_lock and send the message.
  960. *
  961. * Make note of max_size reported/requested from mds, revoked caps
  962. * that have now been implemented.
  963. *
  964. * Make half-hearted attempt ot to invalidate page cache if we are
  965. * dropping RDCACHE. Note that this will leave behind locked pages
  966. * that we'll then need to deal with elsewhere.
  967. *
  968. * Return non-zero if delayed release, or we experienced an error
  969. * such that the caller should requeue + retry later.
  970. *
  971. * called with i_ceph_lock, then drops it.
  972. * caller should hold snap_rwsem (read), s_mutex.
  973. */
  974. static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
  975. int op, int used, int want, int retain, int flushing,
  976. unsigned *pflush_tid)
  977. __releases(cap->ci->i_ceph_lock)
  978. {
  979. struct ceph_inode_info *ci = cap->ci;
  980. struct inode *inode = &ci->vfs_inode;
  981. u64 cap_id = cap->cap_id;
  982. int held, revoking, dropping, keep;
  983. u64 seq, issue_seq, mseq, time_warp_seq, follows;
  984. u64 size, max_size;
  985. struct timespec mtime, atime;
  986. int wake = 0;
  987. umode_t mode;
  988. kuid_t uid;
  989. kgid_t gid;
  990. struct ceph_mds_session *session;
  991. u64 xattr_version = 0;
  992. struct ceph_buffer *xattr_blob = NULL;
  993. int delayed = 0;
  994. u64 flush_tid = 0;
  995. int i;
  996. int ret;
  997. held = cap->issued | cap->implemented;
  998. revoking = cap->implemented & ~cap->issued;
  999. retain &= ~revoking;
  1000. dropping = cap->issued & ~retain;
  1001. dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
  1002. inode, cap, cap->session,
  1003. ceph_cap_string(held), ceph_cap_string(held & retain),
  1004. ceph_cap_string(revoking));
  1005. BUG_ON((retain & CEPH_CAP_PIN) == 0);
  1006. session = cap->session;
  1007. /* don't release wanted unless we've waited a bit. */
  1008. if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
  1009. time_before(jiffies, ci->i_hold_caps_min)) {
  1010. dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
  1011. ceph_cap_string(cap->issued),
  1012. ceph_cap_string(cap->issued & retain),
  1013. ceph_cap_string(cap->mds_wanted),
  1014. ceph_cap_string(want));
  1015. want |= cap->mds_wanted;
  1016. retain |= cap->issued;
  1017. delayed = 1;
  1018. }
  1019. ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
  1020. cap->issued &= retain; /* drop bits we don't want */
  1021. if (cap->implemented & ~cap->issued) {
  1022. /*
  1023. * Wake up any waiters on wanted -> needed transition.
  1024. * This is due to the weird transition from buffered
  1025. * to sync IO... we need to flush dirty pages _before_
  1026. * allowing sync writes to avoid reordering.
  1027. */
  1028. wake = 1;
  1029. }
  1030. cap->implemented &= cap->issued | used;
  1031. cap->mds_wanted = want;
  1032. if (flushing) {
  1033. /*
  1034. * assign a tid for flush operations so we can avoid
  1035. * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
  1036. * clean type races. track latest tid for every bit
  1037. * so we can handle flush AxFw, flush Fw, and have the
  1038. * first ack clean Ax.
  1039. */
  1040. flush_tid = ++ci->i_cap_flush_last_tid;
  1041. if (pflush_tid)
  1042. *pflush_tid = flush_tid;
  1043. dout(" cap_flush_tid %d\n", (int)flush_tid);
  1044. for (i = 0; i < CEPH_CAP_BITS; i++)
  1045. if (flushing & (1 << i))
  1046. ci->i_cap_flush_tid[i] = flush_tid;
  1047. follows = ci->i_head_snapc->seq;
  1048. } else {
  1049. follows = 0;
  1050. }
  1051. keep = cap->implemented;
  1052. seq = cap->seq;
  1053. issue_seq = cap->issue_seq;
  1054. mseq = cap->mseq;
  1055. size = inode->i_size;
  1056. ci->i_reported_size = size;
  1057. max_size = ci->i_wanted_max_size;
  1058. ci->i_requested_max_size = max_size;
  1059. mtime = inode->i_mtime;
  1060. atime = inode->i_atime;
  1061. time_warp_seq = ci->i_time_warp_seq;
  1062. uid = inode->i_uid;
  1063. gid = inode->i_gid;
  1064. mode = inode->i_mode;
  1065. if (flushing & CEPH_CAP_XATTR_EXCL) {
  1066. __ceph_build_xattrs_blob(ci);
  1067. xattr_blob = ci->i_xattrs.blob;
  1068. xattr_version = ci->i_xattrs.version;
  1069. }
  1070. spin_unlock(&ci->i_ceph_lock);
  1071. ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
  1072. op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
  1073. size, max_size, &mtime, &atime, time_warp_seq,
  1074. uid, gid, mode, xattr_version, xattr_blob,
  1075. follows);
  1076. if (ret < 0) {
  1077. dout("error sending cap msg, must requeue %p\n", inode);
  1078. delayed = 1;
  1079. }
  1080. if (wake)
  1081. wake_up_all(&ci->i_cap_wq);
  1082. return delayed;
  1083. }
  1084. /*
  1085. * When a snapshot is taken, clients accumulate dirty metadata on
  1086. * inodes with capabilities in ceph_cap_snaps to describe the file
  1087. * state at the time the snapshot was taken. This must be flushed
  1088. * asynchronously back to the MDS once sync writes complete and dirty
  1089. * data is written out.
  1090. *
  1091. * Unless @again is true, skip cap_snaps that were already sent to
  1092. * the MDS (i.e., during this session).
  1093. *
  1094. * Called under i_ceph_lock. Takes s_mutex as needed.
  1095. */
  1096. void __ceph_flush_snaps(struct ceph_inode_info *ci,
  1097. struct ceph_mds_session **psession,
  1098. int again)
  1099. __releases(ci->i_ceph_lock)
  1100. __acquires(ci->i_ceph_lock)
  1101. {
  1102. struct inode *inode = &ci->vfs_inode;
  1103. int mds;
  1104. struct ceph_cap_snap *capsnap;
  1105. u32 mseq;
  1106. struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
  1107. struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
  1108. session->s_mutex */
  1109. u64 next_follows = 0; /* keep track of how far we've gotten through the
  1110. i_cap_snaps list, and skip these entries next time
  1111. around to avoid an infinite loop */
  1112. if (psession)
  1113. session = *psession;
  1114. dout("__flush_snaps %p\n", inode);
  1115. retry:
  1116. list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
  1117. /* avoid an infiniute loop after retry */
  1118. if (capsnap->follows < next_follows)
  1119. continue;
  1120. /*
  1121. * we need to wait for sync writes to complete and for dirty
  1122. * pages to be written out.
  1123. */
  1124. if (capsnap->dirty_pages || capsnap->writing)
  1125. break;
  1126. /*
  1127. * if cap writeback already occurred, we should have dropped
  1128. * the capsnap in ceph_put_wrbuffer_cap_refs.
  1129. */
  1130. BUG_ON(capsnap->dirty == 0);
  1131. /* pick mds, take s_mutex */
  1132. if (ci->i_auth_cap == NULL) {
  1133. dout("no auth cap (migrating?), doing nothing\n");
  1134. goto out;
  1135. }
  1136. /* only flush each capsnap once */
  1137. if (!again && !list_empty(&capsnap->flushing_item)) {
  1138. dout("already flushed %p, skipping\n", capsnap);
  1139. continue;
  1140. }
  1141. mds = ci->i_auth_cap->session->s_mds;
  1142. mseq = ci->i_auth_cap->mseq;
  1143. if (session && session->s_mds != mds) {
  1144. dout("oops, wrong session %p mutex\n", session);
  1145. mutex_unlock(&session->s_mutex);
  1146. ceph_put_mds_session(session);
  1147. session = NULL;
  1148. }
  1149. if (!session) {
  1150. spin_unlock(&ci->i_ceph_lock);
  1151. mutex_lock(&mdsc->mutex);
  1152. session = __ceph_lookup_mds_session(mdsc, mds);
  1153. mutex_unlock(&mdsc->mutex);
  1154. if (session) {
  1155. dout("inverting session/ino locks on %p\n",
  1156. session);
  1157. mutex_lock(&session->s_mutex);
  1158. }
  1159. /*
  1160. * if session == NULL, we raced against a cap
  1161. * deletion or migration. retry, and we'll
  1162. * get a better @mds value next time.
  1163. */
  1164. spin_lock(&ci->i_ceph_lock);
  1165. goto retry;
  1166. }
  1167. capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
  1168. atomic_inc(&capsnap->nref);
  1169. if (!list_empty(&capsnap->flushing_item))
  1170. list_del_init(&capsnap->flushing_item);
  1171. list_add_tail(&capsnap->flushing_item,
  1172. &session->s_cap_snaps_flushing);
  1173. spin_unlock(&ci->i_ceph_lock);
  1174. dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
  1175. inode, capsnap, capsnap->follows, capsnap->flush_tid);
  1176. send_cap_msg(session, ceph_vino(inode).ino, 0,
  1177. CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
  1178. capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
  1179. capsnap->size, 0,
  1180. &capsnap->mtime, &capsnap->atime,
  1181. capsnap->time_warp_seq,
  1182. capsnap->uid, capsnap->gid, capsnap->mode,
  1183. capsnap->xattr_version, capsnap->xattr_blob,
  1184. capsnap->follows);
  1185. next_follows = capsnap->follows + 1;
  1186. ceph_put_cap_snap(capsnap);
  1187. spin_lock(&ci->i_ceph_lock);
  1188. goto retry;
  1189. }
  1190. /* we flushed them all; remove this inode from the queue */
  1191. spin_lock(&mdsc->snap_flush_lock);
  1192. list_del_init(&ci->i_snap_flush_item);
  1193. spin_unlock(&mdsc->snap_flush_lock);
  1194. out:
  1195. if (psession)
  1196. *psession = session;
  1197. else if (session) {
  1198. mutex_unlock(&session->s_mutex);
  1199. ceph_put_mds_session(session);
  1200. }
  1201. }
  1202. static void ceph_flush_snaps(struct ceph_inode_info *ci)
  1203. {
  1204. spin_lock(&ci->i_ceph_lock);
  1205. __ceph_flush_snaps(ci, NULL, 0);
  1206. spin_unlock(&ci->i_ceph_lock);
  1207. }
  1208. /*
  1209. * Mark caps dirty. If inode is newly dirty, return the dirty flags.
  1210. * Caller is then responsible for calling __mark_inode_dirty with the
  1211. * returned flags value.
  1212. */
  1213. int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
  1214. {
  1215. struct ceph_mds_client *mdsc =
  1216. ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
  1217. struct inode *inode = &ci->vfs_inode;
  1218. int was = ci->i_dirty_caps;
  1219. int dirty = 0;
  1220. dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
  1221. ceph_cap_string(mask), ceph_cap_string(was),
  1222. ceph_cap_string(was | mask));
  1223. ci->i_dirty_caps |= mask;
  1224. if (was == 0) {
  1225. if (!ci->i_head_snapc)
  1226. ci->i_head_snapc = ceph_get_snap_context(
  1227. ci->i_snap_realm->cached_context);
  1228. dout(" inode %p now dirty snapc %p auth cap %p\n",
  1229. &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
  1230. BUG_ON(!list_empty(&ci->i_dirty_item));
  1231. spin_lock(&mdsc->cap_dirty_lock);
  1232. if (ci->i_auth_cap)
  1233. list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
  1234. else
  1235. list_add(&ci->i_dirty_item,
  1236. &mdsc->cap_dirty_migrating);
  1237. spin_unlock(&mdsc->cap_dirty_lock);
  1238. if (ci->i_flushing_caps == 0) {
  1239. ihold(inode);
  1240. dirty |= I_DIRTY_SYNC;
  1241. }
  1242. }
  1243. BUG_ON(list_empty(&ci->i_dirty_item));
  1244. if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
  1245. (mask & CEPH_CAP_FILE_BUFFER))
  1246. dirty |= I_DIRTY_DATASYNC;
  1247. __cap_delay_requeue(mdsc, ci);
  1248. return dirty;
  1249. }
  1250. /*
  1251. * Add dirty inode to the flushing list. Assigned a seq number so we
  1252. * can wait for caps to flush without starving.
  1253. *
  1254. * Called under i_ceph_lock.
  1255. */
  1256. static int __mark_caps_flushing(struct inode *inode,
  1257. struct ceph_mds_session *session)
  1258. {
  1259. struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
  1260. struct ceph_inode_info *ci = ceph_inode(inode);
  1261. int flushing;
  1262. BUG_ON(ci->i_dirty_caps == 0);
  1263. BUG_ON(list_empty(&ci->i_dirty_item));
  1264. flushing = ci->i_dirty_caps;
  1265. dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
  1266. ceph_cap_string(flushing),
  1267. ceph_cap_string(ci->i_flushing_caps),
  1268. ceph_cap_string(ci->i_flushing_caps | flushing));
  1269. ci->i_flushing_caps |= flushing;
  1270. ci->i_dirty_caps = 0;
  1271. dout(" inode %p now !dirty\n", inode);
  1272. spin_lock(&mdsc->cap_dirty_lock);
  1273. list_del_init(&ci->i_dirty_item);
  1274. ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
  1275. if (list_empty(&ci->i_flushing_item)) {
  1276. list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
  1277. mdsc->num_cap_flushing++;
  1278. dout(" inode %p now flushing seq %lld\n", inode,
  1279. ci->i_cap_flush_seq);
  1280. } else {
  1281. list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
  1282. dout(" inode %p now flushing (more) seq %lld\n", inode,
  1283. ci->i_cap_flush_seq);
  1284. }
  1285. spin_unlock(&mdsc->cap_dirty_lock);
  1286. return flushing;
  1287. }
  1288. /*
  1289. * try to invalidate mapping pages without blocking.
  1290. */
  1291. static int try_nonblocking_invalidate(struct inode *inode)
  1292. {
  1293. struct ceph_inode_info *ci = ceph_inode(inode);
  1294. u32 invalidating_gen = ci->i_rdcache_gen;
  1295. spin_unlock(&ci->i_ceph_lock);
  1296. invalidate_mapping_pages(&inode->i_data, 0, -1);
  1297. spin_lock(&ci->i_ceph_lock);
  1298. if (inode->i_data.nrpages == 0 &&
  1299. invalidating_gen == ci->i_rdcache_gen) {
  1300. /* success. */
  1301. dout("try_nonblocking_invalidate %p success\n", inode);
  1302. /* save any racing async invalidate some trouble */
  1303. ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
  1304. return 0;
  1305. }
  1306. dout("try_nonblocking_invalidate %p failed\n", inode);
  1307. return -1;
  1308. }
  1309. /*
  1310. * Swiss army knife function to examine currently used and wanted
  1311. * versus held caps. Release, flush, ack revoked caps to mds as
  1312. * appropriate.
  1313. *
  1314. * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
  1315. * cap release further.
  1316. * CHECK_CAPS_AUTHONLY - we should only check the auth cap
  1317. * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
  1318. * further delay.
  1319. */
  1320. void ceph_check_caps(struct ceph_inode_info *ci, int flags,
  1321. struct ceph_mds_session *session)
  1322. {
  1323. struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
  1324. struct ceph_mds_client *mdsc = fsc->mdsc;
  1325. struct inode *inode = &ci->vfs_inode;
  1326. struct ceph_cap *cap;
  1327. int file_wanted, used, cap_used;
  1328. int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
  1329. int issued, implemented, want, retain, revoking, flushing = 0;
  1330. int mds = -1; /* keep track of how far we've gone through i_caps list
  1331. to avoid an infinite loop on retry */
  1332. struct rb_node *p;
  1333. int tried_invalidate = 0;
  1334. int delayed = 0, sent = 0, force_requeue = 0, num;
  1335. int queue_invalidate = 0;
  1336. int is_delayed = flags & CHECK_CAPS_NODELAY;
  1337. /* if we are unmounting, flush any unused caps immediately. */
  1338. if (mdsc->stopping)
  1339. is_delayed = 1;
  1340. spin_lock(&ci->i_ceph_lock);
  1341. if (ci->i_ceph_flags & CEPH_I_FLUSH)
  1342. flags |= CHECK_CAPS_FLUSH;
  1343. /* flush snaps first time around only */
  1344. if (!list_empty(&ci->i_cap_snaps))
  1345. __ceph_flush_snaps(ci, &session, 0);
  1346. goto retry_locked;
  1347. retry:
  1348. spin_lock(&ci->i_ceph_lock);
  1349. retry_locked:
  1350. file_wanted = __ceph_caps_file_wanted(ci);
  1351. used = __ceph_caps_used(ci);
  1352. want = file_wanted | used;
  1353. issued = __ceph_caps_issued(ci, &implemented);
  1354. revoking = implemented & ~issued;
  1355. retain = want | CEPH_CAP_PIN;
  1356. if (!mdsc->stopping && inode->i_nlink > 0) {
  1357. if (want) {
  1358. retain |= CEPH_CAP_ANY; /* be greedy */
  1359. } else {
  1360. retain |= CEPH_CAP_ANY_SHARED;
  1361. /*
  1362. * keep RD only if we didn't have the file open RW,
  1363. * because then the mds would revoke it anyway to
  1364. * journal max_size=0.
  1365. */
  1366. if (ci->i_max_size == 0)
  1367. retain |= CEPH_CAP_ANY_RD;
  1368. }
  1369. }
  1370. dout("check_caps %p file_want %s used %s dirty %s flushing %s"
  1371. " issued %s revoking %s retain %s %s%s%s\n", inode,
  1372. ceph_cap_string(file_wanted),
  1373. ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
  1374. ceph_cap_string(ci->i_flushing_caps),
  1375. ceph_cap_string(issued), ceph_cap_string(revoking),
  1376. ceph_cap_string(retain),
  1377. (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
  1378. (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
  1379. (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
  1380. /*
  1381. * If we no longer need to hold onto old our caps, and we may
  1382. * have cached pages, but don't want them, then try to invalidate.
  1383. * If we fail, it's because pages are locked.... try again later.
  1384. */
  1385. if ((!is_delayed || mdsc->stopping) &&
  1386. ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
  1387. inode->i_data.nrpages && /* have cached pages */
  1388. (file_wanted == 0 || /* no open files */
  1389. (revoking & (CEPH_CAP_FILE_CACHE|
  1390. CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */
  1391. !tried_invalidate) {
  1392. dout("check_caps trying to invalidate on %p\n", inode);
  1393. if (try_nonblocking_invalidate(inode) < 0) {
  1394. if (revoking & (CEPH_CAP_FILE_CACHE|
  1395. CEPH_CAP_FILE_LAZYIO)) {
  1396. dout("check_caps queuing invalidate\n");
  1397. queue_invalidate = 1;
  1398. ci->i_rdcache_revoking = ci->i_rdcache_gen;
  1399. } else {
  1400. dout("check_caps failed to invalidate pages\n");
  1401. /* we failed to invalidate pages. check these
  1402. caps again later. */
  1403. force_requeue = 1;
  1404. __cap_set_timeouts(mdsc, ci);
  1405. }
  1406. }
  1407. tried_invalidate = 1;
  1408. goto retry_locked;
  1409. }
  1410. num = 0;
  1411. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  1412. cap = rb_entry(p, struct ceph_cap, ci_node);
  1413. num++;
  1414. /* avoid looping forever */
  1415. if (mds >= cap->mds ||
  1416. ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
  1417. continue;
  1418. /* NOTE: no side-effects allowed, until we take s_mutex */
  1419. cap_used = used;
  1420. if (ci->i_auth_cap && cap != ci->i_auth_cap)
  1421. cap_used &= ~ci->i_auth_cap->issued;
  1422. revoking = cap->implemented & ~cap->issued;
  1423. dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n",
  1424. cap->mds, cap, ceph_cap_string(cap->issued),
  1425. ceph_cap_string(cap_used),
  1426. ceph_cap_string(cap->implemented),
  1427. ceph_cap_string(revoking));
  1428. if (cap == ci->i_auth_cap &&
  1429. (cap->issued & CEPH_CAP_FILE_WR)) {
  1430. /* request larger max_size from MDS? */
  1431. if (ci->i_wanted_max_size > ci->i_max_size &&
  1432. ci->i_wanted_max_size > ci->i_requested_max_size) {
  1433. dout("requesting new max_size\n");
  1434. goto ack;
  1435. }
  1436. /* approaching file_max? */
  1437. if ((inode->i_size << 1) >= ci->i_max_size &&
  1438. (ci->i_reported_size << 1) < ci->i_max_size) {
  1439. dout("i_size approaching max_size\n");
  1440. goto ack;
  1441. }
  1442. }
  1443. /* flush anything dirty? */
  1444. if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
  1445. ci->i_dirty_caps) {
  1446. dout("flushing dirty caps\n");
  1447. goto ack;
  1448. }
  1449. /* completed revocation? going down and there are no caps? */
  1450. if (revoking && (revoking & cap_used) == 0) {
  1451. dout("completed revocation of %s\n",
  1452. ceph_cap_string(cap->implemented & ~cap->issued));
  1453. goto ack;
  1454. }
  1455. /* want more caps from mds? */
  1456. if (want & ~(cap->mds_wanted | cap->issued))
  1457. goto ack;
  1458. /* things we might delay */
  1459. if ((cap->issued & ~retain) == 0 &&
  1460. cap->mds_wanted == want)
  1461. continue; /* nope, all good */
  1462. if (is_delayed)
  1463. goto ack;
  1464. /* delay? */
  1465. if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
  1466. time_before(jiffies, ci->i_hold_caps_max)) {
  1467. dout(" delaying issued %s -> %s, wanted %s -> %s\n",
  1468. ceph_cap_string(cap->issued),
  1469. ceph_cap_string(cap->issued & retain),
  1470. ceph_cap_string(cap->mds_wanted),
  1471. ceph_cap_string(want));
  1472. delayed++;
  1473. continue;
  1474. }
  1475. ack:
  1476. if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
  1477. dout(" skipping %p I_NOFLUSH set\n", inode);
  1478. continue;
  1479. }
  1480. if (session && session != cap->session) {
  1481. dout("oops, wrong session %p mutex\n", session);
  1482. mutex_unlock(&session->s_mutex);
  1483. session = NULL;
  1484. }
  1485. if (!session) {
  1486. session = cap->session;
  1487. if (mutex_trylock(&session->s_mutex) == 0) {
  1488. dout("inverting session/ino locks on %p\n",
  1489. session);
  1490. spin_unlock(&ci->i_ceph_lock);
  1491. if (took_snap_rwsem) {
  1492. up_read(&mdsc->snap_rwsem);
  1493. took_snap_rwsem = 0;
  1494. }
  1495. mutex_lock(&session->s_mutex);
  1496. goto retry;
  1497. }
  1498. }
  1499. /* take snap_rwsem after session mutex */
  1500. if (!took_snap_rwsem) {
  1501. if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
  1502. dout("inverting snap/in locks on %p\n",
  1503. inode);
  1504. spin_unlock(&ci->i_ceph_lock);
  1505. down_read(&mdsc->snap_rwsem);
  1506. took_snap_rwsem = 1;
  1507. goto retry;
  1508. }
  1509. took_snap_rwsem = 1;
  1510. }
  1511. if (cap == ci->i_auth_cap && ci->i_dirty_caps)
  1512. flushing = __mark_caps_flushing(inode, session);
  1513. else
  1514. flushing = 0;
  1515. mds = cap->mds; /* remember mds, so we don't repeat */
  1516. sent++;
  1517. /* __send_cap drops i_ceph_lock */
  1518. delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used,
  1519. want, retain, flushing, NULL);
  1520. goto retry; /* retake i_ceph_lock and restart our cap scan. */
  1521. }
  1522. /*
  1523. * Reschedule delayed caps release if we delayed anything,
  1524. * otherwise cancel.
  1525. */
  1526. if (delayed && is_delayed)
  1527. force_requeue = 1; /* __send_cap delayed release; requeue */
  1528. if (!delayed && !is_delayed)
  1529. __cap_delay_cancel(mdsc, ci);
  1530. else if (!is_delayed || force_requeue)
  1531. __cap_delay_requeue(mdsc, ci);
  1532. spin_unlock(&ci->i_ceph_lock);
  1533. if (queue_invalidate)
  1534. ceph_queue_invalidate(inode);
  1535. if (session)
  1536. mutex_unlock(&session->s_mutex);
  1537. if (took_snap_rwsem)
  1538. up_read(&mdsc->snap_rwsem);
  1539. }
  1540. /*
  1541. * Try to flush dirty caps back to the auth mds.
  1542. */
  1543. static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
  1544. unsigned *flush_tid)
  1545. {
  1546. struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
  1547. struct ceph_inode_info *ci = ceph_inode(inode);
  1548. int unlock_session = session ? 0 : 1;
  1549. int flushing = 0;
  1550. retry:
  1551. spin_lock(&ci->i_ceph_lock);
  1552. if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
  1553. dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
  1554. goto out;
  1555. }
  1556. if (ci->i_dirty_caps && ci->i_auth_cap) {
  1557. struct ceph_cap *cap = ci->i_auth_cap;
  1558. int used = __ceph_caps_used(ci);
  1559. int want = __ceph_caps_wanted(ci);
  1560. int delayed;
  1561. if (!session) {
  1562. spin_unlock(&ci->i_ceph_lock);
  1563. session = cap->session;
  1564. mutex_lock(&session->s_mutex);
  1565. goto retry;
  1566. }
  1567. BUG_ON(session != cap->session);
  1568. if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
  1569. goto out;
  1570. flushing = __mark_caps_flushing(inode, session);
  1571. /* __send_cap drops i_ceph_lock */
  1572. delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
  1573. cap->issued | cap->implemented, flushing,
  1574. flush_tid);
  1575. if (!delayed)
  1576. goto out_unlocked;
  1577. spin_lock(&ci->i_ceph_lock);
  1578. __cap_delay_requeue(mdsc, ci);
  1579. }
  1580. out:
  1581. spin_unlock(&ci->i_ceph_lock);
  1582. out_unlocked:
  1583. if (session && unlock_session)
  1584. mutex_unlock(&session->s_mutex);
  1585. return flushing;
  1586. }
  1587. /*
  1588. * Return true if we've flushed caps through the given flush_tid.
  1589. */
  1590. static int caps_are_flushed(struct inode *inode, unsigned tid)
  1591. {
  1592. struct ceph_inode_info *ci = ceph_inode(inode);
  1593. int i, ret = 1;
  1594. spin_lock(&ci->i_ceph_lock);
  1595. for (i = 0; i < CEPH_CAP_BITS; i++)
  1596. if ((ci->i_flushing_caps & (1 << i)) &&
  1597. ci->i_cap_flush_tid[i] <= tid) {
  1598. /* still flushing this bit */
  1599. ret = 0;
  1600. break;
  1601. }
  1602. spin_unlock(&ci->i_ceph_lock);
  1603. return ret;
  1604. }
  1605. /*
  1606. * Wait on any unsafe replies for the given inode. First wait on the
  1607. * newest request, and make that the upper bound. Then, if there are
  1608. * more requests, keep waiting on the oldest as long as it is still older
  1609. * than the original request.
  1610. */
  1611. static void sync_write_wait(struct inode *inode)
  1612. {
  1613. struct ceph_inode_info *ci = ceph_inode(inode);
  1614. struct list_head *head = &ci->i_unsafe_writes;
  1615. struct ceph_osd_request *req;
  1616. u64 last_tid;
  1617. spin_lock(&ci->i_unsafe_lock);
  1618. if (list_empty(head))
  1619. goto out;
  1620. /* set upper bound as _last_ entry in chain */
  1621. req = list_entry(head->prev, struct ceph_osd_request,
  1622. r_unsafe_item);
  1623. last_tid = req->r_tid;
  1624. do {
  1625. ceph_osdc_get_request(req);
  1626. spin_unlock(&ci->i_unsafe_lock);
  1627. dout("sync_write_wait on tid %llu (until %llu)\n",
  1628. req->r_tid, last_tid);
  1629. wait_for_completion(&req->r_safe_completion);
  1630. spin_lock(&ci->i_unsafe_lock);
  1631. ceph_osdc_put_request(req);
  1632. /*
  1633. * from here on look at first entry in chain, since we
  1634. * only want to wait for anything older than last_tid
  1635. */
  1636. if (list_empty(head))
  1637. break;
  1638. req = list_entry(head->next, struct ceph_osd_request,
  1639. r_unsafe_item);
  1640. } while (req->r_tid < last_tid);
  1641. out:
  1642. spin_unlock(&ci->i_unsafe_lock);
  1643. }
  1644. int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
  1645. {
  1646. struct inode *inode = file->f_mapping->host;
  1647. struct ceph_inode_info *ci = ceph_inode(inode);
  1648. unsigned flush_tid;
  1649. int ret;
  1650. int dirty;
  1651. dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
  1652. sync_write_wait(inode);
  1653. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  1654. if (ret < 0)
  1655. return ret;
  1656. mutex_lock(&inode->i_mutex);
  1657. dirty = try_flush_caps(inode, NULL, &flush_tid);
  1658. dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
  1659. /*
  1660. * only wait on non-file metadata writeback (the mds
  1661. * can recover size and mtime, so we don't need to
  1662. * wait for that)
  1663. */
  1664. if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
  1665. dout("fsync waiting for flush_tid %u\n", flush_tid);
  1666. ret = wait_event_interruptible(ci->i_cap_wq,
  1667. caps_are_flushed(inode, flush_tid));
  1668. }
  1669. dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
  1670. mutex_unlock(&inode->i_mutex);
  1671. return ret;
  1672. }
  1673. /*
  1674. * Flush any dirty caps back to the mds. If we aren't asked to wait,
  1675. * queue inode for flush but don't do so immediately, because we can
  1676. * get by with fewer MDS messages if we wait for data writeback to
  1677. * complete first.
  1678. */
  1679. int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
  1680. {
  1681. struct ceph_inode_info *ci = ceph_inode(inode);
  1682. unsigned flush_tid;
  1683. int err = 0;
  1684. int dirty;
  1685. int wait = wbc->sync_mode == WB_SYNC_ALL;
  1686. dout("write_inode %p wait=%d\n", inode, wait);
  1687. if (wait) {
  1688. dirty = try_flush_caps(inode, NULL, &flush_tid);
  1689. if (dirty)
  1690. err = wait_event_interruptible(ci->i_cap_wq,
  1691. caps_are_flushed(inode, flush_tid));
  1692. } else {
  1693. struct ceph_mds_client *mdsc =
  1694. ceph_sb_to_client(inode->i_sb)->mdsc;
  1695. spin_lock(&ci->i_ceph_lock);
  1696. if (__ceph_caps_dirty(ci))
  1697. __cap_delay_requeue_front(mdsc, ci);
  1698. spin_unlock(&ci->i_ceph_lock);
  1699. }
  1700. return err;
  1701. }
  1702. /*
  1703. * After a recovering MDS goes active, we need to resend any caps
  1704. * we were flushing.
  1705. *
  1706. * Caller holds session->s_mutex.
  1707. */
  1708. static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
  1709. struct ceph_mds_session *session)
  1710. {
  1711. struct ceph_cap_snap *capsnap;
  1712. dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
  1713. list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
  1714. flushing_item) {
  1715. struct ceph_inode_info *ci = capsnap->ci;
  1716. struct inode *inode = &ci->vfs_inode;
  1717. struct ceph_cap *cap;
  1718. spin_lock(&ci->i_ceph_lock);
  1719. cap = ci->i_auth_cap;
  1720. if (cap && cap->session == session) {
  1721. dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
  1722. cap, capsnap);
  1723. __ceph_flush_snaps(ci, &session, 1);
  1724. } else {
  1725. pr_err("%p auth cap %p not mds%d ???\n", inode,
  1726. cap, session->s_mds);
  1727. }
  1728. spin_unlock(&ci->i_ceph_lock);
  1729. }
  1730. }
  1731. void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
  1732. struct ceph_mds_session *session)
  1733. {
  1734. struct ceph_inode_info *ci;
  1735. kick_flushing_capsnaps(mdsc, session);
  1736. dout("kick_flushing_caps mds%d\n", session->s_mds);
  1737. list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
  1738. struct inode *inode = &ci->vfs_inode;
  1739. struct ceph_cap *cap;
  1740. int delayed = 0;
  1741. spin_lock(&ci->i_ceph_lock);
  1742. cap = ci->i_auth_cap;
  1743. if (cap && cap->session == session) {
  1744. dout("kick_flushing_caps %p cap %p %s\n", inode,
  1745. cap, ceph_cap_string(ci->i_flushing_caps));
  1746. delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
  1747. __ceph_caps_used(ci),
  1748. __ceph_caps_wanted(ci),
  1749. cap->issued | cap->implemented,
  1750. ci->i_flushing_caps, NULL);
  1751. if (delayed) {
  1752. spin_lock(&ci->i_ceph_lock);
  1753. __cap_delay_requeue(mdsc, ci);
  1754. spin_unlock(&ci->i_ceph_lock);
  1755. }
  1756. } else {
  1757. pr_err("%p auth cap %p not mds%d ???\n", inode,
  1758. cap, session->s_mds);
  1759. spin_unlock(&ci->i_ceph_lock);
  1760. }
  1761. }
  1762. }
  1763. static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
  1764. struct ceph_mds_session *session,
  1765. struct inode *inode)
  1766. {
  1767. struct ceph_inode_info *ci = ceph_inode(inode);
  1768. struct ceph_cap *cap;
  1769. int delayed = 0;
  1770. spin_lock(&ci->i_ceph_lock);
  1771. cap = ci->i_auth_cap;
  1772. dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
  1773. ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
  1774. __ceph_flush_snaps(ci, &session, 1);
  1775. if (ci->i_flushing_caps) {
  1776. spin_lock(&mdsc->cap_dirty_lock);
  1777. list_move_tail(&ci->i_flushing_item,
  1778. &cap->session->s_cap_flushing);
  1779. spin_unlock(&mdsc->cap_dirty_lock);
  1780. delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
  1781. __ceph_caps_used(ci),
  1782. __ceph_caps_wanted(ci),
  1783. cap->issued | cap->implemented,
  1784. ci->i_flushing_caps, NULL);
  1785. if (delayed) {
  1786. spin_lock(&ci->i_ceph_lock);
  1787. __cap_delay_requeue(mdsc, ci);
  1788. spin_unlock(&ci->i_ceph_lock);
  1789. }
  1790. } else {
  1791. spin_unlock(&ci->i_ceph_lock);
  1792. }
  1793. }
  1794. /*
  1795. * Take references to capabilities we hold, so that we don't release
  1796. * them to the MDS prematurely.
  1797. *
  1798. * Protected by i_ceph_lock.
  1799. */
  1800. static void __take_cap_refs(struct ceph_inode_info *ci, int got)
  1801. {
  1802. if (got & CEPH_CAP_PIN)
  1803. ci->i_pin_ref++;
  1804. if (got & CEPH_CAP_FILE_RD)
  1805. ci->i_rd_ref++;
  1806. if (got & CEPH_CAP_FILE_CACHE)
  1807. ci->i_rdcache_ref++;
  1808. if (got & CEPH_CAP_FILE_WR)
  1809. ci->i_wr_ref++;
  1810. if (got & CEPH_CAP_FILE_BUFFER) {
  1811. if (ci->i_wb_ref == 0)
  1812. ihold(&ci->vfs_inode);
  1813. ci->i_wb_ref++;
  1814. dout("__take_cap_refs %p wb %d -> %d (?)\n",
  1815. &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
  1816. }
  1817. }
  1818. /*
  1819. * Try to grab cap references. Specify those refs we @want, and the
  1820. * minimal set we @need. Also include the larger offset we are writing
  1821. * to (when applicable), and check against max_size here as well.
  1822. * Note that caller is responsible for ensuring max_size increases are
  1823. * requested from the MDS.
  1824. */
  1825. static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
  1826. int *got, loff_t endoff, int *check_max, int *err)
  1827. {
  1828. struct inode *inode = &ci->vfs_inode;
  1829. int ret = 0;
  1830. int have, implemented;
  1831. int file_wanted;
  1832. dout("get_cap_refs %p need %s want %s\n", inode,
  1833. ceph_cap_string(need), ceph_cap_string(want));
  1834. spin_lock(&ci->i_ceph_lock);
  1835. /* make sure file is actually open */
  1836. file_wanted = __ceph_caps_file_wanted(ci);
  1837. if ((file_wanted & need) == 0) {
  1838. dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
  1839. ceph_cap_string(need), ceph_cap_string(file_wanted));
  1840. *err = -EBADF;
  1841. ret = 1;
  1842. goto out;
  1843. }
  1844. /* finish pending truncate */
  1845. while (ci->i_truncate_pending) {
  1846. spin_unlock(&ci->i_ceph_lock);
  1847. __ceph_do_pending_vmtruncate(inode);
  1848. spin_lock(&ci->i_ceph_lock);
  1849. }
  1850. have = __ceph_caps_issued(ci, &implemented);
  1851. if (have & need & CEPH_CAP_FILE_WR) {
  1852. if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
  1853. dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
  1854. inode, endoff, ci->i_max_size);
  1855. if (endoff > ci->i_requested_max_size) {
  1856. *check_max = 1;
  1857. ret = 1;
  1858. }
  1859. goto out;
  1860. }
  1861. /*
  1862. * If a sync write is in progress, we must wait, so that we
  1863. * can get a final snapshot value for size+mtime.
  1864. */
  1865. if (__ceph_have_pending_cap_snap(ci)) {
  1866. dout("get_cap_refs %p cap_snap_pending\n", inode);
  1867. goto out;
  1868. }
  1869. }
  1870. if ((have & need) == need) {
  1871. /*
  1872. * Look at (implemented & ~have & not) so that we keep waiting
  1873. * on transition from wanted -> needed caps. This is needed
  1874. * for WRBUFFER|WR -> WR to avoid a new WR sync write from
  1875. * going before a prior buffered writeback happens.
  1876. */
  1877. int not = want & ~(have & need);
  1878. int revoking = implemented & ~have;
  1879. dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
  1880. inode, ceph_cap_string(have), ceph_cap_string(not),
  1881. ceph_cap_string(revoking));
  1882. if ((revoking & not) == 0) {
  1883. *got = need | (have & want);
  1884. __take_cap_refs(ci, *got);
  1885. ret = 1;
  1886. }
  1887. } else {
  1888. dout("get_cap_refs %p have %s needed %s\n", inode,
  1889. ceph_cap_string(have), ceph_cap_string(need));
  1890. }
  1891. out:
  1892. spin_unlock(&ci->i_ceph_lock);
  1893. dout("get_cap_refs %p ret %d got %s\n", inode,
  1894. ret, ceph_cap_string(*got));
  1895. return ret;
  1896. }
  1897. /*
  1898. * Check the offset we are writing up to against our current
  1899. * max_size. If necessary, tell the MDS we want to write to
  1900. * a larger offset.
  1901. */
  1902. static void check_max_size(struct inode *inode, loff_t endoff)
  1903. {
  1904. struct ceph_inode_info *ci = ceph_inode(inode);
  1905. int check = 0;
  1906. /* do we need to explicitly request a larger max_size? */
  1907. spin_lock(&ci->i_ceph_lock);
  1908. if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) {
  1909. dout("write %p at large endoff %llu, req max_size\n",
  1910. inode, endoff);
  1911. ci->i_wanted_max_size = endoff;
  1912. }
  1913. /* duplicate ceph_check_caps()'s logic */
  1914. if (ci->i_auth_cap &&
  1915. (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) &&
  1916. ci->i_wanted_max_size > ci->i_max_size &&
  1917. ci->i_wanted_max_size > ci->i_requested_max_size)
  1918. check = 1;
  1919. spin_unlock(&ci->i_ceph_lock);
  1920. if (check)
  1921. ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
  1922. }
  1923. /*
  1924. * Wait for caps, and take cap references. If we can't get a WR cap
  1925. * due to a small max_size, make sure we check_max_size (and possibly
  1926. * ask the mds) so we don't get hung up indefinitely.
  1927. */
  1928. int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
  1929. loff_t endoff)
  1930. {
  1931. int check_max, ret, err;
  1932. retry:
  1933. if (endoff > 0)
  1934. check_max_size(&ci->vfs_inode, endoff);
  1935. check_max = 0;
  1936. err = 0;
  1937. ret = wait_event_interruptible(ci->i_cap_wq,
  1938. try_get_cap_refs(ci, need, want,
  1939. got, endoff,
  1940. &check_max, &err));
  1941. if (err)
  1942. ret = err;
  1943. if (check_max)
  1944. goto retry;
  1945. return ret;
  1946. }
  1947. /*
  1948. * Take cap refs. Caller must already know we hold at least one ref
  1949. * on the caps in question or we don't know this is safe.
  1950. */
  1951. void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
  1952. {
  1953. spin_lock(&ci->i_ceph_lock);
  1954. __take_cap_refs(ci, caps);
  1955. spin_unlock(&ci->i_ceph_lock);
  1956. }
  1957. /*
  1958. * Release cap refs.
  1959. *
  1960. * If we released the last ref on any given cap, call ceph_check_caps
  1961. * to release (or schedule a release).
  1962. *
  1963. * If we are releasing a WR cap (from a sync write), finalize any affected
  1964. * cap_snap, and wake up any waiters.
  1965. */
  1966. void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
  1967. {
  1968. struct inode *inode = &ci->vfs_inode;
  1969. int last = 0, put = 0, flushsnaps = 0, wake = 0;
  1970. struct ceph_cap_snap *capsnap;
  1971. spin_lock(&ci->i_ceph_lock);
  1972. if (had & CEPH_CAP_PIN)
  1973. --ci->i_pin_ref;
  1974. if (had & CEPH_CAP_FILE_RD)
  1975. if (--ci->i_rd_ref == 0)
  1976. last++;
  1977. if (had & CEPH_CAP_FILE_CACHE)
  1978. if (--ci->i_rdcache_ref == 0)
  1979. last++;
  1980. if (had & CEPH_CAP_FILE_BUFFER) {
  1981. if (--ci->i_wb_ref == 0) {
  1982. last++;
  1983. put++;
  1984. }
  1985. dout("put_cap_refs %p wb %d -> %d (?)\n",
  1986. inode, ci->i_wb_ref+1, ci->i_wb_ref);
  1987. }
  1988. if (had & CEPH_CAP_FILE_WR)
  1989. if (--ci->i_wr_ref == 0) {
  1990. last++;
  1991. if (!list_empty(&ci->i_cap_snaps)) {
  1992. capsnap = list_first_entry(&ci->i_cap_snaps,
  1993. struct ceph_cap_snap,
  1994. ci_item);
  1995. if (capsnap->writing) {
  1996. capsnap->writing = 0;
  1997. flushsnaps =
  1998. __ceph_finish_cap_snap(ci,
  1999. capsnap);
  2000. wake = 1;
  2001. }
  2002. }
  2003. }
  2004. spin_unlock(&ci->i_ceph_lock);
  2005. dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
  2006. last ? " last" : "", put ? " put" : "");
  2007. if (last && !flushsnaps)
  2008. ceph_check_caps(ci, 0, NULL);
  2009. else if (flushsnaps)
  2010. ceph_flush_snaps(ci);
  2011. if (wake)
  2012. wake_up_all(&ci->i_cap_wq);
  2013. if (put)
  2014. iput(inode);
  2015. }
  2016. /*
  2017. * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
  2018. * context. Adjust per-snap dirty page accounting as appropriate.
  2019. * Once all dirty data for a cap_snap is flushed, flush snapped file
  2020. * metadata back to the MDS. If we dropped the last ref, call
  2021. * ceph_check_caps.
  2022. */
  2023. void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
  2024. struct ceph_snap_context *snapc)
  2025. {
  2026. struct inode *inode = &ci->vfs_inode;
  2027. int last = 0;
  2028. int complete_capsnap = 0;
  2029. int drop_capsnap = 0;
  2030. int found = 0;
  2031. struct ceph_cap_snap *capsnap = NULL;
  2032. spin_lock(&ci->i_ceph_lock);
  2033. ci->i_wrbuffer_ref -= nr;
  2034. last = !ci->i_wrbuffer_ref;
  2035. if (ci->i_head_snapc == snapc) {
  2036. ci->i_wrbuffer_ref_head -= nr;
  2037. if (ci->i_wrbuffer_ref_head == 0 &&
  2038. ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
  2039. BUG_ON(!ci->i_head_snapc);
  2040. ceph_put_snap_context(ci->i_head_snapc);
  2041. ci->i_head_snapc = NULL;
  2042. }
  2043. dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
  2044. inode,
  2045. ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
  2046. ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
  2047. last ? " LAST" : "");
  2048. } else {
  2049. list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
  2050. if (capsnap->context == snapc) {
  2051. found = 1;
  2052. break;
  2053. }
  2054. }
  2055. BUG_ON(!found);
  2056. capsnap->dirty_pages -= nr;
  2057. if (capsnap->dirty_pages == 0) {
  2058. complete_capsnap = 1;
  2059. if (capsnap->dirty == 0)
  2060. /* cap writeback completed before we created
  2061. * the cap_snap; no FLUSHSNAP is needed */
  2062. drop_capsnap = 1;
  2063. }
  2064. dout("put_wrbuffer_cap_refs on %p cap_snap %p "
  2065. " snap %lld %d/%d -> %d/%d %s%s%s\n",
  2066. inode, capsnap, capsnap->context->seq,
  2067. ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
  2068. ci->i_wrbuffer_ref, capsnap->dirty_pages,
  2069. last ? " (wrbuffer last)" : "",
  2070. complete_capsnap ? " (complete capsnap)" : "",
  2071. drop_capsnap ? " (drop capsnap)" : "");
  2072. if (drop_capsnap) {
  2073. ceph_put_snap_context(capsnap->context);
  2074. list_del(&capsnap->ci_item);
  2075. list_del(&capsnap->flushing_item);
  2076. ceph_put_cap_snap(capsnap);
  2077. }
  2078. }
  2079. spin_unlock(&ci->i_ceph_lock);
  2080. if (last) {
  2081. ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
  2082. iput(inode);
  2083. } else if (complete_capsnap) {
  2084. ceph_flush_snaps(ci);
  2085. wake_up_all(&ci->i_cap_wq);
  2086. }
  2087. if (drop_capsnap)
  2088. iput(inode);
  2089. }
  2090. /*
  2091. * Invalidate unlinked inode's aliases, so we can drop the inode ASAP.
  2092. */
  2093. static void invalidate_aliases(struct inode *inode)
  2094. {
  2095. struct dentry *dn, *prev = NULL;
  2096. dout("invalidate_aliases inode %p\n", inode);
  2097. d_prune_aliases(inode);
  2098. /*
  2099. * For non-directory inode, d_find_alias() only returns
  2100. * connected dentry. After calling d_invalidate(), the
  2101. * dentry become disconnected.
  2102. *
  2103. * For directory inode, d_find_alias() can return
  2104. * disconnected dentry. But directory inode should have
  2105. * one alias at most.
  2106. */
  2107. while ((dn = d_find_alias(inode))) {
  2108. if (dn == prev) {
  2109. dput(dn);
  2110. break;
  2111. }
  2112. d_invalidate(dn);
  2113. if (prev)
  2114. dput(prev);
  2115. prev = dn;
  2116. }
  2117. if (prev)
  2118. dput(prev);
  2119. }
  2120. /*
  2121. * Handle a cap GRANT message from the MDS. (Note that a GRANT may
  2122. * actually be a revocation if it specifies a smaller cap set.)
  2123. *
  2124. * caller holds s_mutex and i_ceph_lock, we drop both.
  2125. *
  2126. * return value:
  2127. * 0 - ok
  2128. * 1 - check_caps on auth cap only (writeback)
  2129. * 2 - check_caps (ack revoke)
  2130. */
  2131. static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
  2132. struct ceph_mds_session *session,
  2133. struct ceph_cap *cap,
  2134. struct ceph_buffer *xattr_buf)
  2135. __releases(ci->i_ceph_lock)
  2136. {
  2137. struct ceph_inode_info *ci = ceph_inode(inode);
  2138. int mds = session->s_mds;
  2139. int seq = le32_to_cpu(grant->seq);
  2140. int newcaps = le32_to_cpu(grant->caps);
  2141. int issued, implemented, used, wanted, dirty;
  2142. u64 size = le64_to_cpu(grant->size);
  2143. u64 max_size = le64_to_cpu(grant->max_size);
  2144. struct timespec mtime, atime, ctime;
  2145. int check_caps = 0;
  2146. int wake = 0;
  2147. int writeback = 0;
  2148. int queue_invalidate = 0;
  2149. int deleted_inode = 0;
  2150. int queue_revalidate = 0;
  2151. dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
  2152. inode, cap, mds, seq, ceph_cap_string(newcaps));
  2153. dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
  2154. inode->i_size);
  2155. /*
  2156. * If CACHE is being revoked, and we have no dirty buffers,
  2157. * try to invalidate (once). (If there are dirty buffers, we
  2158. * will invalidate _after_ writeback.)
  2159. */
  2160. if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
  2161. (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
  2162. !ci->i_wrbuffer_ref) {
  2163. if (try_nonblocking_invalidate(inode)) {
  2164. /* there were locked pages.. invalidate later
  2165. in a separate thread. */
  2166. if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
  2167. queue_invalidate = 1;
  2168. ci->i_rdcache_revoking = ci->i_rdcache_gen;
  2169. }
  2170. }
  2171. ceph_fscache_invalidate(inode);
  2172. }
  2173. /* side effects now are allowed */
  2174. issued = __ceph_caps_issued(ci, &implemented);
  2175. issued |= implemented | __ceph_caps_dirty(ci);
  2176. cap->cap_gen = session->s_cap_gen;
  2177. __check_cap_issue(ci, cap, newcaps);
  2178. if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
  2179. inode->i_mode = le32_to_cpu(grant->mode);
  2180. inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid));
  2181. inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid));
  2182. dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
  2183. from_kuid(&init_user_ns, inode->i_uid),
  2184. from_kgid(&init_user_ns, inode->i_gid));
  2185. }
  2186. if ((issued & CEPH_CAP_LINK_EXCL) == 0) {
  2187. set_nlink(inode, le32_to_cpu(grant->nlink));
  2188. if (inode->i_nlink == 0 &&
  2189. (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL)))
  2190. deleted_inode = 1;
  2191. }
  2192. if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
  2193. int len = le32_to_cpu(grant->xattr_len);
  2194. u64 version = le64_to_cpu(grant->xattr_version);
  2195. if (version > ci->i_xattrs.version) {
  2196. dout(" got new xattrs v%llu on %p len %d\n",
  2197. version, inode, len);
  2198. if (ci->i_xattrs.blob)
  2199. ceph_buffer_put(ci->i_xattrs.blob);
  2200. ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
  2201. ci->i_xattrs.version = version;
  2202. }
  2203. }
  2204. /* Do we need to revalidate our fscache cookie. Don't bother on the
  2205. * first cache cap as we already validate at cookie creation time. */
  2206. if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1)
  2207. queue_revalidate = 1;
  2208. /* size/ctime/mtime/atime? */
  2209. ceph_fill_file_size(inode, issued,
  2210. le32_to_cpu(grant->truncate_seq),
  2211. le64_to_cpu(grant->truncate_size), size);
  2212. ceph_decode_timespec(&mtime, &grant->mtime);
  2213. ceph_decode_timespec(&atime, &grant->atime);
  2214. ceph_decode_timespec(&ctime, &grant->ctime);
  2215. ceph_fill_file_time(inode, issued,
  2216. le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
  2217. &atime);
  2218. /* max size increase? */
  2219. if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
  2220. dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
  2221. ci->i_max_size = max_size;
  2222. if (max_size >= ci->i_wanted_max_size) {
  2223. ci->i_wanted_max_size = 0; /* reset */
  2224. ci->i_requested_max_size = 0;
  2225. }
  2226. wake = 1;
  2227. }
  2228. /* check cap bits */
  2229. wanted = __ceph_caps_wanted(ci);
  2230. used = __ceph_caps_used(ci);
  2231. dirty = __ceph_caps_dirty(ci);
  2232. dout(" my wanted = %s, used = %s, dirty %s\n",
  2233. ceph_cap_string(wanted),
  2234. ceph_cap_string(used),
  2235. ceph_cap_string(dirty));
  2236. if (wanted != le32_to_cpu(grant->wanted)) {
  2237. dout("mds wanted %s -> %s\n",
  2238. ceph_cap_string(le32_to_cpu(grant->wanted)),
  2239. ceph_cap_string(wanted));
  2240. /* imported cap may not have correct mds_wanted */
  2241. if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT)
  2242. check_caps = 1;
  2243. }
  2244. cap->seq = seq;
  2245. /* file layout may have changed */
  2246. ci->i_layout = grant->layout;
  2247. /* revocation, grant, or no-op? */
  2248. if (cap->issued & ~newcaps) {
  2249. int revoking = cap->issued & ~newcaps;
  2250. dout("revocation: %s -> %s (revoking %s)\n",
  2251. ceph_cap_string(cap->issued),
  2252. ceph_cap_string(newcaps),
  2253. ceph_cap_string(revoking));
  2254. if (revoking & used & CEPH_CAP_FILE_BUFFER)
  2255. writeback = 1; /* initiate writeback; will delay ack */
  2256. else if (revoking == CEPH_CAP_FILE_CACHE &&
  2257. (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
  2258. queue_invalidate)
  2259. ; /* do nothing yet, invalidation will be queued */
  2260. else if (cap == ci->i_auth_cap)
  2261. check_caps = 1; /* check auth cap only */
  2262. else
  2263. check_caps = 2; /* check all caps */
  2264. cap->issued = newcaps;
  2265. cap->implemented |= newcaps;
  2266. } else if (cap->issued == newcaps) {
  2267. dout("caps unchanged: %s -> %s\n",
  2268. ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
  2269. } else {
  2270. dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
  2271. ceph_cap_string(newcaps));
  2272. /* non-auth MDS is revoking the newly grant caps ? */
  2273. if (cap == ci->i_auth_cap &&
  2274. __ceph_caps_revoking_other(ci, cap, newcaps))
  2275. check_caps = 2;
  2276. cap->issued = newcaps;
  2277. cap->implemented |= newcaps; /* add bits only, to
  2278. * avoid stepping on a
  2279. * pending revocation */
  2280. wake = 1;
  2281. }
  2282. BUG_ON(cap->issued & ~cap->implemented);
  2283. spin_unlock(&ci->i_ceph_lock);
  2284. if (writeback)
  2285. /*
  2286. * queue inode for writeback: we can't actually call
  2287. * filemap_write_and_wait, etc. from message handler
  2288. * context.
  2289. */
  2290. ceph_queue_writeback(inode);
  2291. if (queue_invalidate)
  2292. ceph_queue_invalidate(inode);
  2293. if (deleted_inode)
  2294. invalidate_aliases(inode);
  2295. if (queue_revalidate)
  2296. ceph_queue_revalidate(inode);
  2297. if (wake)
  2298. wake_up_all(&ci->i_cap_wq);
  2299. if (check_caps == 1)
  2300. ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
  2301. session);
  2302. else if (check_caps == 2)
  2303. ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
  2304. else
  2305. mutex_unlock(&session->s_mutex);
  2306. }
  2307. /*
  2308. * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
  2309. * MDS has been safely committed.
  2310. */
  2311. static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
  2312. struct ceph_mds_caps *m,
  2313. struct ceph_mds_session *session,
  2314. struct ceph_cap *cap)
  2315. __releases(ci->i_ceph_lock)
  2316. {
  2317. struct ceph_inode_info *ci = ceph_inode(inode);
  2318. struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
  2319. unsigned seq = le32_to_cpu(m->seq);
  2320. int dirty = le32_to_cpu(m->dirty);
  2321. int cleaned = 0;
  2322. int drop = 0;
  2323. int i;
  2324. for (i = 0; i < CEPH_CAP_BITS; i++)
  2325. if ((dirty & (1 << i)) &&
  2326. flush_tid == ci->i_cap_flush_tid[i])
  2327. cleaned |= 1 << i;
  2328. dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
  2329. " flushing %s -> %s\n",
  2330. inode, session->s_mds, seq, ceph_cap_string(dirty),
  2331. ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
  2332. ceph_cap_string(ci->i_flushing_caps & ~cleaned));
  2333. if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
  2334. goto out;
  2335. ci->i_flushing_caps &= ~cleaned;
  2336. spin_lock(&mdsc->cap_dirty_lock);
  2337. if (ci->i_flushing_caps == 0) {
  2338. list_del_init(&ci->i_flushing_item);
  2339. if (!list_empty(&session->s_cap_flushing))
  2340. dout(" mds%d still flushing cap on %p\n",
  2341. session->s_mds,
  2342. &list_entry(session->s_cap_flushing.next,
  2343. struct ceph_inode_info,
  2344. i_flushing_item)->vfs_inode);
  2345. mdsc->num_cap_flushing--;
  2346. wake_up_all(&mdsc->cap_flushing_wq);
  2347. dout(" inode %p now !flushing\n", inode);
  2348. if (ci->i_dirty_caps == 0) {
  2349. dout(" inode %p now clean\n", inode);
  2350. BUG_ON(!list_empty(&ci->i_dirty_item));
  2351. drop = 1;
  2352. if (ci->i_wrbuffer_ref_head == 0) {
  2353. BUG_ON(!ci->i_head_snapc);
  2354. ceph_put_snap_context(ci->i_head_snapc);
  2355. ci->i_head_snapc = NULL;
  2356. }
  2357. } else {
  2358. BUG_ON(list_empty(&ci->i_dirty_item));
  2359. }
  2360. }
  2361. spin_unlock(&mdsc->cap_dirty_lock);
  2362. wake_up_all(&ci->i_cap_wq);
  2363. out:
  2364. spin_unlock(&ci->i_ceph_lock);
  2365. if (drop)
  2366. iput(inode);
  2367. }
  2368. /*
  2369. * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
  2370. * throw away our cap_snap.
  2371. *
  2372. * Caller hold s_mutex.
  2373. */
  2374. static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
  2375. struct ceph_mds_caps *m,
  2376. struct ceph_mds_session *session)
  2377. {
  2378. struct ceph_inode_info *ci = ceph_inode(inode);
  2379. u64 follows = le64_to_cpu(m->snap_follows);
  2380. struct ceph_cap_snap *capsnap;
  2381. int drop = 0;
  2382. dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
  2383. inode, ci, session->s_mds, follows);
  2384. spin_lock(&ci->i_ceph_lock);
  2385. list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
  2386. if (capsnap->follows == follows) {
  2387. if (capsnap->flush_tid != flush_tid) {
  2388. dout(" cap_snap %p follows %lld tid %lld !="
  2389. " %lld\n", capsnap, follows,
  2390. flush_tid, capsnap->flush_tid);
  2391. break;
  2392. }
  2393. WARN_ON(capsnap->dirty_pages || capsnap->writing);
  2394. dout(" removing %p cap_snap %p follows %lld\n",
  2395. inode, capsnap, follows);
  2396. ceph_put_snap_context(capsnap->context);
  2397. list_del(&capsnap->ci_item);
  2398. list_del(&capsnap->flushing_item);
  2399. ceph_put_cap_snap(capsnap);
  2400. drop = 1;
  2401. break;
  2402. } else {
  2403. dout(" skipping cap_snap %p follows %lld\n",
  2404. capsnap, capsnap->follows);
  2405. }
  2406. }
  2407. spin_unlock(&ci->i_ceph_lock);
  2408. if (drop)
  2409. iput(inode);
  2410. }
  2411. /*
  2412. * Handle TRUNC from MDS, indicating file truncation.
  2413. *
  2414. * caller hold s_mutex.
  2415. */
  2416. static void handle_cap_trunc(struct inode *inode,
  2417. struct ceph_mds_caps *trunc,
  2418. struct ceph_mds_session *session)
  2419. __releases(ci->i_ceph_lock)
  2420. {
  2421. struct ceph_inode_info *ci = ceph_inode(inode);
  2422. int mds = session->s_mds;
  2423. int seq = le32_to_cpu(trunc->seq);
  2424. u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
  2425. u64 truncate_size = le64_to_cpu(trunc->truncate_size);
  2426. u64 size = le64_to_cpu(trunc->size);
  2427. int implemented = 0;
  2428. int dirty = __ceph_caps_dirty(ci);
  2429. int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
  2430. int queue_trunc = 0;
  2431. issued |= implemented | dirty;
  2432. dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
  2433. inode, mds, seq, truncate_size, truncate_seq);
  2434. queue_trunc = ceph_fill_file_size(inode, issued,
  2435. truncate_seq, truncate_size, size);
  2436. spin_unlock(&ci->i_ceph_lock);
  2437. if (queue_trunc) {
  2438. ceph_queue_vmtruncate(inode);
  2439. ceph_fscache_invalidate(inode);
  2440. }
  2441. }
  2442. /*
  2443. * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
  2444. * different one. If we are the most recent migration we've seen (as
  2445. * indicated by mseq), make note of the migrating cap bits for the
  2446. * duration (until we see the corresponding IMPORT).
  2447. *
  2448. * caller holds s_mutex
  2449. */
  2450. static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
  2451. struct ceph_mds_session *session,
  2452. int *open_target_sessions)
  2453. {
  2454. struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
  2455. struct ceph_inode_info *ci = ceph_inode(inode);
  2456. int mds = session->s_mds;
  2457. unsigned mseq = le32_to_cpu(ex->migrate_seq);
  2458. struct ceph_cap *cap = NULL, *t;
  2459. struct rb_node *p;
  2460. int remember = 1;
  2461. dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
  2462. inode, ci, mds, mseq);
  2463. spin_lock(&ci->i_ceph_lock);
  2464. /* make sure we haven't seen a higher mseq */
  2465. for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
  2466. t = rb_entry(p, struct ceph_cap, ci_node);
  2467. if (ceph_seq_cmp(t->mseq, mseq) > 0) {
  2468. dout(" higher mseq on cap from mds%d\n",
  2469. t->session->s_mds);
  2470. remember = 0;
  2471. }
  2472. if (t->session->s_mds == mds)
  2473. cap = t;
  2474. }
  2475. if (cap) {
  2476. if (remember) {
  2477. /* make note */
  2478. ci->i_cap_exporting_mds = mds;
  2479. ci->i_cap_exporting_mseq = mseq;
  2480. ci->i_cap_exporting_issued = cap->issued;
  2481. /*
  2482. * make sure we have open sessions with all possible
  2483. * export targets, so that we get the matching IMPORT
  2484. */
  2485. *open_target_sessions = 1;
  2486. /*
  2487. * we can't flush dirty caps that we've seen the
  2488. * EXPORT but no IMPORT for
  2489. */
  2490. spin_lock(&mdsc->cap_dirty_lock);
  2491. if (!list_empty(&ci->i_dirty_item)) {
  2492. dout(" moving %p to cap_dirty_migrating\n",
  2493. inode);
  2494. list_move(&ci->i_dirty_item,
  2495. &mdsc->cap_dirty_migrating);
  2496. }
  2497. spin_unlock(&mdsc->cap_dirty_lock);
  2498. }
  2499. __ceph_remove_cap(cap, false);
  2500. }
  2501. /* else, we already released it */
  2502. spin_unlock(&ci->i_ceph_lock);
  2503. }
  2504. /*
  2505. * Handle cap IMPORT. If there are temp bits from an older EXPORT,
  2506. * clean them up.
  2507. *
  2508. * caller holds s_mutex.
  2509. */
  2510. static void handle_cap_import(struct ceph_mds_client *mdsc,
  2511. struct inode *inode, struct ceph_mds_caps *im,
  2512. struct ceph_mds_session *session,
  2513. void *snaptrace, int snaptrace_len)
  2514. {
  2515. struct ceph_inode_info *ci = ceph_inode(inode);
  2516. int mds = session->s_mds;
  2517. unsigned issued = le32_to_cpu(im->caps);
  2518. unsigned wanted = le32_to_cpu(im->wanted);
  2519. unsigned seq = le32_to_cpu(im->seq);
  2520. unsigned mseq = le32_to_cpu(im->migrate_seq);
  2521. u64 realmino = le64_to_cpu(im->realm);
  2522. u64 cap_id = le64_to_cpu(im->cap_id);
  2523. if (ci->i_cap_exporting_mds >= 0 &&
  2524. ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
  2525. dout("handle_cap_import inode %p ci %p mds%d mseq %d"
  2526. " - cleared exporting from mds%d\n",
  2527. inode, ci, mds, mseq,
  2528. ci->i_cap_exporting_mds);
  2529. ci->i_cap_exporting_issued = 0;
  2530. ci->i_cap_exporting_mseq = 0;
  2531. ci->i_cap_exporting_mds = -1;
  2532. spin_lock(&mdsc->cap_dirty_lock);
  2533. if (!list_empty(&ci->i_dirty_item)) {
  2534. dout(" moving %p back to cap_dirty\n", inode);
  2535. list_move(&ci->i_dirty_item, &mdsc->cap_dirty);
  2536. }
  2537. spin_unlock(&mdsc->cap_dirty_lock);
  2538. } else {
  2539. dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
  2540. inode, ci, mds, mseq);
  2541. }
  2542. down_write(&mdsc->snap_rwsem);
  2543. ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
  2544. false);
  2545. downgrade_write(&mdsc->snap_rwsem);
  2546. ceph_add_cap(inode, session, cap_id, -1,
  2547. issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
  2548. NULL /* no caps context */);
  2549. kick_flushing_inode_caps(mdsc, session, inode);
  2550. up_read(&mdsc->snap_rwsem);
  2551. /* make sure we re-request max_size, if necessary */
  2552. spin_lock(&ci->i_ceph_lock);
  2553. ci->i_wanted_max_size = 0; /* reset */
  2554. ci->i_requested_max_size = 0;
  2555. spin_unlock(&ci->i_ceph_lock);
  2556. }
  2557. /*
  2558. * Handle a caps message from the MDS.
  2559. *
  2560. * Identify the appropriate session, inode, and call the right handler
  2561. * based on the cap op.
  2562. */
  2563. void ceph_handle_caps(struct ceph_mds_session *session,
  2564. struct ceph_msg *msg)
  2565. {
  2566. struct ceph_mds_client *mdsc = session->s_mdsc;
  2567. struct super_block *sb = mdsc->fsc->sb;
  2568. struct inode *inode;
  2569. struct ceph_inode_info *ci;
  2570. struct ceph_cap *cap;
  2571. struct ceph_mds_caps *h;
  2572. int mds = session->s_mds;
  2573. int op;
  2574. u32 seq, mseq;
  2575. struct ceph_vino vino;
  2576. u64 cap_id;
  2577. u64 size, max_size;
  2578. u64 tid;
  2579. void *snaptrace;
  2580. size_t snaptrace_len;
  2581. void *flock;
  2582. u32 flock_len;
  2583. int open_target_sessions = 0;
  2584. dout("handle_caps from mds%d\n", mds);
  2585. /* decode */
  2586. tid = le64_to_cpu(msg->hdr.tid);
  2587. if (msg->front.iov_len < sizeof(*h))
  2588. goto bad;
  2589. h = msg->front.iov_base;
  2590. op = le32_to_cpu(h->op);
  2591. vino.ino = le64_to_cpu(h->ino);
  2592. vino.snap = CEPH_NOSNAP;
  2593. cap_id = le64_to_cpu(h->cap_id);
  2594. seq = le32_to_cpu(h->seq);
  2595. mseq = le32_to_cpu(h->migrate_seq);
  2596. size = le64_to_cpu(h->size);
  2597. max_size = le64_to_cpu(h->max_size);
  2598. snaptrace = h + 1;
  2599. snaptrace_len = le32_to_cpu(h->snap_trace_len);
  2600. if (le16_to_cpu(msg->hdr.version) >= 2) {
  2601. void *p, *end;
  2602. p = snaptrace + snaptrace_len;
  2603. end = msg->front.iov_base + msg->front.iov_len;
  2604. ceph_decode_32_safe(&p, end, flock_len, bad);
  2605. flock = p;
  2606. } else {
  2607. flock = NULL;
  2608. flock_len = 0;
  2609. }
  2610. mutex_lock(&session->s_mutex);
  2611. session->s_seq++;
  2612. dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
  2613. (unsigned)seq);
  2614. if (op == CEPH_CAP_OP_IMPORT)
  2615. ceph_add_cap_releases(mdsc, session);
  2616. /* lookup ino */
  2617. inode = ceph_find_inode(sb, vino);
  2618. ci = ceph_inode(inode);
  2619. dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
  2620. vino.snap, inode);
  2621. if (!inode) {
  2622. dout(" i don't have ino %llx\n", vino.ino);
  2623. if (op == CEPH_CAP_OP_IMPORT) {
  2624. spin_lock(&session->s_cap_lock);
  2625. __queue_cap_release(session, vino.ino, cap_id,
  2626. mseq, seq);
  2627. spin_unlock(&session->s_cap_lock);
  2628. }
  2629. goto flush_cap_releases;
  2630. }
  2631. /* these will work even if we don't have a cap yet */
  2632. switch (op) {
  2633. case CEPH_CAP_OP_FLUSHSNAP_ACK:
  2634. handle_cap_flushsnap_ack(inode, tid, h, session);
  2635. goto done;
  2636. case CEPH_CAP_OP_EXPORT:
  2637. handle_cap_export(inode, h, session, &open_target_sessions);
  2638. goto done;
  2639. case CEPH_CAP_OP_IMPORT:
  2640. handle_cap_import(mdsc, inode, h, session,
  2641. snaptrace, snaptrace_len);
  2642. }
  2643. /* the rest require a cap */
  2644. spin_lock(&ci->i_ceph_lock);
  2645. cap = __get_cap_for_mds(ceph_inode(inode), mds);
  2646. if (!cap) {
  2647. dout(" no cap on %p ino %llx.%llx from mds%d\n",
  2648. inode, ceph_ino(inode), ceph_snap(inode), mds);
  2649. spin_unlock(&ci->i_ceph_lock);
  2650. goto flush_cap_releases;
  2651. }
  2652. /* note that each of these drops i_ceph_lock for us */
  2653. switch (op) {
  2654. case CEPH_CAP_OP_REVOKE:
  2655. case CEPH_CAP_OP_GRANT:
  2656. case CEPH_CAP_OP_IMPORT:
  2657. handle_cap_grant(inode, h, session, cap, msg->middle);
  2658. goto done_unlocked;
  2659. case CEPH_CAP_OP_FLUSH_ACK:
  2660. handle_cap_flush_ack(inode, tid, h, session, cap);
  2661. break;
  2662. case CEPH_CAP_OP_TRUNC:
  2663. handle_cap_trunc(inode, h, session);
  2664. break;
  2665. default:
  2666. spin_unlock(&ci->i_ceph_lock);
  2667. pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
  2668. ceph_cap_op_name(op));
  2669. }
  2670. goto done;
  2671. flush_cap_releases:
  2672. /*
  2673. * send any full release message to try to move things
  2674. * along for the mds (who clearly thinks we still have this
  2675. * cap).
  2676. */
  2677. ceph_add_cap_releases(mdsc, session);
  2678. ceph_send_cap_releases(mdsc, session);
  2679. done:
  2680. mutex_unlock(&session->s_mutex);
  2681. done_unlocked:
  2682. if (inode)
  2683. iput(inode);
  2684. if (open_target_sessions)
  2685. ceph_mdsc_open_export_target_sessions(mdsc, session);
  2686. return;
  2687. bad:
  2688. pr_err("ceph_handle_caps: corrupt message\n");
  2689. ceph_msg_dump(msg);
  2690. return;
  2691. }
  2692. /*
  2693. * Delayed work handler to process end of delayed cap release LRU list.
  2694. */
  2695. void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
  2696. {
  2697. struct ceph_inode_info *ci;
  2698. int flags = CHECK_CAPS_NODELAY;
  2699. dout("check_delayed_caps\n");
  2700. while (1) {
  2701. spin_lock(&mdsc->cap_delay_lock);
  2702. if (list_empty(&mdsc->cap_delay_list))
  2703. break;
  2704. ci = list_first_entry(&mdsc->cap_delay_list,
  2705. struct ceph_inode_info,
  2706. i_cap_delay_list);
  2707. if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
  2708. time_before(jiffies, ci->i_hold_caps_max))
  2709. break;
  2710. list_del_init(&ci->i_cap_delay_list);
  2711. spin_unlock(&mdsc->cap_delay_lock);
  2712. dout("check_delayed_caps on %p\n", &ci->vfs_inode);
  2713. ceph_check_caps(ci, flags, NULL);
  2714. }
  2715. spin_unlock(&mdsc->cap_delay_lock);
  2716. }
  2717. /*
  2718. * Flush all dirty caps to the mds
  2719. */
  2720. void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
  2721. {
  2722. struct ceph_inode_info *ci;
  2723. struct inode *inode;
  2724. dout("flush_dirty_caps\n");
  2725. spin_lock(&mdsc->cap_dirty_lock);
  2726. while (!list_empty(&mdsc->cap_dirty)) {
  2727. ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
  2728. i_dirty_item);
  2729. inode = &ci->vfs_inode;
  2730. ihold(inode);
  2731. dout("flush_dirty_caps %p\n", inode);
  2732. spin_unlock(&mdsc->cap_dirty_lock);
  2733. ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
  2734. iput(inode);
  2735. spin_lock(&mdsc->cap_dirty_lock);
  2736. }
  2737. spin_unlock(&mdsc->cap_dirty_lock);
  2738. dout("flush_dirty_caps done\n");
  2739. }
  2740. /*
  2741. * Drop open file reference. If we were the last open file,
  2742. * we may need to release capabilities to the MDS (or schedule
  2743. * their delayed release).
  2744. */
  2745. void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
  2746. {
  2747. struct inode *inode = &ci->vfs_inode;
  2748. int last = 0;
  2749. spin_lock(&ci->i_ceph_lock);
  2750. dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
  2751. ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
  2752. BUG_ON(ci->i_nr_by_mode[fmode] == 0);
  2753. if (--ci->i_nr_by_mode[fmode] == 0)
  2754. last++;
  2755. spin_unlock(&ci->i_ceph_lock);
  2756. if (last && ci->i_vino.snap == CEPH_NOSNAP)
  2757. ceph_check_caps(ci, 0, NULL);
  2758. }
  2759. /*
  2760. * Helpers for embedding cap and dentry lease releases into mds
  2761. * requests.
  2762. *
  2763. * @force is used by dentry_release (below) to force inclusion of a
  2764. * record for the directory inode, even when there aren't any caps to
  2765. * drop.
  2766. */
  2767. int ceph_encode_inode_release(void **p, struct inode *inode,
  2768. int mds, int drop, int unless, int force)
  2769. {
  2770. struct ceph_inode_info *ci = ceph_inode(inode);
  2771. struct ceph_cap *cap;
  2772. struct ceph_mds_request_release *rel = *p;
  2773. int used, dirty;
  2774. int ret = 0;
  2775. spin_lock(&ci->i_ceph_lock);
  2776. used = __ceph_caps_used(ci);
  2777. dirty = __ceph_caps_dirty(ci);
  2778. dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
  2779. inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
  2780. ceph_cap_string(unless));
  2781. /* only drop unused, clean caps */
  2782. drop &= ~(used | dirty);
  2783. cap = __get_cap_for_mds(ci, mds);
  2784. if (cap && __cap_is_valid(cap)) {
  2785. if (force ||
  2786. ((cap->issued & drop) &&
  2787. (cap->issued & unless) == 0)) {
  2788. if ((cap->issued & drop) &&
  2789. (cap->issued & unless) == 0) {
  2790. int wanted = __ceph_caps_wanted(ci);
  2791. if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0)
  2792. wanted |= cap->mds_wanted;
  2793. dout("encode_inode_release %p cap %p "
  2794. "%s -> %s, wanted %s -> %s\n", inode, cap,
  2795. ceph_cap_string(cap->issued),
  2796. ceph_cap_string(cap->issued & ~drop),
  2797. ceph_cap_string(cap->mds_wanted),
  2798. ceph_cap_string(wanted));
  2799. cap->issued &= ~drop;
  2800. cap->implemented &= ~drop;
  2801. cap->mds_wanted = wanted;
  2802. } else {
  2803. dout("encode_inode_release %p cap %p %s"
  2804. " (force)\n", inode, cap,
  2805. ceph_cap_string(cap->issued));
  2806. }
  2807. rel->ino = cpu_to_le64(ceph_ino(inode));
  2808. rel->cap_id = cpu_to_le64(cap->cap_id);
  2809. rel->seq = cpu_to_le32(cap->seq);
  2810. rel->issue_seq = cpu_to_le32(cap->issue_seq),
  2811. rel->mseq = cpu_to_le32(cap->mseq);
  2812. rel->caps = cpu_to_le32(cap->issued);
  2813. rel->wanted = cpu_to_le32(cap->mds_wanted);
  2814. rel->dname_len = 0;
  2815. rel->dname_seq = 0;
  2816. *p += sizeof(*rel);
  2817. ret = 1;
  2818. } else {
  2819. dout("encode_inode_release %p cap %p %s\n",
  2820. inode, cap, ceph_cap_string(cap->issued));
  2821. }
  2822. }
  2823. spin_unlock(&ci->i_ceph_lock);
  2824. return ret;
  2825. }
  2826. int ceph_encode_dentry_release(void **p, struct dentry *dentry,
  2827. int mds, int drop, int unless)
  2828. {
  2829. struct inode *dir = dentry->d_parent->d_inode;
  2830. struct ceph_mds_request_release *rel = *p;
  2831. struct ceph_dentry_info *di = ceph_dentry(dentry);
  2832. int force = 0;
  2833. int ret;
  2834. /*
  2835. * force an record for the directory caps if we have a dentry lease.
  2836. * this is racy (can't take i_ceph_lock and d_lock together), but it
  2837. * doesn't have to be perfect; the mds will revoke anything we don't
  2838. * release.
  2839. */
  2840. spin_lock(&dentry->d_lock);
  2841. if (di->lease_session && di->lease_session->s_mds == mds)
  2842. force = 1;
  2843. spin_unlock(&dentry->d_lock);
  2844. ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
  2845. spin_lock(&dentry->d_lock);
  2846. if (ret && di->lease_session && di->lease_session->s_mds == mds) {
  2847. dout("encode_dentry_release %p mds%d seq %d\n",
  2848. dentry, mds, (int)di->lease_seq);
  2849. rel->dname_len = cpu_to_le32(dentry->d_name.len);
  2850. memcpy(*p, dentry->d_name.name, dentry->d_name.len);
  2851. *p += dentry->d_name.len;
  2852. rel->dname_seq = cpu_to_le32(di->lease_seq);
  2853. __ceph_mdsc_drop_dentry_lease(dentry);
  2854. }
  2855. spin_unlock(&dentry->d_lock);
  2856. return ret;
  2857. }