ide-io.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939
  1. /*
  2. * IDE I/O functions
  3. *
  4. * Basic PIO and command management functionality.
  5. *
  6. * This code was split off from ide.c. See ide.c for history and original
  7. * copyrights.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the
  11. * Free Software Foundation; either version 2, or (at your option) any
  12. * later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * For the avoidance of doubt the "preferred form" of this code is one which
  20. * is in an open non patent encumbered format. Where cryptographic key signing
  21. * forms part of the process of creating an executable the information
  22. * including keys needed to generate an equivalently functional executable
  23. * are deemed to be part of the source code.
  24. */
  25. #include <linux/module.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/kernel.h>
  29. #include <linux/timer.h>
  30. #include <linux/mm.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/major.h>
  33. #include <linux/errno.h>
  34. #include <linux/genhd.h>
  35. #include <linux/blkpg.h>
  36. #include <linux/slab.h>
  37. #include <linux/init.h>
  38. #include <linux/pci.h>
  39. #include <linux/delay.h>
  40. #include <linux/ide.h>
  41. #include <linux/hdreg.h>
  42. #include <linux/completion.h>
  43. #include <linux/reboot.h>
  44. #include <linux/cdrom.h>
  45. #include <linux/seq_file.h>
  46. #include <linux/device.h>
  47. #include <linux/kmod.h>
  48. #include <linux/scatterlist.h>
  49. #include <linux/bitops.h>
  50. #include <asm/byteorder.h>
  51. #include <asm/irq.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/io.h>
  54. static int __ide_end_request(ide_drive_t *drive, struct request *rq,
  55. int uptodate, unsigned int nr_bytes, int dequeue)
  56. {
  57. int ret = 1;
  58. int error = 0;
  59. if (uptodate <= 0)
  60. error = uptodate ? uptodate : -EIO;
  61. /*
  62. * if failfast is set on a request, override number of sectors and
  63. * complete the whole request right now
  64. */
  65. if (blk_noretry_request(rq) && error)
  66. nr_bytes = rq->hard_nr_sectors << 9;
  67. if (!blk_fs_request(rq) && error && !rq->errors)
  68. rq->errors = -EIO;
  69. /*
  70. * decide whether to reenable DMA -- 3 is a random magic for now,
  71. * if we DMA timeout more than 3 times, just stay in PIO
  72. */
  73. if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
  74. drive->retry_pio <= 3) {
  75. drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
  76. ide_dma_on(drive);
  77. }
  78. if (!blk_end_request(rq, error, nr_bytes))
  79. ret = 0;
  80. if (ret == 0 && dequeue)
  81. drive->hwif->rq = NULL;
  82. return ret;
  83. }
  84. /**
  85. * ide_end_request - complete an IDE I/O
  86. * @drive: IDE device for the I/O
  87. * @uptodate:
  88. * @nr_sectors: number of sectors completed
  89. *
  90. * This is our end_request wrapper function. We complete the I/O
  91. * update random number input and dequeue the request, which if
  92. * it was tagged may be out of order.
  93. */
  94. int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
  95. {
  96. unsigned int nr_bytes = nr_sectors << 9;
  97. struct request *rq = drive->hwif->rq;
  98. if (!nr_bytes) {
  99. if (blk_pc_request(rq))
  100. nr_bytes = rq->data_len;
  101. else
  102. nr_bytes = rq->hard_cur_sectors << 9;
  103. }
  104. return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
  105. }
  106. EXPORT_SYMBOL(ide_end_request);
  107. /**
  108. * ide_end_dequeued_request - complete an IDE I/O
  109. * @drive: IDE device for the I/O
  110. * @uptodate:
  111. * @nr_sectors: number of sectors completed
  112. *
  113. * Complete an I/O that is no longer on the request queue. This
  114. * typically occurs when we pull the request and issue a REQUEST_SENSE.
  115. * We must still finish the old request but we must not tamper with the
  116. * queue in the meantime.
  117. *
  118. * NOTE: This path does not handle barrier, but barrier is not supported
  119. * on ide-cd anyway.
  120. */
  121. int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
  122. int uptodate, int nr_sectors)
  123. {
  124. BUG_ON(!blk_rq_started(rq));
  125. return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
  126. }
  127. EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
  128. void ide_complete_task(ide_drive_t *drive, ide_task_t *task, u8 stat, u8 err)
  129. {
  130. struct ide_taskfile *tf = &task->tf;
  131. struct request *rq = task->rq;
  132. tf->error = err;
  133. tf->status = stat;
  134. drive->hwif->tp_ops->tf_read(drive, task);
  135. if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
  136. memcpy(rq->special, task, sizeof(*task));
  137. if (task->tf_flags & IDE_TFLAG_DYN)
  138. kfree(task);
  139. }
  140. void ide_complete_rq(ide_drive_t *drive, u8 err)
  141. {
  142. ide_hwif_t *hwif = drive->hwif;
  143. struct request *rq = hwif->rq;
  144. hwif->rq = NULL;
  145. rq->errors = err;
  146. if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
  147. blk_rq_bytes(rq))))
  148. BUG();
  149. }
  150. EXPORT_SYMBOL(ide_complete_rq);
  151. void ide_kill_rq(ide_drive_t *drive, struct request *rq)
  152. {
  153. if (rq->rq_disk) {
  154. struct ide_driver *drv;
  155. drv = *(struct ide_driver **)rq->rq_disk->private_data;
  156. drv->end_request(drive, 0, 0);
  157. } else
  158. ide_end_request(drive, 0, 0);
  159. }
  160. static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
  161. {
  162. tf->nsect = drive->sect;
  163. tf->lbal = drive->sect;
  164. tf->lbam = drive->cyl;
  165. tf->lbah = drive->cyl >> 8;
  166. tf->device = (drive->head - 1) | drive->select;
  167. tf->command = ATA_CMD_INIT_DEV_PARAMS;
  168. }
  169. static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
  170. {
  171. tf->nsect = drive->sect;
  172. tf->command = ATA_CMD_RESTORE;
  173. }
  174. static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
  175. {
  176. tf->nsect = drive->mult_req;
  177. tf->command = ATA_CMD_SET_MULTI;
  178. }
  179. static ide_startstop_t ide_disk_special(ide_drive_t *drive)
  180. {
  181. special_t *s = &drive->special;
  182. ide_task_t args;
  183. memset(&args, 0, sizeof(ide_task_t));
  184. args.data_phase = TASKFILE_NO_DATA;
  185. if (s->b.set_geometry) {
  186. s->b.set_geometry = 0;
  187. ide_tf_set_specify_cmd(drive, &args.tf);
  188. } else if (s->b.recalibrate) {
  189. s->b.recalibrate = 0;
  190. ide_tf_set_restore_cmd(drive, &args.tf);
  191. } else if (s->b.set_multmode) {
  192. s->b.set_multmode = 0;
  193. ide_tf_set_setmult_cmd(drive, &args.tf);
  194. } else if (s->all) {
  195. int special = s->all;
  196. s->all = 0;
  197. printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
  198. return ide_stopped;
  199. }
  200. args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
  201. IDE_TFLAG_CUSTOM_HANDLER;
  202. do_rw_taskfile(drive, &args);
  203. return ide_started;
  204. }
  205. /**
  206. * do_special - issue some special commands
  207. * @drive: drive the command is for
  208. *
  209. * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
  210. * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
  211. *
  212. * It used to do much more, but has been scaled back.
  213. */
  214. static ide_startstop_t do_special (ide_drive_t *drive)
  215. {
  216. special_t *s = &drive->special;
  217. #ifdef DEBUG
  218. printk("%s: do_special: 0x%02x\n", drive->name, s->all);
  219. #endif
  220. if (drive->media == ide_disk)
  221. return ide_disk_special(drive);
  222. s->all = 0;
  223. drive->mult_req = 0;
  224. return ide_stopped;
  225. }
  226. void ide_map_sg(ide_drive_t *drive, struct request *rq)
  227. {
  228. ide_hwif_t *hwif = drive->hwif;
  229. struct scatterlist *sg = hwif->sg_table;
  230. if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
  231. sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
  232. hwif->sg_nents = 1;
  233. } else if (!rq->bio) {
  234. sg_init_one(sg, rq->data, rq->data_len);
  235. hwif->sg_nents = 1;
  236. } else {
  237. hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
  238. }
  239. }
  240. EXPORT_SYMBOL_GPL(ide_map_sg);
  241. void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
  242. {
  243. ide_hwif_t *hwif = drive->hwif;
  244. hwif->nsect = hwif->nleft = rq->nr_sectors;
  245. hwif->cursg_ofs = 0;
  246. hwif->cursg = NULL;
  247. }
  248. EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
  249. /**
  250. * execute_drive_command - issue special drive command
  251. * @drive: the drive to issue the command on
  252. * @rq: the request structure holding the command
  253. *
  254. * execute_drive_cmd() issues a special drive command, usually
  255. * initiated by ioctl() from the external hdparm program. The
  256. * command can be a drive command, drive task or taskfile
  257. * operation. Weirdly you can call it with NULL to wait for
  258. * all commands to finish. Don't do this as that is due to change
  259. */
  260. static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
  261. struct request *rq)
  262. {
  263. ide_hwif_t *hwif = drive->hwif;
  264. ide_task_t *task = rq->special;
  265. if (task) {
  266. hwif->data_phase = task->data_phase;
  267. switch (hwif->data_phase) {
  268. case TASKFILE_MULTI_OUT:
  269. case TASKFILE_OUT:
  270. case TASKFILE_MULTI_IN:
  271. case TASKFILE_IN:
  272. ide_init_sg_cmd(drive, rq);
  273. ide_map_sg(drive, rq);
  274. default:
  275. break;
  276. }
  277. return do_rw_taskfile(drive, task);
  278. }
  279. /*
  280. * NULL is actually a valid way of waiting for
  281. * all current requests to be flushed from the queue.
  282. */
  283. #ifdef DEBUG
  284. printk("%s: DRIVE_CMD (null)\n", drive->name);
  285. #endif
  286. (void)hwif->tp_ops->read_status(hwif);
  287. ide_complete_rq(drive, ide_read_error(drive));
  288. return ide_stopped;
  289. }
  290. static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
  291. {
  292. u8 cmd = rq->cmd[0];
  293. switch (cmd) {
  294. case REQ_PARK_HEADS:
  295. case REQ_UNPARK_HEADS:
  296. return ide_do_park_unpark(drive, rq);
  297. case REQ_DEVSET_EXEC:
  298. return ide_do_devset(drive, rq);
  299. case REQ_DRIVE_RESET:
  300. return ide_do_reset(drive);
  301. default:
  302. blk_dump_rq_flags(rq, "ide_special_rq - bad request");
  303. ide_end_request(drive, 0, 0);
  304. return ide_stopped;
  305. }
  306. }
  307. /**
  308. * start_request - start of I/O and command issuing for IDE
  309. *
  310. * start_request() initiates handling of a new I/O request. It
  311. * accepts commands and I/O (read/write) requests.
  312. *
  313. * FIXME: this function needs a rename
  314. */
  315. static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
  316. {
  317. ide_startstop_t startstop;
  318. BUG_ON(!blk_rq_started(rq));
  319. #ifdef DEBUG
  320. printk("%s: start_request: current=0x%08lx\n",
  321. drive->hwif->name, (unsigned long) rq);
  322. #endif
  323. /* bail early if we've exceeded max_failures */
  324. if (drive->max_failures && (drive->failures > drive->max_failures)) {
  325. rq->cmd_flags |= REQ_FAILED;
  326. goto kill_rq;
  327. }
  328. if (blk_pm_request(rq))
  329. ide_check_pm_state(drive, rq);
  330. SELECT_DRIVE(drive);
  331. if (ide_wait_stat(&startstop, drive, drive->ready_stat,
  332. ATA_BUSY | ATA_DRQ, WAIT_READY)) {
  333. printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
  334. return startstop;
  335. }
  336. if (!drive->special.all) {
  337. struct ide_driver *drv;
  338. /*
  339. * We reset the drive so we need to issue a SETFEATURES.
  340. * Do it _after_ do_special() restored device parameters.
  341. */
  342. if (drive->current_speed == 0xff)
  343. ide_config_drive_speed(drive, drive->desired_speed);
  344. if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
  345. return execute_drive_cmd(drive, rq);
  346. else if (blk_pm_request(rq)) {
  347. struct request_pm_state *pm = rq->data;
  348. #ifdef DEBUG_PM
  349. printk("%s: start_power_step(step: %d)\n",
  350. drive->name, pm->pm_step);
  351. #endif
  352. startstop = ide_start_power_step(drive, rq);
  353. if (startstop == ide_stopped &&
  354. pm->pm_step == IDE_PM_COMPLETED)
  355. ide_complete_pm_rq(drive, rq);
  356. return startstop;
  357. } else if (!rq->rq_disk && blk_special_request(rq))
  358. /*
  359. * TODO: Once all ULDs have been modified to
  360. * check for specific op codes rather than
  361. * blindly accepting any special request, the
  362. * check for ->rq_disk above may be replaced
  363. * by a more suitable mechanism or even
  364. * dropped entirely.
  365. */
  366. return ide_special_rq(drive, rq);
  367. drv = *(struct ide_driver **)rq->rq_disk->private_data;
  368. return drv->do_request(drive, rq, rq->sector);
  369. }
  370. return do_special(drive);
  371. kill_rq:
  372. ide_kill_rq(drive, rq);
  373. return ide_stopped;
  374. }
  375. /**
  376. * ide_stall_queue - pause an IDE device
  377. * @drive: drive to stall
  378. * @timeout: time to stall for (jiffies)
  379. *
  380. * ide_stall_queue() can be used by a drive to give excess bandwidth back
  381. * to the port by sleeping for timeout jiffies.
  382. */
  383. void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
  384. {
  385. if (timeout > WAIT_WORSTCASE)
  386. timeout = WAIT_WORSTCASE;
  387. drive->sleep = timeout + jiffies;
  388. drive->dev_flags |= IDE_DFLAG_SLEEPING;
  389. }
  390. EXPORT_SYMBOL(ide_stall_queue);
  391. static inline int ide_lock_port(ide_hwif_t *hwif)
  392. {
  393. if (hwif->busy)
  394. return 1;
  395. hwif->busy = 1;
  396. return 0;
  397. }
  398. static inline void ide_unlock_port(ide_hwif_t *hwif)
  399. {
  400. hwif->busy = 0;
  401. }
  402. static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
  403. {
  404. int rc = 0;
  405. if (host->host_flags & IDE_HFLAG_SERIALIZE) {
  406. rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
  407. if (rc == 0) {
  408. if (host->get_lock)
  409. host->get_lock(ide_intr, hwif);
  410. }
  411. }
  412. return rc;
  413. }
  414. static inline void ide_unlock_host(struct ide_host *host)
  415. {
  416. if (host->host_flags & IDE_HFLAG_SERIALIZE) {
  417. if (host->release_lock)
  418. host->release_lock();
  419. clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
  420. }
  421. }
  422. /*
  423. * Issue a new request to a device.
  424. */
  425. void do_ide_request(struct request_queue *q)
  426. {
  427. ide_drive_t *drive = q->queuedata;
  428. ide_hwif_t *hwif = drive->hwif;
  429. struct ide_host *host = hwif->host;
  430. struct request *rq = NULL;
  431. ide_startstop_t startstop;
  432. /*
  433. * drive is doing pre-flush, ordered write, post-flush sequence. even
  434. * though that is 3 requests, it must be seen as a single transaction.
  435. * we must not preempt this drive until that is complete
  436. */
  437. if (blk_queue_flushing(q))
  438. /*
  439. * small race where queue could get replugged during
  440. * the 3-request flush cycle, just yank the plug since
  441. * we want it to finish asap
  442. */
  443. blk_remove_plug(q);
  444. spin_unlock_irq(q->queue_lock);
  445. if (ide_lock_host(host, hwif))
  446. goto plug_device_2;
  447. spin_lock_irq(&hwif->lock);
  448. if (!ide_lock_port(hwif)) {
  449. ide_hwif_t *prev_port;
  450. repeat:
  451. prev_port = hwif->host->cur_port;
  452. hwif->rq = NULL;
  453. if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
  454. if (time_before(drive->sleep, jiffies)) {
  455. ide_unlock_port(hwif);
  456. goto plug_device;
  457. }
  458. }
  459. if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
  460. hwif != prev_port) {
  461. /*
  462. * set nIEN for previous port, drives in the
  463. * quirk_list may not like intr setups/cleanups
  464. */
  465. if (prev_port && prev_port->cur_dev->quirk_list == 0)
  466. prev_port->tp_ops->set_irq(prev_port, 0);
  467. hwif->host->cur_port = hwif;
  468. }
  469. hwif->cur_dev = drive;
  470. drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
  471. spin_unlock_irq(&hwif->lock);
  472. spin_lock_irq(q->queue_lock);
  473. /*
  474. * we know that the queue isn't empty, but this can happen
  475. * if the q->prep_rq_fn() decides to kill a request
  476. */
  477. rq = elv_next_request(drive->queue);
  478. spin_unlock_irq(q->queue_lock);
  479. spin_lock_irq(&hwif->lock);
  480. if (!rq) {
  481. ide_unlock_port(hwif);
  482. goto out;
  483. }
  484. /*
  485. * Sanity: don't accept a request that isn't a PM request
  486. * if we are currently power managed. This is very important as
  487. * blk_stop_queue() doesn't prevent the elv_next_request()
  488. * above to return us whatever is in the queue. Since we call
  489. * ide_do_request() ourselves, we end up taking requests while
  490. * the queue is blocked...
  491. *
  492. * We let requests forced at head of queue with ide-preempt
  493. * though. I hope that doesn't happen too much, hopefully not
  494. * unless the subdriver triggers such a thing in its own PM
  495. * state machine.
  496. */
  497. if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
  498. blk_pm_request(rq) == 0 &&
  499. (rq->cmd_flags & REQ_PREEMPT) == 0) {
  500. /* there should be no pending command at this point */
  501. ide_unlock_port(hwif);
  502. goto plug_device;
  503. }
  504. hwif->rq = rq;
  505. spin_unlock_irq(&hwif->lock);
  506. startstop = start_request(drive, rq);
  507. spin_lock_irq(&hwif->lock);
  508. if (startstop == ide_stopped)
  509. goto repeat;
  510. } else
  511. goto plug_device;
  512. out:
  513. spin_unlock_irq(&hwif->lock);
  514. if (rq == NULL)
  515. ide_unlock_host(host);
  516. spin_lock_irq(q->queue_lock);
  517. return;
  518. plug_device:
  519. spin_unlock_irq(&hwif->lock);
  520. ide_unlock_host(host);
  521. plug_device_2:
  522. spin_lock_irq(q->queue_lock);
  523. if (!elv_queue_empty(q))
  524. blk_plug_device(q);
  525. }
  526. static void ide_plug_device(ide_drive_t *drive)
  527. {
  528. struct request_queue *q = drive->queue;
  529. unsigned long flags;
  530. spin_lock_irqsave(q->queue_lock, flags);
  531. if (!elv_queue_empty(q))
  532. blk_plug_device(q);
  533. spin_unlock_irqrestore(q->queue_lock, flags);
  534. }
  535. static int drive_is_ready(ide_drive_t *drive)
  536. {
  537. ide_hwif_t *hwif = drive->hwif;
  538. u8 stat = 0;
  539. if (drive->waiting_for_dma)
  540. return hwif->dma_ops->dma_test_irq(drive);
  541. if (hwif->io_ports.ctl_addr &&
  542. (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
  543. stat = hwif->tp_ops->read_altstatus(hwif);
  544. else
  545. /* Note: this may clear a pending IRQ!! */
  546. stat = hwif->tp_ops->read_status(hwif);
  547. if (stat & ATA_BUSY)
  548. /* drive busy: definitely not interrupting */
  549. return 0;
  550. /* drive ready: *might* be interrupting */
  551. return 1;
  552. }
  553. /**
  554. * ide_timer_expiry - handle lack of an IDE interrupt
  555. * @data: timer callback magic (hwif)
  556. *
  557. * An IDE command has timed out before the expected drive return
  558. * occurred. At this point we attempt to clean up the current
  559. * mess. If the current handler includes an expiry handler then
  560. * we invoke the expiry handler, and providing it is happy the
  561. * work is done. If that fails we apply generic recovery rules
  562. * invoking the handler and checking the drive DMA status. We
  563. * have an excessively incestuous relationship with the DMA
  564. * logic that wants cleaning up.
  565. */
  566. void ide_timer_expiry (unsigned long data)
  567. {
  568. ide_hwif_t *hwif = (ide_hwif_t *)data;
  569. ide_drive_t *uninitialized_var(drive);
  570. ide_handler_t *handler;
  571. unsigned long flags;
  572. int wait = -1;
  573. int plug_device = 0;
  574. spin_lock_irqsave(&hwif->lock, flags);
  575. handler = hwif->handler;
  576. if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
  577. /*
  578. * Either a marginal timeout occurred
  579. * (got the interrupt just as timer expired),
  580. * or we were "sleeping" to give other devices a chance.
  581. * Either way, we don't really want to complain about anything.
  582. */
  583. } else {
  584. ide_expiry_t *expiry = hwif->expiry;
  585. ide_startstop_t startstop = ide_stopped;
  586. drive = hwif->cur_dev;
  587. if (expiry) {
  588. wait = expiry(drive);
  589. if (wait > 0) { /* continue */
  590. /* reset timer */
  591. hwif->timer.expires = jiffies + wait;
  592. hwif->req_gen_timer = hwif->req_gen;
  593. add_timer(&hwif->timer);
  594. spin_unlock_irqrestore(&hwif->lock, flags);
  595. return;
  596. }
  597. }
  598. hwif->handler = NULL;
  599. /*
  600. * We need to simulate a real interrupt when invoking
  601. * the handler() function, which means we need to
  602. * globally mask the specific IRQ:
  603. */
  604. spin_unlock(&hwif->lock);
  605. /* disable_irq_nosync ?? */
  606. disable_irq(hwif->irq);
  607. /* local CPU only, as if we were handling an interrupt */
  608. local_irq_disable();
  609. if (hwif->polling) {
  610. startstop = handler(drive);
  611. } else if (drive_is_ready(drive)) {
  612. if (drive->waiting_for_dma)
  613. hwif->dma_ops->dma_lost_irq(drive);
  614. if (hwif->ack_intr)
  615. hwif->ack_intr(hwif);
  616. printk(KERN_WARNING "%s: lost interrupt\n",
  617. drive->name);
  618. startstop = handler(drive);
  619. } else {
  620. if (drive->waiting_for_dma)
  621. startstop = ide_dma_timeout_retry(drive, wait);
  622. else
  623. startstop = ide_error(drive, "irq timeout",
  624. hwif->tp_ops->read_status(hwif));
  625. }
  626. spin_lock_irq(&hwif->lock);
  627. enable_irq(hwif->irq);
  628. if (startstop == ide_stopped) {
  629. ide_unlock_port(hwif);
  630. plug_device = 1;
  631. }
  632. }
  633. spin_unlock_irqrestore(&hwif->lock, flags);
  634. if (plug_device) {
  635. ide_unlock_host(hwif->host);
  636. ide_plug_device(drive);
  637. }
  638. }
  639. /**
  640. * unexpected_intr - handle an unexpected IDE interrupt
  641. * @irq: interrupt line
  642. * @hwif: port being processed
  643. *
  644. * There's nothing really useful we can do with an unexpected interrupt,
  645. * other than reading the status register (to clear it), and logging it.
  646. * There should be no way that an irq can happen before we're ready for it,
  647. * so we needn't worry much about losing an "important" interrupt here.
  648. *
  649. * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
  650. * the drive enters "idle", "standby", or "sleep" mode, so if the status
  651. * looks "good", we just ignore the interrupt completely.
  652. *
  653. * This routine assumes __cli() is in effect when called.
  654. *
  655. * If an unexpected interrupt happens on irq15 while we are handling irq14
  656. * and if the two interfaces are "serialized" (CMD640), then it looks like
  657. * we could screw up by interfering with a new request being set up for
  658. * irq15.
  659. *
  660. * In reality, this is a non-issue. The new command is not sent unless
  661. * the drive is ready to accept one, in which case we know the drive is
  662. * not trying to interrupt us. And ide_set_handler() is always invoked
  663. * before completing the issuance of any new drive command, so we will not
  664. * be accidentally invoked as a result of any valid command completion
  665. * interrupt.
  666. */
  667. static void unexpected_intr(int irq, ide_hwif_t *hwif)
  668. {
  669. u8 stat = hwif->tp_ops->read_status(hwif);
  670. if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
  671. /* Try to not flood the console with msgs */
  672. static unsigned long last_msgtime, count;
  673. ++count;
  674. if (time_after(jiffies, last_msgtime + HZ)) {
  675. last_msgtime = jiffies;
  676. printk(KERN_ERR "%s: unexpected interrupt, "
  677. "status=0x%02x, count=%ld\n",
  678. hwif->name, stat, count);
  679. }
  680. }
  681. }
  682. /**
  683. * ide_intr - default IDE interrupt handler
  684. * @irq: interrupt number
  685. * @dev_id: hwif
  686. * @regs: unused weirdness from the kernel irq layer
  687. *
  688. * This is the default IRQ handler for the IDE layer. You should
  689. * not need to override it. If you do be aware it is subtle in
  690. * places
  691. *
  692. * hwif is the interface in the group currently performing
  693. * a command. hwif->cur_dev is the drive and hwif->handler is
  694. * the IRQ handler to call. As we issue a command the handlers
  695. * step through multiple states, reassigning the handler to the
  696. * next step in the process. Unlike a smart SCSI controller IDE
  697. * expects the main processor to sequence the various transfer
  698. * stages. We also manage a poll timer to catch up with most
  699. * timeout situations. There are still a few where the handlers
  700. * don't ever decide to give up.
  701. *
  702. * The handler eventually returns ide_stopped to indicate the
  703. * request completed. At this point we issue the next request
  704. * on the port and the process begins again.
  705. */
  706. irqreturn_t ide_intr (int irq, void *dev_id)
  707. {
  708. ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
  709. struct ide_host *host = hwif->host;
  710. ide_drive_t *uninitialized_var(drive);
  711. ide_handler_t *handler;
  712. unsigned long flags;
  713. ide_startstop_t startstop;
  714. irqreturn_t irq_ret = IRQ_NONE;
  715. int plug_device = 0;
  716. if (host->host_flags & IDE_HFLAG_SERIALIZE) {
  717. if (hwif != host->cur_port)
  718. goto out_early;
  719. }
  720. spin_lock_irqsave(&hwif->lock, flags);
  721. if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
  722. goto out;
  723. handler = hwif->handler;
  724. if (handler == NULL || hwif->polling) {
  725. /*
  726. * Not expecting an interrupt from this drive.
  727. * That means this could be:
  728. * (1) an interrupt from another PCI device
  729. * sharing the same PCI INT# as us.
  730. * or (2) a drive just entered sleep or standby mode,
  731. * and is interrupting to let us know.
  732. * or (3) a spurious interrupt of unknown origin.
  733. *
  734. * For PCI, we cannot tell the difference,
  735. * so in that case we just ignore it and hope it goes away.
  736. */
  737. if ((host->irq_flags & IRQF_SHARED) == 0) {
  738. /*
  739. * Probably not a shared PCI interrupt,
  740. * so we can safely try to do something about it:
  741. */
  742. unexpected_intr(irq, hwif);
  743. } else {
  744. /*
  745. * Whack the status register, just in case
  746. * we have a leftover pending IRQ.
  747. */
  748. (void)hwif->tp_ops->read_status(hwif);
  749. }
  750. goto out;
  751. }
  752. drive = hwif->cur_dev;
  753. if (!drive_is_ready(drive))
  754. /*
  755. * This happens regularly when we share a PCI IRQ with
  756. * another device. Unfortunately, it can also happen
  757. * with some buggy drives that trigger the IRQ before
  758. * their status register is up to date. Hopefully we have
  759. * enough advance overhead that the latter isn't a problem.
  760. */
  761. goto out;
  762. hwif->handler = NULL;
  763. hwif->req_gen++;
  764. del_timer(&hwif->timer);
  765. spin_unlock(&hwif->lock);
  766. if (hwif->port_ops && hwif->port_ops->clear_irq)
  767. hwif->port_ops->clear_irq(drive);
  768. if (drive->dev_flags & IDE_DFLAG_UNMASK)
  769. local_irq_enable_in_hardirq();
  770. /* service this interrupt, may set handler for next interrupt */
  771. startstop = handler(drive);
  772. spin_lock_irq(&hwif->lock);
  773. /*
  774. * Note that handler() may have set things up for another
  775. * interrupt to occur soon, but it cannot happen until
  776. * we exit from this routine, because it will be the
  777. * same irq as is currently being serviced here, and Linux
  778. * won't allow another of the same (on any CPU) until we return.
  779. */
  780. if (startstop == ide_stopped) {
  781. BUG_ON(hwif->handler);
  782. ide_unlock_port(hwif);
  783. plug_device = 1;
  784. }
  785. irq_ret = IRQ_HANDLED;
  786. out:
  787. spin_unlock_irqrestore(&hwif->lock, flags);
  788. out_early:
  789. if (plug_device) {
  790. ide_unlock_host(hwif->host);
  791. ide_plug_device(drive);
  792. }
  793. return irq_ret;
  794. }
  795. EXPORT_SYMBOL_GPL(ide_intr);
  796. void ide_pad_transfer(ide_drive_t *drive, int write, int len)
  797. {
  798. ide_hwif_t *hwif = drive->hwif;
  799. u8 buf[4] = { 0 };
  800. while (len > 0) {
  801. if (write)
  802. hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
  803. else
  804. hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
  805. len -= 4;
  806. }
  807. }
  808. EXPORT_SYMBOL_GPL(ide_pad_transfer);