fsi.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113
  1. /*
  2. * Fifo-attached Serial Interface (FSI) support for SH7724
  3. *
  4. * Copyright (C) 2009 Renesas Solutions Corp.
  5. * Kuninori Morimoto <morimoto.kuninori@renesas.com>
  6. *
  7. * Based on ssi.c
  8. * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/delay.h>
  15. #include <linux/pm_runtime.h>
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <sound/soc.h>
  19. #include <sound/sh_fsi.h>
  20. #define DO_FMT 0x0000
  21. #define DOFF_CTL 0x0004
  22. #define DOFF_ST 0x0008
  23. #define DI_FMT 0x000C
  24. #define DIFF_CTL 0x0010
  25. #define DIFF_ST 0x0014
  26. #define CKG1 0x0018
  27. #define CKG2 0x001C
  28. #define DIDT 0x0020
  29. #define DODT 0x0024
  30. #define MUTE_ST 0x0028
  31. #define REG_END MUTE_ST
  32. #define CPU_INT_ST 0x01F4
  33. #define CPU_IEMSK 0x01F8
  34. #define CPU_IMSK 0x01FC
  35. #define INT_ST 0x0200
  36. #define IEMSK 0x0204
  37. #define IMSK 0x0208
  38. #define MUTE 0x020C
  39. #define CLK_RST 0x0210
  40. #define SOFT_RST 0x0214
  41. #define FIFO_SZ 0x0218
  42. #define MREG_START CPU_INT_ST
  43. #define MREG_END FIFO_SZ
  44. /* DO_FMT */
  45. /* DI_FMT */
  46. #define CR_FMT(param) ((param) << 4)
  47. # define CR_MONO 0x0
  48. # define CR_MONO_D 0x1
  49. # define CR_PCM 0x2
  50. # define CR_I2S 0x3
  51. # define CR_TDM 0x4
  52. # define CR_TDM_D 0x5
  53. /* DOFF_CTL */
  54. /* DIFF_CTL */
  55. #define IRQ_HALF 0x00100000
  56. #define FIFO_CLR 0x00000001
  57. /* DOFF_ST */
  58. #define ERR_OVER 0x00000010
  59. #define ERR_UNDER 0x00000001
  60. #define ST_ERR (ERR_OVER | ERR_UNDER)
  61. /* CLK_RST */
  62. #define B_CLK 0x00000010
  63. #define A_CLK 0x00000001
  64. /* INT_ST */
  65. #define INT_B_IN (1 << 12)
  66. #define INT_B_OUT (1 << 8)
  67. #define INT_A_IN (1 << 4)
  68. #define INT_A_OUT (1 << 0)
  69. /* SOFT_RST */
  70. #define PBSR (1 << 12) /* Port B Software Reset */
  71. #define PASR (1 << 8) /* Port A Software Reset */
  72. #define IR (1 << 4) /* Interrupt Reset */
  73. #define FSISR (1 << 0) /* Software Reset */
  74. /* FIFO_SZ */
  75. #define OUT_SZ_MASK 0x7
  76. #define BO_SZ_SHIFT 8
  77. #define AO_SZ_SHIFT 0
  78. #define FSI_RATES SNDRV_PCM_RATE_8000_96000
  79. #define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)
  80. /************************************************************************
  81. struct
  82. ************************************************************************/
  83. struct fsi_priv {
  84. void __iomem *base;
  85. struct snd_pcm_substream *substream;
  86. struct fsi_master *master;
  87. int fifo_max;
  88. int chan;
  89. int byte_offset;
  90. int period_len;
  91. int buffer_len;
  92. int periods;
  93. };
  94. struct fsi_regs {
  95. u32 int_st;
  96. u32 iemsk;
  97. u32 imsk;
  98. };
  99. struct fsi_master {
  100. void __iomem *base;
  101. int irq;
  102. struct fsi_priv fsia;
  103. struct fsi_priv fsib;
  104. struct fsi_regs *regs;
  105. struct sh_fsi_platform_info *info;
  106. spinlock_t lock;
  107. };
  108. /************************************************************************
  109. basic read write function
  110. ************************************************************************/
  111. static void __fsi_reg_write(u32 reg, u32 data)
  112. {
  113. /* valid data area is 24bit */
  114. data &= 0x00ffffff;
  115. __raw_writel(data, reg);
  116. }
  117. static u32 __fsi_reg_read(u32 reg)
  118. {
  119. return __raw_readl(reg);
  120. }
  121. static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
  122. {
  123. u32 val = __fsi_reg_read(reg);
  124. val &= ~mask;
  125. val |= data & mask;
  126. __fsi_reg_write(reg, val);
  127. }
  128. static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
  129. {
  130. if (reg > REG_END)
  131. return;
  132. __fsi_reg_write((u32)(fsi->base + reg), data);
  133. }
  134. static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
  135. {
  136. if (reg > REG_END)
  137. return 0;
  138. return __fsi_reg_read((u32)(fsi->base + reg));
  139. }
  140. static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
  141. {
  142. if (reg > REG_END)
  143. return;
  144. __fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
  145. }
  146. static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
  147. {
  148. unsigned long flags;
  149. if ((reg < MREG_START) ||
  150. (reg > MREG_END))
  151. return;
  152. spin_lock_irqsave(&master->lock, flags);
  153. __fsi_reg_write((u32)(master->base + reg), data);
  154. spin_unlock_irqrestore(&master->lock, flags);
  155. }
  156. static u32 fsi_master_read(struct fsi_master *master, u32 reg)
  157. {
  158. u32 ret;
  159. unsigned long flags;
  160. if ((reg < MREG_START) ||
  161. (reg > MREG_END))
  162. return 0;
  163. spin_lock_irqsave(&master->lock, flags);
  164. ret = __fsi_reg_read((u32)(master->base + reg));
  165. spin_unlock_irqrestore(&master->lock, flags);
  166. return ret;
  167. }
  168. static void fsi_master_mask_set(struct fsi_master *master,
  169. u32 reg, u32 mask, u32 data)
  170. {
  171. unsigned long flags;
  172. if ((reg < MREG_START) ||
  173. (reg > MREG_END))
  174. return;
  175. spin_lock_irqsave(&master->lock, flags);
  176. __fsi_reg_mask_set((u32)(master->base + reg), mask, data);
  177. spin_unlock_irqrestore(&master->lock, flags);
  178. }
  179. /************************************************************************
  180. basic function
  181. ************************************************************************/
  182. static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
  183. {
  184. return fsi->master;
  185. }
  186. static int fsi_is_port_a(struct fsi_priv *fsi)
  187. {
  188. return fsi->master->base == fsi->base;
  189. }
  190. static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
  191. {
  192. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  193. struct snd_soc_dai_link *machine = rtd->dai;
  194. return machine->cpu_dai;
  195. }
  196. static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
  197. {
  198. struct snd_soc_dai *dai = fsi_get_dai(substream);
  199. return dai->private_data;
  200. }
  201. static u32 fsi_get_info_flags(struct fsi_priv *fsi)
  202. {
  203. int is_porta = fsi_is_port_a(fsi);
  204. struct fsi_master *master = fsi_get_master(fsi);
  205. return is_porta ? master->info->porta_flags :
  206. master->info->portb_flags;
  207. }
  208. static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
  209. {
  210. u32 mode;
  211. u32 flags = fsi_get_info_flags(fsi);
  212. mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;
  213. /* return
  214. * 1 : master mode
  215. * 0 : slave mode
  216. */
  217. return (mode & flags) != mode;
  218. }
  219. static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
  220. {
  221. int is_porta = fsi_is_port_a(fsi);
  222. u32 data;
  223. if (is_porta)
  224. data = is_play ? (1 << 0) : (1 << 4);
  225. else
  226. data = is_play ? (1 << 8) : (1 << 12);
  227. return data;
  228. }
  229. static void fsi_stream_push(struct fsi_priv *fsi,
  230. struct snd_pcm_substream *substream,
  231. u32 buffer_len,
  232. u32 period_len)
  233. {
  234. fsi->substream = substream;
  235. fsi->buffer_len = buffer_len;
  236. fsi->period_len = period_len;
  237. fsi->byte_offset = 0;
  238. fsi->periods = 0;
  239. }
  240. static void fsi_stream_pop(struct fsi_priv *fsi)
  241. {
  242. fsi->substream = NULL;
  243. fsi->buffer_len = 0;
  244. fsi->period_len = 0;
  245. fsi->byte_offset = 0;
  246. fsi->periods = 0;
  247. }
  248. static int fsi_get_fifo_residue(struct fsi_priv *fsi, int is_play)
  249. {
  250. u32 status;
  251. u32 reg = is_play ? DOFF_ST : DIFF_ST;
  252. int residue;
  253. status = fsi_reg_read(fsi, reg);
  254. residue = 0x1ff & (status >> 8);
  255. residue *= fsi->chan;
  256. return residue;
  257. }
  258. /************************************************************************
  259. irq function
  260. ************************************************************************/
  261. static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
  262. {
  263. u32 data = fsi_port_ab_io_bit(fsi, is_play);
  264. struct fsi_master *master = fsi_get_master(fsi);
  265. fsi_master_mask_set(master, master->regs->imsk, data, data);
  266. fsi_master_mask_set(master, master->regs->iemsk, data, data);
  267. }
  268. static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
  269. {
  270. u32 data = fsi_port_ab_io_bit(fsi, is_play);
  271. struct fsi_master *master = fsi_get_master(fsi);
  272. fsi_master_mask_set(master, master->regs->imsk, data, 0);
  273. fsi_master_mask_set(master, master->regs->iemsk, data, 0);
  274. }
  275. static u32 fsi_irq_get_status(struct fsi_master *master)
  276. {
  277. return fsi_master_read(master, master->regs->int_st);
  278. }
  279. static void fsi_irq_clear_all_status(struct fsi_master *master)
  280. {
  281. fsi_master_write(master, master->regs->int_st, 0x0000000);
  282. }
  283. static void fsi_irq_clear_status(struct fsi_priv *fsi)
  284. {
  285. u32 data = 0;
  286. struct fsi_master *master = fsi_get_master(fsi);
  287. data |= fsi_port_ab_io_bit(fsi, 0);
  288. data |= fsi_port_ab_io_bit(fsi, 1);
  289. /* clear interrupt factor */
  290. fsi_master_mask_set(master, master->regs->int_st, data, 0);
  291. }
  292. /************************************************************************
  293. ctrl function
  294. ************************************************************************/
  295. static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
  296. {
  297. u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
  298. struct fsi_master *master = fsi_get_master(fsi);
  299. if (enable)
  300. fsi_master_mask_set(master, CLK_RST, val, val);
  301. else
  302. fsi_master_mask_set(master, CLK_RST, val, 0);
  303. }
  304. static void fsi_fifo_init(struct fsi_priv *fsi,
  305. int is_play,
  306. struct snd_soc_dai *dai)
  307. {
  308. struct fsi_master *master = fsi_get_master(fsi);
  309. u32 ctrl, shift, i;
  310. /* get on-chip RAM capacity */
  311. shift = fsi_master_read(master, FIFO_SZ);
  312. shift >>= fsi_is_port_a(fsi) ? AO_SZ_SHIFT : BO_SZ_SHIFT;
  313. shift &= OUT_SZ_MASK;
  314. fsi->fifo_max = 256 << shift;
  315. dev_dbg(dai->dev, "fifo = %d words\n", fsi->fifo_max);
  316. /*
  317. * The maximum number of sample data varies depending
  318. * on the number of channels selected for the format.
  319. *
  320. * FIFOs are used in 4-channel units in 3-channel mode
  321. * and in 8-channel units in 5- to 7-channel mode
  322. * meaning that more FIFOs than the required size of DPRAM
  323. * are used.
  324. *
  325. * ex) if 256 words of DP-RAM is connected
  326. * 1 channel: 256 (256 x 1 = 256)
  327. * 2 channels: 128 (128 x 2 = 256)
  328. * 3 channels: 64 ( 64 x 3 = 192)
  329. * 4 channels: 64 ( 64 x 4 = 256)
  330. * 5 channels: 32 ( 32 x 5 = 160)
  331. * 6 channels: 32 ( 32 x 6 = 192)
  332. * 7 channels: 32 ( 32 x 7 = 224)
  333. * 8 channels: 32 ( 32 x 8 = 256)
  334. */
  335. for (i = 1; i < fsi->chan; i <<= 1)
  336. fsi->fifo_max >>= 1;
  337. dev_dbg(dai->dev, "%d channel %d store\n", fsi->chan, fsi->fifo_max);
  338. ctrl = is_play ? DOFF_CTL : DIFF_CTL;
  339. /* set interrupt generation factor */
  340. fsi_reg_write(fsi, ctrl, IRQ_HALF);
  341. /* clear FIFO */
  342. fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);
  343. }
  344. static void fsi_soft_all_reset(struct fsi_master *master)
  345. {
  346. /* port AB reset */
  347. fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
  348. mdelay(10);
  349. /* soft reset */
  350. fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
  351. fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
  352. mdelay(10);
  353. }
  354. /* playback interrupt */
  355. static int fsi_data_push(struct fsi_priv *fsi, int startup)
  356. {
  357. struct snd_pcm_runtime *runtime;
  358. struct snd_pcm_substream *substream = NULL;
  359. u32 status;
  360. int send;
  361. int fifo_free;
  362. int width;
  363. u8 *start;
  364. int i, over_period;
  365. if (!fsi ||
  366. !fsi->substream ||
  367. !fsi->substream->runtime)
  368. return -EINVAL;
  369. over_period = 0;
  370. substream = fsi->substream;
  371. runtime = substream->runtime;
  372. /* FSI FIFO has limit.
  373. * So, this driver can not send periods data at a time
  374. */
  375. if (fsi->byte_offset >=
  376. fsi->period_len * (fsi->periods + 1)) {
  377. over_period = 1;
  378. fsi->periods = (fsi->periods + 1) % runtime->periods;
  379. if (0 == fsi->periods)
  380. fsi->byte_offset = 0;
  381. }
  382. /* get 1 channel data width */
  383. width = frames_to_bytes(runtime, 1) / fsi->chan;
  384. /* get send size for alsa */
  385. send = (fsi->buffer_len - fsi->byte_offset) / width;
  386. /* get FIFO free size */
  387. fifo_free = (fsi->fifo_max * fsi->chan) - fsi_get_fifo_residue(fsi, 1);
  388. /* size check */
  389. if (fifo_free < send)
  390. send = fifo_free;
  391. start = runtime->dma_area;
  392. start += fsi->byte_offset;
  393. switch (width) {
  394. case 2:
  395. for (i = 0; i < send; i++)
  396. fsi_reg_write(fsi, DODT,
  397. ((u32)*((u16 *)start + i) << 8));
  398. break;
  399. case 4:
  400. for (i = 0; i < send; i++)
  401. fsi_reg_write(fsi, DODT, *((u32 *)start + i));
  402. break;
  403. default:
  404. return -EINVAL;
  405. }
  406. fsi->byte_offset += send * width;
  407. status = fsi_reg_read(fsi, DOFF_ST);
  408. if (!startup) {
  409. struct snd_soc_dai *dai = fsi_get_dai(substream);
  410. if (status & ERR_OVER)
  411. dev_err(dai->dev, "over run\n");
  412. if (status & ERR_UNDER)
  413. dev_err(dai->dev, "under run\n");
  414. }
  415. fsi_reg_write(fsi, DOFF_ST, 0);
  416. fsi_irq_enable(fsi, 1);
  417. if (over_period)
  418. snd_pcm_period_elapsed(substream);
  419. return 0;
  420. }
  421. static int fsi_data_pop(struct fsi_priv *fsi, int startup)
  422. {
  423. struct snd_pcm_runtime *runtime;
  424. struct snd_pcm_substream *substream = NULL;
  425. u32 status;
  426. int free;
  427. int fifo_fill;
  428. int width;
  429. u8 *start;
  430. int i, over_period;
  431. if (!fsi ||
  432. !fsi->substream ||
  433. !fsi->substream->runtime)
  434. return -EINVAL;
  435. over_period = 0;
  436. substream = fsi->substream;
  437. runtime = substream->runtime;
  438. /* FSI FIFO has limit.
  439. * So, this driver can not send periods data at a time
  440. */
  441. if (fsi->byte_offset >=
  442. fsi->period_len * (fsi->periods + 1)) {
  443. over_period = 1;
  444. fsi->periods = (fsi->periods + 1) % runtime->periods;
  445. if (0 == fsi->periods)
  446. fsi->byte_offset = 0;
  447. }
  448. /* get 1 channel data width */
  449. width = frames_to_bytes(runtime, 1) / fsi->chan;
  450. /* get free space for alsa */
  451. free = (fsi->buffer_len - fsi->byte_offset) / width;
  452. /* get recv size */
  453. fifo_fill = fsi_get_fifo_residue(fsi, 0);
  454. if (free < fifo_fill)
  455. fifo_fill = free;
  456. start = runtime->dma_area;
  457. start += fsi->byte_offset;
  458. switch (width) {
  459. case 2:
  460. for (i = 0; i < fifo_fill; i++)
  461. *((u16 *)start + i) =
  462. (u16)(fsi_reg_read(fsi, DIDT) >> 8);
  463. break;
  464. case 4:
  465. for (i = 0; i < fifo_fill; i++)
  466. *((u32 *)start + i) = fsi_reg_read(fsi, DIDT);
  467. break;
  468. default:
  469. return -EINVAL;
  470. }
  471. fsi->byte_offset += fifo_fill * width;
  472. status = fsi_reg_read(fsi, DIFF_ST);
  473. if (!startup) {
  474. struct snd_soc_dai *dai = fsi_get_dai(substream);
  475. if (status & ERR_OVER)
  476. dev_err(dai->dev, "over run\n");
  477. if (status & ERR_UNDER)
  478. dev_err(dai->dev, "under run\n");
  479. }
  480. fsi_reg_write(fsi, DIFF_ST, 0);
  481. fsi_irq_enable(fsi, 0);
  482. if (over_period)
  483. snd_pcm_period_elapsed(substream);
  484. return 0;
  485. }
  486. static irqreturn_t fsi_interrupt(int irq, void *data)
  487. {
  488. struct fsi_master *master = data;
  489. u32 int_st = fsi_irq_get_status(master);
  490. /* clear irq status */
  491. fsi_master_mask_set(master, SOFT_RST, IR, 0);
  492. fsi_master_mask_set(master, SOFT_RST, IR, IR);
  493. if (int_st & INT_A_OUT)
  494. fsi_data_push(&master->fsia, 0);
  495. if (int_st & INT_B_OUT)
  496. fsi_data_push(&master->fsib, 0);
  497. if (int_st & INT_A_IN)
  498. fsi_data_pop(&master->fsia, 0);
  499. if (int_st & INT_B_IN)
  500. fsi_data_pop(&master->fsib, 0);
  501. fsi_irq_clear_all_status(master);
  502. return IRQ_HANDLED;
  503. }
  504. /************************************************************************
  505. dai ops
  506. ************************************************************************/
  507. static int fsi_dai_startup(struct snd_pcm_substream *substream,
  508. struct snd_soc_dai *dai)
  509. {
  510. struct fsi_priv *fsi = fsi_get_priv(substream);
  511. u32 flags = fsi_get_info_flags(fsi);
  512. u32 fmt;
  513. u32 reg;
  514. u32 data;
  515. int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
  516. int is_master;
  517. int ret = 0;
  518. pm_runtime_get_sync(dai->dev);
  519. /* CKG1 */
  520. data = is_play ? (1 << 0) : (1 << 4);
  521. is_master = fsi_is_master_mode(fsi, is_play);
  522. if (is_master)
  523. fsi_reg_mask_set(fsi, CKG1, data, data);
  524. else
  525. fsi_reg_mask_set(fsi, CKG1, data, 0);
  526. /* clock inversion (CKG2) */
  527. data = 0;
  528. if (SH_FSI_LRM_INV & flags)
  529. data |= 1 << 12;
  530. if (SH_FSI_BRM_INV & flags)
  531. data |= 1 << 8;
  532. if (SH_FSI_LRS_INV & flags)
  533. data |= 1 << 4;
  534. if (SH_FSI_BRS_INV & flags)
  535. data |= 1 << 0;
  536. fsi_reg_write(fsi, CKG2, data);
  537. /* do fmt, di fmt */
  538. data = 0;
  539. reg = is_play ? DO_FMT : DI_FMT;
  540. fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
  541. switch (fmt) {
  542. case SH_FSI_FMT_MONO:
  543. data = CR_FMT(CR_MONO);
  544. fsi->chan = 1;
  545. break;
  546. case SH_FSI_FMT_MONO_DELAY:
  547. data = CR_FMT(CR_MONO_D);
  548. fsi->chan = 1;
  549. break;
  550. case SH_FSI_FMT_PCM:
  551. data = CR_FMT(CR_PCM);
  552. fsi->chan = 2;
  553. break;
  554. case SH_FSI_FMT_I2S:
  555. data = CR_FMT(CR_I2S);
  556. fsi->chan = 2;
  557. break;
  558. case SH_FSI_FMT_TDM:
  559. fsi->chan = is_play ?
  560. SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
  561. data = CR_FMT(CR_TDM) | (fsi->chan - 1);
  562. break;
  563. case SH_FSI_FMT_TDM_DELAY:
  564. fsi->chan = is_play ?
  565. SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
  566. data = CR_FMT(CR_TDM_D) | (fsi->chan - 1);
  567. break;
  568. default:
  569. dev_err(dai->dev, "unknown format.\n");
  570. return -EINVAL;
  571. }
  572. fsi_reg_write(fsi, reg, data);
  573. /*
  574. * clear clk reset if master mode
  575. */
  576. if (is_master)
  577. fsi_clk_ctrl(fsi, 1);
  578. /* irq clear */
  579. fsi_irq_disable(fsi, is_play);
  580. fsi_irq_clear_status(fsi);
  581. /* fifo init */
  582. fsi_fifo_init(fsi, is_play, dai);
  583. return ret;
  584. }
  585. static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
  586. struct snd_soc_dai *dai)
  587. {
  588. struct fsi_priv *fsi = fsi_get_priv(substream);
  589. int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  590. fsi_irq_disable(fsi, is_play);
  591. fsi_clk_ctrl(fsi, 0);
  592. pm_runtime_put_sync(dai->dev);
  593. }
  594. static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
  595. struct snd_soc_dai *dai)
  596. {
  597. struct fsi_priv *fsi = fsi_get_priv(substream);
  598. struct snd_pcm_runtime *runtime = substream->runtime;
  599. int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  600. int ret = 0;
  601. switch (cmd) {
  602. case SNDRV_PCM_TRIGGER_START:
  603. fsi_stream_push(fsi, substream,
  604. frames_to_bytes(runtime, runtime->buffer_size),
  605. frames_to_bytes(runtime, runtime->period_size));
  606. ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
  607. break;
  608. case SNDRV_PCM_TRIGGER_STOP:
  609. fsi_irq_disable(fsi, is_play);
  610. fsi_stream_pop(fsi);
  611. break;
  612. }
  613. return ret;
  614. }
  615. static struct snd_soc_dai_ops fsi_dai_ops = {
  616. .startup = fsi_dai_startup,
  617. .shutdown = fsi_dai_shutdown,
  618. .trigger = fsi_dai_trigger,
  619. };
  620. /************************************************************************
  621. pcm ops
  622. ************************************************************************/
  623. static struct snd_pcm_hardware fsi_pcm_hardware = {
  624. .info = SNDRV_PCM_INFO_INTERLEAVED |
  625. SNDRV_PCM_INFO_MMAP |
  626. SNDRV_PCM_INFO_MMAP_VALID |
  627. SNDRV_PCM_INFO_PAUSE,
  628. .formats = FSI_FMTS,
  629. .rates = FSI_RATES,
  630. .rate_min = 8000,
  631. .rate_max = 192000,
  632. .channels_min = 1,
  633. .channels_max = 2,
  634. .buffer_bytes_max = 64 * 1024,
  635. .period_bytes_min = 32,
  636. .period_bytes_max = 8192,
  637. .periods_min = 1,
  638. .periods_max = 32,
  639. .fifo_size = 256,
  640. };
  641. static int fsi_pcm_open(struct snd_pcm_substream *substream)
  642. {
  643. struct snd_pcm_runtime *runtime = substream->runtime;
  644. int ret = 0;
  645. snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);
  646. ret = snd_pcm_hw_constraint_integer(runtime,
  647. SNDRV_PCM_HW_PARAM_PERIODS);
  648. return ret;
  649. }
  650. static int fsi_hw_params(struct snd_pcm_substream *substream,
  651. struct snd_pcm_hw_params *hw_params)
  652. {
  653. return snd_pcm_lib_malloc_pages(substream,
  654. params_buffer_bytes(hw_params));
  655. }
  656. static int fsi_hw_free(struct snd_pcm_substream *substream)
  657. {
  658. return snd_pcm_lib_free_pages(substream);
  659. }
  660. static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
  661. {
  662. struct snd_pcm_runtime *runtime = substream->runtime;
  663. struct fsi_priv *fsi = fsi_get_priv(substream);
  664. long location;
  665. location = (fsi->byte_offset - 1);
  666. if (location < 0)
  667. location = 0;
  668. return bytes_to_frames(runtime, location);
  669. }
  670. static struct snd_pcm_ops fsi_pcm_ops = {
  671. .open = fsi_pcm_open,
  672. .ioctl = snd_pcm_lib_ioctl,
  673. .hw_params = fsi_hw_params,
  674. .hw_free = fsi_hw_free,
  675. .pointer = fsi_pointer,
  676. };
  677. /************************************************************************
  678. snd_soc_platform
  679. ************************************************************************/
  680. #define PREALLOC_BUFFER (32 * 1024)
  681. #define PREALLOC_BUFFER_MAX (32 * 1024)
  682. static void fsi_pcm_free(struct snd_pcm *pcm)
  683. {
  684. snd_pcm_lib_preallocate_free_for_all(pcm);
  685. }
  686. static int fsi_pcm_new(struct snd_card *card,
  687. struct snd_soc_dai *dai,
  688. struct snd_pcm *pcm)
  689. {
  690. /*
  691. * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
  692. * in MMAP mode (i.e. aplay -M)
  693. */
  694. return snd_pcm_lib_preallocate_pages_for_all(
  695. pcm,
  696. SNDRV_DMA_TYPE_CONTINUOUS,
  697. snd_dma_continuous_data(GFP_KERNEL),
  698. PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
  699. }
  700. /************************************************************************
  701. alsa struct
  702. ************************************************************************/
  703. struct snd_soc_dai fsi_soc_dai[] = {
  704. {
  705. .name = "FSIA",
  706. .id = 0,
  707. .playback = {
  708. .rates = FSI_RATES,
  709. .formats = FSI_FMTS,
  710. .channels_min = 1,
  711. .channels_max = 8,
  712. },
  713. .capture = {
  714. .rates = FSI_RATES,
  715. .formats = FSI_FMTS,
  716. .channels_min = 1,
  717. .channels_max = 8,
  718. },
  719. .ops = &fsi_dai_ops,
  720. },
  721. {
  722. .name = "FSIB",
  723. .id = 1,
  724. .playback = {
  725. .rates = FSI_RATES,
  726. .formats = FSI_FMTS,
  727. .channels_min = 1,
  728. .channels_max = 8,
  729. },
  730. .capture = {
  731. .rates = FSI_RATES,
  732. .formats = FSI_FMTS,
  733. .channels_min = 1,
  734. .channels_max = 8,
  735. },
  736. .ops = &fsi_dai_ops,
  737. },
  738. };
  739. EXPORT_SYMBOL_GPL(fsi_soc_dai);
  740. struct snd_soc_platform fsi_soc_platform = {
  741. .name = "fsi-pcm",
  742. .pcm_ops = &fsi_pcm_ops,
  743. .pcm_new = fsi_pcm_new,
  744. .pcm_free = fsi_pcm_free,
  745. };
  746. EXPORT_SYMBOL_GPL(fsi_soc_platform);
  747. /************************************************************************
  748. platform function
  749. ************************************************************************/
  750. static int fsi_probe(struct platform_device *pdev)
  751. {
  752. struct fsi_master *master;
  753. const struct platform_device_id *id_entry;
  754. struct resource *res;
  755. unsigned int irq;
  756. int ret;
  757. if (0 != pdev->id) {
  758. dev_err(&pdev->dev, "current fsi support id 0 only now\n");
  759. return -ENODEV;
  760. }
  761. id_entry = pdev->id_entry;
  762. if (!id_entry) {
  763. dev_err(&pdev->dev, "unknown fsi device\n");
  764. return -ENODEV;
  765. }
  766. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  767. irq = platform_get_irq(pdev, 0);
  768. if (!res || (int)irq <= 0) {
  769. dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
  770. ret = -ENODEV;
  771. goto exit;
  772. }
  773. master = kzalloc(sizeof(*master), GFP_KERNEL);
  774. if (!master) {
  775. dev_err(&pdev->dev, "Could not allocate master\n");
  776. ret = -ENOMEM;
  777. goto exit;
  778. }
  779. master->base = ioremap_nocache(res->start, resource_size(res));
  780. if (!master->base) {
  781. ret = -ENXIO;
  782. dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
  783. goto exit_kfree;
  784. }
  785. master->irq = irq;
  786. master->info = pdev->dev.platform_data;
  787. master->fsia.base = master->base;
  788. master->fsia.master = master;
  789. master->fsib.base = master->base + 0x40;
  790. master->fsib.master = master;
  791. master->regs = (struct fsi_regs *)id_entry->driver_data;
  792. spin_lock_init(&master->lock);
  793. pm_runtime_enable(&pdev->dev);
  794. pm_runtime_resume(&pdev->dev);
  795. fsi_soc_dai[0].dev = &pdev->dev;
  796. fsi_soc_dai[0].private_data = &master->fsia;
  797. fsi_soc_dai[1].dev = &pdev->dev;
  798. fsi_soc_dai[1].private_data = &master->fsib;
  799. fsi_soft_all_reset(master);
  800. ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
  801. id_entry->name, master);
  802. if (ret) {
  803. dev_err(&pdev->dev, "irq request err\n");
  804. goto exit_iounmap;
  805. }
  806. ret = snd_soc_register_platform(&fsi_soc_platform);
  807. if (ret < 0) {
  808. dev_err(&pdev->dev, "cannot snd soc register\n");
  809. goto exit_free_irq;
  810. }
  811. return snd_soc_register_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
  812. exit_free_irq:
  813. free_irq(irq, master);
  814. exit_iounmap:
  815. iounmap(master->base);
  816. pm_runtime_disable(&pdev->dev);
  817. exit_kfree:
  818. kfree(master);
  819. master = NULL;
  820. exit:
  821. return ret;
  822. }
  823. static int fsi_remove(struct platform_device *pdev)
  824. {
  825. struct fsi_master *master;
  826. master = fsi_get_master(fsi_soc_dai[0].private_data);
  827. snd_soc_unregister_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
  828. snd_soc_unregister_platform(&fsi_soc_platform);
  829. pm_runtime_disable(&pdev->dev);
  830. free_irq(master->irq, master);
  831. iounmap(master->base);
  832. kfree(master);
  833. fsi_soc_dai[0].dev = NULL;
  834. fsi_soc_dai[0].private_data = NULL;
  835. fsi_soc_dai[1].dev = NULL;
  836. fsi_soc_dai[1].private_data = NULL;
  837. return 0;
  838. }
  839. static int fsi_runtime_nop(struct device *dev)
  840. {
  841. /* Runtime PM callback shared between ->runtime_suspend()
  842. * and ->runtime_resume(). Simply returns success.
  843. *
  844. * This driver re-initializes all registers after
  845. * pm_runtime_get_sync() anyway so there is no need
  846. * to save and restore registers here.
  847. */
  848. return 0;
  849. }
  850. static struct dev_pm_ops fsi_pm_ops = {
  851. .runtime_suspend = fsi_runtime_nop,
  852. .runtime_resume = fsi_runtime_nop,
  853. };
  854. static struct fsi_regs fsi_regs = {
  855. .int_st = INT_ST,
  856. .iemsk = IEMSK,
  857. .imsk = IMSK,
  858. };
  859. static struct fsi_regs fsi2_regs = {
  860. .int_st = CPU_INT_ST,
  861. .iemsk = CPU_IEMSK,
  862. .imsk = CPU_IMSK,
  863. };
  864. static struct platform_device_id fsi_id_table[] = {
  865. { "sh_fsi", (kernel_ulong_t)&fsi_regs },
  866. { "sh_fsi2", (kernel_ulong_t)&fsi2_regs },
  867. };
  868. static struct platform_driver fsi_driver = {
  869. .driver = {
  870. .name = "sh_fsi",
  871. .pm = &fsi_pm_ops,
  872. },
  873. .probe = fsi_probe,
  874. .remove = fsi_remove,
  875. .id_table = fsi_id_table,
  876. };
  877. static int __init fsi_mobile_init(void)
  878. {
  879. return platform_driver_register(&fsi_driver);
  880. }
  881. static void __exit fsi_mobile_exit(void)
  882. {
  883. platform_driver_unregister(&fsi_driver);
  884. }
  885. module_init(fsi_mobile_init);
  886. module_exit(fsi_mobile_exit);
  887. MODULE_LICENSE("GPL");
  888. MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
  889. MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");