slab.c 101 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/config.h>
  89. #include <linux/slab.h>
  90. #include <linux/mm.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/seq_file.h>
  97. #include <linux/notifier.h>
  98. #include <linux/kallsyms.h>
  99. #include <linux/cpu.h>
  100. #include <linux/sysctl.h>
  101. #include <linux/module.h>
  102. #include <linux/rcupdate.h>
  103. #include <linux/string.h>
  104. #include <linux/nodemask.h>
  105. #include <linux/mempolicy.h>
  106. #include <linux/mutex.h>
  107. #include <asm/uaccess.h>
  108. #include <asm/cacheflush.h>
  109. #include <asm/tlbflush.h>
  110. #include <asm/page.h>
  111. /*
  112. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  113. * SLAB_RED_ZONE & SLAB_POISON.
  114. * 0 for faster, smaller code (especially in the critical paths).
  115. *
  116. * STATS - 1 to collect stats for /proc/slabinfo.
  117. * 0 for faster, smaller code (especially in the critical paths).
  118. *
  119. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  120. */
  121. #ifdef CONFIG_DEBUG_SLAB
  122. #define DEBUG 1
  123. #define STATS 1
  124. #define FORCED_DEBUG 1
  125. #else
  126. #define DEBUG 0
  127. #define STATS 0
  128. #define FORCED_DEBUG 0
  129. #endif
  130. /* Shouldn't this be in a header file somewhere? */
  131. #define BYTES_PER_WORD sizeof(void *)
  132. #ifndef cache_line_size
  133. #define cache_line_size() L1_CACHE_BYTES
  134. #endif
  135. #ifndef ARCH_KMALLOC_MINALIGN
  136. /*
  137. * Enforce a minimum alignment for the kmalloc caches.
  138. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  139. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  140. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  141. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  142. * Note that this flag disables some debug features.
  143. */
  144. #define ARCH_KMALLOC_MINALIGN 0
  145. #endif
  146. #ifndef ARCH_SLAB_MINALIGN
  147. /*
  148. * Enforce a minimum alignment for all caches.
  149. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  150. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  151. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  152. * some debug features.
  153. */
  154. #define ARCH_SLAB_MINALIGN 0
  155. #endif
  156. #ifndef ARCH_KMALLOC_FLAGS
  157. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  158. #endif
  159. /* Legal flag mask for kmem_cache_create(). */
  160. #if DEBUG
  161. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  162. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  163. SLAB_CACHE_DMA | \
  164. SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
  165. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  166. SLAB_DESTROY_BY_RCU)
  167. #else
  168. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  169. SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
  170. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  171. SLAB_DESTROY_BY_RCU)
  172. #endif
  173. /*
  174. * kmem_bufctl_t:
  175. *
  176. * Bufctl's are used for linking objs within a slab
  177. * linked offsets.
  178. *
  179. * This implementation relies on "struct page" for locating the cache &
  180. * slab an object belongs to.
  181. * This allows the bufctl structure to be small (one int), but limits
  182. * the number of objects a slab (not a cache) can contain when off-slab
  183. * bufctls are used. The limit is the size of the largest general cache
  184. * that does not use off-slab slabs.
  185. * For 32bit archs with 4 kB pages, is this 56.
  186. * This is not serious, as it is only for large objects, when it is unwise
  187. * to have too many per slab.
  188. * Note: This limit can be raised by introducing a general cache whose size
  189. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  190. */
  191. typedef unsigned int kmem_bufctl_t;
  192. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  193. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  194. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
  195. /* Max number of objs-per-slab for caches which use off-slab slabs.
  196. * Needed to avoid a possible looping condition in cache_grow().
  197. */
  198. static unsigned long offslab_limit;
  199. /*
  200. * struct slab
  201. *
  202. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  203. * for a slab, or allocated from an general cache.
  204. * Slabs are chained into three list: fully used, partial, fully free slabs.
  205. */
  206. struct slab {
  207. struct list_head list;
  208. unsigned long colouroff;
  209. void *s_mem; /* including colour offset */
  210. unsigned int inuse; /* num of objs active in slab */
  211. kmem_bufctl_t free;
  212. unsigned short nodeid;
  213. };
  214. /*
  215. * struct slab_rcu
  216. *
  217. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  218. * arrange for kmem_freepages to be called via RCU. This is useful if
  219. * we need to approach a kernel structure obliquely, from its address
  220. * obtained without the usual locking. We can lock the structure to
  221. * stabilize it and check it's still at the given address, only if we
  222. * can be sure that the memory has not been meanwhile reused for some
  223. * other kind of object (which our subsystem's lock might corrupt).
  224. *
  225. * rcu_read_lock before reading the address, then rcu_read_unlock after
  226. * taking the spinlock within the structure expected at that address.
  227. *
  228. * We assume struct slab_rcu can overlay struct slab when destroying.
  229. */
  230. struct slab_rcu {
  231. struct rcu_head head;
  232. struct kmem_cache *cachep;
  233. void *addr;
  234. };
  235. /*
  236. * struct array_cache
  237. *
  238. * Purpose:
  239. * - LIFO ordering, to hand out cache-warm objects from _alloc
  240. * - reduce the number of linked list operations
  241. * - reduce spinlock operations
  242. *
  243. * The limit is stored in the per-cpu structure to reduce the data cache
  244. * footprint.
  245. *
  246. */
  247. struct array_cache {
  248. unsigned int avail;
  249. unsigned int limit;
  250. unsigned int batchcount;
  251. unsigned int touched;
  252. spinlock_t lock;
  253. void *entry[0]; /*
  254. * Must have this definition in here for the proper
  255. * alignment of array_cache. Also simplifies accessing
  256. * the entries.
  257. * [0] is for gcc 2.95. It should really be [].
  258. */
  259. };
  260. /*
  261. * bootstrap: The caches do not work without cpuarrays anymore, but the
  262. * cpuarrays are allocated from the generic caches...
  263. */
  264. #define BOOT_CPUCACHE_ENTRIES 1
  265. struct arraycache_init {
  266. struct array_cache cache;
  267. void *entries[BOOT_CPUCACHE_ENTRIES];
  268. };
  269. /*
  270. * The slab lists for all objects.
  271. */
  272. struct kmem_list3 {
  273. struct list_head slabs_partial; /* partial list first, better asm code */
  274. struct list_head slabs_full;
  275. struct list_head slabs_free;
  276. unsigned long free_objects;
  277. unsigned long next_reap;
  278. int free_touched;
  279. unsigned int free_limit;
  280. unsigned int colour_next; /* Per-node cache coloring */
  281. spinlock_t list_lock;
  282. struct array_cache *shared; /* shared per node */
  283. struct array_cache **alien; /* on other nodes */
  284. };
  285. /*
  286. * Need this for bootstrapping a per node allocator.
  287. */
  288. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  289. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  290. #define CACHE_CACHE 0
  291. #define SIZE_AC 1
  292. #define SIZE_L3 (1 + MAX_NUMNODES)
  293. /*
  294. * This function must be completely optimized away if a constant is passed to
  295. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  296. */
  297. static __always_inline int index_of(const size_t size)
  298. {
  299. extern void __bad_size(void);
  300. if (__builtin_constant_p(size)) {
  301. int i = 0;
  302. #define CACHE(x) \
  303. if (size <=x) \
  304. return i; \
  305. else \
  306. i++;
  307. #include "linux/kmalloc_sizes.h"
  308. #undef CACHE
  309. __bad_size();
  310. } else
  311. __bad_size();
  312. return 0;
  313. }
  314. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  315. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  316. static void kmem_list3_init(struct kmem_list3 *parent)
  317. {
  318. INIT_LIST_HEAD(&parent->slabs_full);
  319. INIT_LIST_HEAD(&parent->slabs_partial);
  320. INIT_LIST_HEAD(&parent->slabs_free);
  321. parent->shared = NULL;
  322. parent->alien = NULL;
  323. parent->colour_next = 0;
  324. spin_lock_init(&parent->list_lock);
  325. parent->free_objects = 0;
  326. parent->free_touched = 0;
  327. }
  328. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  329. do { \
  330. INIT_LIST_HEAD(listp); \
  331. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  332. } while (0)
  333. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  334. do { \
  335. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  336. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  337. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  338. } while (0)
  339. /*
  340. * struct kmem_cache
  341. *
  342. * manages a cache.
  343. */
  344. struct kmem_cache {
  345. /* 1) per-cpu data, touched during every alloc/free */
  346. struct array_cache *array[NR_CPUS];
  347. /* 2) Cache tunables. Protected by cache_chain_mutex */
  348. unsigned int batchcount;
  349. unsigned int limit;
  350. unsigned int shared;
  351. unsigned int buffer_size;
  352. /* 3) touched by every alloc & free from the backend */
  353. struct kmem_list3 *nodelists[MAX_NUMNODES];
  354. unsigned int flags; /* constant flags */
  355. unsigned int num; /* # of objs per slab */
  356. /* 4) cache_grow/shrink */
  357. /* order of pgs per slab (2^n) */
  358. unsigned int gfporder;
  359. /* force GFP flags, e.g. GFP_DMA */
  360. gfp_t gfpflags;
  361. size_t colour; /* cache colouring range */
  362. unsigned int colour_off; /* colour offset */
  363. struct kmem_cache *slabp_cache;
  364. unsigned int slab_size;
  365. unsigned int dflags; /* dynamic flags */
  366. /* constructor func */
  367. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  368. /* de-constructor func */
  369. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  370. /* 5) cache creation/removal */
  371. const char *name;
  372. struct list_head next;
  373. /* 6) statistics */
  374. #if STATS
  375. unsigned long num_active;
  376. unsigned long num_allocations;
  377. unsigned long high_mark;
  378. unsigned long grown;
  379. unsigned long reaped;
  380. unsigned long errors;
  381. unsigned long max_freeable;
  382. unsigned long node_allocs;
  383. unsigned long node_frees;
  384. atomic_t allochit;
  385. atomic_t allocmiss;
  386. atomic_t freehit;
  387. atomic_t freemiss;
  388. #endif
  389. #if DEBUG
  390. /*
  391. * If debugging is enabled, then the allocator can add additional
  392. * fields and/or padding to every object. buffer_size contains the total
  393. * object size including these internal fields, the following two
  394. * variables contain the offset to the user object and its size.
  395. */
  396. int obj_offset;
  397. int obj_size;
  398. #endif
  399. };
  400. #define CFLGS_OFF_SLAB (0x80000000UL)
  401. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  402. #define BATCHREFILL_LIMIT 16
  403. /*
  404. * Optimization question: fewer reaps means less probability for unnessary
  405. * cpucache drain/refill cycles.
  406. *
  407. * OTOH the cpuarrays can contain lots of objects,
  408. * which could lock up otherwise freeable slabs.
  409. */
  410. #define REAPTIMEOUT_CPUC (2*HZ)
  411. #define REAPTIMEOUT_LIST3 (4*HZ)
  412. #if STATS
  413. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  414. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  415. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  416. #define STATS_INC_GROWN(x) ((x)->grown++)
  417. #define STATS_INC_REAPED(x) ((x)->reaped++)
  418. #define STATS_SET_HIGH(x) \
  419. do { \
  420. if ((x)->num_active > (x)->high_mark) \
  421. (x)->high_mark = (x)->num_active; \
  422. } while (0)
  423. #define STATS_INC_ERR(x) ((x)->errors++)
  424. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  425. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  426. #define STATS_SET_FREEABLE(x, i) \
  427. do { \
  428. if ((x)->max_freeable < i) \
  429. (x)->max_freeable = i; \
  430. } while (0)
  431. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  432. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  433. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  434. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  435. #else
  436. #define STATS_INC_ACTIVE(x) do { } while (0)
  437. #define STATS_DEC_ACTIVE(x) do { } while (0)
  438. #define STATS_INC_ALLOCED(x) do { } while (0)
  439. #define STATS_INC_GROWN(x) do { } while (0)
  440. #define STATS_INC_REAPED(x) do { } while (0)
  441. #define STATS_SET_HIGH(x) do { } while (0)
  442. #define STATS_INC_ERR(x) do { } while (0)
  443. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  444. #define STATS_INC_NODEFREES(x) do { } while (0)
  445. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  446. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  447. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  448. #define STATS_INC_FREEHIT(x) do { } while (0)
  449. #define STATS_INC_FREEMISS(x) do { } while (0)
  450. #endif
  451. #if DEBUG
  452. /*
  453. * Magic nums for obj red zoning.
  454. * Placed in the first word before and the first word after an obj.
  455. */
  456. #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
  457. #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
  458. /* ...and for poisoning */
  459. #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
  460. #define POISON_FREE 0x6b /* for use-after-free poisoning */
  461. #define POISON_END 0xa5 /* end-byte of poisoning */
  462. /*
  463. * memory layout of objects:
  464. * 0 : objp
  465. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  466. * the end of an object is aligned with the end of the real
  467. * allocation. Catches writes behind the end of the allocation.
  468. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  469. * redzone word.
  470. * cachep->obj_offset: The real object.
  471. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  472. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  473. * [BYTES_PER_WORD long]
  474. */
  475. static int obj_offset(struct kmem_cache *cachep)
  476. {
  477. return cachep->obj_offset;
  478. }
  479. static int obj_size(struct kmem_cache *cachep)
  480. {
  481. return cachep->obj_size;
  482. }
  483. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  484. {
  485. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  486. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  487. }
  488. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  489. {
  490. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  491. if (cachep->flags & SLAB_STORE_USER)
  492. return (unsigned long *)(objp + cachep->buffer_size -
  493. 2 * BYTES_PER_WORD);
  494. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  495. }
  496. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  497. {
  498. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  499. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  500. }
  501. #else
  502. #define obj_offset(x) 0
  503. #define obj_size(cachep) (cachep->buffer_size)
  504. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  505. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  506. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  507. #endif
  508. /*
  509. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  510. * order.
  511. */
  512. #if defined(CONFIG_LARGE_ALLOCS)
  513. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  514. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  515. #elif defined(CONFIG_MMU)
  516. #define MAX_OBJ_ORDER 5 /* 32 pages */
  517. #define MAX_GFP_ORDER 5 /* 32 pages */
  518. #else
  519. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  520. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  521. #endif
  522. /*
  523. * Do not go above this order unless 0 objects fit into the slab.
  524. */
  525. #define BREAK_GFP_ORDER_HI 1
  526. #define BREAK_GFP_ORDER_LO 0
  527. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  528. /*
  529. * Functions for storing/retrieving the cachep and or slab from the page
  530. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  531. * these are used to find the cache which an obj belongs to.
  532. */
  533. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  534. {
  535. page->lru.next = (struct list_head *)cache;
  536. }
  537. static inline struct kmem_cache *page_get_cache(struct page *page)
  538. {
  539. return (struct kmem_cache *)page->lru.next;
  540. }
  541. static inline void page_set_slab(struct page *page, struct slab *slab)
  542. {
  543. page->lru.prev = (struct list_head *)slab;
  544. }
  545. static inline struct slab *page_get_slab(struct page *page)
  546. {
  547. return (struct slab *)page->lru.prev;
  548. }
  549. static inline struct kmem_cache *virt_to_cache(const void *obj)
  550. {
  551. struct page *page = virt_to_page(obj);
  552. return page_get_cache(page);
  553. }
  554. static inline struct slab *virt_to_slab(const void *obj)
  555. {
  556. struct page *page = virt_to_page(obj);
  557. return page_get_slab(page);
  558. }
  559. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  560. unsigned int idx)
  561. {
  562. return slab->s_mem + cache->buffer_size * idx;
  563. }
  564. static inline unsigned int obj_to_index(struct kmem_cache *cache,
  565. struct slab *slab, void *obj)
  566. {
  567. return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
  568. }
  569. /*
  570. * These are the default caches for kmalloc. Custom caches can have other sizes.
  571. */
  572. struct cache_sizes malloc_sizes[] = {
  573. #define CACHE(x) { .cs_size = (x) },
  574. #include <linux/kmalloc_sizes.h>
  575. CACHE(ULONG_MAX)
  576. #undef CACHE
  577. };
  578. EXPORT_SYMBOL(malloc_sizes);
  579. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  580. struct cache_names {
  581. char *name;
  582. char *name_dma;
  583. };
  584. static struct cache_names __initdata cache_names[] = {
  585. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  586. #include <linux/kmalloc_sizes.h>
  587. {NULL,}
  588. #undef CACHE
  589. };
  590. static struct arraycache_init initarray_cache __initdata =
  591. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  592. static struct arraycache_init initarray_generic =
  593. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  594. /* internal cache of cache description objs */
  595. static struct kmem_cache cache_cache = {
  596. .batchcount = 1,
  597. .limit = BOOT_CPUCACHE_ENTRIES,
  598. .shared = 1,
  599. .buffer_size = sizeof(struct kmem_cache),
  600. .name = "kmem_cache",
  601. #if DEBUG
  602. .obj_size = sizeof(struct kmem_cache),
  603. #endif
  604. };
  605. /* Guard access to the cache-chain. */
  606. static DEFINE_MUTEX(cache_chain_mutex);
  607. static struct list_head cache_chain;
  608. /*
  609. * vm_enough_memory() looks at this to determine how many slab-allocated pages
  610. * are possibly freeable under pressure
  611. *
  612. * SLAB_RECLAIM_ACCOUNT turns this on per-slab
  613. */
  614. atomic_t slab_reclaim_pages;
  615. /*
  616. * chicken and egg problem: delay the per-cpu array allocation
  617. * until the general caches are up.
  618. */
  619. static enum {
  620. NONE,
  621. PARTIAL_AC,
  622. PARTIAL_L3,
  623. FULL
  624. } g_cpucache_up;
  625. static DEFINE_PER_CPU(struct work_struct, reap_work);
  626. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  627. int node);
  628. static void enable_cpucache(struct kmem_cache *cachep);
  629. static void cache_reap(void *unused);
  630. static int __node_shrink(struct kmem_cache *cachep, int node);
  631. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  632. {
  633. return cachep->array[smp_processor_id()];
  634. }
  635. static inline struct kmem_cache *__find_general_cachep(size_t size,
  636. gfp_t gfpflags)
  637. {
  638. struct cache_sizes *csizep = malloc_sizes;
  639. #if DEBUG
  640. /* This happens if someone tries to call
  641. * kmem_cache_create(), or __kmalloc(), before
  642. * the generic caches are initialized.
  643. */
  644. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  645. #endif
  646. while (size > csizep->cs_size)
  647. csizep++;
  648. /*
  649. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  650. * has cs_{dma,}cachep==NULL. Thus no special case
  651. * for large kmalloc calls required.
  652. */
  653. if (unlikely(gfpflags & GFP_DMA))
  654. return csizep->cs_dmacachep;
  655. return csizep->cs_cachep;
  656. }
  657. struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  658. {
  659. return __find_general_cachep(size, gfpflags);
  660. }
  661. EXPORT_SYMBOL(kmem_find_general_cachep);
  662. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  663. {
  664. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  665. }
  666. /*
  667. * Calculate the number of objects and left-over bytes for a given buffer size.
  668. */
  669. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  670. size_t align, int flags, size_t *left_over,
  671. unsigned int *num)
  672. {
  673. int nr_objs;
  674. size_t mgmt_size;
  675. size_t slab_size = PAGE_SIZE << gfporder;
  676. /*
  677. * The slab management structure can be either off the slab or
  678. * on it. For the latter case, the memory allocated for a
  679. * slab is used for:
  680. *
  681. * - The struct slab
  682. * - One kmem_bufctl_t for each object
  683. * - Padding to respect alignment of @align
  684. * - @buffer_size bytes for each object
  685. *
  686. * If the slab management structure is off the slab, then the
  687. * alignment will already be calculated into the size. Because
  688. * the slabs are all pages aligned, the objects will be at the
  689. * correct alignment when allocated.
  690. */
  691. if (flags & CFLGS_OFF_SLAB) {
  692. mgmt_size = 0;
  693. nr_objs = slab_size / buffer_size;
  694. if (nr_objs > SLAB_LIMIT)
  695. nr_objs = SLAB_LIMIT;
  696. } else {
  697. /*
  698. * Ignore padding for the initial guess. The padding
  699. * is at most @align-1 bytes, and @buffer_size is at
  700. * least @align. In the worst case, this result will
  701. * be one greater than the number of objects that fit
  702. * into the memory allocation when taking the padding
  703. * into account.
  704. */
  705. nr_objs = (slab_size - sizeof(struct slab)) /
  706. (buffer_size + sizeof(kmem_bufctl_t));
  707. /*
  708. * This calculated number will be either the right
  709. * amount, or one greater than what we want.
  710. */
  711. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  712. > slab_size)
  713. nr_objs--;
  714. if (nr_objs > SLAB_LIMIT)
  715. nr_objs = SLAB_LIMIT;
  716. mgmt_size = slab_mgmt_size(nr_objs, align);
  717. }
  718. *num = nr_objs;
  719. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  720. }
  721. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  722. static void __slab_error(const char *function, struct kmem_cache *cachep,
  723. char *msg)
  724. {
  725. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  726. function, cachep->name, msg);
  727. dump_stack();
  728. }
  729. #ifdef CONFIG_NUMA
  730. /*
  731. * Special reaping functions for NUMA systems called from cache_reap().
  732. * These take care of doing round robin flushing of alien caches (containing
  733. * objects freed on different nodes from which they were allocated) and the
  734. * flushing of remote pcps by calling drain_node_pages.
  735. */
  736. static DEFINE_PER_CPU(unsigned long, reap_node);
  737. static void init_reap_node(int cpu)
  738. {
  739. int node;
  740. node = next_node(cpu_to_node(cpu), node_online_map);
  741. if (node == MAX_NUMNODES)
  742. node = 0;
  743. __get_cpu_var(reap_node) = node;
  744. }
  745. static void next_reap_node(void)
  746. {
  747. int node = __get_cpu_var(reap_node);
  748. /*
  749. * Also drain per cpu pages on remote zones
  750. */
  751. if (node != numa_node_id())
  752. drain_node_pages(node);
  753. node = next_node(node, node_online_map);
  754. if (unlikely(node >= MAX_NUMNODES))
  755. node = first_node(node_online_map);
  756. __get_cpu_var(reap_node) = node;
  757. }
  758. #else
  759. #define init_reap_node(cpu) do { } while (0)
  760. #define next_reap_node(void) do { } while (0)
  761. #endif
  762. /*
  763. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  764. * via the workqueue/eventd.
  765. * Add the CPU number into the expiration time to minimize the possibility of
  766. * the CPUs getting into lockstep and contending for the global cache chain
  767. * lock.
  768. */
  769. static void __devinit start_cpu_timer(int cpu)
  770. {
  771. struct work_struct *reap_work = &per_cpu(reap_work, cpu);
  772. /*
  773. * When this gets called from do_initcalls via cpucache_init(),
  774. * init_workqueues() has already run, so keventd will be setup
  775. * at that time.
  776. */
  777. if (keventd_up() && reap_work->func == NULL) {
  778. init_reap_node(cpu);
  779. INIT_WORK(reap_work, cache_reap, NULL);
  780. schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
  781. }
  782. }
  783. static struct array_cache *alloc_arraycache(int node, int entries,
  784. int batchcount)
  785. {
  786. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  787. struct array_cache *nc = NULL;
  788. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  789. if (nc) {
  790. nc->avail = 0;
  791. nc->limit = entries;
  792. nc->batchcount = batchcount;
  793. nc->touched = 0;
  794. spin_lock_init(&nc->lock);
  795. }
  796. return nc;
  797. }
  798. #ifdef CONFIG_NUMA
  799. static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
  800. static struct array_cache **alloc_alien_cache(int node, int limit)
  801. {
  802. struct array_cache **ac_ptr;
  803. int memsize = sizeof(void *) * MAX_NUMNODES;
  804. int i;
  805. if (limit > 1)
  806. limit = 12;
  807. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  808. if (ac_ptr) {
  809. for_each_node(i) {
  810. if (i == node || !node_online(i)) {
  811. ac_ptr[i] = NULL;
  812. continue;
  813. }
  814. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  815. if (!ac_ptr[i]) {
  816. for (i--; i <= 0; i--)
  817. kfree(ac_ptr[i]);
  818. kfree(ac_ptr);
  819. return NULL;
  820. }
  821. }
  822. }
  823. return ac_ptr;
  824. }
  825. static void free_alien_cache(struct array_cache **ac_ptr)
  826. {
  827. int i;
  828. if (!ac_ptr)
  829. return;
  830. for_each_node(i)
  831. kfree(ac_ptr[i]);
  832. kfree(ac_ptr);
  833. }
  834. static void __drain_alien_cache(struct kmem_cache *cachep,
  835. struct array_cache *ac, int node)
  836. {
  837. struct kmem_list3 *rl3 = cachep->nodelists[node];
  838. if (ac->avail) {
  839. spin_lock(&rl3->list_lock);
  840. free_block(cachep, ac->entry, ac->avail, node);
  841. ac->avail = 0;
  842. spin_unlock(&rl3->list_lock);
  843. }
  844. }
  845. /*
  846. * Called from cache_reap() to regularly drain alien caches round robin.
  847. */
  848. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  849. {
  850. int node = __get_cpu_var(reap_node);
  851. if (l3->alien) {
  852. struct array_cache *ac = l3->alien[node];
  853. if (ac && ac->avail) {
  854. spin_lock_irq(&ac->lock);
  855. __drain_alien_cache(cachep, ac, node);
  856. spin_unlock_irq(&ac->lock);
  857. }
  858. }
  859. }
  860. static void drain_alien_cache(struct kmem_cache *cachep,
  861. struct array_cache **alien)
  862. {
  863. int i = 0;
  864. struct array_cache *ac;
  865. unsigned long flags;
  866. for_each_online_node(i) {
  867. ac = alien[i];
  868. if (ac) {
  869. spin_lock_irqsave(&ac->lock, flags);
  870. __drain_alien_cache(cachep, ac, i);
  871. spin_unlock_irqrestore(&ac->lock, flags);
  872. }
  873. }
  874. }
  875. #else
  876. #define drain_alien_cache(cachep, alien) do { } while (0)
  877. #define reap_alien(cachep, l3) do { } while (0)
  878. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  879. {
  880. return (struct array_cache **) 0x01020304ul;
  881. }
  882. static inline void free_alien_cache(struct array_cache **ac_ptr)
  883. {
  884. }
  885. #endif
  886. static int __devinit cpuup_callback(struct notifier_block *nfb,
  887. unsigned long action, void *hcpu)
  888. {
  889. long cpu = (long)hcpu;
  890. struct kmem_cache *cachep;
  891. struct kmem_list3 *l3 = NULL;
  892. int node = cpu_to_node(cpu);
  893. int memsize = sizeof(struct kmem_list3);
  894. switch (action) {
  895. case CPU_UP_PREPARE:
  896. mutex_lock(&cache_chain_mutex);
  897. /*
  898. * We need to do this right in the beginning since
  899. * alloc_arraycache's are going to use this list.
  900. * kmalloc_node allows us to add the slab to the right
  901. * kmem_list3 and not this cpu's kmem_list3
  902. */
  903. list_for_each_entry(cachep, &cache_chain, next) {
  904. /*
  905. * Set up the size64 kmemlist for cpu before we can
  906. * begin anything. Make sure some other cpu on this
  907. * node has not already allocated this
  908. */
  909. if (!cachep->nodelists[node]) {
  910. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  911. if (!l3)
  912. goto bad;
  913. kmem_list3_init(l3);
  914. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  915. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  916. /*
  917. * The l3s don't come and go as CPUs come and
  918. * go. cache_chain_mutex is sufficient
  919. * protection here.
  920. */
  921. cachep->nodelists[node] = l3;
  922. }
  923. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  924. cachep->nodelists[node]->free_limit =
  925. (1 + nr_cpus_node(node)) *
  926. cachep->batchcount + cachep->num;
  927. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  928. }
  929. /*
  930. * Now we can go ahead with allocating the shared arrays and
  931. * array caches
  932. */
  933. list_for_each_entry(cachep, &cache_chain, next) {
  934. struct array_cache *nc;
  935. struct array_cache *shared;
  936. struct array_cache **alien;
  937. nc = alloc_arraycache(node, cachep->limit,
  938. cachep->batchcount);
  939. if (!nc)
  940. goto bad;
  941. shared = alloc_arraycache(node,
  942. cachep->shared * cachep->batchcount,
  943. 0xbaadf00d);
  944. if (!shared)
  945. goto bad;
  946. alien = alloc_alien_cache(node, cachep->limit);
  947. if (!alien)
  948. goto bad;
  949. cachep->array[cpu] = nc;
  950. l3 = cachep->nodelists[node];
  951. BUG_ON(!l3);
  952. spin_lock_irq(&l3->list_lock);
  953. if (!l3->shared) {
  954. /*
  955. * We are serialised from CPU_DEAD or
  956. * CPU_UP_CANCELLED by the cpucontrol lock
  957. */
  958. l3->shared = shared;
  959. shared = NULL;
  960. }
  961. #ifdef CONFIG_NUMA
  962. if (!l3->alien) {
  963. l3->alien = alien;
  964. alien = NULL;
  965. }
  966. #endif
  967. spin_unlock_irq(&l3->list_lock);
  968. kfree(shared);
  969. free_alien_cache(alien);
  970. }
  971. mutex_unlock(&cache_chain_mutex);
  972. break;
  973. case CPU_ONLINE:
  974. start_cpu_timer(cpu);
  975. break;
  976. #ifdef CONFIG_HOTPLUG_CPU
  977. case CPU_DEAD:
  978. /*
  979. * Even if all the cpus of a node are down, we don't free the
  980. * kmem_list3 of any cache. This to avoid a race between
  981. * cpu_down, and a kmalloc allocation from another cpu for
  982. * memory from the node of the cpu going down. The list3
  983. * structure is usually allocated from kmem_cache_create() and
  984. * gets destroyed at kmem_cache_destroy().
  985. */
  986. /* fall thru */
  987. case CPU_UP_CANCELED:
  988. mutex_lock(&cache_chain_mutex);
  989. list_for_each_entry(cachep, &cache_chain, next) {
  990. struct array_cache *nc;
  991. struct array_cache *shared;
  992. struct array_cache **alien;
  993. cpumask_t mask;
  994. mask = node_to_cpumask(node);
  995. /* cpu is dead; no one can alloc from it. */
  996. nc = cachep->array[cpu];
  997. cachep->array[cpu] = NULL;
  998. l3 = cachep->nodelists[node];
  999. if (!l3)
  1000. goto free_array_cache;
  1001. spin_lock_irq(&l3->list_lock);
  1002. /* Free limit for this kmem_list3 */
  1003. l3->free_limit -= cachep->batchcount;
  1004. if (nc)
  1005. free_block(cachep, nc->entry, nc->avail, node);
  1006. if (!cpus_empty(mask)) {
  1007. spin_unlock_irq(&l3->list_lock);
  1008. goto free_array_cache;
  1009. }
  1010. shared = l3->shared;
  1011. if (shared) {
  1012. free_block(cachep, l3->shared->entry,
  1013. l3->shared->avail, node);
  1014. l3->shared = NULL;
  1015. }
  1016. alien = l3->alien;
  1017. l3->alien = NULL;
  1018. spin_unlock_irq(&l3->list_lock);
  1019. kfree(shared);
  1020. if (alien) {
  1021. drain_alien_cache(cachep, alien);
  1022. free_alien_cache(alien);
  1023. }
  1024. free_array_cache:
  1025. kfree(nc);
  1026. }
  1027. /*
  1028. * In the previous loop, all the objects were freed to
  1029. * the respective cache's slabs, now we can go ahead and
  1030. * shrink each nodelist to its limit.
  1031. */
  1032. list_for_each_entry(cachep, &cache_chain, next) {
  1033. l3 = cachep->nodelists[node];
  1034. if (!l3)
  1035. continue;
  1036. spin_lock_irq(&l3->list_lock);
  1037. /* free slabs belonging to this node */
  1038. __node_shrink(cachep, node);
  1039. spin_unlock_irq(&l3->list_lock);
  1040. }
  1041. mutex_unlock(&cache_chain_mutex);
  1042. break;
  1043. #endif
  1044. }
  1045. return NOTIFY_OK;
  1046. bad:
  1047. mutex_unlock(&cache_chain_mutex);
  1048. return NOTIFY_BAD;
  1049. }
  1050. static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
  1051. /*
  1052. * swap the static kmem_list3 with kmalloced memory
  1053. */
  1054. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1055. int nodeid)
  1056. {
  1057. struct kmem_list3 *ptr;
  1058. BUG_ON(cachep->nodelists[nodeid] != list);
  1059. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1060. BUG_ON(!ptr);
  1061. local_irq_disable();
  1062. memcpy(ptr, list, sizeof(struct kmem_list3));
  1063. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1064. cachep->nodelists[nodeid] = ptr;
  1065. local_irq_enable();
  1066. }
  1067. /*
  1068. * Initialisation. Called after the page allocator have been initialised and
  1069. * before smp_init().
  1070. */
  1071. void __init kmem_cache_init(void)
  1072. {
  1073. size_t left_over;
  1074. struct cache_sizes *sizes;
  1075. struct cache_names *names;
  1076. int i;
  1077. int order;
  1078. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1079. kmem_list3_init(&initkmem_list3[i]);
  1080. if (i < MAX_NUMNODES)
  1081. cache_cache.nodelists[i] = NULL;
  1082. }
  1083. /*
  1084. * Fragmentation resistance on low memory - only use bigger
  1085. * page orders on machines with more than 32MB of memory.
  1086. */
  1087. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1088. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1089. /* Bootstrap is tricky, because several objects are allocated
  1090. * from caches that do not exist yet:
  1091. * 1) initialize the cache_cache cache: it contains the struct
  1092. * kmem_cache structures of all caches, except cache_cache itself:
  1093. * cache_cache is statically allocated.
  1094. * Initially an __init data area is used for the head array and the
  1095. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1096. * array at the end of the bootstrap.
  1097. * 2) Create the first kmalloc cache.
  1098. * The struct kmem_cache for the new cache is allocated normally.
  1099. * An __init data area is used for the head array.
  1100. * 3) Create the remaining kmalloc caches, with minimally sized
  1101. * head arrays.
  1102. * 4) Replace the __init data head arrays for cache_cache and the first
  1103. * kmalloc cache with kmalloc allocated arrays.
  1104. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1105. * the other cache's with kmalloc allocated memory.
  1106. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1107. */
  1108. /* 1) create the cache_cache */
  1109. INIT_LIST_HEAD(&cache_chain);
  1110. list_add(&cache_cache.next, &cache_chain);
  1111. cache_cache.colour_off = cache_line_size();
  1112. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1113. cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
  1114. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1115. cache_line_size());
  1116. for (order = 0; order < MAX_ORDER; order++) {
  1117. cache_estimate(order, cache_cache.buffer_size,
  1118. cache_line_size(), 0, &left_over, &cache_cache.num);
  1119. if (cache_cache.num)
  1120. break;
  1121. }
  1122. if (!cache_cache.num)
  1123. BUG();
  1124. cache_cache.gfporder = order;
  1125. cache_cache.colour = left_over / cache_cache.colour_off;
  1126. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1127. sizeof(struct slab), cache_line_size());
  1128. /* 2+3) create the kmalloc caches */
  1129. sizes = malloc_sizes;
  1130. names = cache_names;
  1131. /*
  1132. * Initialize the caches that provide memory for the array cache and the
  1133. * kmem_list3 structures first. Without this, further allocations will
  1134. * bug.
  1135. */
  1136. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1137. sizes[INDEX_AC].cs_size,
  1138. ARCH_KMALLOC_MINALIGN,
  1139. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1140. NULL, NULL);
  1141. if (INDEX_AC != INDEX_L3) {
  1142. sizes[INDEX_L3].cs_cachep =
  1143. kmem_cache_create(names[INDEX_L3].name,
  1144. sizes[INDEX_L3].cs_size,
  1145. ARCH_KMALLOC_MINALIGN,
  1146. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1147. NULL, NULL);
  1148. }
  1149. while (sizes->cs_size != ULONG_MAX) {
  1150. /*
  1151. * For performance, all the general caches are L1 aligned.
  1152. * This should be particularly beneficial on SMP boxes, as it
  1153. * eliminates "false sharing".
  1154. * Note for systems short on memory removing the alignment will
  1155. * allow tighter packing of the smaller caches.
  1156. */
  1157. if (!sizes->cs_cachep) {
  1158. sizes->cs_cachep = kmem_cache_create(names->name,
  1159. sizes->cs_size,
  1160. ARCH_KMALLOC_MINALIGN,
  1161. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1162. NULL, NULL);
  1163. }
  1164. /* Inc off-slab bufctl limit until the ceiling is hit. */
  1165. if (!(OFF_SLAB(sizes->cs_cachep))) {
  1166. offslab_limit = sizes->cs_size - sizeof(struct slab);
  1167. offslab_limit /= sizeof(kmem_bufctl_t);
  1168. }
  1169. sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
  1170. sizes->cs_size,
  1171. ARCH_KMALLOC_MINALIGN,
  1172. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1173. SLAB_PANIC,
  1174. NULL, NULL);
  1175. sizes++;
  1176. names++;
  1177. }
  1178. /* 4) Replace the bootstrap head arrays */
  1179. {
  1180. void *ptr;
  1181. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1182. local_irq_disable();
  1183. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1184. memcpy(ptr, cpu_cache_get(&cache_cache),
  1185. sizeof(struct arraycache_init));
  1186. cache_cache.array[smp_processor_id()] = ptr;
  1187. local_irq_enable();
  1188. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1189. local_irq_disable();
  1190. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1191. != &initarray_generic.cache);
  1192. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1193. sizeof(struct arraycache_init));
  1194. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1195. ptr;
  1196. local_irq_enable();
  1197. }
  1198. /* 5) Replace the bootstrap kmem_list3's */
  1199. {
  1200. int node;
  1201. /* Replace the static kmem_list3 structures for the boot cpu */
  1202. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
  1203. numa_node_id());
  1204. for_each_online_node(node) {
  1205. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1206. &initkmem_list3[SIZE_AC + node], node);
  1207. if (INDEX_AC != INDEX_L3) {
  1208. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1209. &initkmem_list3[SIZE_L3 + node],
  1210. node);
  1211. }
  1212. }
  1213. }
  1214. /* 6) resize the head arrays to their final sizes */
  1215. {
  1216. struct kmem_cache *cachep;
  1217. mutex_lock(&cache_chain_mutex);
  1218. list_for_each_entry(cachep, &cache_chain, next)
  1219. enable_cpucache(cachep);
  1220. mutex_unlock(&cache_chain_mutex);
  1221. }
  1222. /* Done! */
  1223. g_cpucache_up = FULL;
  1224. /*
  1225. * Register a cpu startup notifier callback that initializes
  1226. * cpu_cache_get for all new cpus
  1227. */
  1228. register_cpu_notifier(&cpucache_notifier);
  1229. /*
  1230. * The reap timers are started later, with a module init call: That part
  1231. * of the kernel is not yet operational.
  1232. */
  1233. }
  1234. static int __init cpucache_init(void)
  1235. {
  1236. int cpu;
  1237. /*
  1238. * Register the timers that return unneeded pages to the page allocator
  1239. */
  1240. for_each_online_cpu(cpu)
  1241. start_cpu_timer(cpu);
  1242. return 0;
  1243. }
  1244. __initcall(cpucache_init);
  1245. /*
  1246. * Interface to system's page allocator. No need to hold the cache-lock.
  1247. *
  1248. * If we requested dmaable memory, we will get it. Even if we
  1249. * did not request dmaable memory, we might get it, but that
  1250. * would be relatively rare and ignorable.
  1251. */
  1252. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1253. {
  1254. struct page *page;
  1255. void *addr;
  1256. int i;
  1257. flags |= cachep->gfpflags;
  1258. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1259. if (!page)
  1260. return NULL;
  1261. addr = page_address(page);
  1262. i = (1 << cachep->gfporder);
  1263. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1264. atomic_add(i, &slab_reclaim_pages);
  1265. add_page_state(nr_slab, i);
  1266. while (i--) {
  1267. __SetPageSlab(page);
  1268. page++;
  1269. }
  1270. return addr;
  1271. }
  1272. /*
  1273. * Interface to system's page release.
  1274. */
  1275. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1276. {
  1277. unsigned long i = (1 << cachep->gfporder);
  1278. struct page *page = virt_to_page(addr);
  1279. const unsigned long nr_freed = i;
  1280. while (i--) {
  1281. BUG_ON(!PageSlab(page));
  1282. __ClearPageSlab(page);
  1283. page++;
  1284. }
  1285. sub_page_state(nr_slab, nr_freed);
  1286. if (current->reclaim_state)
  1287. current->reclaim_state->reclaimed_slab += nr_freed;
  1288. free_pages((unsigned long)addr, cachep->gfporder);
  1289. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1290. atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
  1291. }
  1292. static void kmem_rcu_free(struct rcu_head *head)
  1293. {
  1294. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1295. struct kmem_cache *cachep = slab_rcu->cachep;
  1296. kmem_freepages(cachep, slab_rcu->addr);
  1297. if (OFF_SLAB(cachep))
  1298. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1299. }
  1300. #if DEBUG
  1301. #ifdef CONFIG_DEBUG_PAGEALLOC
  1302. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1303. unsigned long caller)
  1304. {
  1305. int size = obj_size(cachep);
  1306. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1307. if (size < 5 * sizeof(unsigned long))
  1308. return;
  1309. *addr++ = 0x12345678;
  1310. *addr++ = caller;
  1311. *addr++ = smp_processor_id();
  1312. size -= 3 * sizeof(unsigned long);
  1313. {
  1314. unsigned long *sptr = &caller;
  1315. unsigned long svalue;
  1316. while (!kstack_end(sptr)) {
  1317. svalue = *sptr++;
  1318. if (kernel_text_address(svalue)) {
  1319. *addr++ = svalue;
  1320. size -= sizeof(unsigned long);
  1321. if (size <= sizeof(unsigned long))
  1322. break;
  1323. }
  1324. }
  1325. }
  1326. *addr++ = 0x87654321;
  1327. }
  1328. #endif
  1329. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1330. {
  1331. int size = obj_size(cachep);
  1332. addr = &((char *)addr)[obj_offset(cachep)];
  1333. memset(addr, val, size);
  1334. *(unsigned char *)(addr + size - 1) = POISON_END;
  1335. }
  1336. static void dump_line(char *data, int offset, int limit)
  1337. {
  1338. int i;
  1339. printk(KERN_ERR "%03x:", offset);
  1340. for (i = 0; i < limit; i++)
  1341. printk(" %02x", (unsigned char)data[offset + i]);
  1342. printk("\n");
  1343. }
  1344. #endif
  1345. #if DEBUG
  1346. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1347. {
  1348. int i, size;
  1349. char *realobj;
  1350. if (cachep->flags & SLAB_RED_ZONE) {
  1351. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1352. *dbg_redzone1(cachep, objp),
  1353. *dbg_redzone2(cachep, objp));
  1354. }
  1355. if (cachep->flags & SLAB_STORE_USER) {
  1356. printk(KERN_ERR "Last user: [<%p>]",
  1357. *dbg_userword(cachep, objp));
  1358. print_symbol("(%s)",
  1359. (unsigned long)*dbg_userword(cachep, objp));
  1360. printk("\n");
  1361. }
  1362. realobj = (char *)objp + obj_offset(cachep);
  1363. size = obj_size(cachep);
  1364. for (i = 0; i < size && lines; i += 16, lines--) {
  1365. int limit;
  1366. limit = 16;
  1367. if (i + limit > size)
  1368. limit = size - i;
  1369. dump_line(realobj, i, limit);
  1370. }
  1371. }
  1372. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1373. {
  1374. char *realobj;
  1375. int size, i;
  1376. int lines = 0;
  1377. realobj = (char *)objp + obj_offset(cachep);
  1378. size = obj_size(cachep);
  1379. for (i = 0; i < size; i++) {
  1380. char exp = POISON_FREE;
  1381. if (i == size - 1)
  1382. exp = POISON_END;
  1383. if (realobj[i] != exp) {
  1384. int limit;
  1385. /* Mismatch ! */
  1386. /* Print header */
  1387. if (lines == 0) {
  1388. printk(KERN_ERR
  1389. "Slab corruption: start=%p, len=%d\n",
  1390. realobj, size);
  1391. print_objinfo(cachep, objp, 0);
  1392. }
  1393. /* Hexdump the affected line */
  1394. i = (i / 16) * 16;
  1395. limit = 16;
  1396. if (i + limit > size)
  1397. limit = size - i;
  1398. dump_line(realobj, i, limit);
  1399. i += 16;
  1400. lines++;
  1401. /* Limit to 5 lines */
  1402. if (lines > 5)
  1403. break;
  1404. }
  1405. }
  1406. if (lines != 0) {
  1407. /* Print some data about the neighboring objects, if they
  1408. * exist:
  1409. */
  1410. struct slab *slabp = virt_to_slab(objp);
  1411. unsigned int objnr;
  1412. objnr = obj_to_index(cachep, slabp, objp);
  1413. if (objnr) {
  1414. objp = index_to_obj(cachep, slabp, objnr - 1);
  1415. realobj = (char *)objp + obj_offset(cachep);
  1416. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1417. realobj, size);
  1418. print_objinfo(cachep, objp, 2);
  1419. }
  1420. if (objnr + 1 < cachep->num) {
  1421. objp = index_to_obj(cachep, slabp, objnr + 1);
  1422. realobj = (char *)objp + obj_offset(cachep);
  1423. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1424. realobj, size);
  1425. print_objinfo(cachep, objp, 2);
  1426. }
  1427. }
  1428. }
  1429. #endif
  1430. #if DEBUG
  1431. /**
  1432. * slab_destroy_objs - destroy a slab and its objects
  1433. * @cachep: cache pointer being destroyed
  1434. * @slabp: slab pointer being destroyed
  1435. *
  1436. * Call the registered destructor for each object in a slab that is being
  1437. * destroyed.
  1438. */
  1439. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1440. {
  1441. int i;
  1442. for (i = 0; i < cachep->num; i++) {
  1443. void *objp = index_to_obj(cachep, slabp, i);
  1444. if (cachep->flags & SLAB_POISON) {
  1445. #ifdef CONFIG_DEBUG_PAGEALLOC
  1446. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1447. OFF_SLAB(cachep))
  1448. kernel_map_pages(virt_to_page(objp),
  1449. cachep->buffer_size / PAGE_SIZE, 1);
  1450. else
  1451. check_poison_obj(cachep, objp);
  1452. #else
  1453. check_poison_obj(cachep, objp);
  1454. #endif
  1455. }
  1456. if (cachep->flags & SLAB_RED_ZONE) {
  1457. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1458. slab_error(cachep, "start of a freed object "
  1459. "was overwritten");
  1460. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1461. slab_error(cachep, "end of a freed object "
  1462. "was overwritten");
  1463. }
  1464. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1465. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1466. }
  1467. }
  1468. #else
  1469. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1470. {
  1471. if (cachep->dtor) {
  1472. int i;
  1473. for (i = 0; i < cachep->num; i++) {
  1474. void *objp = index_to_obj(cachep, slabp, i);
  1475. (cachep->dtor) (objp, cachep, 0);
  1476. }
  1477. }
  1478. }
  1479. #endif
  1480. /**
  1481. * slab_destroy - destroy and release all objects in a slab
  1482. * @cachep: cache pointer being destroyed
  1483. * @slabp: slab pointer being destroyed
  1484. *
  1485. * Destroy all the objs in a slab, and release the mem back to the system.
  1486. * Before calling the slab must have been unlinked from the cache. The
  1487. * cache-lock is not held/needed.
  1488. */
  1489. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1490. {
  1491. void *addr = slabp->s_mem - slabp->colouroff;
  1492. slab_destroy_objs(cachep, slabp);
  1493. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1494. struct slab_rcu *slab_rcu;
  1495. slab_rcu = (struct slab_rcu *)slabp;
  1496. slab_rcu->cachep = cachep;
  1497. slab_rcu->addr = addr;
  1498. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1499. } else {
  1500. kmem_freepages(cachep, addr);
  1501. if (OFF_SLAB(cachep))
  1502. kmem_cache_free(cachep->slabp_cache, slabp);
  1503. }
  1504. }
  1505. /*
  1506. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1507. * size of kmem_list3.
  1508. */
  1509. static void set_up_list3s(struct kmem_cache *cachep, int index)
  1510. {
  1511. int node;
  1512. for_each_online_node(node) {
  1513. cachep->nodelists[node] = &initkmem_list3[index + node];
  1514. cachep->nodelists[node]->next_reap = jiffies +
  1515. REAPTIMEOUT_LIST3 +
  1516. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1517. }
  1518. }
  1519. /**
  1520. * calculate_slab_order - calculate size (page order) of slabs
  1521. * @cachep: pointer to the cache that is being created
  1522. * @size: size of objects to be created in this cache.
  1523. * @align: required alignment for the objects.
  1524. * @flags: slab allocation flags
  1525. *
  1526. * Also calculates the number of objects per slab.
  1527. *
  1528. * This could be made much more intelligent. For now, try to avoid using
  1529. * high order pages for slabs. When the gfp() functions are more friendly
  1530. * towards high-order requests, this should be changed.
  1531. */
  1532. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1533. size_t size, size_t align, unsigned long flags)
  1534. {
  1535. size_t left_over = 0;
  1536. int gfporder;
  1537. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1538. unsigned int num;
  1539. size_t remainder;
  1540. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1541. if (!num)
  1542. continue;
  1543. /* More than offslab_limit objects will cause problems */
  1544. if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
  1545. break;
  1546. /* Found something acceptable - save it away */
  1547. cachep->num = num;
  1548. cachep->gfporder = gfporder;
  1549. left_over = remainder;
  1550. /*
  1551. * A VFS-reclaimable slab tends to have most allocations
  1552. * as GFP_NOFS and we really don't want to have to be allocating
  1553. * higher-order pages when we are unable to shrink dcache.
  1554. */
  1555. if (flags & SLAB_RECLAIM_ACCOUNT)
  1556. break;
  1557. /*
  1558. * Large number of objects is good, but very large slabs are
  1559. * currently bad for the gfp()s.
  1560. */
  1561. if (gfporder >= slab_break_gfp_order)
  1562. break;
  1563. /*
  1564. * Acceptable internal fragmentation?
  1565. */
  1566. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1567. break;
  1568. }
  1569. return left_over;
  1570. }
  1571. static void setup_cpu_cache(struct kmem_cache *cachep)
  1572. {
  1573. if (g_cpucache_up == FULL) {
  1574. enable_cpucache(cachep);
  1575. return;
  1576. }
  1577. if (g_cpucache_up == NONE) {
  1578. /*
  1579. * Note: the first kmem_cache_create must create the cache
  1580. * that's used by kmalloc(24), otherwise the creation of
  1581. * further caches will BUG().
  1582. */
  1583. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1584. /*
  1585. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1586. * the first cache, then we need to set up all its list3s,
  1587. * otherwise the creation of further caches will BUG().
  1588. */
  1589. set_up_list3s(cachep, SIZE_AC);
  1590. if (INDEX_AC == INDEX_L3)
  1591. g_cpucache_up = PARTIAL_L3;
  1592. else
  1593. g_cpucache_up = PARTIAL_AC;
  1594. } else {
  1595. cachep->array[smp_processor_id()] =
  1596. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1597. if (g_cpucache_up == PARTIAL_AC) {
  1598. set_up_list3s(cachep, SIZE_L3);
  1599. g_cpucache_up = PARTIAL_L3;
  1600. } else {
  1601. int node;
  1602. for_each_online_node(node) {
  1603. cachep->nodelists[node] =
  1604. kmalloc_node(sizeof(struct kmem_list3),
  1605. GFP_KERNEL, node);
  1606. BUG_ON(!cachep->nodelists[node]);
  1607. kmem_list3_init(cachep->nodelists[node]);
  1608. }
  1609. }
  1610. }
  1611. cachep->nodelists[numa_node_id()]->next_reap =
  1612. jiffies + REAPTIMEOUT_LIST3 +
  1613. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1614. cpu_cache_get(cachep)->avail = 0;
  1615. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1616. cpu_cache_get(cachep)->batchcount = 1;
  1617. cpu_cache_get(cachep)->touched = 0;
  1618. cachep->batchcount = 1;
  1619. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1620. }
  1621. /**
  1622. * kmem_cache_create - Create a cache.
  1623. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1624. * @size: The size of objects to be created in this cache.
  1625. * @align: The required alignment for the objects.
  1626. * @flags: SLAB flags
  1627. * @ctor: A constructor for the objects.
  1628. * @dtor: A destructor for the objects.
  1629. *
  1630. * Returns a ptr to the cache on success, NULL on failure.
  1631. * Cannot be called within a int, but can be interrupted.
  1632. * The @ctor is run when new pages are allocated by the cache
  1633. * and the @dtor is run before the pages are handed back.
  1634. *
  1635. * @name must be valid until the cache is destroyed. This implies that
  1636. * the module calling this has to destroy the cache before getting unloaded.
  1637. *
  1638. * The flags are
  1639. *
  1640. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1641. * to catch references to uninitialised memory.
  1642. *
  1643. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1644. * for buffer overruns.
  1645. *
  1646. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1647. * cacheline. This can be beneficial if you're counting cycles as closely
  1648. * as davem.
  1649. */
  1650. struct kmem_cache *
  1651. kmem_cache_create (const char *name, size_t size, size_t align,
  1652. unsigned long flags,
  1653. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1654. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1655. {
  1656. size_t left_over, slab_size, ralign;
  1657. struct kmem_cache *cachep = NULL;
  1658. struct list_head *p;
  1659. /*
  1660. * Sanity checks... these are all serious usage bugs.
  1661. */
  1662. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1663. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1664. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1665. name);
  1666. BUG();
  1667. }
  1668. /*
  1669. * Prevent CPUs from coming and going.
  1670. * lock_cpu_hotplug() nests outside cache_chain_mutex
  1671. */
  1672. lock_cpu_hotplug();
  1673. mutex_lock(&cache_chain_mutex);
  1674. list_for_each(p, &cache_chain) {
  1675. struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
  1676. mm_segment_t old_fs = get_fs();
  1677. char tmp;
  1678. int res;
  1679. /*
  1680. * This happens when the module gets unloaded and doesn't
  1681. * destroy its slab cache and no-one else reuses the vmalloc
  1682. * area of the module. Print a warning.
  1683. */
  1684. set_fs(KERNEL_DS);
  1685. res = __get_user(tmp, pc->name);
  1686. set_fs(old_fs);
  1687. if (res) {
  1688. printk("SLAB: cache with size %d has lost its name\n",
  1689. pc->buffer_size);
  1690. continue;
  1691. }
  1692. if (!strcmp(pc->name, name)) {
  1693. printk("kmem_cache_create: duplicate cache %s\n", name);
  1694. dump_stack();
  1695. goto oops;
  1696. }
  1697. }
  1698. #if DEBUG
  1699. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1700. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1701. /* No constructor, but inital state check requested */
  1702. printk(KERN_ERR "%s: No con, but init state check "
  1703. "requested - %s\n", __FUNCTION__, name);
  1704. flags &= ~SLAB_DEBUG_INITIAL;
  1705. }
  1706. #if FORCED_DEBUG
  1707. /*
  1708. * Enable redzoning and last user accounting, except for caches with
  1709. * large objects, if the increased size would increase the object size
  1710. * above the next power of two: caches with object sizes just above a
  1711. * power of two have a significant amount of internal fragmentation.
  1712. */
  1713. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1714. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1715. if (!(flags & SLAB_DESTROY_BY_RCU))
  1716. flags |= SLAB_POISON;
  1717. #endif
  1718. if (flags & SLAB_DESTROY_BY_RCU)
  1719. BUG_ON(flags & SLAB_POISON);
  1720. #endif
  1721. if (flags & SLAB_DESTROY_BY_RCU)
  1722. BUG_ON(dtor);
  1723. /*
  1724. * Always checks flags, a caller might be expecting debug support which
  1725. * isn't available.
  1726. */
  1727. if (flags & ~CREATE_MASK)
  1728. BUG();
  1729. /*
  1730. * Check that size is in terms of words. This is needed to avoid
  1731. * unaligned accesses for some archs when redzoning is used, and makes
  1732. * sure any on-slab bufctl's are also correctly aligned.
  1733. */
  1734. if (size & (BYTES_PER_WORD - 1)) {
  1735. size += (BYTES_PER_WORD - 1);
  1736. size &= ~(BYTES_PER_WORD - 1);
  1737. }
  1738. /* calculate the final buffer alignment: */
  1739. /* 1) arch recommendation: can be overridden for debug */
  1740. if (flags & SLAB_HWCACHE_ALIGN) {
  1741. /*
  1742. * Default alignment: as specified by the arch code. Except if
  1743. * an object is really small, then squeeze multiple objects into
  1744. * one cacheline.
  1745. */
  1746. ralign = cache_line_size();
  1747. while (size <= ralign / 2)
  1748. ralign /= 2;
  1749. } else {
  1750. ralign = BYTES_PER_WORD;
  1751. }
  1752. /* 2) arch mandated alignment: disables debug if necessary */
  1753. if (ralign < ARCH_SLAB_MINALIGN) {
  1754. ralign = ARCH_SLAB_MINALIGN;
  1755. if (ralign > BYTES_PER_WORD)
  1756. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1757. }
  1758. /* 3) caller mandated alignment: disables debug if necessary */
  1759. if (ralign < align) {
  1760. ralign = align;
  1761. if (ralign > BYTES_PER_WORD)
  1762. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1763. }
  1764. /*
  1765. * 4) Store it. Note that the debug code below can reduce
  1766. * the alignment to BYTES_PER_WORD.
  1767. */
  1768. align = ralign;
  1769. /* Get cache's description obj. */
  1770. cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
  1771. if (!cachep)
  1772. goto oops;
  1773. memset(cachep, 0, sizeof(struct kmem_cache));
  1774. #if DEBUG
  1775. cachep->obj_size = size;
  1776. if (flags & SLAB_RED_ZONE) {
  1777. /* redzoning only works with word aligned caches */
  1778. align = BYTES_PER_WORD;
  1779. /* add space for red zone words */
  1780. cachep->obj_offset += BYTES_PER_WORD;
  1781. size += 2 * BYTES_PER_WORD;
  1782. }
  1783. if (flags & SLAB_STORE_USER) {
  1784. /* user store requires word alignment and
  1785. * one word storage behind the end of the real
  1786. * object.
  1787. */
  1788. align = BYTES_PER_WORD;
  1789. size += BYTES_PER_WORD;
  1790. }
  1791. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1792. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  1793. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  1794. cachep->obj_offset += PAGE_SIZE - size;
  1795. size = PAGE_SIZE;
  1796. }
  1797. #endif
  1798. #endif
  1799. /* Determine if the slab management is 'on' or 'off' slab. */
  1800. if (size >= (PAGE_SIZE >> 3))
  1801. /*
  1802. * Size is large, assume best to place the slab management obj
  1803. * off-slab (should allow better packing of objs).
  1804. */
  1805. flags |= CFLGS_OFF_SLAB;
  1806. size = ALIGN(size, align);
  1807. left_over = calculate_slab_order(cachep, size, align, flags);
  1808. if (!cachep->num) {
  1809. printk("kmem_cache_create: couldn't create cache %s.\n", name);
  1810. kmem_cache_free(&cache_cache, cachep);
  1811. cachep = NULL;
  1812. goto oops;
  1813. }
  1814. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  1815. + sizeof(struct slab), align);
  1816. /*
  1817. * If the slab has been placed off-slab, and we have enough space then
  1818. * move it on-slab. This is at the expense of any extra colouring.
  1819. */
  1820. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  1821. flags &= ~CFLGS_OFF_SLAB;
  1822. left_over -= slab_size;
  1823. }
  1824. if (flags & CFLGS_OFF_SLAB) {
  1825. /* really off slab. No need for manual alignment */
  1826. slab_size =
  1827. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  1828. }
  1829. cachep->colour_off = cache_line_size();
  1830. /* Offset must be a multiple of the alignment. */
  1831. if (cachep->colour_off < align)
  1832. cachep->colour_off = align;
  1833. cachep->colour = left_over / cachep->colour_off;
  1834. cachep->slab_size = slab_size;
  1835. cachep->flags = flags;
  1836. cachep->gfpflags = 0;
  1837. if (flags & SLAB_CACHE_DMA)
  1838. cachep->gfpflags |= GFP_DMA;
  1839. cachep->buffer_size = size;
  1840. if (flags & CFLGS_OFF_SLAB)
  1841. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  1842. cachep->ctor = ctor;
  1843. cachep->dtor = dtor;
  1844. cachep->name = name;
  1845. setup_cpu_cache(cachep);
  1846. /* cache setup completed, link it into the list */
  1847. list_add(&cachep->next, &cache_chain);
  1848. oops:
  1849. if (!cachep && (flags & SLAB_PANIC))
  1850. panic("kmem_cache_create(): failed to create slab `%s'\n",
  1851. name);
  1852. mutex_unlock(&cache_chain_mutex);
  1853. unlock_cpu_hotplug();
  1854. return cachep;
  1855. }
  1856. EXPORT_SYMBOL(kmem_cache_create);
  1857. #if DEBUG
  1858. static void check_irq_off(void)
  1859. {
  1860. BUG_ON(!irqs_disabled());
  1861. }
  1862. static void check_irq_on(void)
  1863. {
  1864. BUG_ON(irqs_disabled());
  1865. }
  1866. static void check_spinlock_acquired(struct kmem_cache *cachep)
  1867. {
  1868. #ifdef CONFIG_SMP
  1869. check_irq_off();
  1870. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  1871. #endif
  1872. }
  1873. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  1874. {
  1875. #ifdef CONFIG_SMP
  1876. check_irq_off();
  1877. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  1878. #endif
  1879. }
  1880. #else
  1881. #define check_irq_off() do { } while(0)
  1882. #define check_irq_on() do { } while(0)
  1883. #define check_spinlock_acquired(x) do { } while(0)
  1884. #define check_spinlock_acquired_node(x, y) do { } while(0)
  1885. #endif
  1886. static void drain_array_locked(struct kmem_cache *cachep,
  1887. struct array_cache *ac, int force, int node);
  1888. static void do_drain(void *arg)
  1889. {
  1890. struct kmem_cache *cachep = arg;
  1891. struct array_cache *ac;
  1892. int node = numa_node_id();
  1893. check_irq_off();
  1894. ac = cpu_cache_get(cachep);
  1895. spin_lock(&cachep->nodelists[node]->list_lock);
  1896. free_block(cachep, ac->entry, ac->avail, node);
  1897. spin_unlock(&cachep->nodelists[node]->list_lock);
  1898. ac->avail = 0;
  1899. }
  1900. static void drain_cpu_caches(struct kmem_cache *cachep)
  1901. {
  1902. struct kmem_list3 *l3;
  1903. int node;
  1904. on_each_cpu(do_drain, cachep, 1, 1);
  1905. check_irq_on();
  1906. for_each_online_node(node) {
  1907. l3 = cachep->nodelists[node];
  1908. if (l3) {
  1909. spin_lock_irq(&l3->list_lock);
  1910. drain_array_locked(cachep, l3->shared, 1, node);
  1911. spin_unlock_irq(&l3->list_lock);
  1912. if (l3->alien)
  1913. drain_alien_cache(cachep, l3->alien);
  1914. }
  1915. }
  1916. }
  1917. static int __node_shrink(struct kmem_cache *cachep, int node)
  1918. {
  1919. struct slab *slabp;
  1920. struct kmem_list3 *l3 = cachep->nodelists[node];
  1921. int ret;
  1922. for (;;) {
  1923. struct list_head *p;
  1924. p = l3->slabs_free.prev;
  1925. if (p == &l3->slabs_free)
  1926. break;
  1927. slabp = list_entry(l3->slabs_free.prev, struct slab, list);
  1928. #if DEBUG
  1929. if (slabp->inuse)
  1930. BUG();
  1931. #endif
  1932. list_del(&slabp->list);
  1933. l3->free_objects -= cachep->num;
  1934. spin_unlock_irq(&l3->list_lock);
  1935. slab_destroy(cachep, slabp);
  1936. spin_lock_irq(&l3->list_lock);
  1937. }
  1938. ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
  1939. return ret;
  1940. }
  1941. static int __cache_shrink(struct kmem_cache *cachep)
  1942. {
  1943. int ret = 0, i = 0;
  1944. struct kmem_list3 *l3;
  1945. drain_cpu_caches(cachep);
  1946. check_irq_on();
  1947. for_each_online_node(i) {
  1948. l3 = cachep->nodelists[i];
  1949. if (l3) {
  1950. spin_lock_irq(&l3->list_lock);
  1951. ret += __node_shrink(cachep, i);
  1952. spin_unlock_irq(&l3->list_lock);
  1953. }
  1954. }
  1955. return (ret ? 1 : 0);
  1956. }
  1957. /**
  1958. * kmem_cache_shrink - Shrink a cache.
  1959. * @cachep: The cache to shrink.
  1960. *
  1961. * Releases as many slabs as possible for a cache.
  1962. * To help debugging, a zero exit status indicates all slabs were released.
  1963. */
  1964. int kmem_cache_shrink(struct kmem_cache *cachep)
  1965. {
  1966. if (!cachep || in_interrupt())
  1967. BUG();
  1968. return __cache_shrink(cachep);
  1969. }
  1970. EXPORT_SYMBOL(kmem_cache_shrink);
  1971. /**
  1972. * kmem_cache_destroy - delete a cache
  1973. * @cachep: the cache to destroy
  1974. *
  1975. * Remove a struct kmem_cache object from the slab cache.
  1976. * Returns 0 on success.
  1977. *
  1978. * It is expected this function will be called by a module when it is
  1979. * unloaded. This will remove the cache completely, and avoid a duplicate
  1980. * cache being allocated each time a module is loaded and unloaded, if the
  1981. * module doesn't have persistent in-kernel storage across loads and unloads.
  1982. *
  1983. * The cache must be empty before calling this function.
  1984. *
  1985. * The caller must guarantee that noone will allocate memory from the cache
  1986. * during the kmem_cache_destroy().
  1987. */
  1988. int kmem_cache_destroy(struct kmem_cache *cachep)
  1989. {
  1990. int i;
  1991. struct kmem_list3 *l3;
  1992. if (!cachep || in_interrupt())
  1993. BUG();
  1994. /* Don't let CPUs to come and go */
  1995. lock_cpu_hotplug();
  1996. /* Find the cache in the chain of caches. */
  1997. mutex_lock(&cache_chain_mutex);
  1998. /*
  1999. * the chain is never empty, cache_cache is never destroyed
  2000. */
  2001. list_del(&cachep->next);
  2002. mutex_unlock(&cache_chain_mutex);
  2003. if (__cache_shrink(cachep)) {
  2004. slab_error(cachep, "Can't free all objects");
  2005. mutex_lock(&cache_chain_mutex);
  2006. list_add(&cachep->next, &cache_chain);
  2007. mutex_unlock(&cache_chain_mutex);
  2008. unlock_cpu_hotplug();
  2009. return 1;
  2010. }
  2011. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2012. synchronize_rcu();
  2013. for_each_online_cpu(i)
  2014. kfree(cachep->array[i]);
  2015. /* NUMA: free the list3 structures */
  2016. for_each_online_node(i) {
  2017. l3 = cachep->nodelists[i];
  2018. if (l3) {
  2019. kfree(l3->shared);
  2020. free_alien_cache(l3->alien);
  2021. kfree(l3);
  2022. }
  2023. }
  2024. kmem_cache_free(&cache_cache, cachep);
  2025. unlock_cpu_hotplug();
  2026. return 0;
  2027. }
  2028. EXPORT_SYMBOL(kmem_cache_destroy);
  2029. /* Get the memory for a slab management obj. */
  2030. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2031. int colour_off, gfp_t local_flags)
  2032. {
  2033. struct slab *slabp;
  2034. if (OFF_SLAB(cachep)) {
  2035. /* Slab management obj is off-slab. */
  2036. slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
  2037. if (!slabp)
  2038. return NULL;
  2039. } else {
  2040. slabp = objp + colour_off;
  2041. colour_off += cachep->slab_size;
  2042. }
  2043. slabp->inuse = 0;
  2044. slabp->colouroff = colour_off;
  2045. slabp->s_mem = objp + colour_off;
  2046. return slabp;
  2047. }
  2048. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2049. {
  2050. return (kmem_bufctl_t *) (slabp + 1);
  2051. }
  2052. static void cache_init_objs(struct kmem_cache *cachep,
  2053. struct slab *slabp, unsigned long ctor_flags)
  2054. {
  2055. int i;
  2056. for (i = 0; i < cachep->num; i++) {
  2057. void *objp = index_to_obj(cachep, slabp, i);
  2058. #if DEBUG
  2059. /* need to poison the objs? */
  2060. if (cachep->flags & SLAB_POISON)
  2061. poison_obj(cachep, objp, POISON_FREE);
  2062. if (cachep->flags & SLAB_STORE_USER)
  2063. *dbg_userword(cachep, objp) = NULL;
  2064. if (cachep->flags & SLAB_RED_ZONE) {
  2065. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2066. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2067. }
  2068. /*
  2069. * Constructors are not allowed to allocate memory from the same
  2070. * cache which they are a constructor for. Otherwise, deadlock.
  2071. * They must also be threaded.
  2072. */
  2073. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2074. cachep->ctor(objp + obj_offset(cachep), cachep,
  2075. ctor_flags);
  2076. if (cachep->flags & SLAB_RED_ZONE) {
  2077. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2078. slab_error(cachep, "constructor overwrote the"
  2079. " end of an object");
  2080. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2081. slab_error(cachep, "constructor overwrote the"
  2082. " start of an object");
  2083. }
  2084. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2085. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2086. kernel_map_pages(virt_to_page(objp),
  2087. cachep->buffer_size / PAGE_SIZE, 0);
  2088. #else
  2089. if (cachep->ctor)
  2090. cachep->ctor(objp, cachep, ctor_flags);
  2091. #endif
  2092. slab_bufctl(slabp)[i] = i + 1;
  2093. }
  2094. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2095. slabp->free = 0;
  2096. }
  2097. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2098. {
  2099. if (flags & SLAB_DMA)
  2100. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2101. else
  2102. BUG_ON(cachep->gfpflags & GFP_DMA);
  2103. }
  2104. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2105. int nodeid)
  2106. {
  2107. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2108. kmem_bufctl_t next;
  2109. slabp->inuse++;
  2110. next = slab_bufctl(slabp)[slabp->free];
  2111. #if DEBUG
  2112. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2113. WARN_ON(slabp->nodeid != nodeid);
  2114. #endif
  2115. slabp->free = next;
  2116. return objp;
  2117. }
  2118. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2119. void *objp, int nodeid)
  2120. {
  2121. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2122. #if DEBUG
  2123. /* Verify that the slab belongs to the intended node */
  2124. WARN_ON(slabp->nodeid != nodeid);
  2125. if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
  2126. printk(KERN_ERR "slab: double free detected in cache "
  2127. "'%s', objp %p\n", cachep->name, objp);
  2128. BUG();
  2129. }
  2130. #endif
  2131. slab_bufctl(slabp)[objnr] = slabp->free;
  2132. slabp->free = objnr;
  2133. slabp->inuse--;
  2134. }
  2135. static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
  2136. void *objp)
  2137. {
  2138. int i;
  2139. struct page *page;
  2140. /* Nasty!!!!!! I hope this is OK. */
  2141. i = 1 << cachep->gfporder;
  2142. page = virt_to_page(objp);
  2143. do {
  2144. page_set_cache(page, cachep);
  2145. page_set_slab(page, slabp);
  2146. page++;
  2147. } while (--i);
  2148. }
  2149. /*
  2150. * Grow (by 1) the number of slabs within a cache. This is called by
  2151. * kmem_cache_alloc() when there are no active objs left in a cache.
  2152. */
  2153. static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2154. {
  2155. struct slab *slabp;
  2156. void *objp;
  2157. size_t offset;
  2158. gfp_t local_flags;
  2159. unsigned long ctor_flags;
  2160. struct kmem_list3 *l3;
  2161. /*
  2162. * Be lazy and only check for valid flags here, keeping it out of the
  2163. * critical path in kmem_cache_alloc().
  2164. */
  2165. if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
  2166. BUG();
  2167. if (flags & SLAB_NO_GROW)
  2168. return 0;
  2169. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2170. local_flags = (flags & SLAB_LEVEL_MASK);
  2171. if (!(local_flags & __GFP_WAIT))
  2172. /*
  2173. * Not allowed to sleep. Need to tell a constructor about
  2174. * this - it might need to know...
  2175. */
  2176. ctor_flags |= SLAB_CTOR_ATOMIC;
  2177. /* Take the l3 list lock to change the colour_next on this node */
  2178. check_irq_off();
  2179. l3 = cachep->nodelists[nodeid];
  2180. spin_lock(&l3->list_lock);
  2181. /* Get colour for the slab, and cal the next value. */
  2182. offset = l3->colour_next;
  2183. l3->colour_next++;
  2184. if (l3->colour_next >= cachep->colour)
  2185. l3->colour_next = 0;
  2186. spin_unlock(&l3->list_lock);
  2187. offset *= cachep->colour_off;
  2188. if (local_flags & __GFP_WAIT)
  2189. local_irq_enable();
  2190. /*
  2191. * The test for missing atomic flag is performed here, rather than
  2192. * the more obvious place, simply to reduce the critical path length
  2193. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2194. * will eventually be caught here (where it matters).
  2195. */
  2196. kmem_flagcheck(cachep, flags);
  2197. /*
  2198. * Get mem for the objs. Attempt to allocate a physical page from
  2199. * 'nodeid'.
  2200. */
  2201. objp = kmem_getpages(cachep, flags, nodeid);
  2202. if (!objp)
  2203. goto failed;
  2204. /* Get slab management. */
  2205. slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
  2206. if (!slabp)
  2207. goto opps1;
  2208. slabp->nodeid = nodeid;
  2209. set_slab_attr(cachep, slabp, objp);
  2210. cache_init_objs(cachep, slabp, ctor_flags);
  2211. if (local_flags & __GFP_WAIT)
  2212. local_irq_disable();
  2213. check_irq_off();
  2214. spin_lock(&l3->list_lock);
  2215. /* Make slab active. */
  2216. list_add_tail(&slabp->list, &(l3->slabs_free));
  2217. STATS_INC_GROWN(cachep);
  2218. l3->free_objects += cachep->num;
  2219. spin_unlock(&l3->list_lock);
  2220. return 1;
  2221. opps1:
  2222. kmem_freepages(cachep, objp);
  2223. failed:
  2224. if (local_flags & __GFP_WAIT)
  2225. local_irq_disable();
  2226. return 0;
  2227. }
  2228. #if DEBUG
  2229. /*
  2230. * Perform extra freeing checks:
  2231. * - detect bad pointers.
  2232. * - POISON/RED_ZONE checking
  2233. * - destructor calls, for caches with POISON+dtor
  2234. */
  2235. static void kfree_debugcheck(const void *objp)
  2236. {
  2237. struct page *page;
  2238. if (!virt_addr_valid(objp)) {
  2239. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2240. (unsigned long)objp);
  2241. BUG();
  2242. }
  2243. page = virt_to_page(objp);
  2244. if (!PageSlab(page)) {
  2245. printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
  2246. (unsigned long)objp);
  2247. BUG();
  2248. }
  2249. }
  2250. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2251. void *caller)
  2252. {
  2253. struct page *page;
  2254. unsigned int objnr;
  2255. struct slab *slabp;
  2256. objp -= obj_offset(cachep);
  2257. kfree_debugcheck(objp);
  2258. page = virt_to_page(objp);
  2259. if (page_get_cache(page) != cachep) {
  2260. printk(KERN_ERR "mismatch in kmem_cache_free: expected "
  2261. "cache %p, got %p\n",
  2262. page_get_cache(page), cachep);
  2263. printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
  2264. printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
  2265. page_get_cache(page)->name);
  2266. WARN_ON(1);
  2267. }
  2268. slabp = page_get_slab(page);
  2269. if (cachep->flags & SLAB_RED_ZONE) {
  2270. if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
  2271. *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
  2272. slab_error(cachep, "double free, or memory outside"
  2273. " object was overwritten");
  2274. printk(KERN_ERR "%p: redzone 1:0x%lx, "
  2275. "redzone 2:0x%lx.\n",
  2276. objp, *dbg_redzone1(cachep, objp),
  2277. *dbg_redzone2(cachep, objp));
  2278. }
  2279. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2280. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2281. }
  2282. if (cachep->flags & SLAB_STORE_USER)
  2283. *dbg_userword(cachep, objp) = caller;
  2284. objnr = obj_to_index(cachep, slabp, objp);
  2285. BUG_ON(objnr >= cachep->num);
  2286. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2287. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2288. /*
  2289. * Need to call the slab's constructor so the caller can
  2290. * perform a verify of its state (debugging). Called without
  2291. * the cache-lock held.
  2292. */
  2293. cachep->ctor(objp + obj_offset(cachep),
  2294. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2295. }
  2296. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2297. /* we want to cache poison the object,
  2298. * call the destruction callback
  2299. */
  2300. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2301. }
  2302. if (cachep->flags & SLAB_POISON) {
  2303. #ifdef CONFIG_DEBUG_PAGEALLOC
  2304. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2305. store_stackinfo(cachep, objp, (unsigned long)caller);
  2306. kernel_map_pages(virt_to_page(objp),
  2307. cachep->buffer_size / PAGE_SIZE, 0);
  2308. } else {
  2309. poison_obj(cachep, objp, POISON_FREE);
  2310. }
  2311. #else
  2312. poison_obj(cachep, objp, POISON_FREE);
  2313. #endif
  2314. }
  2315. return objp;
  2316. }
  2317. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2318. {
  2319. kmem_bufctl_t i;
  2320. int entries = 0;
  2321. /* Check slab's freelist to see if this obj is there. */
  2322. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2323. entries++;
  2324. if (entries > cachep->num || i >= cachep->num)
  2325. goto bad;
  2326. }
  2327. if (entries != cachep->num - slabp->inuse) {
  2328. bad:
  2329. printk(KERN_ERR "slab: Internal list corruption detected in "
  2330. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2331. cachep->name, cachep->num, slabp, slabp->inuse);
  2332. for (i = 0;
  2333. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2334. i++) {
  2335. if (i % 16 == 0)
  2336. printk("\n%03x:", i);
  2337. printk(" %02x", ((unsigned char *)slabp)[i]);
  2338. }
  2339. printk("\n");
  2340. BUG();
  2341. }
  2342. }
  2343. #else
  2344. #define kfree_debugcheck(x) do { } while(0)
  2345. #define cache_free_debugcheck(x,objp,z) (objp)
  2346. #define check_slabp(x,y) do { } while(0)
  2347. #endif
  2348. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2349. {
  2350. int batchcount;
  2351. struct kmem_list3 *l3;
  2352. struct array_cache *ac;
  2353. check_irq_off();
  2354. ac = cpu_cache_get(cachep);
  2355. retry:
  2356. batchcount = ac->batchcount;
  2357. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2358. /*
  2359. * If there was little recent activity on this cache, then
  2360. * perform only a partial refill. Otherwise we could generate
  2361. * refill bouncing.
  2362. */
  2363. batchcount = BATCHREFILL_LIMIT;
  2364. }
  2365. l3 = cachep->nodelists[numa_node_id()];
  2366. BUG_ON(ac->avail > 0 || !l3);
  2367. spin_lock(&l3->list_lock);
  2368. if (l3->shared) {
  2369. struct array_cache *shared_array = l3->shared;
  2370. if (shared_array->avail) {
  2371. if (batchcount > shared_array->avail)
  2372. batchcount = shared_array->avail;
  2373. shared_array->avail -= batchcount;
  2374. ac->avail = batchcount;
  2375. memcpy(ac->entry,
  2376. &(shared_array->entry[shared_array->avail]),
  2377. sizeof(void *) * batchcount);
  2378. shared_array->touched = 1;
  2379. goto alloc_done;
  2380. }
  2381. }
  2382. while (batchcount > 0) {
  2383. struct list_head *entry;
  2384. struct slab *slabp;
  2385. /* Get slab alloc is to come from. */
  2386. entry = l3->slabs_partial.next;
  2387. if (entry == &l3->slabs_partial) {
  2388. l3->free_touched = 1;
  2389. entry = l3->slabs_free.next;
  2390. if (entry == &l3->slabs_free)
  2391. goto must_grow;
  2392. }
  2393. slabp = list_entry(entry, struct slab, list);
  2394. check_slabp(cachep, slabp);
  2395. check_spinlock_acquired(cachep);
  2396. while (slabp->inuse < cachep->num && batchcount--) {
  2397. STATS_INC_ALLOCED(cachep);
  2398. STATS_INC_ACTIVE(cachep);
  2399. STATS_SET_HIGH(cachep);
  2400. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2401. numa_node_id());
  2402. }
  2403. check_slabp(cachep, slabp);
  2404. /* move slabp to correct slabp list: */
  2405. list_del(&slabp->list);
  2406. if (slabp->free == BUFCTL_END)
  2407. list_add(&slabp->list, &l3->slabs_full);
  2408. else
  2409. list_add(&slabp->list, &l3->slabs_partial);
  2410. }
  2411. must_grow:
  2412. l3->free_objects -= ac->avail;
  2413. alloc_done:
  2414. spin_unlock(&l3->list_lock);
  2415. if (unlikely(!ac->avail)) {
  2416. int x;
  2417. x = cache_grow(cachep, flags, numa_node_id());
  2418. /* cache_grow can reenable interrupts, then ac could change. */
  2419. ac = cpu_cache_get(cachep);
  2420. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2421. return NULL;
  2422. if (!ac->avail) /* objects refilled by interrupt? */
  2423. goto retry;
  2424. }
  2425. ac->touched = 1;
  2426. return ac->entry[--ac->avail];
  2427. }
  2428. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2429. gfp_t flags)
  2430. {
  2431. might_sleep_if(flags & __GFP_WAIT);
  2432. #if DEBUG
  2433. kmem_flagcheck(cachep, flags);
  2434. #endif
  2435. }
  2436. #if DEBUG
  2437. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2438. gfp_t flags, void *objp, void *caller)
  2439. {
  2440. if (!objp)
  2441. return objp;
  2442. if (cachep->flags & SLAB_POISON) {
  2443. #ifdef CONFIG_DEBUG_PAGEALLOC
  2444. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2445. kernel_map_pages(virt_to_page(objp),
  2446. cachep->buffer_size / PAGE_SIZE, 1);
  2447. else
  2448. check_poison_obj(cachep, objp);
  2449. #else
  2450. check_poison_obj(cachep, objp);
  2451. #endif
  2452. poison_obj(cachep, objp, POISON_INUSE);
  2453. }
  2454. if (cachep->flags & SLAB_STORE_USER)
  2455. *dbg_userword(cachep, objp) = caller;
  2456. if (cachep->flags & SLAB_RED_ZONE) {
  2457. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2458. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2459. slab_error(cachep, "double free, or memory outside"
  2460. " object was overwritten");
  2461. printk(KERN_ERR
  2462. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2463. objp, *dbg_redzone1(cachep, objp),
  2464. *dbg_redzone2(cachep, objp));
  2465. }
  2466. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2467. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2468. }
  2469. objp += obj_offset(cachep);
  2470. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2471. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2472. if (!(flags & __GFP_WAIT))
  2473. ctor_flags |= SLAB_CTOR_ATOMIC;
  2474. cachep->ctor(objp, cachep, ctor_flags);
  2475. }
  2476. return objp;
  2477. }
  2478. #else
  2479. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2480. #endif
  2481. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2482. {
  2483. void *objp;
  2484. struct array_cache *ac;
  2485. #ifdef CONFIG_NUMA
  2486. if (unlikely(current->mempolicy && !in_interrupt())) {
  2487. int nid = slab_node(current->mempolicy);
  2488. if (nid != numa_node_id())
  2489. return __cache_alloc_node(cachep, flags, nid);
  2490. }
  2491. #endif
  2492. check_irq_off();
  2493. ac = cpu_cache_get(cachep);
  2494. if (likely(ac->avail)) {
  2495. STATS_INC_ALLOCHIT(cachep);
  2496. ac->touched = 1;
  2497. objp = ac->entry[--ac->avail];
  2498. } else {
  2499. STATS_INC_ALLOCMISS(cachep);
  2500. objp = cache_alloc_refill(cachep, flags);
  2501. }
  2502. return objp;
  2503. }
  2504. static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
  2505. gfp_t flags, void *caller)
  2506. {
  2507. unsigned long save_flags;
  2508. void *objp;
  2509. cache_alloc_debugcheck_before(cachep, flags);
  2510. local_irq_save(save_flags);
  2511. objp = ____cache_alloc(cachep, flags);
  2512. local_irq_restore(save_flags);
  2513. objp = cache_alloc_debugcheck_after(cachep, flags, objp,
  2514. caller);
  2515. prefetchw(objp);
  2516. return objp;
  2517. }
  2518. #ifdef CONFIG_NUMA
  2519. /*
  2520. * A interface to enable slab creation on nodeid
  2521. */
  2522. static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2523. int nodeid)
  2524. {
  2525. struct list_head *entry;
  2526. struct slab *slabp;
  2527. struct kmem_list3 *l3;
  2528. void *obj;
  2529. int x;
  2530. l3 = cachep->nodelists[nodeid];
  2531. BUG_ON(!l3);
  2532. retry:
  2533. check_irq_off();
  2534. spin_lock(&l3->list_lock);
  2535. entry = l3->slabs_partial.next;
  2536. if (entry == &l3->slabs_partial) {
  2537. l3->free_touched = 1;
  2538. entry = l3->slabs_free.next;
  2539. if (entry == &l3->slabs_free)
  2540. goto must_grow;
  2541. }
  2542. slabp = list_entry(entry, struct slab, list);
  2543. check_spinlock_acquired_node(cachep, nodeid);
  2544. check_slabp(cachep, slabp);
  2545. STATS_INC_NODEALLOCS(cachep);
  2546. STATS_INC_ACTIVE(cachep);
  2547. STATS_SET_HIGH(cachep);
  2548. BUG_ON(slabp->inuse == cachep->num);
  2549. obj = slab_get_obj(cachep, slabp, nodeid);
  2550. check_slabp(cachep, slabp);
  2551. l3->free_objects--;
  2552. /* move slabp to correct slabp list: */
  2553. list_del(&slabp->list);
  2554. if (slabp->free == BUFCTL_END)
  2555. list_add(&slabp->list, &l3->slabs_full);
  2556. else
  2557. list_add(&slabp->list, &l3->slabs_partial);
  2558. spin_unlock(&l3->list_lock);
  2559. goto done;
  2560. must_grow:
  2561. spin_unlock(&l3->list_lock);
  2562. x = cache_grow(cachep, flags, nodeid);
  2563. if (!x)
  2564. return NULL;
  2565. goto retry;
  2566. done:
  2567. return obj;
  2568. }
  2569. #endif
  2570. /*
  2571. * Caller needs to acquire correct kmem_list's list_lock
  2572. */
  2573. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  2574. int node)
  2575. {
  2576. int i;
  2577. struct kmem_list3 *l3;
  2578. for (i = 0; i < nr_objects; i++) {
  2579. void *objp = objpp[i];
  2580. struct slab *slabp;
  2581. slabp = virt_to_slab(objp);
  2582. l3 = cachep->nodelists[node];
  2583. list_del(&slabp->list);
  2584. check_spinlock_acquired_node(cachep, node);
  2585. check_slabp(cachep, slabp);
  2586. slab_put_obj(cachep, slabp, objp, node);
  2587. STATS_DEC_ACTIVE(cachep);
  2588. l3->free_objects++;
  2589. check_slabp(cachep, slabp);
  2590. /* fixup slab chains */
  2591. if (slabp->inuse == 0) {
  2592. if (l3->free_objects > l3->free_limit) {
  2593. l3->free_objects -= cachep->num;
  2594. slab_destroy(cachep, slabp);
  2595. } else {
  2596. list_add(&slabp->list, &l3->slabs_free);
  2597. }
  2598. } else {
  2599. /* Unconditionally move a slab to the end of the
  2600. * partial list on free - maximum time for the
  2601. * other objects to be freed, too.
  2602. */
  2603. list_add_tail(&slabp->list, &l3->slabs_partial);
  2604. }
  2605. }
  2606. }
  2607. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2608. {
  2609. int batchcount;
  2610. struct kmem_list3 *l3;
  2611. int node = numa_node_id();
  2612. batchcount = ac->batchcount;
  2613. #if DEBUG
  2614. BUG_ON(!batchcount || batchcount > ac->avail);
  2615. #endif
  2616. check_irq_off();
  2617. l3 = cachep->nodelists[node];
  2618. spin_lock(&l3->list_lock);
  2619. if (l3->shared) {
  2620. struct array_cache *shared_array = l3->shared;
  2621. int max = shared_array->limit - shared_array->avail;
  2622. if (max) {
  2623. if (batchcount > max)
  2624. batchcount = max;
  2625. memcpy(&(shared_array->entry[shared_array->avail]),
  2626. ac->entry, sizeof(void *) * batchcount);
  2627. shared_array->avail += batchcount;
  2628. goto free_done;
  2629. }
  2630. }
  2631. free_block(cachep, ac->entry, batchcount, node);
  2632. free_done:
  2633. #if STATS
  2634. {
  2635. int i = 0;
  2636. struct list_head *p;
  2637. p = l3->slabs_free.next;
  2638. while (p != &(l3->slabs_free)) {
  2639. struct slab *slabp;
  2640. slabp = list_entry(p, struct slab, list);
  2641. BUG_ON(slabp->inuse);
  2642. i++;
  2643. p = p->next;
  2644. }
  2645. STATS_SET_FREEABLE(cachep, i);
  2646. }
  2647. #endif
  2648. spin_unlock(&l3->list_lock);
  2649. ac->avail -= batchcount;
  2650. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  2651. }
  2652. /*
  2653. * Release an obj back to its cache. If the obj has a constructed state, it must
  2654. * be in this state _before_ it is released. Called with disabled ints.
  2655. */
  2656. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  2657. {
  2658. struct array_cache *ac = cpu_cache_get(cachep);
  2659. check_irq_off();
  2660. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  2661. /* Make sure we are not freeing a object from another
  2662. * node to the array cache on this cpu.
  2663. */
  2664. #ifdef CONFIG_NUMA
  2665. {
  2666. struct slab *slabp;
  2667. slabp = virt_to_slab(objp);
  2668. if (unlikely(slabp->nodeid != numa_node_id())) {
  2669. struct array_cache *alien = NULL;
  2670. int nodeid = slabp->nodeid;
  2671. struct kmem_list3 *l3;
  2672. l3 = cachep->nodelists[numa_node_id()];
  2673. STATS_INC_NODEFREES(cachep);
  2674. if (l3->alien && l3->alien[nodeid]) {
  2675. alien = l3->alien[nodeid];
  2676. spin_lock(&alien->lock);
  2677. if (unlikely(alien->avail == alien->limit))
  2678. __drain_alien_cache(cachep,
  2679. alien, nodeid);
  2680. alien->entry[alien->avail++] = objp;
  2681. spin_unlock(&alien->lock);
  2682. } else {
  2683. spin_lock(&(cachep->nodelists[nodeid])->
  2684. list_lock);
  2685. free_block(cachep, &objp, 1, nodeid);
  2686. spin_unlock(&(cachep->nodelists[nodeid])->
  2687. list_lock);
  2688. }
  2689. return;
  2690. }
  2691. }
  2692. #endif
  2693. if (likely(ac->avail < ac->limit)) {
  2694. STATS_INC_FREEHIT(cachep);
  2695. ac->entry[ac->avail++] = objp;
  2696. return;
  2697. } else {
  2698. STATS_INC_FREEMISS(cachep);
  2699. cache_flusharray(cachep, ac);
  2700. ac->entry[ac->avail++] = objp;
  2701. }
  2702. }
  2703. /**
  2704. * kmem_cache_alloc - Allocate an object
  2705. * @cachep: The cache to allocate from.
  2706. * @flags: See kmalloc().
  2707. *
  2708. * Allocate an object from this cache. The flags are only relevant
  2709. * if the cache has no available objects.
  2710. */
  2711. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2712. {
  2713. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  2714. }
  2715. EXPORT_SYMBOL(kmem_cache_alloc);
  2716. /**
  2717. * kmem_ptr_validate - check if an untrusted pointer might
  2718. * be a slab entry.
  2719. * @cachep: the cache we're checking against
  2720. * @ptr: pointer to validate
  2721. *
  2722. * This verifies that the untrusted pointer looks sane:
  2723. * it is _not_ a guarantee that the pointer is actually
  2724. * part of the slab cache in question, but it at least
  2725. * validates that the pointer can be dereferenced and
  2726. * looks half-way sane.
  2727. *
  2728. * Currently only used for dentry validation.
  2729. */
  2730. int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
  2731. {
  2732. unsigned long addr = (unsigned long)ptr;
  2733. unsigned long min_addr = PAGE_OFFSET;
  2734. unsigned long align_mask = BYTES_PER_WORD - 1;
  2735. unsigned long size = cachep->buffer_size;
  2736. struct page *page;
  2737. if (unlikely(addr < min_addr))
  2738. goto out;
  2739. if (unlikely(addr > (unsigned long)high_memory - size))
  2740. goto out;
  2741. if (unlikely(addr & align_mask))
  2742. goto out;
  2743. if (unlikely(!kern_addr_valid(addr)))
  2744. goto out;
  2745. if (unlikely(!kern_addr_valid(addr + size - 1)))
  2746. goto out;
  2747. page = virt_to_page(ptr);
  2748. if (unlikely(!PageSlab(page)))
  2749. goto out;
  2750. if (unlikely(page_get_cache(page) != cachep))
  2751. goto out;
  2752. return 1;
  2753. out:
  2754. return 0;
  2755. }
  2756. #ifdef CONFIG_NUMA
  2757. /**
  2758. * kmem_cache_alloc_node - Allocate an object on the specified node
  2759. * @cachep: The cache to allocate from.
  2760. * @flags: See kmalloc().
  2761. * @nodeid: node number of the target node.
  2762. *
  2763. * Identical to kmem_cache_alloc, except that this function is slow
  2764. * and can sleep. And it will allocate memory on the given node, which
  2765. * can improve the performance for cpu bound structures.
  2766. * New and improved: it will now make sure that the object gets
  2767. * put on the correct node list so that there is no false sharing.
  2768. */
  2769. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2770. {
  2771. unsigned long save_flags;
  2772. void *ptr;
  2773. cache_alloc_debugcheck_before(cachep, flags);
  2774. local_irq_save(save_flags);
  2775. if (nodeid == -1 || nodeid == numa_node_id() ||
  2776. !cachep->nodelists[nodeid])
  2777. ptr = ____cache_alloc(cachep, flags);
  2778. else
  2779. ptr = __cache_alloc_node(cachep, flags, nodeid);
  2780. local_irq_restore(save_flags);
  2781. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
  2782. __builtin_return_address(0));
  2783. return ptr;
  2784. }
  2785. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2786. void *kmalloc_node(size_t size, gfp_t flags, int node)
  2787. {
  2788. struct kmem_cache *cachep;
  2789. cachep = kmem_find_general_cachep(size, flags);
  2790. if (unlikely(cachep == NULL))
  2791. return NULL;
  2792. return kmem_cache_alloc_node(cachep, flags, node);
  2793. }
  2794. EXPORT_SYMBOL(kmalloc_node);
  2795. #endif
  2796. /**
  2797. * kmalloc - allocate memory
  2798. * @size: how many bytes of memory are required.
  2799. * @flags: the type of memory to allocate.
  2800. * @caller: function caller for debug tracking of the caller
  2801. *
  2802. * kmalloc is the normal method of allocating memory
  2803. * in the kernel.
  2804. *
  2805. * The @flags argument may be one of:
  2806. *
  2807. * %GFP_USER - Allocate memory on behalf of user. May sleep.
  2808. *
  2809. * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
  2810. *
  2811. * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
  2812. *
  2813. * Additionally, the %GFP_DMA flag may be set to indicate the memory
  2814. * must be suitable for DMA. This can mean different things on different
  2815. * platforms. For example, on i386, it means that the memory must come
  2816. * from the first 16MB.
  2817. */
  2818. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  2819. void *caller)
  2820. {
  2821. struct kmem_cache *cachep;
  2822. /* If you want to save a few bytes .text space: replace
  2823. * __ with kmem_.
  2824. * Then kmalloc uses the uninlined functions instead of the inline
  2825. * functions.
  2826. */
  2827. cachep = __find_general_cachep(size, flags);
  2828. if (unlikely(cachep == NULL))
  2829. return NULL;
  2830. return __cache_alloc(cachep, flags, caller);
  2831. }
  2832. #ifndef CONFIG_DEBUG_SLAB
  2833. void *__kmalloc(size_t size, gfp_t flags)
  2834. {
  2835. return __do_kmalloc(size, flags, NULL);
  2836. }
  2837. EXPORT_SYMBOL(__kmalloc);
  2838. #else
  2839. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  2840. {
  2841. return __do_kmalloc(size, flags, caller);
  2842. }
  2843. EXPORT_SYMBOL(__kmalloc_track_caller);
  2844. #endif
  2845. #ifdef CONFIG_SMP
  2846. /**
  2847. * __alloc_percpu - allocate one copy of the object for every present
  2848. * cpu in the system, zeroing them.
  2849. * Objects should be dereferenced using the per_cpu_ptr macro only.
  2850. *
  2851. * @size: how many bytes of memory are required.
  2852. */
  2853. void *__alloc_percpu(size_t size)
  2854. {
  2855. int i;
  2856. struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
  2857. if (!pdata)
  2858. return NULL;
  2859. /*
  2860. * Cannot use for_each_online_cpu since a cpu may come online
  2861. * and we have no way of figuring out how to fix the array
  2862. * that we have allocated then....
  2863. */
  2864. for_each_cpu(i) {
  2865. int node = cpu_to_node(i);
  2866. if (node_online(node))
  2867. pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
  2868. else
  2869. pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
  2870. if (!pdata->ptrs[i])
  2871. goto unwind_oom;
  2872. memset(pdata->ptrs[i], 0, size);
  2873. }
  2874. /* Catch derefs w/o wrappers */
  2875. return (void *)(~(unsigned long)pdata);
  2876. unwind_oom:
  2877. while (--i >= 0) {
  2878. if (!cpu_possible(i))
  2879. continue;
  2880. kfree(pdata->ptrs[i]);
  2881. }
  2882. kfree(pdata);
  2883. return NULL;
  2884. }
  2885. EXPORT_SYMBOL(__alloc_percpu);
  2886. #endif
  2887. /**
  2888. * kmem_cache_free - Deallocate an object
  2889. * @cachep: The cache the allocation was from.
  2890. * @objp: The previously allocated object.
  2891. *
  2892. * Free an object which was previously allocated from this
  2893. * cache.
  2894. */
  2895. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  2896. {
  2897. unsigned long flags;
  2898. local_irq_save(flags);
  2899. __cache_free(cachep, objp);
  2900. local_irq_restore(flags);
  2901. }
  2902. EXPORT_SYMBOL(kmem_cache_free);
  2903. /**
  2904. * kfree - free previously allocated memory
  2905. * @objp: pointer returned by kmalloc.
  2906. *
  2907. * If @objp is NULL, no operation is performed.
  2908. *
  2909. * Don't free memory not originally allocated by kmalloc()
  2910. * or you will run into trouble.
  2911. */
  2912. void kfree(const void *objp)
  2913. {
  2914. struct kmem_cache *c;
  2915. unsigned long flags;
  2916. if (unlikely(!objp))
  2917. return;
  2918. local_irq_save(flags);
  2919. kfree_debugcheck(objp);
  2920. c = virt_to_cache(objp);
  2921. mutex_debug_check_no_locks_freed(objp, obj_size(c));
  2922. __cache_free(c, (void *)objp);
  2923. local_irq_restore(flags);
  2924. }
  2925. EXPORT_SYMBOL(kfree);
  2926. #ifdef CONFIG_SMP
  2927. /**
  2928. * free_percpu - free previously allocated percpu memory
  2929. * @objp: pointer returned by alloc_percpu.
  2930. *
  2931. * Don't free memory not originally allocated by alloc_percpu()
  2932. * The complemented objp is to check for that.
  2933. */
  2934. void free_percpu(const void *objp)
  2935. {
  2936. int i;
  2937. struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
  2938. /*
  2939. * We allocate for all cpus so we cannot use for online cpu here.
  2940. */
  2941. for_each_cpu(i)
  2942. kfree(p->ptrs[i]);
  2943. kfree(p);
  2944. }
  2945. EXPORT_SYMBOL(free_percpu);
  2946. #endif
  2947. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  2948. {
  2949. return obj_size(cachep);
  2950. }
  2951. EXPORT_SYMBOL(kmem_cache_size);
  2952. const char *kmem_cache_name(struct kmem_cache *cachep)
  2953. {
  2954. return cachep->name;
  2955. }
  2956. EXPORT_SYMBOL_GPL(kmem_cache_name);
  2957. /*
  2958. * This initializes kmem_list3 for all nodes.
  2959. */
  2960. static int alloc_kmemlist(struct kmem_cache *cachep)
  2961. {
  2962. int node;
  2963. struct kmem_list3 *l3;
  2964. int err = 0;
  2965. for_each_online_node(node) {
  2966. struct array_cache *nc = NULL, *new;
  2967. struct array_cache **new_alien = NULL;
  2968. #ifdef CONFIG_NUMA
  2969. new_alien = alloc_alien_cache(node, cachep->limit);
  2970. if (!new_alien)
  2971. goto fail;
  2972. #endif
  2973. new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
  2974. 0xbaadf00d);
  2975. if (!new)
  2976. goto fail;
  2977. l3 = cachep->nodelists[node];
  2978. if (l3) {
  2979. spin_lock_irq(&l3->list_lock);
  2980. nc = cachep->nodelists[node]->shared;
  2981. if (nc)
  2982. free_block(cachep, nc->entry, nc->avail, node);
  2983. l3->shared = new;
  2984. if (!cachep->nodelists[node]->alien) {
  2985. l3->alien = new_alien;
  2986. new_alien = NULL;
  2987. }
  2988. l3->free_limit = (1 + nr_cpus_node(node)) *
  2989. cachep->batchcount + cachep->num;
  2990. spin_unlock_irq(&l3->list_lock);
  2991. kfree(nc);
  2992. free_alien_cache(new_alien);
  2993. continue;
  2994. }
  2995. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  2996. if (!l3)
  2997. goto fail;
  2998. kmem_list3_init(l3);
  2999. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3000. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3001. l3->shared = new;
  3002. l3->alien = new_alien;
  3003. l3->free_limit = (1 + nr_cpus_node(node)) *
  3004. cachep->batchcount + cachep->num;
  3005. cachep->nodelists[node] = l3;
  3006. }
  3007. return err;
  3008. fail:
  3009. err = -ENOMEM;
  3010. return err;
  3011. }
  3012. struct ccupdate_struct {
  3013. struct kmem_cache *cachep;
  3014. struct array_cache *new[NR_CPUS];
  3015. };
  3016. static void do_ccupdate_local(void *info)
  3017. {
  3018. struct ccupdate_struct *new = info;
  3019. struct array_cache *old;
  3020. check_irq_off();
  3021. old = cpu_cache_get(new->cachep);
  3022. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3023. new->new[smp_processor_id()] = old;
  3024. }
  3025. /* Always called with the cache_chain_mutex held */
  3026. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3027. int batchcount, int shared)
  3028. {
  3029. struct ccupdate_struct new;
  3030. int i, err;
  3031. memset(&new.new, 0, sizeof(new.new));
  3032. for_each_online_cpu(i) {
  3033. new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3034. batchcount);
  3035. if (!new.new[i]) {
  3036. for (i--; i >= 0; i--)
  3037. kfree(new.new[i]);
  3038. return -ENOMEM;
  3039. }
  3040. }
  3041. new.cachep = cachep;
  3042. on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
  3043. check_irq_on();
  3044. cachep->batchcount = batchcount;
  3045. cachep->limit = limit;
  3046. cachep->shared = shared;
  3047. for_each_online_cpu(i) {
  3048. struct array_cache *ccold = new.new[i];
  3049. if (!ccold)
  3050. continue;
  3051. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3052. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3053. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3054. kfree(ccold);
  3055. }
  3056. err = alloc_kmemlist(cachep);
  3057. if (err) {
  3058. printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
  3059. cachep->name, -err);
  3060. BUG();
  3061. }
  3062. return 0;
  3063. }
  3064. /* Called with cache_chain_mutex held always */
  3065. static void enable_cpucache(struct kmem_cache *cachep)
  3066. {
  3067. int err;
  3068. int limit, shared;
  3069. /*
  3070. * The head array serves three purposes:
  3071. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3072. * - reduce the number of spinlock operations.
  3073. * - reduce the number of linked list operations on the slab and
  3074. * bufctl chains: array operations are cheaper.
  3075. * The numbers are guessed, we should auto-tune as described by
  3076. * Bonwick.
  3077. */
  3078. if (cachep->buffer_size > 131072)
  3079. limit = 1;
  3080. else if (cachep->buffer_size > PAGE_SIZE)
  3081. limit = 8;
  3082. else if (cachep->buffer_size > 1024)
  3083. limit = 24;
  3084. else if (cachep->buffer_size > 256)
  3085. limit = 54;
  3086. else
  3087. limit = 120;
  3088. /*
  3089. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3090. * allocation behaviour: Most allocs on one cpu, most free operations
  3091. * on another cpu. For these cases, an efficient object passing between
  3092. * cpus is necessary. This is provided by a shared array. The array
  3093. * replaces Bonwick's magazine layer.
  3094. * On uniprocessor, it's functionally equivalent (but less efficient)
  3095. * to a larger limit. Thus disabled by default.
  3096. */
  3097. shared = 0;
  3098. #ifdef CONFIG_SMP
  3099. if (cachep->buffer_size <= PAGE_SIZE)
  3100. shared = 8;
  3101. #endif
  3102. #if DEBUG
  3103. /*
  3104. * With debugging enabled, large batchcount lead to excessively long
  3105. * periods with disabled local interrupts. Limit the batchcount
  3106. */
  3107. if (limit > 32)
  3108. limit = 32;
  3109. #endif
  3110. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3111. if (err)
  3112. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3113. cachep->name, -err);
  3114. }
  3115. static void drain_array_locked(struct kmem_cache *cachep,
  3116. struct array_cache *ac, int force, int node)
  3117. {
  3118. int tofree;
  3119. check_spinlock_acquired_node(cachep, node);
  3120. if (ac->touched && !force) {
  3121. ac->touched = 0;
  3122. } else if (ac->avail) {
  3123. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3124. if (tofree > ac->avail)
  3125. tofree = (ac->avail + 1) / 2;
  3126. free_block(cachep, ac->entry, tofree, node);
  3127. ac->avail -= tofree;
  3128. memmove(ac->entry, &(ac->entry[tofree]),
  3129. sizeof(void *) * ac->avail);
  3130. }
  3131. }
  3132. /**
  3133. * cache_reap - Reclaim memory from caches.
  3134. * @unused: unused parameter
  3135. *
  3136. * Called from workqueue/eventd every few seconds.
  3137. * Purpose:
  3138. * - clear the per-cpu caches for this CPU.
  3139. * - return freeable pages to the main free memory pool.
  3140. *
  3141. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3142. * again on the next iteration.
  3143. */
  3144. static void cache_reap(void *unused)
  3145. {
  3146. struct list_head *walk;
  3147. struct kmem_list3 *l3;
  3148. if (!mutex_trylock(&cache_chain_mutex)) {
  3149. /* Give up. Setup the next iteration. */
  3150. schedule_delayed_work(&__get_cpu_var(reap_work),
  3151. REAPTIMEOUT_CPUC);
  3152. return;
  3153. }
  3154. list_for_each(walk, &cache_chain) {
  3155. struct kmem_cache *searchp;
  3156. struct list_head *p;
  3157. int tofree;
  3158. struct slab *slabp;
  3159. searchp = list_entry(walk, struct kmem_cache, next);
  3160. check_irq_on();
  3161. l3 = searchp->nodelists[numa_node_id()];
  3162. reap_alien(searchp, l3);
  3163. spin_lock_irq(&l3->list_lock);
  3164. drain_array_locked(searchp, cpu_cache_get(searchp), 0,
  3165. numa_node_id());
  3166. if (time_after(l3->next_reap, jiffies))
  3167. goto next_unlock;
  3168. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3169. if (l3->shared)
  3170. drain_array_locked(searchp, l3->shared, 0,
  3171. numa_node_id());
  3172. if (l3->free_touched) {
  3173. l3->free_touched = 0;
  3174. goto next_unlock;
  3175. }
  3176. tofree = (l3->free_limit + 5 * searchp->num - 1) /
  3177. (5 * searchp->num);
  3178. do {
  3179. p = l3->slabs_free.next;
  3180. if (p == &(l3->slabs_free))
  3181. break;
  3182. slabp = list_entry(p, struct slab, list);
  3183. BUG_ON(slabp->inuse);
  3184. list_del(&slabp->list);
  3185. STATS_INC_REAPED(searchp);
  3186. /*
  3187. * Safe to drop the lock. The slab is no longer linked
  3188. * to the cache. searchp cannot disappear, we hold
  3189. * cache_chain_lock
  3190. */
  3191. l3->free_objects -= searchp->num;
  3192. spin_unlock_irq(&l3->list_lock);
  3193. slab_destroy(searchp, slabp);
  3194. spin_lock_irq(&l3->list_lock);
  3195. } while (--tofree > 0);
  3196. next_unlock:
  3197. spin_unlock_irq(&l3->list_lock);
  3198. cond_resched();
  3199. }
  3200. check_irq_on();
  3201. mutex_unlock(&cache_chain_mutex);
  3202. next_reap_node();
  3203. /* Set up the next iteration */
  3204. schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
  3205. }
  3206. #ifdef CONFIG_PROC_FS
  3207. static void print_slabinfo_header(struct seq_file *m)
  3208. {
  3209. /*
  3210. * Output format version, so at least we can change it
  3211. * without _too_ many complaints.
  3212. */
  3213. #if STATS
  3214. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3215. #else
  3216. seq_puts(m, "slabinfo - version: 2.1\n");
  3217. #endif
  3218. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3219. "<objperslab> <pagesperslab>");
  3220. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3221. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3222. #if STATS
  3223. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3224. "<error> <maxfreeable> <nodeallocs> <remotefrees>");
  3225. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3226. #endif
  3227. seq_putc(m, '\n');
  3228. }
  3229. static void *s_start(struct seq_file *m, loff_t *pos)
  3230. {
  3231. loff_t n = *pos;
  3232. struct list_head *p;
  3233. mutex_lock(&cache_chain_mutex);
  3234. if (!n)
  3235. print_slabinfo_header(m);
  3236. p = cache_chain.next;
  3237. while (n--) {
  3238. p = p->next;
  3239. if (p == &cache_chain)
  3240. return NULL;
  3241. }
  3242. return list_entry(p, struct kmem_cache, next);
  3243. }
  3244. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3245. {
  3246. struct kmem_cache *cachep = p;
  3247. ++*pos;
  3248. return cachep->next.next == &cache_chain ?
  3249. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3250. }
  3251. static void s_stop(struct seq_file *m, void *p)
  3252. {
  3253. mutex_unlock(&cache_chain_mutex);
  3254. }
  3255. static int s_show(struct seq_file *m, void *p)
  3256. {
  3257. struct kmem_cache *cachep = p;
  3258. struct list_head *q;
  3259. struct slab *slabp;
  3260. unsigned long active_objs;
  3261. unsigned long num_objs;
  3262. unsigned long active_slabs = 0;
  3263. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3264. const char *name;
  3265. char *error = NULL;
  3266. int node;
  3267. struct kmem_list3 *l3;
  3268. active_objs = 0;
  3269. num_slabs = 0;
  3270. for_each_online_node(node) {
  3271. l3 = cachep->nodelists[node];
  3272. if (!l3)
  3273. continue;
  3274. check_irq_on();
  3275. spin_lock_irq(&l3->list_lock);
  3276. list_for_each(q, &l3->slabs_full) {
  3277. slabp = list_entry(q, struct slab, list);
  3278. if (slabp->inuse != cachep->num && !error)
  3279. error = "slabs_full accounting error";
  3280. active_objs += cachep->num;
  3281. active_slabs++;
  3282. }
  3283. list_for_each(q, &l3->slabs_partial) {
  3284. slabp = list_entry(q, struct slab, list);
  3285. if (slabp->inuse == cachep->num && !error)
  3286. error = "slabs_partial inuse accounting error";
  3287. if (!slabp->inuse && !error)
  3288. error = "slabs_partial/inuse accounting error";
  3289. active_objs += slabp->inuse;
  3290. active_slabs++;
  3291. }
  3292. list_for_each(q, &l3->slabs_free) {
  3293. slabp = list_entry(q, struct slab, list);
  3294. if (slabp->inuse && !error)
  3295. error = "slabs_free/inuse accounting error";
  3296. num_slabs++;
  3297. }
  3298. free_objects += l3->free_objects;
  3299. if (l3->shared)
  3300. shared_avail += l3->shared->avail;
  3301. spin_unlock_irq(&l3->list_lock);
  3302. }
  3303. num_slabs += active_slabs;
  3304. num_objs = num_slabs * cachep->num;
  3305. if (num_objs - active_objs != free_objects && !error)
  3306. error = "free_objects accounting error";
  3307. name = cachep->name;
  3308. if (error)
  3309. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3310. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3311. name, active_objs, num_objs, cachep->buffer_size,
  3312. cachep->num, (1 << cachep->gfporder));
  3313. seq_printf(m, " : tunables %4u %4u %4u",
  3314. cachep->limit, cachep->batchcount, cachep->shared);
  3315. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3316. active_slabs, num_slabs, shared_avail);
  3317. #if STATS
  3318. { /* list3 stats */
  3319. unsigned long high = cachep->high_mark;
  3320. unsigned long allocs = cachep->num_allocations;
  3321. unsigned long grown = cachep->grown;
  3322. unsigned long reaped = cachep->reaped;
  3323. unsigned long errors = cachep->errors;
  3324. unsigned long max_freeable = cachep->max_freeable;
  3325. unsigned long node_allocs = cachep->node_allocs;
  3326. unsigned long node_frees = cachep->node_frees;
  3327. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3328. %4lu %4lu %4lu %4lu", allocs, high, grown,
  3329. reaped, errors, max_freeable, node_allocs,
  3330. node_frees);
  3331. }
  3332. /* cpu stats */
  3333. {
  3334. unsigned long allochit = atomic_read(&cachep->allochit);
  3335. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3336. unsigned long freehit = atomic_read(&cachep->freehit);
  3337. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3338. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3339. allochit, allocmiss, freehit, freemiss);
  3340. }
  3341. #endif
  3342. seq_putc(m, '\n');
  3343. return 0;
  3344. }
  3345. /*
  3346. * slabinfo_op - iterator that generates /proc/slabinfo
  3347. *
  3348. * Output layout:
  3349. * cache-name
  3350. * num-active-objs
  3351. * total-objs
  3352. * object size
  3353. * num-active-slabs
  3354. * total-slabs
  3355. * num-pages-per-slab
  3356. * + further values on SMP and with statistics enabled
  3357. */
  3358. struct seq_operations slabinfo_op = {
  3359. .start = s_start,
  3360. .next = s_next,
  3361. .stop = s_stop,
  3362. .show = s_show,
  3363. };
  3364. #define MAX_SLABINFO_WRITE 128
  3365. /**
  3366. * slabinfo_write - Tuning for the slab allocator
  3367. * @file: unused
  3368. * @buffer: user buffer
  3369. * @count: data length
  3370. * @ppos: unused
  3371. */
  3372. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3373. size_t count, loff_t *ppos)
  3374. {
  3375. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3376. int limit, batchcount, shared, res;
  3377. struct list_head *p;
  3378. if (count > MAX_SLABINFO_WRITE)
  3379. return -EINVAL;
  3380. if (copy_from_user(&kbuf, buffer, count))
  3381. return -EFAULT;
  3382. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3383. tmp = strchr(kbuf, ' ');
  3384. if (!tmp)
  3385. return -EINVAL;
  3386. *tmp = '\0';
  3387. tmp++;
  3388. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3389. return -EINVAL;
  3390. /* Find the cache in the chain of caches. */
  3391. mutex_lock(&cache_chain_mutex);
  3392. res = -EINVAL;
  3393. list_for_each(p, &cache_chain) {
  3394. struct kmem_cache *cachep;
  3395. cachep = list_entry(p, struct kmem_cache, next);
  3396. if (!strcmp(cachep->name, kbuf)) {
  3397. if (limit < 1 || batchcount < 1 ||
  3398. batchcount > limit || shared < 0) {
  3399. res = 0;
  3400. } else {
  3401. res = do_tune_cpucache(cachep, limit,
  3402. batchcount, shared);
  3403. }
  3404. break;
  3405. }
  3406. }
  3407. mutex_unlock(&cache_chain_mutex);
  3408. if (res >= 0)
  3409. res = count;
  3410. return res;
  3411. }
  3412. #endif
  3413. /**
  3414. * ksize - get the actual amount of memory allocated for a given object
  3415. * @objp: Pointer to the object
  3416. *
  3417. * kmalloc may internally round up allocations and return more memory
  3418. * than requested. ksize() can be used to determine the actual amount of
  3419. * memory allocated. The caller may use this additional memory, even though
  3420. * a smaller amount of memory was initially specified with the kmalloc call.
  3421. * The caller must guarantee that objp points to a valid object previously
  3422. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3423. * must not be freed during the duration of the call.
  3424. */
  3425. unsigned int ksize(const void *objp)
  3426. {
  3427. if (unlikely(objp == NULL))
  3428. return 0;
  3429. return obj_size(virt_to_cache(objp));
  3430. }