setup.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * Stephane Eranian <eranian@hpl.hp.com>
  7. * Copyright (C) 2000, 2004 Intel Corp
  8. * Rohit Seth <rohit.seth@intel.com>
  9. * Suresh Siddha <suresh.b.siddha@intel.com>
  10. * Gordon Jin <gordon.jin@intel.com>
  11. * Copyright (C) 1999 VA Linux Systems
  12. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  13. *
  14. * 12/26/04 S.Siddha, G.Jin, R.Seth
  15. * Add multi-threading and multi-core detection
  16. * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
  17. * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
  18. * 03/31/00 R.Seth cpu_initialized and current->processor fixes
  19. * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
  20. * 02/01/00 R.Seth fixed get_cpuinfo for SMP
  21. * 01/07/99 S.Eranian added the support for command line argument
  22. * 06/24/99 W.Drummond added boot_cpu_data.
  23. * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
  24. */
  25. #include <linux/module.h>
  26. #include <linux/init.h>
  27. #include <linux/acpi.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/console.h>
  30. #include <linux/delay.h>
  31. #include <linux/kernel.h>
  32. #include <linux/reboot.h>
  33. #include <linux/sched.h>
  34. #include <linux/seq_file.h>
  35. #include <linux/string.h>
  36. #include <linux/threads.h>
  37. #include <linux/screen_info.h>
  38. #include <linux/dmi.h>
  39. #include <linux/serial.h>
  40. #include <linux/serial_core.h>
  41. #include <linux/efi.h>
  42. #include <linux/initrd.h>
  43. #include <linux/pm.h>
  44. #include <linux/cpufreq.h>
  45. #include <linux/kexec.h>
  46. #include <linux/crash_dump.h>
  47. #include <asm/ia32.h>
  48. #include <asm/machvec.h>
  49. #include <asm/mca.h>
  50. #include <asm/meminit.h>
  51. #include <asm/page.h>
  52. #include <asm/patch.h>
  53. #include <asm/pgtable.h>
  54. #include <asm/processor.h>
  55. #include <asm/sal.h>
  56. #include <asm/sections.h>
  57. #include <asm/setup.h>
  58. #include <asm/smp.h>
  59. #include <asm/system.h>
  60. #include <asm/unistd.h>
  61. #include <asm/system.h>
  62. #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
  63. # error "struct cpuinfo_ia64 too big!"
  64. #endif
  65. #ifdef CONFIG_SMP
  66. unsigned long __per_cpu_offset[NR_CPUS];
  67. EXPORT_SYMBOL(__per_cpu_offset);
  68. #endif
  69. extern void ia64_setup_printk_clock(void);
  70. DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
  71. DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
  72. unsigned long ia64_cycles_per_usec;
  73. struct ia64_boot_param *ia64_boot_param;
  74. struct screen_info screen_info;
  75. unsigned long vga_console_iobase;
  76. unsigned long vga_console_membase;
  77. static struct resource data_resource = {
  78. .name = "Kernel data",
  79. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  80. };
  81. static struct resource code_resource = {
  82. .name = "Kernel code",
  83. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  84. };
  85. extern void efi_initialize_iomem_resources(struct resource *,
  86. struct resource *);
  87. extern char _text[], _end[], _etext[];
  88. unsigned long ia64_max_cacheline_size;
  89. int dma_get_cache_alignment(void)
  90. {
  91. return ia64_max_cacheline_size;
  92. }
  93. EXPORT_SYMBOL(dma_get_cache_alignment);
  94. unsigned long ia64_iobase; /* virtual address for I/O accesses */
  95. EXPORT_SYMBOL(ia64_iobase);
  96. struct io_space io_space[MAX_IO_SPACES];
  97. EXPORT_SYMBOL(io_space);
  98. unsigned int num_io_spaces;
  99. /*
  100. * "flush_icache_range()" needs to know what processor dependent stride size to use
  101. * when it makes i-cache(s) coherent with d-caches.
  102. */
  103. #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
  104. unsigned long ia64_i_cache_stride_shift = ~0;
  105. /*
  106. * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
  107. * mask specifies a mask of address bits that must be 0 in order for two buffers to be
  108. * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
  109. * address of the second buffer must be aligned to (merge_mask+1) in order to be
  110. * mergeable). By default, we assume there is no I/O MMU which can merge physically
  111. * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
  112. * page-size of 2^64.
  113. */
  114. unsigned long ia64_max_iommu_merge_mask = ~0UL;
  115. EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
  116. /*
  117. * We use a special marker for the end of memory and it uses the extra (+1) slot
  118. */
  119. struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
  120. int num_rsvd_regions __initdata;
  121. /*
  122. * Filter incoming memory segments based on the primitive map created from the boot
  123. * parameters. Segments contained in the map are removed from the memory ranges. A
  124. * caller-specified function is called with the memory ranges that remain after filtering.
  125. * This routine does not assume the incoming segments are sorted.
  126. */
  127. int __init
  128. filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
  129. {
  130. unsigned long range_start, range_end, prev_start;
  131. void (*func)(unsigned long, unsigned long, int);
  132. int i;
  133. #if IGNORE_PFN0
  134. if (start == PAGE_OFFSET) {
  135. printk(KERN_WARNING "warning: skipping physical page 0\n");
  136. start += PAGE_SIZE;
  137. if (start >= end) return 0;
  138. }
  139. #endif
  140. /*
  141. * lowest possible address(walker uses virtual)
  142. */
  143. prev_start = PAGE_OFFSET;
  144. func = arg;
  145. for (i = 0; i < num_rsvd_regions; ++i) {
  146. range_start = max(start, prev_start);
  147. range_end = min(end, rsvd_region[i].start);
  148. if (range_start < range_end)
  149. call_pernode_memory(__pa(range_start), range_end - range_start, func);
  150. /* nothing more available in this segment */
  151. if (range_end == end) return 0;
  152. prev_start = rsvd_region[i].end;
  153. }
  154. /* end of memory marker allows full processing inside loop body */
  155. return 0;
  156. }
  157. static void __init
  158. sort_regions (struct rsvd_region *rsvd_region, int max)
  159. {
  160. int j;
  161. /* simple bubble sorting */
  162. while (max--) {
  163. for (j = 0; j < max; ++j) {
  164. if (rsvd_region[j].start > rsvd_region[j+1].start) {
  165. struct rsvd_region tmp;
  166. tmp = rsvd_region[j];
  167. rsvd_region[j] = rsvd_region[j + 1];
  168. rsvd_region[j + 1] = tmp;
  169. }
  170. }
  171. }
  172. }
  173. /*
  174. * Request address space for all standard resources
  175. */
  176. static int __init register_memory(void)
  177. {
  178. code_resource.start = ia64_tpa(_text);
  179. code_resource.end = ia64_tpa(_etext) - 1;
  180. data_resource.start = ia64_tpa(_etext);
  181. data_resource.end = ia64_tpa(_end) - 1;
  182. efi_initialize_iomem_resources(&code_resource, &data_resource);
  183. return 0;
  184. }
  185. __initcall(register_memory);
  186. /**
  187. * reserve_memory - setup reserved memory areas
  188. *
  189. * Setup the reserved memory areas set aside for the boot parameters,
  190. * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
  191. * see include/asm-ia64/meminit.h if you need to define more.
  192. */
  193. void __init
  194. reserve_memory (void)
  195. {
  196. int n = 0;
  197. /*
  198. * none of the entries in this table overlap
  199. */
  200. rsvd_region[n].start = (unsigned long) ia64_boot_param;
  201. rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
  202. n++;
  203. rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
  204. rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
  205. n++;
  206. rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
  207. rsvd_region[n].end = (rsvd_region[n].start
  208. + strlen(__va(ia64_boot_param->command_line)) + 1);
  209. n++;
  210. rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
  211. rsvd_region[n].end = (unsigned long) ia64_imva(_end);
  212. n++;
  213. #ifdef CONFIG_BLK_DEV_INITRD
  214. if (ia64_boot_param->initrd_start) {
  215. rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
  216. rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
  217. n++;
  218. }
  219. #endif
  220. efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
  221. n++;
  222. #ifdef CONFIG_KEXEC
  223. /* crashkernel=size@offset specifies the size to reserve for a crash
  224. * kernel. If offset is 0, then it is determined automatically.
  225. * By reserving this memory we guarantee that linux never set's it
  226. * up as a DMA target.Useful for holding code to do something
  227. * appropriate after a kernel panic.
  228. */
  229. {
  230. char *from = strstr(saved_command_line, "crashkernel=");
  231. unsigned long base, size;
  232. if (from) {
  233. size = memparse(from + 12, &from);
  234. if (*from == '@')
  235. base = memparse(from+1, &from);
  236. else
  237. base = 0;
  238. if (size) {
  239. if (!base) {
  240. sort_regions(rsvd_region, n);
  241. base = kdump_find_rsvd_region(size,
  242. rsvd_region, n);
  243. }
  244. if (base != ~0UL) {
  245. rsvd_region[n].start =
  246. (unsigned long)__va(base);
  247. rsvd_region[n].end =
  248. (unsigned long)__va(base + size);
  249. n++;
  250. crashk_res.start = base;
  251. crashk_res.end = base + size - 1;
  252. }
  253. }
  254. }
  255. efi_memmap_res.start = ia64_boot_param->efi_memmap;
  256. efi_memmap_res.end = efi_memmap_res.start +
  257. ia64_boot_param->efi_memmap_size;
  258. boot_param_res.start = __pa(ia64_boot_param);
  259. boot_param_res.end = boot_param_res.start +
  260. sizeof(*ia64_boot_param);
  261. }
  262. #endif
  263. /* end of memory marker */
  264. rsvd_region[n].start = ~0UL;
  265. rsvd_region[n].end = ~0UL;
  266. n++;
  267. num_rsvd_regions = n;
  268. BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
  269. sort_regions(rsvd_region, num_rsvd_regions);
  270. }
  271. /**
  272. * find_initrd - get initrd parameters from the boot parameter structure
  273. *
  274. * Grab the initrd start and end from the boot parameter struct given us by
  275. * the boot loader.
  276. */
  277. void __init
  278. find_initrd (void)
  279. {
  280. #ifdef CONFIG_BLK_DEV_INITRD
  281. if (ia64_boot_param->initrd_start) {
  282. initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
  283. initrd_end = initrd_start+ia64_boot_param->initrd_size;
  284. printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
  285. initrd_start, ia64_boot_param->initrd_size);
  286. }
  287. #endif
  288. }
  289. static void __init
  290. io_port_init (void)
  291. {
  292. unsigned long phys_iobase;
  293. /*
  294. * Set `iobase' based on the EFI memory map or, failing that, the
  295. * value firmware left in ar.k0.
  296. *
  297. * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
  298. * the port's virtual address, so ia32_load_state() loads it with a
  299. * user virtual address. But in ia64 mode, glibc uses the
  300. * *physical* address in ar.k0 to mmap the appropriate area from
  301. * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
  302. * cases, user-mode can only use the legacy 0-64K I/O port space.
  303. *
  304. * ar.k0 is not involved in kernel I/O port accesses, which can use
  305. * any of the I/O port spaces and are done via MMIO using the
  306. * virtual mmio_base from the appropriate io_space[].
  307. */
  308. phys_iobase = efi_get_iobase();
  309. if (!phys_iobase) {
  310. phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
  311. printk(KERN_INFO "No I/O port range found in EFI memory map, "
  312. "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
  313. }
  314. ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
  315. ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
  316. /* setup legacy IO port space */
  317. io_space[0].mmio_base = ia64_iobase;
  318. io_space[0].sparse = 1;
  319. num_io_spaces = 1;
  320. }
  321. /**
  322. * early_console_setup - setup debugging console
  323. *
  324. * Consoles started here require little enough setup that we can start using
  325. * them very early in the boot process, either right after the machine
  326. * vector initialization, or even before if the drivers can detect their hw.
  327. *
  328. * Returns non-zero if a console couldn't be setup.
  329. */
  330. static inline int __init
  331. early_console_setup (char *cmdline)
  332. {
  333. int earlycons = 0;
  334. #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
  335. {
  336. extern int sn_serial_console_early_setup(void);
  337. if (!sn_serial_console_early_setup())
  338. earlycons++;
  339. }
  340. #endif
  341. #ifdef CONFIG_EFI_PCDP
  342. if (!efi_setup_pcdp_console(cmdline))
  343. earlycons++;
  344. #endif
  345. #ifdef CONFIG_SERIAL_8250_CONSOLE
  346. if (!early_serial_console_init(cmdline))
  347. earlycons++;
  348. #endif
  349. return (earlycons) ? 0 : -1;
  350. }
  351. static inline void
  352. mark_bsp_online (void)
  353. {
  354. #ifdef CONFIG_SMP
  355. /* If we register an early console, allow CPU 0 to printk */
  356. cpu_set(smp_processor_id(), cpu_online_map);
  357. #endif
  358. }
  359. #ifdef CONFIG_SMP
  360. static void __init
  361. check_for_logical_procs (void)
  362. {
  363. pal_logical_to_physical_t info;
  364. s64 status;
  365. status = ia64_pal_logical_to_phys(0, &info);
  366. if (status == -1) {
  367. printk(KERN_INFO "No logical to physical processor mapping "
  368. "available\n");
  369. return;
  370. }
  371. if (status) {
  372. printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
  373. status);
  374. return;
  375. }
  376. /*
  377. * Total number of siblings that BSP has. Though not all of them
  378. * may have booted successfully. The correct number of siblings
  379. * booted is in info.overview_num_log.
  380. */
  381. smp_num_siblings = info.overview_tpc;
  382. smp_num_cpucores = info.overview_cpp;
  383. }
  384. #endif
  385. static __initdata int nomca;
  386. static __init int setup_nomca(char *s)
  387. {
  388. nomca = 1;
  389. return 0;
  390. }
  391. early_param("nomca", setup_nomca);
  392. #ifdef CONFIG_PROC_VMCORE
  393. /* elfcorehdr= specifies the location of elf core header
  394. * stored by the crashed kernel.
  395. */
  396. static int __init parse_elfcorehdr(char *arg)
  397. {
  398. if (!arg)
  399. return -EINVAL;
  400. elfcorehdr_addr = memparse(arg, &arg);
  401. return 0;
  402. }
  403. early_param("elfcorehdr", parse_elfcorehdr);
  404. #endif /* CONFIG_PROC_VMCORE */
  405. void __init
  406. setup_arch (char **cmdline_p)
  407. {
  408. unw_init();
  409. ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
  410. *cmdline_p = __va(ia64_boot_param->command_line);
  411. strlcpy(saved_command_line, *cmdline_p, COMMAND_LINE_SIZE);
  412. efi_init();
  413. io_port_init();
  414. parse_early_param();
  415. #ifdef CONFIG_IA64_GENERIC
  416. machvec_init(NULL);
  417. #endif
  418. if (early_console_setup(*cmdline_p) == 0)
  419. mark_bsp_online();
  420. #ifdef CONFIG_ACPI
  421. /* Initialize the ACPI boot-time table parser */
  422. acpi_table_init();
  423. # ifdef CONFIG_ACPI_NUMA
  424. acpi_numa_init();
  425. # endif
  426. #else
  427. # ifdef CONFIG_SMP
  428. smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
  429. # endif
  430. #endif /* CONFIG_APCI_BOOT */
  431. find_memory();
  432. /* process SAL system table: */
  433. ia64_sal_init(__va(efi.sal_systab));
  434. ia64_setup_printk_clock();
  435. #ifdef CONFIG_SMP
  436. cpu_physical_id(0) = hard_smp_processor_id();
  437. cpu_set(0, cpu_sibling_map[0]);
  438. cpu_set(0, cpu_core_map[0]);
  439. check_for_logical_procs();
  440. if (smp_num_cpucores > 1)
  441. printk(KERN_INFO
  442. "cpu package is Multi-Core capable: number of cores=%d\n",
  443. smp_num_cpucores);
  444. if (smp_num_siblings > 1)
  445. printk(KERN_INFO
  446. "cpu package is Multi-Threading capable: number of siblings=%d\n",
  447. smp_num_siblings);
  448. #endif
  449. cpu_init(); /* initialize the bootstrap CPU */
  450. mmu_context_init(); /* initialize context_id bitmap */
  451. check_sal_cache_flush();
  452. #ifdef CONFIG_ACPI
  453. acpi_boot_init();
  454. #endif
  455. #ifdef CONFIG_VT
  456. if (!conswitchp) {
  457. # if defined(CONFIG_DUMMY_CONSOLE)
  458. conswitchp = &dummy_con;
  459. # endif
  460. # if defined(CONFIG_VGA_CONSOLE)
  461. /*
  462. * Non-legacy systems may route legacy VGA MMIO range to system
  463. * memory. vga_con probes the MMIO hole, so memory looks like
  464. * a VGA device to it. The EFI memory map can tell us if it's
  465. * memory so we can avoid this problem.
  466. */
  467. if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
  468. conswitchp = &vga_con;
  469. # endif
  470. }
  471. #endif
  472. /* enable IA-64 Machine Check Abort Handling unless disabled */
  473. if (!nomca)
  474. ia64_mca_init();
  475. platform_setup(cmdline_p);
  476. paging_init();
  477. }
  478. /*
  479. * Display cpu info for all cpu's.
  480. */
  481. static int
  482. show_cpuinfo (struct seq_file *m, void *v)
  483. {
  484. #ifdef CONFIG_SMP
  485. # define lpj c->loops_per_jiffy
  486. # define cpunum c->cpu
  487. #else
  488. # define lpj loops_per_jiffy
  489. # define cpunum 0
  490. #endif
  491. static struct {
  492. unsigned long mask;
  493. const char *feature_name;
  494. } feature_bits[] = {
  495. { 1UL << 0, "branchlong" },
  496. { 1UL << 1, "spontaneous deferral"},
  497. { 1UL << 2, "16-byte atomic ops" }
  498. };
  499. char features[128], *cp, sep;
  500. struct cpuinfo_ia64 *c = v;
  501. unsigned long mask;
  502. unsigned long proc_freq;
  503. int i;
  504. mask = c->features;
  505. /* build the feature string: */
  506. memcpy(features, " standard", 10);
  507. cp = features;
  508. sep = 0;
  509. for (i = 0; i < (int) ARRAY_SIZE(feature_bits); ++i) {
  510. if (mask & feature_bits[i].mask) {
  511. if (sep)
  512. *cp++ = sep;
  513. sep = ',';
  514. *cp++ = ' ';
  515. strcpy(cp, feature_bits[i].feature_name);
  516. cp += strlen(feature_bits[i].feature_name);
  517. mask &= ~feature_bits[i].mask;
  518. }
  519. }
  520. if (mask) {
  521. /* print unknown features as a hex value: */
  522. if (sep)
  523. *cp++ = sep;
  524. sprintf(cp, " 0x%lx", mask);
  525. }
  526. proc_freq = cpufreq_quick_get(cpunum);
  527. if (!proc_freq)
  528. proc_freq = c->proc_freq / 1000;
  529. seq_printf(m,
  530. "processor : %d\n"
  531. "vendor : %s\n"
  532. "arch : IA-64\n"
  533. "family : %u\n"
  534. "model : %u\n"
  535. "model name : %s\n"
  536. "revision : %u\n"
  537. "archrev : %u\n"
  538. "features :%s\n" /* don't change this---it _is_ right! */
  539. "cpu number : %lu\n"
  540. "cpu regs : %u\n"
  541. "cpu MHz : %lu.%06lu\n"
  542. "itc MHz : %lu.%06lu\n"
  543. "BogoMIPS : %lu.%02lu\n",
  544. cpunum, c->vendor, c->family, c->model,
  545. c->model_name, c->revision, c->archrev,
  546. features, c->ppn, c->number,
  547. proc_freq / 1000, proc_freq % 1000,
  548. c->itc_freq / 1000000, c->itc_freq % 1000000,
  549. lpj*HZ/500000, (lpj*HZ/5000) % 100);
  550. #ifdef CONFIG_SMP
  551. seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
  552. if (c->threads_per_core > 1 || c->cores_per_socket > 1)
  553. seq_printf(m,
  554. "physical id: %u\n"
  555. "core id : %u\n"
  556. "thread id : %u\n",
  557. c->socket_id, c->core_id, c->thread_id);
  558. #endif
  559. seq_printf(m,"\n");
  560. return 0;
  561. }
  562. static void *
  563. c_start (struct seq_file *m, loff_t *pos)
  564. {
  565. #ifdef CONFIG_SMP
  566. while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
  567. ++*pos;
  568. #endif
  569. return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
  570. }
  571. static void *
  572. c_next (struct seq_file *m, void *v, loff_t *pos)
  573. {
  574. ++*pos;
  575. return c_start(m, pos);
  576. }
  577. static void
  578. c_stop (struct seq_file *m, void *v)
  579. {
  580. }
  581. struct seq_operations cpuinfo_op = {
  582. .start = c_start,
  583. .next = c_next,
  584. .stop = c_stop,
  585. .show = show_cpuinfo
  586. };
  587. static char brandname[128];
  588. static char * __cpuinit
  589. get_model_name(__u8 family, __u8 model)
  590. {
  591. char brand[128];
  592. memcpy(brand, "Unknown", 8);
  593. if (ia64_pal_get_brand_info(brand)) {
  594. if (family == 0x7)
  595. memcpy(brand, "Merced", 7);
  596. else if (family == 0x1f) switch (model) {
  597. case 0: memcpy(brand, "McKinley", 9); break;
  598. case 1: memcpy(brand, "Madison", 8); break;
  599. case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
  600. }
  601. }
  602. if (brandname[0] == '\0')
  603. return strcpy(brandname, brand);
  604. else if (strcmp(brandname, brand) == 0)
  605. return brandname;
  606. else
  607. return kstrdup(brand, GFP_KERNEL);
  608. }
  609. static void __cpuinit
  610. identify_cpu (struct cpuinfo_ia64 *c)
  611. {
  612. union {
  613. unsigned long bits[5];
  614. struct {
  615. /* id 0 & 1: */
  616. char vendor[16];
  617. /* id 2 */
  618. u64 ppn; /* processor serial number */
  619. /* id 3: */
  620. unsigned number : 8;
  621. unsigned revision : 8;
  622. unsigned model : 8;
  623. unsigned family : 8;
  624. unsigned archrev : 8;
  625. unsigned reserved : 24;
  626. /* id 4: */
  627. u64 features;
  628. } field;
  629. } cpuid;
  630. pal_vm_info_1_u_t vm1;
  631. pal_vm_info_2_u_t vm2;
  632. pal_status_t status;
  633. unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
  634. int i;
  635. for (i = 0; i < 5; ++i)
  636. cpuid.bits[i] = ia64_get_cpuid(i);
  637. memcpy(c->vendor, cpuid.field.vendor, 16);
  638. #ifdef CONFIG_SMP
  639. c->cpu = smp_processor_id();
  640. /* below default values will be overwritten by identify_siblings()
  641. * for Multi-Threading/Multi-Core capable cpu's
  642. */
  643. c->threads_per_core = c->cores_per_socket = c->num_log = 1;
  644. c->socket_id = -1;
  645. identify_siblings(c);
  646. #endif
  647. c->ppn = cpuid.field.ppn;
  648. c->number = cpuid.field.number;
  649. c->revision = cpuid.field.revision;
  650. c->model = cpuid.field.model;
  651. c->family = cpuid.field.family;
  652. c->archrev = cpuid.field.archrev;
  653. c->features = cpuid.field.features;
  654. c->model_name = get_model_name(c->family, c->model);
  655. status = ia64_pal_vm_summary(&vm1, &vm2);
  656. if (status == PAL_STATUS_SUCCESS) {
  657. impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
  658. phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
  659. }
  660. c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
  661. c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
  662. }
  663. void
  664. setup_per_cpu_areas (void)
  665. {
  666. /* start_kernel() requires this... */
  667. #ifdef CONFIG_ACPI_HOTPLUG_CPU
  668. prefill_possible_map();
  669. #endif
  670. }
  671. /*
  672. * Calculate the max. cache line size.
  673. *
  674. * In addition, the minimum of the i-cache stride sizes is calculated for
  675. * "flush_icache_range()".
  676. */
  677. static void __cpuinit
  678. get_max_cacheline_size (void)
  679. {
  680. unsigned long line_size, max = 1;
  681. unsigned int cache_size = 0;
  682. u64 l, levels, unique_caches;
  683. pal_cache_config_info_t cci;
  684. s64 status;
  685. status = ia64_pal_cache_summary(&levels, &unique_caches);
  686. if (status != 0) {
  687. printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
  688. __FUNCTION__, status);
  689. max = SMP_CACHE_BYTES;
  690. /* Safest setup for "flush_icache_range()" */
  691. ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
  692. goto out;
  693. }
  694. for (l = 0; l < levels; ++l) {
  695. status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
  696. &cci);
  697. if (status != 0) {
  698. printk(KERN_ERR
  699. "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
  700. __FUNCTION__, l, status);
  701. max = SMP_CACHE_BYTES;
  702. /* The safest setup for "flush_icache_range()" */
  703. cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
  704. cci.pcci_unified = 1;
  705. }
  706. line_size = 1 << cci.pcci_line_size;
  707. if (line_size > max)
  708. max = line_size;
  709. if (cache_size < cci.pcci_cache_size)
  710. cache_size = cci.pcci_cache_size;
  711. if (!cci.pcci_unified) {
  712. status = ia64_pal_cache_config_info(l,
  713. /* cache_type (instruction)= */ 1,
  714. &cci);
  715. if (status != 0) {
  716. printk(KERN_ERR
  717. "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
  718. __FUNCTION__, l, status);
  719. /* The safest setup for "flush_icache_range()" */
  720. cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
  721. }
  722. }
  723. if (cci.pcci_stride < ia64_i_cache_stride_shift)
  724. ia64_i_cache_stride_shift = cci.pcci_stride;
  725. }
  726. out:
  727. #ifdef CONFIG_SMP
  728. max_cache_size = max(max_cache_size, cache_size);
  729. #endif
  730. if (max > ia64_max_cacheline_size)
  731. ia64_max_cacheline_size = max;
  732. }
  733. /*
  734. * cpu_init() initializes state that is per-CPU. This function acts
  735. * as a 'CPU state barrier', nothing should get across.
  736. */
  737. void __cpuinit
  738. cpu_init (void)
  739. {
  740. extern void __cpuinit ia64_mmu_init (void *);
  741. static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
  742. unsigned long num_phys_stacked;
  743. pal_vm_info_2_u_t vmi;
  744. unsigned int max_ctx;
  745. struct cpuinfo_ia64 *cpu_info;
  746. void *cpu_data;
  747. cpu_data = per_cpu_init();
  748. /*
  749. * We set ar.k3 so that assembly code in MCA handler can compute
  750. * physical addresses of per cpu variables with a simple:
  751. * phys = ar.k3 + &per_cpu_var
  752. */
  753. ia64_set_kr(IA64_KR_PER_CPU_DATA,
  754. ia64_tpa(cpu_data) - (long) __per_cpu_start);
  755. get_max_cacheline_size();
  756. /*
  757. * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
  758. * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
  759. * depends on the data returned by identify_cpu(). We break the dependency by
  760. * accessing cpu_data() through the canonical per-CPU address.
  761. */
  762. cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
  763. identify_cpu(cpu_info);
  764. #ifdef CONFIG_MCKINLEY
  765. {
  766. # define FEATURE_SET 16
  767. struct ia64_pal_retval iprv;
  768. if (cpu_info->family == 0x1f) {
  769. PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
  770. if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
  771. PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
  772. (iprv.v1 | 0x80), FEATURE_SET, 0);
  773. }
  774. }
  775. #endif
  776. /* Clear the stack memory reserved for pt_regs: */
  777. memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
  778. ia64_set_kr(IA64_KR_FPU_OWNER, 0);
  779. /*
  780. * Initialize the page-table base register to a global
  781. * directory with all zeroes. This ensure that we can handle
  782. * TLB-misses to user address-space even before we created the
  783. * first user address-space. This may happen, e.g., due to
  784. * aggressive use of lfetch.fault.
  785. */
  786. ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
  787. /*
  788. * Initialize default control register to defer speculative faults except
  789. * for those arising from TLB misses, which are not deferred. The
  790. * kernel MUST NOT depend on a particular setting of these bits (in other words,
  791. * the kernel must have recovery code for all speculative accesses). Turn on
  792. * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
  793. * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
  794. * be fine).
  795. */
  796. ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
  797. | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
  798. atomic_inc(&init_mm.mm_count);
  799. current->active_mm = &init_mm;
  800. if (current->mm)
  801. BUG();
  802. ia64_mmu_init(ia64_imva(cpu_data));
  803. ia64_mca_cpu_init(ia64_imva(cpu_data));
  804. #ifdef CONFIG_IA32_SUPPORT
  805. ia32_cpu_init();
  806. #endif
  807. /* Clear ITC to eliminiate sched_clock() overflows in human time. */
  808. ia64_set_itc(0);
  809. /* disable all local interrupt sources: */
  810. ia64_set_itv(1 << 16);
  811. ia64_set_lrr0(1 << 16);
  812. ia64_set_lrr1(1 << 16);
  813. ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
  814. ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
  815. /* clear TPR & XTP to enable all interrupt classes: */
  816. ia64_setreg(_IA64_REG_CR_TPR, 0);
  817. #ifdef CONFIG_SMP
  818. normal_xtp();
  819. #endif
  820. /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
  821. if (ia64_pal_vm_summary(NULL, &vmi) == 0)
  822. max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
  823. else {
  824. printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
  825. max_ctx = (1U << 15) - 1; /* use architected minimum */
  826. }
  827. while (max_ctx < ia64_ctx.max_ctx) {
  828. unsigned int old = ia64_ctx.max_ctx;
  829. if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
  830. break;
  831. }
  832. if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
  833. printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
  834. "stacked regs\n");
  835. num_phys_stacked = 96;
  836. }
  837. /* size of physical stacked register partition plus 8 bytes: */
  838. if (num_phys_stacked > max_num_phys_stacked) {
  839. ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
  840. max_num_phys_stacked = num_phys_stacked;
  841. }
  842. platform_cpu_init();
  843. pm_idle = default_idle;
  844. }
  845. /*
  846. * On SMP systems, when the scheduler does migration-cost autodetection,
  847. * it needs a way to flush as much of the CPU's caches as possible.
  848. */
  849. void sched_cacheflush(void)
  850. {
  851. ia64_sal_cache_flush(3);
  852. }
  853. void __init
  854. check_bugs (void)
  855. {
  856. ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
  857. (unsigned long) __end___mckinley_e9_bundles);
  858. }
  859. static int __init run_dmi_scan(void)
  860. {
  861. dmi_scan_machine();
  862. return 0;
  863. }
  864. core_initcall(run_dmi_scan);