init_64.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/pci.h>
  25. #include <linux/pfn.h>
  26. #include <linux/poison.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/module.h>
  29. #include <linux/memory_hotplug.h>
  30. #include <linux/nmi.h>
  31. #include <asm/processor.h>
  32. #include <asm/system.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/pgalloc.h>
  36. #include <asm/dma.h>
  37. #include <asm/fixmap.h>
  38. #include <asm/e820.h>
  39. #include <asm/apic.h>
  40. #include <asm/tlb.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/proto.h>
  43. #include <asm/smp.h>
  44. #include <asm/sections.h>
  45. #include <asm/kdebug.h>
  46. #include <asm/numa.h>
  47. #include <asm/cacheflush.h>
  48. /*
  49. * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
  50. * The direct mapping extends to max_pfn_mapped, so that we can directly access
  51. * apertures, ACPI and other tables without having to play with fixmaps.
  52. */
  53. unsigned long max_low_pfn_mapped;
  54. unsigned long max_pfn_mapped;
  55. static unsigned long dma_reserve __initdata;
  56. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  57. int direct_gbpages
  58. #ifdef CONFIG_DIRECT_GBPAGES
  59. = 1
  60. #endif
  61. ;
  62. static int __init parse_direct_gbpages_off(char *arg)
  63. {
  64. direct_gbpages = 0;
  65. return 0;
  66. }
  67. early_param("nogbpages", parse_direct_gbpages_off);
  68. static int __init parse_direct_gbpages_on(char *arg)
  69. {
  70. direct_gbpages = 1;
  71. return 0;
  72. }
  73. early_param("gbpages", parse_direct_gbpages_on);
  74. /*
  75. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  76. * physical space so we can cache the place of the first one and move
  77. * around without checking the pgd every time.
  78. */
  79. int after_bootmem;
  80. static __init void *spp_getpage(void)
  81. {
  82. void *ptr;
  83. if (after_bootmem)
  84. ptr = (void *) get_zeroed_page(GFP_ATOMIC);
  85. else
  86. ptr = alloc_bootmem_pages(PAGE_SIZE);
  87. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  88. panic("set_pte_phys: cannot allocate page data %s\n",
  89. after_bootmem ? "after bootmem" : "");
  90. }
  91. pr_debug("spp_getpage %p\n", ptr);
  92. return ptr;
  93. }
  94. void
  95. set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  96. {
  97. pud_t *pud;
  98. pmd_t *pmd;
  99. pte_t *pte;
  100. pud = pud_page + pud_index(vaddr);
  101. if (pud_none(*pud)) {
  102. pmd = (pmd_t *) spp_getpage();
  103. pud_populate(&init_mm, pud, pmd);
  104. if (pmd != pmd_offset(pud, 0)) {
  105. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  106. pmd, pmd_offset(pud, 0));
  107. return;
  108. }
  109. }
  110. pmd = pmd_offset(pud, vaddr);
  111. if (pmd_none(*pmd)) {
  112. pte = (pte_t *) spp_getpage();
  113. pmd_populate_kernel(&init_mm, pmd, pte);
  114. if (pte != pte_offset_kernel(pmd, 0)) {
  115. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  116. return;
  117. }
  118. }
  119. pte = pte_offset_kernel(pmd, vaddr);
  120. if (!pte_none(*pte) && pte_val(new_pte) &&
  121. pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
  122. pte_ERROR(*pte);
  123. set_pte(pte, new_pte);
  124. /*
  125. * It's enough to flush this one mapping.
  126. * (PGE mappings get flushed as well)
  127. */
  128. __flush_tlb_one(vaddr);
  129. }
  130. void
  131. set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  132. {
  133. pgd_t *pgd;
  134. pud_t *pud_page;
  135. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  136. pgd = pgd_offset_k(vaddr);
  137. if (pgd_none(*pgd)) {
  138. printk(KERN_ERR
  139. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  140. return;
  141. }
  142. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  143. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  144. }
  145. /*
  146. * Create large page table mappings for a range of physical addresses.
  147. */
  148. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  149. pgprot_t prot)
  150. {
  151. pgd_t *pgd;
  152. pud_t *pud;
  153. pmd_t *pmd;
  154. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  155. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  156. pgd = pgd_offset_k((unsigned long)__va(phys));
  157. if (pgd_none(*pgd)) {
  158. pud = (pud_t *) spp_getpage();
  159. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  160. _PAGE_USER));
  161. }
  162. pud = pud_offset(pgd, (unsigned long)__va(phys));
  163. if (pud_none(*pud)) {
  164. pmd = (pmd_t *) spp_getpage();
  165. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  166. _PAGE_USER));
  167. }
  168. pmd = pmd_offset(pud, phys);
  169. BUG_ON(!pmd_none(*pmd));
  170. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  171. }
  172. }
  173. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  174. {
  175. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  176. }
  177. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  178. {
  179. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  180. }
  181. /*
  182. * The head.S code sets up the kernel high mapping:
  183. *
  184. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  185. *
  186. * phys_addr holds the negative offset to the kernel, which is added
  187. * to the compile time generated pmds. This results in invalid pmds up
  188. * to the point where we hit the physaddr 0 mapping.
  189. *
  190. * We limit the mappings to the region from _text to _end. _end is
  191. * rounded up to the 2MB boundary. This catches the invalid pmds as
  192. * well, as they are located before _text:
  193. */
  194. void __init cleanup_highmap(void)
  195. {
  196. unsigned long vaddr = __START_KERNEL_map;
  197. unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
  198. pmd_t *pmd = level2_kernel_pgt;
  199. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  200. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  201. if (pmd_none(*pmd))
  202. continue;
  203. if (vaddr < (unsigned long) _text || vaddr > end)
  204. set_pmd(pmd, __pmd(0));
  205. }
  206. }
  207. static unsigned long __initdata table_start;
  208. static unsigned long __meminitdata table_end;
  209. static unsigned long __meminitdata table_top;
  210. static __meminit void *alloc_low_page(unsigned long *phys)
  211. {
  212. unsigned long pfn = table_end++;
  213. void *adr;
  214. if (after_bootmem) {
  215. adr = (void *)get_zeroed_page(GFP_ATOMIC);
  216. *phys = __pa(adr);
  217. return adr;
  218. }
  219. if (pfn >= table_top)
  220. panic("alloc_low_page: ran out of memory");
  221. adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
  222. memset(adr, 0, PAGE_SIZE);
  223. *phys = pfn * PAGE_SIZE;
  224. return adr;
  225. }
  226. static __meminit void unmap_low_page(void *adr)
  227. {
  228. if (after_bootmem)
  229. return;
  230. early_iounmap(adr, PAGE_SIZE);
  231. }
  232. static unsigned long __meminit
  233. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
  234. {
  235. unsigned pages = 0;
  236. unsigned long last_map_addr = end;
  237. int i;
  238. pte_t *pte = pte_page + pte_index(addr);
  239. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  240. if (addr >= end) {
  241. if (!after_bootmem) {
  242. for(; i < PTRS_PER_PTE; i++, pte++)
  243. set_pte(pte, __pte(0));
  244. }
  245. break;
  246. }
  247. if (pte_val(*pte))
  248. continue;
  249. if (0)
  250. printk(" pte=%p addr=%lx pte=%016lx\n",
  251. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  252. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
  253. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  254. pages++;
  255. }
  256. update_page_count(PG_LEVEL_4K, pages);
  257. return last_map_addr;
  258. }
  259. static unsigned long __meminit
  260. phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
  261. {
  262. pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
  263. return phys_pte_init(pte, address, end);
  264. }
  265. static unsigned long __meminit
  266. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  267. unsigned long page_size_mask)
  268. {
  269. unsigned long pages = 0;
  270. unsigned long last_map_addr = end;
  271. unsigned long start = address;
  272. int i = pmd_index(address);
  273. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  274. unsigned long pte_phys;
  275. pmd_t *pmd = pmd_page + pmd_index(address);
  276. pte_t *pte;
  277. if (address >= end) {
  278. if (!after_bootmem) {
  279. for (; i < PTRS_PER_PMD; i++, pmd++)
  280. set_pmd(pmd, __pmd(0));
  281. }
  282. break;
  283. }
  284. if (pmd_val(*pmd)) {
  285. if (!pmd_large(*pmd))
  286. last_map_addr = phys_pte_update(pmd, address,
  287. end);
  288. /* Count entries we're using from level2_ident_pgt */
  289. if (start == 0)
  290. pages++;
  291. continue;
  292. }
  293. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  294. pages++;
  295. set_pte((pte_t *)pmd,
  296. pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  297. last_map_addr = (address & PMD_MASK) + PMD_SIZE;
  298. continue;
  299. }
  300. pte = alloc_low_page(&pte_phys);
  301. last_map_addr = phys_pte_init(pte, address, end);
  302. unmap_low_page(pte);
  303. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  304. }
  305. update_page_count(PG_LEVEL_2M, pages);
  306. return last_map_addr;
  307. }
  308. static unsigned long __meminit
  309. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
  310. unsigned long page_size_mask)
  311. {
  312. pmd_t *pmd = pmd_offset(pud, 0);
  313. unsigned long last_map_addr;
  314. spin_lock(&init_mm.page_table_lock);
  315. last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask);
  316. spin_unlock(&init_mm.page_table_lock);
  317. __flush_tlb_all();
  318. return last_map_addr;
  319. }
  320. static unsigned long __meminit
  321. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  322. unsigned long page_size_mask)
  323. {
  324. unsigned long pages = 0;
  325. unsigned long last_map_addr = end;
  326. int i = pud_index(addr);
  327. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  328. unsigned long pmd_phys;
  329. pud_t *pud = pud_page + pud_index(addr);
  330. pmd_t *pmd;
  331. if (addr >= end)
  332. break;
  333. if (!after_bootmem &&
  334. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  335. set_pud(pud, __pud(0));
  336. continue;
  337. }
  338. if (pud_val(*pud)) {
  339. if (!pud_large(*pud))
  340. last_map_addr = phys_pmd_update(pud, addr, end,
  341. page_size_mask);
  342. continue;
  343. }
  344. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  345. pages++;
  346. set_pte((pte_t *)pud,
  347. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  348. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  349. continue;
  350. }
  351. pmd = alloc_low_page(&pmd_phys);
  352. spin_lock(&init_mm.page_table_lock);
  353. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask);
  354. unmap_low_page(pmd);
  355. pud_populate(&init_mm, pud, __va(pmd_phys));
  356. spin_unlock(&init_mm.page_table_lock);
  357. }
  358. __flush_tlb_all();
  359. update_page_count(PG_LEVEL_1G, pages);
  360. return last_map_addr;
  361. }
  362. static unsigned long __meminit
  363. phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
  364. unsigned long page_size_mask)
  365. {
  366. pud_t *pud;
  367. pud = (pud_t *)pgd_page_vaddr(*pgd);
  368. return phys_pud_init(pud, addr, end, page_size_mask);
  369. }
  370. static void __init find_early_table_space(unsigned long end)
  371. {
  372. unsigned long puds, pmds, ptes, tables, start;
  373. puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
  374. tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
  375. if (direct_gbpages) {
  376. unsigned long extra;
  377. extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
  378. pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
  379. } else
  380. pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
  381. tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
  382. if (cpu_has_pse) {
  383. unsigned long extra;
  384. extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
  385. ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
  386. } else
  387. ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
  388. tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
  389. /*
  390. * RED-PEN putting page tables only on node 0 could
  391. * cause a hotspot and fill up ZONE_DMA. The page tables
  392. * need roughly 0.5KB per GB.
  393. */
  394. start = 0x8000;
  395. table_start = find_e820_area(start, end, tables, PAGE_SIZE);
  396. if (table_start == -1UL)
  397. panic("Cannot find space for the kernel page tables");
  398. table_start >>= PAGE_SHIFT;
  399. table_end = table_start;
  400. table_top = table_start + (tables >> PAGE_SHIFT);
  401. printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
  402. end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
  403. }
  404. static void __init init_gbpages(void)
  405. {
  406. if (direct_gbpages && cpu_has_gbpages)
  407. printk(KERN_INFO "Using GB pages for direct mapping\n");
  408. else
  409. direct_gbpages = 0;
  410. }
  411. static unsigned long __init kernel_physical_mapping_init(unsigned long start,
  412. unsigned long end,
  413. unsigned long page_size_mask)
  414. {
  415. unsigned long next, last_map_addr = end;
  416. start = (unsigned long)__va(start);
  417. end = (unsigned long)__va(end);
  418. for (; start < end; start = next) {
  419. pgd_t *pgd = pgd_offset_k(start);
  420. unsigned long pud_phys;
  421. pud_t *pud;
  422. next = (start + PGDIR_SIZE) & PGDIR_MASK;
  423. if (next > end)
  424. next = end;
  425. if (pgd_val(*pgd)) {
  426. last_map_addr = phys_pud_update(pgd, __pa(start),
  427. __pa(end), page_size_mask);
  428. continue;
  429. }
  430. if (after_bootmem)
  431. pud = pud_offset(pgd, start & PGDIR_MASK);
  432. else
  433. pud = alloc_low_page(&pud_phys);
  434. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  435. page_size_mask);
  436. unmap_low_page(pud);
  437. pgd_populate(&init_mm, pgd_offset_k(start),
  438. __va(pud_phys));
  439. }
  440. return last_map_addr;
  441. }
  442. struct map_range {
  443. unsigned long start;
  444. unsigned long end;
  445. unsigned page_size_mask;
  446. };
  447. #define NR_RANGE_MR 5
  448. static int save_mr(struct map_range *mr, int nr_range,
  449. unsigned long start_pfn, unsigned long end_pfn,
  450. unsigned long page_size_mask)
  451. {
  452. if (start_pfn < end_pfn) {
  453. if (nr_range >= NR_RANGE_MR)
  454. panic("run out of range for init_memory_mapping\n");
  455. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  456. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  457. mr[nr_range].page_size_mask = page_size_mask;
  458. nr_range++;
  459. }
  460. return nr_range;
  461. }
  462. /*
  463. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  464. * This runs before bootmem is initialized and gets pages directly from
  465. * the physical memory. To access them they are temporarily mapped.
  466. */
  467. unsigned long __init_refok init_memory_mapping(unsigned long start,
  468. unsigned long end)
  469. {
  470. unsigned long last_map_addr = 0;
  471. unsigned long page_size_mask = 0;
  472. unsigned long start_pfn, end_pfn;
  473. struct map_range mr[NR_RANGE_MR];
  474. int nr_range, i;
  475. printk(KERN_INFO "init_memory_mapping\n");
  476. /*
  477. * Find space for the kernel direct mapping tables.
  478. *
  479. * Later we should allocate these tables in the local node of the
  480. * memory mapped. Unfortunately this is done currently before the
  481. * nodes are discovered.
  482. */
  483. if (!after_bootmem)
  484. init_gbpages();
  485. if (direct_gbpages)
  486. page_size_mask |= 1 << PG_LEVEL_1G;
  487. if (cpu_has_pse)
  488. page_size_mask |= 1 << PG_LEVEL_2M;
  489. memset(mr, 0, sizeof(mr));
  490. nr_range = 0;
  491. /* head if not big page alignment ?*/
  492. start_pfn = start >> PAGE_SHIFT;
  493. end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
  494. << (PMD_SHIFT - PAGE_SHIFT);
  495. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  496. /* big page (2M) range*/
  497. start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
  498. << (PMD_SHIFT - PAGE_SHIFT);
  499. end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
  500. << (PUD_SHIFT - PAGE_SHIFT);
  501. if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
  502. end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
  503. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  504. page_size_mask & (1<<PG_LEVEL_2M));
  505. /* big page (1G) range */
  506. start_pfn = end_pfn;
  507. end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
  508. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  509. page_size_mask &
  510. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  511. /* tail is not big page (1G) alignment */
  512. start_pfn = end_pfn;
  513. end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
  514. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  515. page_size_mask & (1<<PG_LEVEL_2M));
  516. /* tail is not big page (2M) alignment */
  517. start_pfn = end_pfn;
  518. end_pfn = end>>PAGE_SHIFT;
  519. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  520. /* try to merge same page size and continuous */
  521. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  522. unsigned long old_start;
  523. if (mr[i].end != mr[i+1].start ||
  524. mr[i].page_size_mask != mr[i+1].page_size_mask)
  525. continue;
  526. /* move it */
  527. old_start = mr[i].start;
  528. memmove(&mr[i], &mr[i+1],
  529. (nr_range - 1 - i) * sizeof (struct map_range));
  530. mr[i].start = old_start;
  531. nr_range--;
  532. }
  533. for (i = 0; i < nr_range; i++)
  534. printk(KERN_DEBUG " %010lx - %010lx page %s\n",
  535. mr[i].start, mr[i].end,
  536. (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
  537. (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
  538. if (!after_bootmem)
  539. find_early_table_space(end);
  540. for (i = 0; i < nr_range; i++)
  541. last_map_addr = kernel_physical_mapping_init(
  542. mr[i].start, mr[i].end,
  543. mr[i].page_size_mask);
  544. if (!after_bootmem)
  545. mmu_cr4_features = read_cr4();
  546. __flush_tlb_all();
  547. if (!after_bootmem && table_end > table_start)
  548. reserve_early(table_start << PAGE_SHIFT,
  549. table_end << PAGE_SHIFT, "PGTABLE");
  550. printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
  551. last_map_addr, end);
  552. if (!after_bootmem)
  553. early_memtest(start, end);
  554. return last_map_addr >> PAGE_SHIFT;
  555. }
  556. #ifndef CONFIG_NUMA
  557. void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  558. {
  559. unsigned long bootmap_size, bootmap;
  560. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  561. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  562. PAGE_SIZE);
  563. if (bootmap == -1L)
  564. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  565. /* don't touch min_low_pfn */
  566. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
  567. 0, end_pfn);
  568. e820_register_active_regions(0, start_pfn, end_pfn);
  569. free_bootmem_with_active_regions(0, end_pfn);
  570. early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
  571. reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
  572. }
  573. void __init paging_init(void)
  574. {
  575. unsigned long max_zone_pfns[MAX_NR_ZONES];
  576. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  577. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  578. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  579. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  580. memory_present(0, 0, max_pfn);
  581. sparse_init();
  582. free_area_init_nodes(max_zone_pfns);
  583. }
  584. #endif
  585. /*
  586. * Memory hotplug specific functions
  587. */
  588. #ifdef CONFIG_MEMORY_HOTPLUG
  589. /*
  590. * Memory is added always to NORMAL zone. This means you will never get
  591. * additional DMA/DMA32 memory.
  592. */
  593. int arch_add_memory(int nid, u64 start, u64 size)
  594. {
  595. struct pglist_data *pgdat = NODE_DATA(nid);
  596. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  597. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  598. unsigned long nr_pages = size >> PAGE_SHIFT;
  599. int ret;
  600. last_mapped_pfn = init_memory_mapping(start, start + size-1);
  601. if (last_mapped_pfn > max_pfn_mapped)
  602. max_pfn_mapped = last_mapped_pfn;
  603. ret = __add_pages(zone, start_pfn, nr_pages);
  604. WARN_ON(1);
  605. return ret;
  606. }
  607. EXPORT_SYMBOL_GPL(arch_add_memory);
  608. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  609. int memory_add_physaddr_to_nid(u64 start)
  610. {
  611. return 0;
  612. }
  613. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  614. #endif
  615. #endif /* CONFIG_MEMORY_HOTPLUG */
  616. /*
  617. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  618. * is valid. The argument is a physical page number.
  619. *
  620. *
  621. * On x86, access has to be given to the first megabyte of ram because that area
  622. * contains bios code and data regions used by X and dosemu and similar apps.
  623. * Access has to be given to non-kernel-ram areas as well, these contain the PCI
  624. * mmio resources as well as potential bios/acpi data regions.
  625. */
  626. int devmem_is_allowed(unsigned long pagenr)
  627. {
  628. if (pagenr <= 256)
  629. return 1;
  630. if (!page_is_ram(pagenr))
  631. return 1;
  632. return 0;
  633. }
  634. static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
  635. kcore_modules, kcore_vsyscall;
  636. void __init mem_init(void)
  637. {
  638. long codesize, reservedpages, datasize, initsize;
  639. pci_iommu_alloc();
  640. /* clear_bss() already clear the empty_zero_page */
  641. reservedpages = 0;
  642. /* this will put all low memory onto the freelists */
  643. #ifdef CONFIG_NUMA
  644. totalram_pages = numa_free_all_bootmem();
  645. #else
  646. totalram_pages = free_all_bootmem();
  647. #endif
  648. reservedpages = max_pfn - totalram_pages -
  649. absent_pages_in_range(0, max_pfn);
  650. after_bootmem = 1;
  651. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  652. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  653. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  654. /* Register memory areas for /proc/kcore */
  655. kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
  656. kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
  657. VMALLOC_END-VMALLOC_START);
  658. kclist_add(&kcore_kernel, &_stext, _end - _stext);
  659. kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
  660. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  661. VSYSCALL_END - VSYSCALL_START);
  662. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  663. "%ldk reserved, %ldk data, %ldk init)\n",
  664. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
  665. max_pfn << (PAGE_SHIFT-10),
  666. codesize >> 10,
  667. reservedpages << (PAGE_SHIFT-10),
  668. datasize >> 10,
  669. initsize >> 10);
  670. cpa_init();
  671. }
  672. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  673. {
  674. unsigned long addr = begin;
  675. if (addr >= end)
  676. return;
  677. /*
  678. * If debugging page accesses then do not free this memory but
  679. * mark them not present - any buggy init-section access will
  680. * create a kernel page fault:
  681. */
  682. #ifdef CONFIG_DEBUG_PAGEALLOC
  683. printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
  684. begin, PAGE_ALIGN(end));
  685. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  686. #else
  687. printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
  688. for (; addr < end; addr += PAGE_SIZE) {
  689. ClearPageReserved(virt_to_page(addr));
  690. init_page_count(virt_to_page(addr));
  691. memset((void *)(addr & ~(PAGE_SIZE-1)),
  692. POISON_FREE_INITMEM, PAGE_SIZE);
  693. free_page(addr);
  694. totalram_pages++;
  695. }
  696. #endif
  697. }
  698. void free_initmem(void)
  699. {
  700. free_init_pages("unused kernel memory",
  701. (unsigned long)(&__init_begin),
  702. (unsigned long)(&__init_end));
  703. }
  704. #ifdef CONFIG_DEBUG_RODATA
  705. const int rodata_test_data = 0xC3;
  706. EXPORT_SYMBOL_GPL(rodata_test_data);
  707. void mark_rodata_ro(void)
  708. {
  709. unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
  710. unsigned long rodata_start =
  711. ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  712. #ifdef CONFIG_DYNAMIC_FTRACE
  713. /* Dynamic tracing modifies the kernel text section */
  714. start = rodata_start;
  715. #endif
  716. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  717. (end - start) >> 10);
  718. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  719. /*
  720. * The rodata section (but not the kernel text!) should also be
  721. * not-executable.
  722. */
  723. set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
  724. rodata_test();
  725. #ifdef CONFIG_CPA_DEBUG
  726. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  727. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  728. printk(KERN_INFO "Testing CPA: again\n");
  729. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  730. #endif
  731. }
  732. #endif
  733. #ifdef CONFIG_BLK_DEV_INITRD
  734. void free_initrd_mem(unsigned long start, unsigned long end)
  735. {
  736. free_init_pages("initrd memory", start, end);
  737. }
  738. #endif
  739. int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
  740. int flags)
  741. {
  742. #ifdef CONFIG_NUMA
  743. int nid, next_nid;
  744. int ret;
  745. #endif
  746. unsigned long pfn = phys >> PAGE_SHIFT;
  747. if (pfn >= max_pfn) {
  748. /*
  749. * This can happen with kdump kernels when accessing
  750. * firmware tables:
  751. */
  752. if (pfn < max_pfn_mapped)
  753. return -EFAULT;
  754. printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
  755. phys, len);
  756. return -EFAULT;
  757. }
  758. /* Should check here against the e820 map to avoid double free */
  759. #ifdef CONFIG_NUMA
  760. nid = phys_to_nid(phys);
  761. next_nid = phys_to_nid(phys + len - 1);
  762. if (nid == next_nid)
  763. ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
  764. else
  765. ret = reserve_bootmem(phys, len, flags);
  766. if (ret != 0)
  767. return ret;
  768. #else
  769. reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
  770. #endif
  771. if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
  772. dma_reserve += len / PAGE_SIZE;
  773. set_dma_reserve(dma_reserve);
  774. }
  775. return 0;
  776. }
  777. int kern_addr_valid(unsigned long addr)
  778. {
  779. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  780. pgd_t *pgd;
  781. pud_t *pud;
  782. pmd_t *pmd;
  783. pte_t *pte;
  784. if (above != 0 && above != -1UL)
  785. return 0;
  786. pgd = pgd_offset_k(addr);
  787. if (pgd_none(*pgd))
  788. return 0;
  789. pud = pud_offset(pgd, addr);
  790. if (pud_none(*pud))
  791. return 0;
  792. pmd = pmd_offset(pud, addr);
  793. if (pmd_none(*pmd))
  794. return 0;
  795. if (pmd_large(*pmd))
  796. return pfn_valid(pmd_pfn(*pmd));
  797. pte = pte_offset_kernel(pmd, addr);
  798. if (pte_none(*pte))
  799. return 0;
  800. return pfn_valid(pte_pfn(*pte));
  801. }
  802. /*
  803. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  804. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  805. * not need special handling anymore:
  806. */
  807. static struct vm_area_struct gate_vma = {
  808. .vm_start = VSYSCALL_START,
  809. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  810. .vm_page_prot = PAGE_READONLY_EXEC,
  811. .vm_flags = VM_READ | VM_EXEC
  812. };
  813. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  814. {
  815. #ifdef CONFIG_IA32_EMULATION
  816. if (test_tsk_thread_flag(tsk, TIF_IA32))
  817. return NULL;
  818. #endif
  819. return &gate_vma;
  820. }
  821. int in_gate_area(struct task_struct *task, unsigned long addr)
  822. {
  823. struct vm_area_struct *vma = get_gate_vma(task);
  824. if (!vma)
  825. return 0;
  826. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  827. }
  828. /*
  829. * Use this when you have no reliable task/vma, typically from interrupt
  830. * context. It is less reliable than using the task's vma and may give
  831. * false positives:
  832. */
  833. int in_gate_area_no_task(unsigned long addr)
  834. {
  835. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  836. }
  837. const char *arch_vma_name(struct vm_area_struct *vma)
  838. {
  839. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  840. return "[vdso]";
  841. if (vma == &gate_vma)
  842. return "[vsyscall]";
  843. return NULL;
  844. }
  845. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  846. /*
  847. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  848. */
  849. static long __meminitdata addr_start, addr_end;
  850. static void __meminitdata *p_start, *p_end;
  851. static int __meminitdata node_start;
  852. int __meminit
  853. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  854. {
  855. unsigned long addr = (unsigned long)start_page;
  856. unsigned long end = (unsigned long)(start_page + size);
  857. unsigned long next;
  858. pgd_t *pgd;
  859. pud_t *pud;
  860. pmd_t *pmd;
  861. for (; addr < end; addr = next) {
  862. void *p = NULL;
  863. pgd = vmemmap_pgd_populate(addr, node);
  864. if (!pgd)
  865. return -ENOMEM;
  866. pud = vmemmap_pud_populate(pgd, addr, node);
  867. if (!pud)
  868. return -ENOMEM;
  869. if (!cpu_has_pse) {
  870. next = (addr + PAGE_SIZE) & PAGE_MASK;
  871. pmd = vmemmap_pmd_populate(pud, addr, node);
  872. if (!pmd)
  873. return -ENOMEM;
  874. p = vmemmap_pte_populate(pmd, addr, node);
  875. if (!p)
  876. return -ENOMEM;
  877. addr_end = addr + PAGE_SIZE;
  878. p_end = p + PAGE_SIZE;
  879. } else {
  880. next = pmd_addr_end(addr, end);
  881. pmd = pmd_offset(pud, addr);
  882. if (pmd_none(*pmd)) {
  883. pte_t entry;
  884. p = vmemmap_alloc_block(PMD_SIZE, node);
  885. if (!p)
  886. return -ENOMEM;
  887. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  888. PAGE_KERNEL_LARGE);
  889. set_pmd(pmd, __pmd(pte_val(entry)));
  890. /* check to see if we have contiguous blocks */
  891. if (p_end != p || node_start != node) {
  892. if (p_start)
  893. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  894. addr_start, addr_end-1, p_start, p_end-1, node_start);
  895. addr_start = addr;
  896. node_start = node;
  897. p_start = p;
  898. }
  899. addr_end = addr + PMD_SIZE;
  900. p_end = p + PMD_SIZE;
  901. } else
  902. vmemmap_verify((pte_t *)pmd, node, addr, next);
  903. }
  904. }
  905. return 0;
  906. }
  907. void __meminit vmemmap_populate_print_last(void)
  908. {
  909. if (p_start) {
  910. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  911. addr_start, addr_end-1, p_start, p_end-1, node_start);
  912. p_start = NULL;
  913. p_end = NULL;
  914. node_start = 0;
  915. }
  916. }
  917. #endif